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Abstract

We associate to a bound quiver(Q, I) a CW-complex which we denote byB(Q, I), and call the
classifying space of(Q, I). We show that the fundamental group ofB(Q, I) is isomorphic to the
fundamental group of(Q, I). Moreover, we show that this construction behaves well with respe
coverings. On the other hand, we study the (co)homology groups ofB(Q, I), and compare them wit
the simplicial and the Hochschild (co)homology groups of the algebraA = kQ/I . More precisely,
we give sufficient conditions for these groups to be isomorphic. This generalizes a theorem
Gerstenhaber and Schack [J. Pure Appl. Algebra 30 (1983) 143–156].
 2004 Elsevier Inc. All rights reserved.

Keywords:Fundamental group; Bound quivers; Simply connectedalgebras; Schurian algebras; Incidence
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Introduction

Let A be an associative, finite dimensional algebra over an algebraically closed fieldk.
It is well-known (see [8], for instance) that ifA is basic and connected, then there ex
a connected bound quiver(Q, I) such thatA � kQ/I , wherekQ is the path algebra ofQ
andI is an admissible two sided ideal ofkQ. The pair(Q, I) is then called apresentation
of A. If Q contains no oriented cycles, thenA is said to be atriangular k-algebra.

For each presentation(Q, I) of A, one can define itsfundamental group, denoted by
π1(Q, I) (see [21,25], for instance). A triangulark-algebraA is said to besimply connected
if, for every presentation(Q, I) of A, the groupπ1(Q, I) is trivial. Simply connected
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algebras play an important role in the representation theory of algebras, since co
techniques often allow to reduce the study of indecomposable representations of an
A to the study of indecomposable representations of a suitably chosen simply con
algebra [8].

On the other hand, given an algebraA = kQ/I , its Hochschild cohomology group
HHi (A) also give important information about the simple connectedness, as well as
the rigidity properties ofA, see [13,19,33]. If moreoverA admits a semi-normed basis, o
can define thesimplicial homologyandcohomology groups ofA with coefficients in some
abelian groupG, denoted by SHi (A), and SHi (A,G), respectively see [9] (also [24,26])

Results in [2,9,10,15,20,23] exhibit several relations between the groups men
above. To a schurian triangular algebraA is associated a simplicial complex|A|, see [9]
(and also [7,26]). It turns that in this case the groupsπ1(Q, I) and the simplicial
(co)homology groups ofA are respectively isomorphic to the fundamental group and
(co)homology groups of|A| see [9,10,24].

The main aim of this work is to build a topological space which would be a geome
model for studying the fundamental groups and coverings of bound quivers, as well
simplicial and Hochschild (co)homology of not necessarily schurian algebras. The
is organized as follows.

In Section 1, we fix notation and terminology, and recall the definition of the (nat
homotopy relation induced by an idealI on the set of walks in a quiverQ. We also recal
the definition of the fundamental groupπ1(Q, I).

We begin Section 2 with a motivating discussion about classifying spaces of
categories, in the sense ofK-theory [28,32]. A particular case of that construction is
simplicial complex|A| associated to an incidence algebraA(Σ). The main part of this
section is devoted to the construction of a CW-complexB = B(Q, I), which we call the
classifying spaceof the bound quiver(Q, I). Several examples are given.

In Section 3, we discuss some homotopy properties ofB, and we prove the first mai
result of this paper.

3.3. Theorem. Let (Q, I) be a bound quiver, andB = B(Q, I) be its classifying space
Then the groupsπ1(B) andπ1(Q, I) are isomorphic.

This generalizes previous similar results obtained independently for incidence alg
and for schurian triangular algebras in [30] and [10], respectively. Moreover, this allo
obtain an adaptation of Van Kampen’s theorem to the context of bound quivers (co
with [30]).

In Section 4, we deal with coverings ofbound quivers, and of topological spac
Theorem 4.3 says that a covering morphism of bound quiversp : (Q̂, Î ) → (Q, I) induces
a covering of topological spacesBp :B(Q̂, Î ) → B(Q, I). The main result in this sectio
is the following:

4.5. Theorem. Let p : (Q̂, Î ) → (Q, I) be a Galois covering given by a groupG. Then
(B̂,Bp) is a regular covering ofB with covering automorphism group isomorphic toG.
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In Section 5, we recall the definition of the simplicial (co)homology of an alge
A = kQ/I having a semi-normed basis. We show that the homotopy relation is str
related to the vectors of such a basis. Finally, we compare the simplicial homolog
cohomology groups ofA to the (cellular) homology and cohomology groups ofB(Q, I)

with coefficients in some abelian groupG, Hi (B) and Hi (B,G), respectively. More
precisely, we show the following statement:

5.5. Corollary. Let A = kQ/I be an algebra having a semi-normed basis. Then, for e
i � 0, there are isomorphisms of abelian groups

SHi (A,G) ∼−→ Hi (B,G),

SHi (A) ∼−→ Hi (B).

An immediate consequence of this result is that one can think about the (co)hom
theories ofB(Q, I) as a generalization of the simplicial (co)homology theories of a
algebraA, which are defined only for algebras having semi-normed bases.

Finally, in Section 6 we focus on the Hochschild cohomology groups ofA. More
precisely, following [20,24] we compare them with the simplicial cohomology groups oA.
Strengthening Theorem 3 in [24], we then prove the following result, which general
theorem due to Gerstenhaber and Schack [20] (see also [12]).

6.3. Theorem. Let A = kQ/I be a schurian triangular, semi-commutative algebra. Th
for eachi � 0, there is an isomorphism of abelian groups

Hi (ε) : SHi
(
A,k+) ∼−→ HHi (A).

It is worth to note that the isomorphisms of Corollary 5.5 and Theorem 6.3
induced by isomorphisms of complexes which preserve canonical cup-products
the isomorphism above yields an isomorphism of graded rings. We use them to
new algebraic-topology flavored proofs of some known results about the Hoch
cohomology groups of monomial algebras [4,22].

1. Preliminaries

1.1. Notation and terminology

Let Q be a finite quiver. We denote byQ0 andQ1 the sets of vertices and arrows ofQ,
respectively. Given a commutative fieldk, the path algebrakQ is thek-vector space with
basis all the paths ofQ, including one stationary pathex for each vertexx of Q. Two
paths sharing source and target are said to beparallel. The multiplication of two basis
elements ofkQ is their composition whenever it is possible, and 0 otherwise. LetF be the
two-sided ideal ofkQ generated by the arrows ofQ. A two-sided idealI of kQ is called
admissibleif there exists an integerm � 2 such thatFm ⊆ I ⊆ F 2. The pair(Q, I) is a
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bound quiver. It is well-known that ifA is a basic, connected, finite dimensional alge
over an algebraically closed fieldk, then there exists a unique finite connected quiveQ

and a surjective morphism ofk-algebrasν : kQ → A, which is not unique in general, wit
I = Kerν admissible [8].

Let (Q, I) be a bound quiver, andA � kQ/I . It will sometimes be convenient t
considerA as a locally boundedk-category, whose object class isQ0, and, forx, y in
Q0, the morphism setA(x,y) equals the quotient of the freek-modulekQ(x, y) with
basis the set of paths fromx to y, modulo the subspaceI (x, y) = I ∩ kQ(x, y), see [8].
A path w from x to y is said to be a non-zero path ifw /∈ I (x, y). It is easily seen tha
A(x,y) = exAey .

