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Abstract

Let 2l be a triangular algebra. Eproblem of describinthe form of a bilinear maB : 2 x A —
2 satisfying B(x, x)x = xB(x,x) for all x € 2 is considered. As an application, commutativity
preserving maps and Lie isomorphisms of certain triangular algebras (e.g., upper triangular matrix
algebras and nest algebras) are determined.
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1. Introduction

Let.4 be an algebra ovet, a commutative ring with unity. BY (4) we denote the cen-
ter of A. An R-linear mapf : A — A is said to becommutingf it satisfies[ f (x),x] =0
for all x € A (we denotecy — yx by [x, y], the commutator of andy). Each commuting
R-linear map of the formy (x) = Ax + u(x), wherex is a central elementid andu : A —
Z(A) is anR-linear map, will be callegroper. A trace of a bilinear map is a map of the
formx — B(x, x), whereB: A x A— A is some bilinear map. We say that a commuting
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traceq is properif it can be written agy(x) = Ax2 4+ u(x)x + v(x) for some central ele-
menti in A, an R-linear mapu : A — Z(A), and a trace : A — Z(A) of some bilinear
map. Commuting maps which are not proper will be called improper. For an account on
commuting maps we referétreader to the forthcoming survey paper [20].

At the beginning of the 90s BreSar described the form of commuting additive maps [17],
and also the form of commuting traces of biadditive maps [18] (see also [23]) on prime
rings. These results have initiated the theory of functional identities, which deals with
maps of rings satisfying some identical relations. We refer the reader to [19] for the survey
of the theory of functional identities. More recently Cheung [27] considered commuting
linear maps on triangular algebras (e.g., on upper triangular matrix algebras and nest al-
gebras). He determined the class of triangular algebras for which every commuting linear
map is proper. Motivated by the results of BreSar and Cheung we consider commuting
traces of bilinear maps on triangular algebras. The main purpose of this paper is to find
a certain class of triangular algebras for which every commuting trace is proper (Theo-
rem 3.1). Consequently, we will be able to consider commuting traces of bilinear maps of
upper triangular matrix algebras and nest algebras. It should be mentioned that the form of
commuting traces of nitilinear mapsof upper triangular matrix algebras has already been
described by Beidar, BreSar, and Chebotar [3].

Another important motivation for the present paper is the study of Lie isomorphisms.
Let us mention that the first functional identity on prime rings which has turned out to be
important because of its applications was ¢ime concerning commuting traces of biaddi-
tive maps. Namely, in [18] the long-standing Herstein’s conjecture on Lie isomorphisms
of prime rings was settled using this identity. This initiated a series of papers on Lie homo-
morphisms, Lie derivations and some related maps [1,6,7,9,11-14,25,26,45] and so in [8]
the final solutions to all Herstein’s Lie maonjectures were obtained. Commuting traces
of biadditive maps appear also in some linear preserver problems [5,18,21,22], automatic
continuity problems [15,16,46] and some other Lie algebra problems [10]. Therefore we
may expect that commuting tracegbilinear maps on triangular algebras shall also turn
out to be useful. The results on Lie isomorphisms and commutativity preserving maps in
the last two sections already indicate this.

A Lie isomorphism of an algebrd onto an algebr® is a linear bijective mag which
preserves commutators, i.e.,

0([x, yl) =[0(x),0(»)] forallx,ye A

Note that ifp is an isomorphism or the negative of an antiisomorphism fréranto B

andr is a linear map fromA4 into the center of3, sending commutators to zero, then