1.2. The fundamental group

Given a bound quiver(Q, I), its fundamental group is defined as follows [25]. Forx, y

in Q0, a relationρ = ∑m
i=1 λiwi ∈ I (x, y) (whereλi ∈ k∗, andwi are different paths from

x to y) is said to beminimalif m � 2, and, for every proper subsetJ of {1, . . . , n}, we have∑
i∈J λiwi /∈ I (x, y).
We define thehomotopy relation∼ on the set of walks on(Q, I), as the smalles

equivalence relation satisfying:

(1) For each arrowα from x to y, one hasαα−1 ∼ ex andα−1α ∼ ey .
(2) For each minimal relation

∑m
i=1 λiwi , one haswi ∼ wj for all i, j in {1, . . . ,m}.

(3) If u,v,w andw′ are walks, andu ∼ v thenwuw′ ∼ wvw′ , whenever these compos
tions are defined.

We denote byw̃ the homotopy class of a walkw. A closely related notion is that o
natural homotopy. Two parallel pathsp andq are said to benaturally homotopicif p = q

or there exists a sequencep = p0,p1, . . . , ps = q of parallel paths, and, fori ∈ {1, . . . , s},
pathsui , vi , v′

i andwi such thatpi = uiviwi , pi+1 = uiv
′
iwi with vi andv′

i appearing in
the same minimal relation (compare with [3]). In that case we writep ∼◦ q and p̃◦ will
denote the natural homotopy class of a pathp. It is easily seen that natural homotopy is t
smallest equivalence relation on the set of paths on(Q, I) satisfying conditions (2) and (3
(replacing, of course,walksby pathsin condition (3)). Thusp ∼◦ q impliesp ∼ q but the
converse is not true (see 2.2, example (1)). Since the idealI is admissible, for every arrow
α in Q one hasα̃◦ = {α}. Moreover, note that ifA = kQ/I is schurian, that is for ever
x, y ∈ Q0 one has dimk exAey � 1, then the relations∼ and∼◦ coincide.

For a fixed vertexx0 ∈ Q0, we denote byπ1(Q,x0) the fundamental group of th
underlying graph ofQ at the vertexx0. Let N(Q,I, x0) be the normal subgroup o
π1(Q,x0) generated by all elements of the formw−1u−1vw, wherew is a walk from
x0 to x, andu, v are two homotopic paths fromx to y. The fundamental groupπ1(Q, I)

is defined to be

π1(Q, I) = π1(Q,x0)/N(Q, I, x0).

Since the quiverQ is connected, this definition is independent of the choice of the
point x0. An important remark is that the group defined above depends essentially
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minimal relations, which are given bythe ideal. It is well-known that, for ak-algebraA, its
presentation as a bound quiver algebra is not unique. Thus, the fundamental group i
invariant of the algebra (see [1]). A triangulark-algebraA is said to besimply connectedif,
for every presentationA � kQ/I of A as a bound quiver algebra, we haveπ1(Q, I) = 1.

However, it has been shown in [5] that if an algebraA is constricted(that is, if, for
every arrowα :x → y in Q1, one has dimk A(x, y) = 1), then the fundamental group
independent of the presentation.

2. The classifying space B(Q, I)

2.1. Background and motivation

To a schurian triangular algebraA = kQ/I , is associated a simplicial complex|A| in
the following way [9] (see also [7,26]): Ann-simplex is a sequencex0, x1, . . . , xn of n + 1
different vertices ofQ such that for eachj with 1 � j � n, there is a morphismfj in
A(xj−1, xj ) with fnfn−1 · · ·f1 
= 0. For instance, ifA = A(Σ) is the incidence algebra o
a poset(Σ,�), then|A| is the simplicial complex of non empty chains ofΣ (see [6,20]).
Moreover, in this case, this construction is a particular case of that of the classifying
BC of a small categoryC (see [28,32]). More generally, letC be a small category. Th
spaceBC is a CW-complex with 0-cells corresponding to the objects ofC, and, forn � 1,
onen-cell for each diagram

X0
f1−→ X1

f2−→ · · · fn−→ Xn

in C where none of thefi is an identity map. The correspondingn-cell is attached in
the obvious way to any cell of smaller dimension obtained by deleting someXi and, if
0 < i < n, replacingfi andfi+1 by the compositionfi+1fi , whenever this compositio
is not an identity map. This construction leads to a functor from the category of
categories to that of CW-complexes.

For example, consider a poset(Σ,�) as a category whose objects are the elem
of Σ , and, forx, y ∈ Σ there is a morphismρy

x :y → x if and only if x � y in Σ , with the
obvious composition. With the above notation, the simplicial complex|Σ| is equal toBΣ .
This leads us to the following.

2.2. Definition and examples

Recall that, givenn � 0, the standardn-simplex is the set∆n = {(t0, t1, . . . , tn) ∈
Rn+1 | ∑n

i=0 ti = 1, ti � 0}. Its j th face is∂j∆
n = {(t0, t1, . . . , tn) ∈ ∆n | tj = 0}, and,

moreover∂∆n = ⋃
j ∂j∆

n. An openn-cell is an homeomorphic copy of∆n\∂∆n. Given
two topological spacesX, andY , a closed setA ⊂ X, and a continuous mapf :A → Y ,
the pushout of

X
i←↩ A

f→ Y

will be denoted byX f Y .
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We wish to build a CW-complex by successively attachingn-cells to a previously
built (n − 1)-dimensional complex. We begin by giving a description of the setsCn of
n-cells. SetC0 = Q0, C1 = {σ̃ ◦ | σ :x � y is a path inQ, σ /∈ I , σ 
= ei}, and, for
n � 2, Cn = {(σ̃ ◦

1 , . . . , σ̃ ◦
n ) | σ1σ2 · · ·σn is a path inQ, σ1 · · ·σn /∈ I , σi 
= ei}. To avoid

cumbersome notations, an element(σ̃ ◦
1 , σ̃ ◦

2 , . . . , σ̃ ◦
n ) of Cn will be denoted byσ n, or

evenσ , if there is no risk of confusion.
Given σ = σ̃ ◦ ∈ C1, with, say,σ :x � y, define∂1

0(σ ) = y and ∂1
1(σ ) = x. More

generally, forn � 2 and i ∈ {0, . . . , n} define maps∂n
i :Cn → Cn−1 in the following

way: given σ = (σ̃ ◦
1 , σ̃ ◦

2 , . . . , σ̃ ◦
n ) in Cn, set: ∂n

0 (σ ) = (σ̃ ◦
2 , . . . , σ̃ ◦

n ), . . . , ∂n
i (σ ) =

(σ̃ ◦
1 , . . . , σ̃iσ

◦
i+1, . . . , σ̃

◦
n ), . . . , and ∂n

n (σ ) = (σ̃ ◦
1 , . . . , σ̃ ◦

n−1). Again, we shall write∂i

instead of∂n
i . With these notations we build a CW-complex as follows:

• 0-cells: SetB0 = ⋃
x∈Q0

∆0
x .

• 1-cells: We attach one 1-cell∆1
σ for eachσ ∈ C1. More precisely, givenσ ∈ C1 define

fσ : ∂∆1
σ → B0 by fσ (∂i∆

1
σ ) = ∆0

∂1
i σ

. Consider the co-productf1 = ∐
σ∈C1

fσ , define

B1 =
( ∐

σ∈C1

∆1
σ

)
f1 B0

and letp1 be the canonical projectionp1 : (
∐

C1
∆1

σ )  B0 → B1.
• n-cells: AssumeBn−1 has already been built. Givenσ ∈ Cn, we have∂j (σ ) ∈ Cn−1 for

j ∈ {0, . . . , n}. The corresponding(n − 1)-cells are∆n−1
∂j σ . Denote byq∂iσ :∆n−1

∂iσ
→∐

Cn−1
∆n−1

τ the inclusions, and definefσ : ∂∆n
σ → Bn−1 by

fσ

(
∂j∆

n
σ

) = pn−1q∂j σ

(
∆n−1

∂j σ

)
,

which is a continuous function on each∂j∆
n
σ , thus continuous in∂∆n

σ . Consider the
co-productfn = ∐

σ∈Cn
fσ , define

Bn =
( ∐

σ∈Cn

∆n
σ

)
fn Bn−1

and letpn be the canonical projection

pn:

(∐
Cn

∆n
σ

)
Bn−1 → Bn.

Note that sinceQ is a finite quiver andI is an admissible ideal, there are only finite
manyk ∈ N such thatCk 
= ∅.

Definition. Let (Q, I) be a bound quiver. TheCW-complex obtained by the precedin
construction is theclassifying space of(Q, I), and is denoted byB(Q, I).
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A slightly different approach consists in considering homotopy classes of paths, in
of natural homotopy classes to attach the cells. The complex obtained in this way w
denotedB�(Q, I), and called thetotal classifying space of(Q, I).

Remarks.

(1) If the algebraA = kQ/I is almost triangular, that is ex(radA)ey 
= 0 implies
ey(radA)ex = 0 for all verticesx, y ∈ Q0 (compare with the definition in [10]), the
the spacesB(Q, I) andB�(Q, I) are regular CW-complexes.

(2) Since for every arrowα of Q we have that̃α◦ = {α}, the underlying graph ofQ can
be considered in a natural way as a subspace of the classifying spaceB(Q, I). This is
not the case with the total classifying space (see example (1) below).

Examples. (1) Consider the quiver

3

β

γ

2
α

1

bound byI = 〈βα −γα〉. The arrowsβ andγ are homotopic, but not naturally homotop
The spacesB(Q, I) andB�(Q, I) look as in Fig. 1.

(2) Let A = kQ/I be a schurian algebra. As noted before, in this case homotop
natural homotopy coincide, thusB(Q, I) = B�(Q, I). For x, y ∈ Q0, there is a 1-cel
joining them if and only if there is a non-zero pathw from, say,x to y. Moreover, if
there is another such pathw′, then, sinceA is schurian, one hasw ∼◦ w′. Thus different
paths give the same 1-cell, and one can identify it with the pair(x, y). In a similar way,
given ann-cell corresponding to(σ̃ ◦

1 , . . . , σ̃ ◦
n ), with σi ∈ A(xi−1, xi), one can identify it

with the sequence ofn+1 pointsx0, x1, . . . , xn in Q. This shows that for schurian algebr
A = kQ/I , the cellular complexB(Q, I) is precisely the simplicial complex|A| of 2.1,
above (see also [24]).
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(3) Consider the following quiver

6
α

5
β1

β2

β3

2

γ1

3
γ2

4

γ3
1

bound by the ideal generated byαβ1 and
∑3

i=1 βiγi . The cells ofB(Q, I) are the following:

The 1-cells are given bỹα◦, β̃◦
i , γ̃ ◦

i , β̃1γ
◦
1 = β̃2γ

◦
2 = β̃3γ

◦
3 , α̃β

◦
2, α̃β

◦
3 and α̃β2γ

◦
2 =

α̃β3γ
◦
3

The 2-cells are given by(α̃◦, β̃◦
2), (α̃◦, β̃◦

3), (α̃◦, β̃2γ
◦
2), (α̃◦, β̃3γ

◦
3), (α̃β

◦
2, γ̃

◦
2 ),

(α̃β
◦
3, γ̃

◦
3 ), and(β̃◦

i , γ̃ ◦
i ), for i ∈ {1,2,3}.

The 3-cells are given by(α̃◦, β̃◦
2, γ̃ ◦

2 ) and(α̃◦, β̃◦
3, γ̃ ◦

3 ).

Note that the boundaries of the 2-cells(β̃◦
i , γ̃ ◦

i ) are the union of the 1-cells̃γ ◦
i , β̃◦

i , and
β̃iγ

◦
i . Sinceβ1γ1 ∼◦ β2γ2 ∼◦ β3γ3, the three 2-cells have a whole 1-face in common.

same argument shows that the two cells of dimension 3 share a whole face of dimen
The geometric realisation ofB(Q, I) looks as the space shown in Fig. 2.

Note that sinceβ2γ2 ∼◦ β1γ1, one has(α̃◦, β̃2γ
◦
2 ) = (α̃◦, β̃1γ

◦
1 ), even though the pat

αβ1γ1 belongs toI . However,αβ1γ1 ∼◦ αβ2γ2 and the latter is not zero. Moreover, in th
case we haveB(Q, I) = B�(Q, I).

(4) Let Q be a quiver, andI be the ideal ofkQ generated by paths of length 2. In th
case there are no minimal relations, so homotopy, and natural homotopy are trivial re
thusB(Q, I) = B�(Q, I). Each arrowα :x → y of Q gives rise to a 1-cell. Moreove
since the only non-zero paths are the arrows, these are the only cells. For the same
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there are no higher dimensional cells, so the spaceB(Q, I) is homeomorphic toQ, the
underlying graph ofQ.

Remarks. (1) LetP(Q) denote the path category ofQ. That is, the object class ofP(Q) is
Q0, and forx, y ∈ Q0, the morphism setP(Q)(x, y) is the set of paths fromx to y in Q.
The composition is the obvious one. Moreover, letP(Q, I) = P(Q)/ ∼◦ be the quotien
category modulo the natural homotopy relation induced byI . The complexB(Q, I) is
a subcomplex of the classifying space ofP(Q, I). The n-cells of B(P(Q, I)) are in
bijection with n-tuples(σ̃ ◦

1 , . . . , σ̃ ◦
n ) of composable morphisms, regardless whether t

composition is zero or not. However, if there are no monomial relations inI , the complex
B(Q, I) is exactly the classifying spaceB(P(Q, I)). The same applies forB�(Q, I) with
respect to the classifying space of the categoryP(Q)/ ∼.

(2) Consider the quiver

5

2 8

4 6

1 7

3

bound by all the commutativity relations and all the paths of length 3. The spaceB(Q, I) is
homeomorphic to the 3-dimensional sphereS2 = {x ∈ R3 | ‖x‖ = 1}. The commutativity
relations tell how to “glue” the 2-dimensional cells. The existence of monomial relatio
implies that there are no 3-cells to “fill the hole”. On the other hand, the spaceB(P(Q, I))

is homeomorphic to the ballB3.
Let (Q, I ′) be the same quiver bound by the commutativity relations (and only th

In particular, the natural homotopy relations induced byI andI ′ are the same. Howeve
the spaceB(Q, I ′) is homeomorphic toB3 = {x ∈ R3 | ‖x‖ � 1}, hence does not have th
same homotopy type asB(Q, I). This shows that monomial relations play an import
role in the construction ofB(Q, I), even though they are taken into account to define
neither the natural homotopy nor the homotopy relations.