¢ + 7 is a Lie homomorphism. In [32] Hua proved that each Lie automorphism of the al-
gebra of allz x n matricesn > 3, over a division ring is of such form. Somewhat later,

in the series of papers [36,38,39] Martindale has extended Hua'’s theorem to more general
rings. Let us also mention that similar result for von Neumann factors (i.e., prime von Neu-
mann algebras) was obtained by Miers [40]. As we have already stated, it was BreSar [18]
who solved the problem of describing the form of Lie isomorphisms between prime rings,
using his own result on commuting traces. In 1994 Po&d@il] showed that every Lie
automorphism of upper triangular matrix algeb#aéR) over a commutative rin@ with-
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out nontrivial idempotents has the standard form as well. A few years later Marcoux and
Sourour [35] obtained a similar characterization for Lie isomorphisms between nest al-
gebras. Using our main result (Theorem 3.1) we shall be able to describe the form of
an arbitrary Lie isomorphism of a certain class of triangular algebras (Theorem 4.3). As
corollaries to Theorem 4.3, charadtations of Lie isomorphisms afx n upper triangular
matrix algebras, and on nest algebras are obtained.

A commutativity preserving map is a méap.4 — B satisfying[6(x), 6(y)] = 0 when-
ever[x, y] = 0. The obvious examples are maps of the form

0(x) =ap(x)+yx) forallxe A, Q)

wherew is a nonzero central element B, ¢ : A — B is an isomorphism or an antiiso-
morphism, and/ : A — Z(B) is a linear map. Clearly, each Lie isomorphism preserves
commutativity. Commutativity preserving maps have been studied for almost 30 years.
The usual goal is to show that in certain cases maps of the form (1) are in fact the only
examples of commutativity preserving maps. Probably the first result of this kind was ob-
tained by Watkins [47] for the case wheftes a linear bijection andd = B is the algebra

of all n x n matricesn > 4, over a field. Afterwards the series of papers [2,24,29,43,44]
on commutativity preserving maps followed, refining Watkins’s result in several ways. In
particular, Choi, Jafarian, and Radjavi [29] also obtained some extensions of these results
to the algebra of bounded linear operators orrdimite dimensional Hilbert space. Sim-

ilar problems were solved for the algebra of all bounded linear operators of a nontrivial
Banach space [42] and also for von Neumann factors [41]. Using his result on commuting
traces, BreSar [18, Theorem 2] described thiet of linear bijectie commutativity pre-
serving maps on a rather general class of prime algebras. Later Marcoux and Sourour [34]
obtained the characterization of linear mapeserving commutativity in both directions
(i.e.,[x,y]=0if and only if [8 (x), 6 (y)] = 0) on upper triangular matrix algebrds(F)

over a fieldF. In the last section of the present gapve consider linear bijective mags
satisfying

[6(x?),6(x)]=0 forallx e A, ()

which is weaker than assuming thatpreserves commutativity. Applying our main re-
sult we describe the form of such maps on certain triangular algebras (see Theorem 5.2).
Consequently, we are able to characteriinear bijective maps satisfying (2) af x n
upper triangular matrix algebras with> 2, which has already been done in [3]. Using
our main results we also obtain the charaetion of linear bijective maps between nest
algebras satisfying (2), which generalizes the above mentioned characterization of Lie iso-
morphisms [35].

Finally, it should be mentioned that there is a close connection between Lie derivations
and Lie isomorphisms. Recall that a Lie derivatibon an algebrad is a linear map satis-
fying d([x, y]) = [d(x), y]+[x,d(y)] forall x, y € A. In several cases it turns out that any
Lie derivation is the sum of a derivation and a linear map whose image is central (see, e.g.,
[18,28,37]). Using our main theorem and the same techniques as in the sequel we could
obtain such result for a certain class of triangular algebras. However, since Cheung [28]
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has recently solved this problem for a rather general class of triangular algebras, using a
more direct approach, we omit stating it.

2. Triangular algebras

Definition 2.1. Let A and B be algebras. ArfA, B)-bimodule M is loyal if aMb =0
impliesa =0orb =0 foranya € A, b € B.

Obviously, each loyal.A, B)-bimodule M is faithful as a left4-module and also as a
right B-module. Following [27] we state

Definition 2.2. Let A andB be unital algebras over a commutative riRgand letM be a
unital (A, B)-bimodule, which is faithful as a leffl-module and also as a rightmodule.
The R-algebra

a m

Tri(A, M, B) = {( b

); acA, meM, beB}

under the usual matrix operations will be calletfiangular algebra
Consider a triangular algeb®a= Tri(A, M, B). Any element of the form
a O
( b) e

will be denoted by: @ b. Let us define projections 4 : 2 — A andng : 2 — B by

nA:(a 'Z)n—m and nB:(a 'Z>|—>b.