(3) The fact thatB(Q, I) is not really the classifying space of a category implies
this construction is not functorial, as the following example shows: Consider the quivQ

3 β1

4
α1

β1

1

2 α2

and letI = 〈α1α2+β1β2〉, I ′ = 〈α1α2, β1β2〉. The identity map onQ yields a bound quive
morphismf : (Q, I) → (Q, I ′). However the induced mapg : (Q, I ′) → (Q, I) is not a
bound quiver morphism sinceα1α2 ∈ I ′, but α1α2 /∈ I . In this case, the spaceB(Q, I) is
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homeomorphic toB2 = {x ∈ R2 | ‖x‖ � 1}. On the other hand,B(Q, I ′) is homeomorphic
to S1. Thus, there is no non homotopically trivial map fromB(Q, I) to B(Q, I ′).

3. Homotopy

3.1. Proposition. Let (Q, I) be a bound quiver withI a monomial ideal such that= kQ/I

is almost triangular. Then the underlying graphQ is a deformation retract ofB(Q, I).

Proof. SinceI is monomial, the natural homotopy and the homotopy relations are tr
Thus, then-cells are given byn-tuples(σ1, . . . , σn) of paths such thatσ1σ2 · · ·σn /∈ I . If
I = F 2, there is nothing to prove (see example (4), above). If this is not the case, then
are non-zero paths of length greater or equal than 2. Letα1 · · ·αn be a maximal non-zer
path. It gives an-cell α which is maximal. Fori ∈ {0, . . . , n − 1}, let xi be the source o
αi+1, andxn be the target ofαn. SinceA is almost triangular,xi 
= xj wheneveri 
= j , thus
we may consider then-cell α as the standardn-simplex[x0, . . . , xn]. Let y = (x0 + xn)/2,
thus[x0, . . . , xn] = [x0, . . . , xn−1, y] ∪ [y, x1, . . . , xn].

For t ∈ [0,1] definer(t) = (1− t)y + tx1, that is the path joiningy to x1. Usingr one
can “crush” the simplex[x0, . . . , xn] onto its faces[x0, . . . , xn−1] and[x1, . . . , xn], which,
by the maximality assumption, are the only faces in the complex that are not free (u
barycentric coordinates, and the division of the simplex given below). The space ob
isB(Q, I), in which we have crushed the cellα onto the(n−1)-cells∂0(α) and∂n(α). It is
easily seen that this space is preciselyB(Q, I1) whereI1 = I + 〈α1 · · ·αn〉, which is again
a monomial ideal. IfI1 = F 2, we have finished, otherwisewe repeat the process abo
with another maximal dimensional cell ofB(Q, I1). This must end in a finite number o
steps, sinceI is admissible. �

A first immediate consequence is that ifI is a monomial ideal, then the fundamen
groupπ1(B) of the topological spaceB, is isomorphic to the fundamental groupπ1(Q, I)

of the bound quiver(Q, I). In fact, this is a particular case of a much more gen
situation.

Given a cell complexX, its fundamental groupπ1(X) can be described in the followin
convenient way (see [27], for instance). Fix a 0-cell,x0, and a maximal treeM, that is,
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a subcomplex of dimension smaller or equal than 1, which is acyclic and maxima
respect to this property. For every 2-celle2

λ of X, let αe be a path class which starts
some fixed 0-cellx in its boundary,∂e2

λ, and goes around∂e2
λ exactly once. Moreover, le

βx be the unique path class inX which goes fromx0 to x along the treeM. Finally set
γe = βxαeβ

−1
x (compare with the definition of aparade datain [17]).

Let G be the free group on the set of 1-cells ofX, andN be the normal subgroup ofG
generated by the following elements:

(1) The cells ofM.
(2) The elementsγe, as constructed above.

With the above notation, reformulating Theorem 2.1, p. 213 of [27], one hasπ1(X) �
G/N .

Moreover, since we are interested in complexes of the formB = B(Q, I), and in this
case all the 2-cells are of the form(σ̃ ◦

1 , σ̃ ◦
2 ), the boundary of such a cell beingσ̃ ◦

2 , σ̃1σ
◦
2 ,

σ̃ ◦
1 , we can improve the preceding presentation forπ1(B).

3.2. Lemma. Let (Q, I) be a bound quiver andT be a maximal tree inQ. Then
π1(B) � F/K, whereF is the free group with basis the set of arrows ofQ, and K is
the normal subgroup ofF generated by the elements of the following two types:

(1) α, for every arrowα in T ,
(2) (α1α2 · · ·αr )(β1β2 · · ·βs)

−1 wheneverα1α2 · · ·αr and β1β2 · · ·βs are two paths
appearing in the same minimal relation.

Proof. Let T be a maximal tree in the quiverQ. In particularT is a set of arrows ofQ. It
follows from the construction ofB(Q, I) that an arrowα :x → y in T gives rise to a 1-cel
α̃◦ in B(Q, I). The set of 1-cells obtained from the arrows ofT forms a maximal treeM
in B(Q, I). We work with respect to these maximal trees. Moreover, letG andN be as
before.

Consider the mapφ :F → G/N defined byα �→ α̃N . It is straightforward to see tha
K ⊆ Kerφ, so we obtain a group homomorphismΦ :F/K → G/N defined byαK �→ α̃N .

We show thatΦ is an isomorphism by constructing its inverse. Ifw̃◦ is a 1-cell
in B(Q, I), then there are arrowsα1, α2, . . . , αr in Q such thatα1α2 · · ·αr ∼◦ w, and
α1α2 · · ·αr /∈ I . Define the mapψ :G → F/K by w̃ �→ α1α2 · · ·αrK. It is not hard to
see that this is a well-defined map, and, moreover, thatN ⊆ Kerψ . Thus, we obtain
a group homomorphismΨ :G/N → F/K defined byw̃◦N �→ α1 · · ·αrK. Finally, it is
straightforward to check thatΦ andΨ are mutually inverse. �
3.3. Theorem. Let (Q, I) be a bound quiver, withQ triangular andB = B(Q, I). Then
the groupsπ1(B) andπ1(Q, I) are isomorphic.

Proof. This is an easy consequence of the preceding lemma, and the descript
π1(Q, I) given in Section 1.2. �
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Remark. A similar argument applies to the fundamental group ofB�(Q, I). Thus we
obtainπ1(B�) � π1(Q, I).

3.4. Corollary. Let A = kQ/I be a triangular algebra. ThenA is simply connected i
and only if for every presentation(Q, I), B(Q, I) or, equivalentlyB�(Q, I), is a simply
connected topological space.

Given a bound quiver(Q, I), and a full convex subquiverQi , let I i denote the idea
I ∩ kQi of kQi , that is, the restriction ofI to Qi . With these notations we have th
following result (see also [30]).

3.5. Corollary. Let (Q, I) be a bound quiver,Q1 andQ2 be two full convex subquive
ofQ such that every non-zero path ofQ lies entirely in eitherQ1 or Q2, andQ0 = Q1∩Q2

is connected. Then,π1(Q, I) is the pushout of the diagram

π1
(
Q1, I1) ← π1

(
Q0, I0) → π1

(
Q2, I2)

where the arrows are the maps induced by the inclusions.

Proof. It follows from the hypotheses made onQ1 andQ2, thatB(Q1, I1)∪B(Q2, I2) =
B(Q, I), and thatB(Q1, I1) ∩ B(Q2, I2) is connected. The result then follows fro
Theorem 3.3, and Van Kampen theorem for topological spaces (see [31], for instanc�
Example. Consider the quiverQ

1

3

α1

β1

2

α2 β2

4

6 5

bound byI = 〈α1α2 −β1β2, α1β2 − β1α2〉, and letQ1 andQ2 be the full subquivers ofQ
generated be the vertices 2,3,4,5,6, and 1,2,3, respectively. An easy computation giv
π1(Q

1, I1) = Z ∗ Z, π1(Q
2, I2) = Z2, andπ1(Q

0, I0) = Z, and this yieldsπ1(Q, I) =
Z ∗ Z2.

4. Coverings

As we saw in the example before Proposition 3.1, the construction ofB(Q, I) does not
lead to a functor from the category of bound quivers with bound quivers morphisms
category of CW-complexes with cellular maps. However, as we now see, if we consid
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the category of bound quivers with covering morphisms, thenB gives rise to a coverin
morphism of topological spaces.

We refer the reader to [8,14,18], for references about coverings and their uses
representation theory of algebras.

Given a bound quiverQ and a vertexx ∈ Q0, let, as usual,x+ (or x−) be the set
of all arrows leaving (or entering, respectively) the vertexx. A bound quiver morphism
p : (Q̂, Î ) → (Q, I) induces in an obvious way ak-linear mapp : kQ̂ → kQ. Recall
from [14], for instance, that a bound quiver morphismp : (Q̂, Î ) → (Q, I) is called a
covering morphismif

(1) p−1(x) 
= ∅ for everyx ∈ Q0.
(2) For everyx ∈ Q0, and x̂ ∈ p−1(x), the mapp induces bijectionŝx+ → x+ and

x̂− → x−.
(3) For everyx, y ∈ Q0, every relationρ ∈ I (x, y) and everyx̂ ∈ p−1(x) there exists

ŷ ∈ p−1(y) andρ̂ ∈ Î (x̂, ŷ) such thatp(ρ̂) = ρ.

Conditions(2) and (3) ensure that covering morphisms behave well with respe
homotopy relations. We have the following straightforward lemmata whose easy p
will be omitted.

4.1. Lemma. Letp : (Q̂, Î ) → (Q, I) be a covering morphism,x be a vertex ofQ, andw1,
w2 be two paths with sourcex. Moreover, letx̂ ∈ p−1(x), andŵ1, ŵ2 be two paths with
sourcex̂ such thatp(ŵi) = wi , for i = 1,2. Thenw1 ∼◦ w2 if and only ifŵ1 ∼◦ ŵ2.

4.2. Lemma. Let p : (Q̂, Î ) → (Q, I) be a covering morphism. Forx0 ∈ Q0, and every
x̂0 ∈ p−1(x0), there is a bijective correspondence between the set ofn-cells ofB = B(Q, I)

havingx0 as boundary point, and the set ofn-cells ofB̂ = B(Q̂, Î ) havingx̂0 as boundary
point.

In light of the preceding result, we can defineBp : B̂ → B as the map which map

homeomorphically ann-cell (s̃◦
1, . . . , s̃◦

n) onto the cell(p̃(s1)
◦
, . . . , p̃(sn)

◦
).

Recall from [31], for instance, that ifX is a topological space, then a covering spac
X is a pair(X̂,p) where

(1) X̂ is an arcwise connected topological space.
(2) p : X̂ → X is a continuous map.
(3) Eachx ∈ X has an open neighborhoodUx such thatp−1(Ux) = ⋃

i∈I Ûi , with Ûi

disjoint open sets, andp|Û : Ûi → Ux an homeomorphism, for everyi ∈ I .

This yields the following result.

4.3. Theorem. Letp : (Q̂, Î ) → (Q, I) be a covering morphism of bound quivers, withQ,
Q̂ connected. Then(B̂,Bp) is a covering space ofB(Q, I).
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Proof. Since Q̂ is a connected quiver,̂B is an arcwise connected space. Moreove
follows from its definition thatBp is a continuous map. Thus, there only remains to pr
that the third condition of the definition is satisfied. But this follows from the fact tha
open cells of̂B are disjoint open sets, and from the definition ofBp, whose restriction the
each such cell is an homeomorphism.�

Among all the covers of a bound quiver(Q, I), there is one of particular interest. Th
universal coverof (Q, I) is a cover mapp : (Q̂, Î ) → (Q, I) such that for any other cove
p′ : (Q, I) → (Q, I) there exists a covering mapπ : (Q̂, Î ) → (Q, I) satisfyingp = p′π
(see [25]).

4.4. Corollary. If p : (Q̂, Î ) → (Q, I) is the universal cover of(Q, I), then(B̂,Bp) is the
universal cover ofB.

Recall from [14], for instance, that a cover of bound quiversp : (Q̂, Î ) → (Q, I) is said
to be aGalois coverdefined by the action of a groupG of automorphisms of(Q̂, Î ) if

(4) pg = p for all g ∈ G.
(5) p−1(x) = Gp−1(x) and p−1(α) = Gp−1(α), for all verticesx in Q0 and arrows

α ∈ Q1.
(6) G acts without fixed points on̂Q.

Moreover, in this situation there exists a normal subgroupH of π1(Q, I) such that
π1(Q̂, Î ) � H andπ1(Q, I)/H � G (see [14]).

As before, an automorphismg of (Q̂, Î ) induces a map from the set of paths of(Q̂, Î ) to
the set of paths of(Q, I). This allows to define a cellular mapBg : B̂ → B as the continuou
function that maps homeomorphically the cell(σ̃ ◦

1 , . . . , σ̃ ◦
n ) onto the cell(g̃σ ◦

1 , . . . , g̃σ ◦
n).

The fact thatBg is well-defined follows from the fact thatg is invertible. Moreover, it is
straightforward to check thatBgBp = Bp. An important remark is that the restriction
Bg to the 0-cells of̂B is preciselyg. An immediate consequence of this is that ifg1 andg2

are automorphisms of(Q̂, Î ) with g1 
= g2, thenBg1 
= Bg2.
On the other hand, given a covering space(X̂,p) of a topological spaceX, we denote

by p∗ the group homomorphismπ1(p) :π1(X̂) → π1(X). In particular,p∗ is always a
monomorphism (see [31]). If Imp∗ is a normal subgroup ofπ1(X) then the covering
(X̂,p) is said to beregular. The set of all homeomorphismsφ : X̂ → X̂ suchpφ = p

is a group, which is called the group of covering automorphisms of(X̂,p), and is denoted
by Cov(X̂/X). It is well known that a covering(X̂,p) is regular if and only if Cov(X̂/X)

acts transitively onp−1(x0), the fiber over the base point (see [31], for instance).
Note that the set{Bg | g ∈ G} is a subgroup of Cov(B̂/B), which is isomorphic toG.

In fact, we have the following stronger result.

4.5. Theorem. Let p : (Q̂, Î ) → (Q, I) be a Galois covering given by a groupG. Then
(B̂,Bp) is a regular covering ofB andCov(B̂/B) � G.



J.C. Bustamante / Journal of Algebra 277 (2004) 431–455 445

e

t

p

hism
f

ring

l-

.3 we

igher
space
Proof. First of all, fix a vertexx0 ∈ Q0, which is also a 0-cell ofB. These will be the bas
points with respect the fundamental groups that will be considered.

In order to show that(B̂,Bp) is a regular covering ofB, it is enough to show tha
Cov(B̂/B) acts transitively on the fiberp−1(x0). This follows immediately from condition
(5) in the definition of a Galois covering, and the fact thatG is isomorphic to a subgrou
of Cov(B̂/B).

On the other hand

Cov
(
B̂/B

) � π1(B)

(Bp)∗π1(B̂ )
� π1(Q, I)

π1(Q̂, Î )
� G

where the first isomorphism is given by Corollary 10.28, p. 294 in [31].�
Remark. Theorem 10.19, p. 290 in [31] states that a nontrivial covering automorp
h ∈ Cov(X̂/X) acts without fixed points on̂X. Thus, condition (6) in the definition o
Galois coverings is redundant.