By [27, Proposition 3] we know that the centé(() of 2 coincides with
{a®b|am =mb forallm e M}.

Moreover,r 4(Z(21)) € Z(A) andrg(Z(2)) € Z(B), and there exists a unique algebra
isomorphisme : 7 4(Z(R)) — 7 (Z(®)) such thatum = mt (a) for all m € M.

Lemma 2.3. Let M be a loyal(A, B)-bimodule and letf, g : M — A be arbitrary maps.
Supposef (m)n + g(n)ym =0 for all m,n € M. If B is noncommutative, thefi= g =0.

Proof. Using f(m)n + g(n)m =0 for allm,n € M, we see that

(f m)nb1)by = —g(nb1ymby = (f (mba)n)by = —(g(n)m)bzb1 = f (m)nbzby

for all m,n € M andb1, b, € B. Therefore,f (M)M([B, B] = 0. SinceM is loyal and3
is noncommutative it follows that = 0. Clearly, f =0 yieldsg =0. O
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Lemma 2.4. Let2l = Tri(A, M, B) with a loyal (A, B)-bimoduleM. Leta € 7 4(Z(2))
and leta € A be a nonzero element.df: =0, thena = 0.

Proof. We have 0= aam = amt(«) for all m € M. Since M is loyal it follows that
() = 0. Thereforeq =0. O

Lemma 2.5. Let A = Tri(A, M, B) with a loyal (A, B)-bimodule M. Then the center
Z) of 2 is a domain.

Proof. Let A =a & t(a), u = B & t(B) € Z(2A). Supposeru = 0. ThenaB = 0. By
Lemma 2.4 it follows that either =0 or 8 = 0. ThereforepA=0o0ru=0. O

Lemma 2.6. 24 = Tri(A, M, B) does not contain nonzero central ideals.

Proof. Let ! be a central ideal dfl. Supposer & t(«) € I. Hence,

a O 0 m\_ (0 am cl
() 0) 0
forall m e M. Thisyieldsae M =0andsax=0=a ® t(a). O

Lemma2.7. Let R be2-torsionfree. The®l = Tri(A, M, B) satisfies the polynomial iden-
tity [[x2, y], [x, y]1if and only if both A and B are commutative.

Proof. If A andB are commutative it follows easily th@tsatisfies the polynomial identity
[[x2, y1, [x, y1.

Next, suppose thdfx2, y], [x, y]] = O for all x, y € 2. Assume that, e.g.4 is noncom-
mutative. Letus, ap € A andm € M be arbitrary elements and let

(a1 O _(az m
x—( O) and y—( 0).

Then[[x2, y1, [x, y]] = O yieldsa1[a1, azlaym = O for all a1, a» € A andm € M. Since
M is faithful as a leftA-module we havei[ai, az]a; = 0 for all a1, a2 € A. Replacing:1
by a1 + 14 and comparing both identities, so obtained, it follows tHat 2:,] = 0 for all
a1, az € A. However, this contradicts our assumptiorm

Recently, Cheung [27, Theorem 2] penl that each commuting linear map 2f=
Tri(A, M, B) is proper if x 4(Z(2)) = Z(A) (or A= [A, A]), =rg(Z&l)) = Z(B) (or
B=[B, B]), and

ZQ)={a®b|acZ(A), beZ(B), amo=mob}

for somemg € M. A similar result can be proved in the cas¢ is loyal:
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Remark 2.8. Every commuting linear map & = Tri(A, M, B) is proper if the following
conditions hold:

() ma(Z®R)) = Z(A) andrng(Z2) = Z(B),
(i) either A or B is noncommutative,
(iii) M is loyal.