Example. Consider the quiverQ

3

α1

β1

2

α2

β2

1

bound by the idealI = 〈α1α2 −β1β2, α1β2 −β1α2〉. The spaceB(Q, I) is homeomorphic
to the real projective planeRP 2. On the other hand, the universal cover of(Q, I) is given
by the quiverQ′

x3 x2 x1

y3 y2 y1

bound by the idealI ′ generated by all the possible commutativity relations. The cove
mapp :Q′ → Q is given byp(xi) = p(yi) = i, for i ∈ {1,2,3}. The spaceB(Q̂, Î ) is
homeomorphic to the sphereS2, and the mapBp identifies antipodal points. It is wel
known that the pair(S2,Bp) is a covering space ofRP 2.

Remarks. (1) Again, with the obvious changes in Lemmata 4.1, 4.2 and Theorem 4
obtain a similar result for the total classifying spaceB�(Q, I), and its covering spaces.

(2) In light of the results in the last two sections, it would be natural to define the h
homotopy groups of a bound quiver as the corresponding homotopy groups of the
B(Q, I).



446 J.C. Bustamante / Journal of Algebra 277 (2004) 431–455

h
y

f

y

ed
way.

x

is.
5. (Co)Homologies

5.1. (Co)Homology ofB(Q, I)

Let (C•(B), δ) be the complex defined by letting Ci (B) be the free abelian group wit
basis the set ofi-cells,Ci , and by definingδn : Cn(B) → Cn−1(B) on the basis elements b
the ruleδn(σ ) = ∑n+1

i=0 (−1)i∂n
i (σ ).

With these notations, the homology groups Hi (B) of B are the homology groups o
(C•(B), δ). Moreover, ifG is an abelian group, then the cohomology groups Hi (B,G) of
B with coefficients inG, are the cohomology groups of HomZ(C•(B),G). In an analogous
way, we define the corresponding complex(C•(B�), δ), and obtain the (co)homolog
groups ofB�.

5.2. Simplicial (co)homology of algebras

On the other hand, recall that the simplicialhomology of a schurian algebra was defin
in [9] (see also [24,26] for generalization to the non-schurian case) in the following
For every pair of verticesi, j of Q, let Bij be ak-basis ofeiAej . The setB = ⋃

i,j Bij is
said to be asemi-normed basisif:

(1) ei ∈ Bii , for every vertexi.
(2) α ∈ Bij , for every arrowα : i → j .
(3) For σ,σ ′ in B, eitherσσ ′ = 0 or there existλσ,σ ′ ∈ k, andb(σ,σ ′) ∈ B such that

σσ ′ = λσ,σ ′b(σ,σ ′).

Define the chain complex(SC•(A), d) in the following way: SC0(A), and SC1(A) are
the free abelian groups with basisQ0, andB, respectively. Forn � 2, let SCn(A) be the free
abelian group with basis the set ofn-tuples(σ1, . . . , σn) of Bn such thatσ1σ2 · · ·σn 
= 0,
andσi 
= ej , for all i, for all j ∈ Q0. The differential is induced by the rulesd1(σ ) = y − x

whenσ ∈ Bxy , and, forn � 1,

dn(σ1σ2 · · ·σn) = (σ2, . . . , σn) +
n−1∑
j=1

(−1)j
(
σ1, . . . , b(σj , σj+1), . . . , σn

)
+ (−1)n(σ1, . . . , σn−1)

whereb(σj , σj+1) is as in condition (3), above. Thenth homology group SHn(A) of
(SC•(A,d)) is called thenth simplicial homology group ofA with respect to the basisB.
For an abelian groupM, thenth cohomology group SHn(A,M), of the cochain comple
HomZ(SC•(A),M), nth simplicial cohomology group ofA, with coefficients inM, with
respect to the basisB. Moreover, bydn, we denote the induced differential HomZ(dn,M).

Remarks. (1) Not every algebra of the formA = kQ/I admits a semi-normed bas
However, it is shown in [24] that if the universal cover of(Q, I) is schurian, thenA admits
a semi-normed basis. In particular all schurian algebras admit semi-normed basis.
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(2) On the other hand, assumeA has a semi-normed basisB, the groups SCi depend
essentially on the wayB is related toI . Hence, as for fundamental groups, differe
presentations of the algebra may lead to different simplicial homology groups, a
following well-known example shows: Consider the quiverQ

3

β

γ

2
α

1

Let I1 be the ideal generated byβα, andAν1 = kQ/I1. Associated to this presentatio
there is a semi-normed basis{e1, e2, e3, α,β, γ , γ α}, and with respect to this basi
SC2(Aν1) has as basis{(γ ,α)}, and this leads to SH1(Aν1) = Z.

On the other hand, letI2 be the ideal generated by(β − γ )α, andAν2 = kQ/I2. It is
easy to see thatAν1 � Aν2. With this presentation, one has the same semi-normed b
however SC2(Aν2) has a basis{(γ ,α), (β,α)}, and this leads to SH1(Aν2) = 0.

(3) As noted in [24], in caseA is schurian one can identify a basis element(σ1, . . . , σn)

of SCn(A) with the(n + 1)-tuple(x0, x1, . . . , xn) of vertices ofQ, whereσi ∈ exi−1Aexi ,
for 1 � i � n (compare with example (2) in Section 2.2). Thus, for schurian alge
the simplicial homology groups are independent of the semi-normed basis with re
to which they are computed. Moreover, it is straightforward that in this case one ha
everyi � 0, Hi (B) � SHi (A), and Hi (B,G) � SHi (A,G) for every abelian groupG.

The last remark is in fact a particular case of amore general result. Before stating a
proving it we need the following technical lemma.

5.3. Lemma. LetA = kQ/I be an algebra having a semi-normed basisB, then:

(a) For every non-zero pathw there exist a unique basis elementb(w) and a scalarλ such
thatw = λb(w).

(b) For every basis elementv ∈ B, there exist a non-zero pathp(v) and a scalarµ
such thatv = µp(v). Moreover, ifp(v) andp′(v) are two such paths, then they a
naturally homotopic.

(c) If w1,w2 are two non-zero paths withw1 ∼◦ w2, then there is a scalarλ ∈ k such that
w2 = λw1.

Proof. (a) This follows from an easy induction on the lengthl(w) of the pathw.
(b) Let σ ∈ Bxy , andw1,w2, . . . ,wr be paths fromx to y such that{wi | 1 � i � r}

is a basis ofexAey . It follows from (a) that there existsλi ∈ k\{0} and b(wi) ∈ Bxy

such thatwi = λib(wi). Hence,Bxy = {b(w1), . . . , b(wr)} so σ = b(wi0) = λi0wi0 for
somei0 such that 1� i0 � r. Then setp(σ) = wi0. Moreover, if p(σ) and p′(σ ) are
two different such paths andµ, µ′ scalars such thatσ = µp(σ) = µ′p′(σ ) we get
µp(σ) − µ′p′(σ ) = σ − σ = 0 which is a minimal relation, and this shows thatp(σ)

andp′(σ ) are naturally homotopic.
(c) Let w1, w2 be two parallel homotopic paths, and suppose thatw1 and w2

are linearly independent. Without loss of generality, we can assume thatw1 and w2
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appear in the same minimal relation. One then has
∑n

i=1 λiwi = 0, whereλi ∈ k∗,
and the pathswi are parallel. Assume, without loss of generality, that{w1,w2, . . . ,wr }
is a maximal linearly independent set of{w1, . . . ,wn}, and that, after re-ordering
necessary (recall thatA has a semi normed basis), there are scalarsaj such thatwr+1 =
ar+1w1, . . . ,wr+i1 = ar+i1w1,wr+i1+1 = ar+i1+1w2, . . . ,wn = anwr . Thus, replacing in∑n

i=1 λiwi = 0 implies that

λ1 + λr+1ar+1 + · · · + λr+i1ar+i1 = 0

and thenλ1w1 + λr+1wr+1 + · · · + λr+i1wr+i1 = 0, which is a contradiction to th
minimality of the original relation. �
5.4. Theorem. LetA = kQ/I be an algebra having a semi-normed basis, then:

(a) There exists an epimorphism of complexesφ
�• : SC•(A) → C•(B�),

(b) There exists an isomorphism of complexesφ• : SC•(A) → C•(B).

Proof. It is clear that C0(B) � C0(B�) � SC0(A). Forn � 1, consider the morphismsφ�
n

andφn defined by

φ�
n : SCn(A) → Cn

(
B�

)
, (σ1, . . . , σn) �→

(
p̃(σ1), . . . , p̃(σn)

)
,

φn : SCn(A) → Cn(B), (σ1, . . . , σn) �→
(
p̃(σ1)

◦
, . . . , p̃(σn)

◦)
.

It follows from the second statement in Lemma 5.3 thatφ
�
n and φn are epimorphism

of abelian groups. Moreover, it is clear that they commute with the boundary ope
involved. This proves the first statement. In order to prove the second, consider the

ψn : Cn(B) → SCn(A),
(
σ̃ ◦

1 , . . . , σ̃ ◦
n

) �→ (
b(σ1), . . . , b(σn)

)
.

The fact that the definition ofψn is not ambiguous follows from the third stateme
in Lemma 5.3. It is clear thatψn commutes with the boundary operators, so it define
morphism of complexes. Finally, it is straightforward to check thatφ• andψ• are mutually
inverse. �
5.5. Corollary. With the above hypotheses, for eachi � 0, there are isomorphisms o
abelian groups:

(a) Hi (B) � SHi (A), and
(b) Hi (B,G) � SHi (A,G), for every abelian groupG.

Remark. In case G is a commutative ringR, then the complexes involved a
endowed with a canonical cup product. This provides to H•(A,R) = ⊕

i�0Hi (A,R), and
H•(B,R) = ⊕

i�0Hi (B,R), a graded commutative ring structure. A direct computation



J.C. Bustamante / Journal of Algebra 277 (2004) 431–455 449

s.

n

m

hen
shows that the morphisms induced in cohomologyφ•, φ
�•, andψ• preserve these product

Thus, the morphisms in the corollary above are ring homomorphisms.

Examples. (1) Consider the quiverQ

4 β1

6

α1

α2

5

β3

β2
2

γ1

γ2

1

3

bound byI = 〈(α1 − α2)β3, β1(γ1 − γ2)〉. Even if in this case the complexes SC•(A) and
C•(B�) are not isomorphic, they still have the same homology groups. Let K• = Kerφ�•.
We have that Kn has a basis{(σ1, . . . , σn) − (σ ′

1, . . . , σ
′
n) | σi ∼ σ ′

i for all i such that 1�
i � n}. More precisely, rkK0 = 0, rkK1 = 7, rkK2 = 10, and rkK3 = 3. We leave to the
reader the definition of a contracting homotopys• : K• → K•[1].

(2) Consider the quiverQ

x1

α1

β1

x2

α2

β2

x1

bound by the idealI = 〈α1β2 + β1β2 − β1α2, α1α2 + β1α2 − β1β2〉. The sets of
cells of B are the following:C0 = {x1, x2, x3}, C1 = {α̃◦

1, α̃◦
2, β̃◦

1, β̃◦
2, α̃1α

◦
2}, and C2 =

{(α̃◦
1, α̃◦

2), (β̃◦
1, α̃◦

2), (α̃◦
1, β̃◦

2), (β̃◦
1, β̃◦

2)}. On the other hand, the sets of cells ofB� areC�
0 =

{x1, x2, x3}, C�
1 = {α̃1, α̃2, α̃1α2}, and C�

2 = {(α̃1, α̃2)}. An straightforward computatio
yields to

Hi (B) =
{

Z if i ∈ {0,2},
0 otherwise

and Hi

(
B�

) =
{

Z if i = 0,

0 otherwise.

Thus,B andB� do not have the same homotopy type. However, note thatA = kQ/I , does
not have a semi-normed basis.

Recall that, given an arcwise topological spaceX, the Hurewicz–Poincaré theore
(see [31], for instance) states that its first homology group, H1(X) is the abelianisation
of its fundamental groupπ1(X). This allows to prove the following:

5.6. Corollary. LetA = kQ/I be a constricted algebra having a semi-normed basis. T
its first simplicial(co)homology groups are independent of the presentation ofA.

Proof. For such an algebra one has

SH1(A) � H1(B) � π1(B) � π1(Q, I)
.
[π1(B),π1(B)] [π1(Q, I),π1(Q, I)]
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On the other hand, the universal coefficients theorem gives

SH1(A,G) � HomZ

(
SH1(A),G

) ⊕ Ext1
Z

(
SH0(A),G

)
� HomZ

(
SH1(A),G

)
. �

We now turn to the Hochschild cohomology of algebras.

6. Hochschild cohomology

Recall that for an arbitraryk-algebraA, its enveloping algebra is the tensor prod
Ae = A ⊗k Aop. Thus, an(A−A)-bimodule can be seen equivalently as anAe-module.
The Hochschild cohomology groups HHi (A,M) of an algebraA with coefficients in some
(A−A)-bimoduleM, are, by definition the groups Exti

Ae(A,M). In caseM is the(A−A)-
bimoduleAAA, we simply denote them by HHi (A). We refer the reader to [11,22,29], f
instance, for general results about Hochschild (co)homology of algebras.

6.1. A convenient resolution

In [12], Cibils gave a convenient projective resolution ofA over Ae. Let E be the
subalgebra ofA generated by the vertices ofQ. Note thatE is semi-simple, and tha
A = radA ⊕ E as (E−E)-bimodule. Let radA⊗n denote thenth tensor power of radA
with itself overE. With these notations, one has a projective resolution ofA as(A−A)-
module:

· · · → A ⊗E radA⊗n ⊗E A
bn−→ A ⊗E radA⊗n−1 ⊗E A

bn−1−−−→ · · ·
→ A ⊗E radA ⊗E A

b1−→ A ⊗E A
b0−→ A → 0

whered0 is the multiplication and

bn(a ⊗ σ1 ⊗ · · · ⊗ σn ⊗ b) = aσ1 ⊗ · · · ⊗ σn ⊗ b

+
n−1∑
j=1

(−1)ja ⊗ σ1 ⊗ · · · ⊗ σjσj+1 ⊗ · · · ⊗ σnb

+ (−1)na ⊗ σ1 ⊗ · · · ⊗ σnb.

Moreover, there is an obvious natural isomorphism HomAe(A ⊗E radA⊗n ⊗E A,A) �
HomEe(radA⊗n,A). This will be useful later. We denote bybn the corresponding
boundary operator, and, moreover, we letbn = HomEe(bn,A).

Remark. Note that the tensor products are taken overE. Thus, ifσ1, σ2 ∈ radA, with, say
σ1 ∈ eiAej , andσ2 ∈ elAem then, in radA⊗2, one has

σ1 ⊗ σ2 = σ1ej ⊗ elσ2 = σ1 ⊗ ej elσ2
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and this vanishes ifj 
= l. The same argument shows that radA⊗n is generated by elemen
of the formσ1 ⊗· · ·⊗σn whereσi ∈ ei−1Aei for 1 < i � n. Moreover, ifA admits a semi-
normed basisB, then usingk-linearity, one can assume that eachσi is an element ofB.

Following [24], for n � 1, defineεn : HomZ(SCn(A), k+) → HomEe(radA⊗n,A) in
the following way: forf ∈ HomZ(SCn(A), k+), and a basis element(σ1, . . . , σn), put
εn(f )(σ1 ⊗ · · · ⊗ σn) = f (σ1, . . . , σn)σ1 · · ·σn whenever(σ1, . . . , σn) ∈ SCn(A), and 0
otherwise.

Also, for n � 1, defineµn : HomEe (radA⊗n,A) → HomZ(SCn(A), k+) as follows: for
a basis element(σ1, . . . , σn) in SCn(A), we haveσ1σ2 · · ·σn 
= 0, and lies in, say,e0Aen,
which can be written as the direct sum ofk-vector spaces〈σ1σ2 · · ·σn〉 ⊕ A′

0n. Moreover,
σ1 ⊗ · · · ⊗ σn ∈ radA⊗n, thus, forg ∈ HomEe(radA⊗n,A) we have:

g(σ1 ⊗ · · · ⊗ σn) = g(e0σ1 ⊗ · · · ⊗ σnen) = e0g(σ1 ⊗ · · · ⊗ σn)en

so that g(σ1 ⊗ · · · ⊗ σn) ∈ e0Aen, and there is a scalarλ and a0 ∈ A′
0n such that

g(σ1 ⊗ · · · ⊗ σn) = λσ1σ2 · · ·σn + a0. Defineµn(g)(σ1, . . . , σn) = λ.

6.2. Lemma [24]. With the above notations, one has:

(a) µnεn = id, for n � 1.
(b) ε• is a morphism of complexes.
(c) If A is schurian, thenµ• is a morphism of complexes.

Remark. In [20], it was shown that for incidence algebras, the morphisms Hi (ε) are
isomorphisms. Moreover, as a consequence of a result of [15] (see also [10]), H1(ε) is
also an isomorphism for schurian triangular algebras. Thus, in light of [24] (or Lemm
above), one may naturally ask if in caseA is schurian, the monomorphisms Hi (ε) are
isomorphisms. As the following example shows, this is not always the case.

Example. Consider the quiver

2 β

1

α

γ
3

bound by the idealI = 〈αβ〉. The algebraA = kQ/I is schurian, and one can eas
compute

SHi
(
A,k+) =

{
k if i = 0,1,

0 otherwise.

On the other hand, using for instance, Happel’s long exact sequence [22], one gets

HHi (A) =
{

k if i = 0,1,2,

0 otherwise.
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,

still
Recall that an algebraA = kQ/I is said to besemi-commutative[22] whenever for
w,w′ paths sharing origin and terminus inQ, then w ∈ I if and only if w′ ∈ I . For
instance, incidence algebras are semi-commutative. Schurian triangular, semi-comm
algebras are also calledweakly transitive[16]. The algebra in the preceding example
schurian, but not semi-commutative. This leads to the main result of this section,
is a generalization of a result of Gerstenhaber and Schack [20], and makes more p
result of Martins and de la Peña (Theorem 3 in [24]).

6.3. Theorem. Let A = kQ/I be a schurian triangular, semi-commutative algebra. Th
for eachi � 0, there is an isomorphism of abelian groups

Hi (ε) : SHi
(
A,k+) ∼−→ HHi (A).

Proof. In light of Lemma 6.2, there only remains to show that ifA is semi-commutative
then εnµn = id for n � 1. Let f ∈ HomEe (radA⊗n,A), andσ1 ⊗ · · · ⊗ σn be a basis
element in radA⊗n, with, say σ1σ2 · · ·σn ∈ e0Aen. Assumeσ1σ2 · · ·σn 
= 0. SinceA

is schurian, there exists some scalarλ such thatf (σ1 ⊗ · · · ⊗ σn) = λσ1 · · ·σn, thus
(µnf )(σ1, . . . , σn) = λ, and

(εnµnf )(σ1 ⊗ · · · ⊗ σn) = (
(µnf )(σ1, . . . , σn)

)
σ1 · · ·σn = λσ1 · · ·σn

= f (σ1 ⊗ · · · ⊗ σn).

On the other hand, ifσ1 · · ·σn = 0, then,

(εnµnf )(σ1 ⊗ · · · ⊗ σn) = (
(µnf )(σ1, . . . , σn)

)
σ1 · · ·σn = 0.

Moreover, sinceA is semi-commutative we havee0Aen = 0, and thereforef (σ1 ⊗ · · · ⊗
σn) = 0. �
Remark. Again, it is straightforward to check thatε• areµ• preserve cup-products, thu
the isomorphism above induce a ring isomorphism.

6.4. Corollary [20]. Let (Σ,�) be a finite poset andA = A(Σ) be its incidence algebra
then, for eachi � 0, there is an isomorphism of abelian groupsHi (BΣ,k+) � HHi (A).

Remark. There exist algebras which are not semi-commutative, but there are
an isomorphisms Hi (ε) : SHi (A, k+) �−→ HHi (A) for all i � 0. Consider the following
quiverQ

4
α2

3
α3

2 α4

6

α1

β1

1

5 β2



J.C. Bustamante / Journal of Algebra 277 (2004) 431–455 453

i-

ic-
child

ra,

re

t

ult

. Also,
and let A = kQ/I where I = 〈α1α2, α3α4〉. This algebra is schurian, but not sem
commutative. One can easily compute

SHi
(
A,k+) = HHi (A) =

{
k if i = 0,1,

0 otherwise.

Keeping in mind the last theorem, and Proposition 3.1, we can get new short algebra
topology flavored proofs of some well-known results in [5,22] about the Hochs
cohomology groups of monomial algebras. Letχ(Q) be the Euler characteristic ofQ,
that is, letχ(Q) = 1− |Q0| + |Q1|.

6.5. Corollary [22]. Let A = kQ/I be a monomial semi-commutative schurian algeb
then

(a) HH0(A) = k.
(b) dimk HH1(A) = χ(Q).
(c) HHi (A) = 0 for i � 2.

Proof. With the above hypotheses, the graphQ is a strong deformation retract ofB(Q, I),
and Theorem 6.3 holds. The results follow directly.�
6.6. Corollary [4]. Let A = kQ/I be a monomial algebra, then the following a
equivalent:

(a) HHi (A) = 0 for i > 0.
(b) HH1(A) = 0.
(c) Q is a tree.

Proof. It is trivial that (a) implies (b). In order to show that (b) implies (c) assume thaQ

is not a tree. Again, sinceI is monomial,Q is a strong deformation retract ofB(Q, I),
and, since it is not a tree, we have

dimk SH1(A,k+) = χ(Q) > 0.

The result then follows from Lemma 6.2. Finally, we show that (c) implies (a). IfQ is
a tree, thenA is schurian semi-commutative, thus Theorem 6.3 applies. ButQ, which is
a strong deformation retract ofB(Q, I), is an acyclic 1-dimensional complex. The res
follows directly. �
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