Proof. Let F:2( — 20 be a commuting linear map. Without loss of generality we may
assume thaB is noncommutative. By [27, Proposition #]is of the form

F (a m) . (fl(a) +fob) + fa(m)  fi(Dym —mg1(1) )
' b g1(a) + g2(b) + ga(m) J°

where f1: A — A, f2:B— Z(A), fasM — Z(A), g1: A— Z(B), g2: B — B and
g3: M — Z(B) are linear maps. Moreover,

fam)m =mgz(m)

for all m € M. Sincer 4(Z(2)) = Z(A) andr(Z(2)) = Z(B), by [27, Theorem 1(ii)]
it suffices to prove thatfz(m) & gz(m) € ZQ) for all m € M. Linearizing (f3(m) —
17 1(g3(m)))m = 0 and using Lemma 2.3 we g¢t(m) = t1(g3(m)) and thusfz(m) &
gam)yeZz®) forallme M. 0O

We close this section with the following two standard examples of triangular algebras,
i.e., upper triangular matrix algebras and nest algebras.

Upper triangular matrix algebras

Let M« (R) denote the set of allx m matrices and lef,(R) denote the algebra of
all n x n upper triangular matrices ov&®. Forn > 2 and each X < n — 1 the algebra
7,(R) can be represented as a triangular algebra of the form

(TR Mixu-n(R)
Tn(’”—( To-i(R) )

Remark 2.9. If R is a commutative domain thef = M., (R) is a loyal (7;(R),
7,_1(R))-bimodule.

Proof. SupposeA € 7;(R) and B € 7,,_;(R) are nonzero. Hence there exists a nonzero
(i, ))th entryq;; of A and a nonzerds, ¢)-entry by, of B for some 1<i < j </, 1<s <

t <n—I.PickM e M suchthain j; = 1 and all its other entries are zero. ThéM B # 0,
since its(i, t)th entry equals; jbs; # 0. Thus, M is loyal. O

Remark 2.10. Letn > 2 be an integer anf be 2-torsionfree. Thef, (R) does not satisfy
the polynomial identityf[x?, y], [x, y]].
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Proof. Since 7,,(R) = Tri(R, M1xu-1(R), T,—1(R)) and 7,_1(R) is noncommuta-
tive it follows by Lemma 2.7 that7,(R) does not satisfy the polynomial identity
[[x% y], [x, y1]. O

Nest algebras

A nestis a chain\/ of closed subspaces of a complex Hilbert spateontaining
{0} and H which is closed under arbitrary intersections and closed linear spamé&ste
algebraassociated td/ is the algebra

TW)={T eBH)|T(N)< N forall N e N'}.

A nestN is called trivial if V' = {0, H}. The reader is referred to [30] for the general
theory of nest algebras. We will make use of a standard result (see [27, Proposition 5]
and [30, Chapter 2]) which allows one to consider a nontrivial nest algebra as a triangular
algebra. Namely, itV € N'\{0, H} andE is the orthonormal projection onfg, then\7 =

EWN) and AN, = (1 — E)(N) are nests oV and N+, respectively. Moreovef] (N1) =
ETW)E, TN)=(1-E)YT(N)(1-E)and

_(TW\) ETW)A-E)
T(N)_( 2o )

Remark 2.11. M = ET (N)(1 — E) is aloyal(7 (\V1), T (NV2))-bimodule.

Proof. SupposeA € 7(N1) and B € T (N2) are nonzero operators. Clearly, there exist
u e N andv € Nt such thatdu £ 0 andBv = w # 0. Let M : x — (x, w)u. Note that
M e ET(N)(1— E) andAM Bv # 0. This means that is loyal. O

Recall that the center of each nest algebra coincides@iitf80, Corollary 19.5]. Using
this the following assertion follows almost immediately.

Remark 2.12. Let N be a nest on a Hilbert spadé with dim¢ H > 1. Then7 (N) is
noncommutative.

Remark 2.13. Let A be a nest on a Hilbert spagewith dime H > 2. Then[[x2, y], [x, y]1]
and[x, [y, [z, w]]] are not polynomikidentities on7 (N).

Proof. If N is trivial, then 7 (N) = B(H) does not satisfy neithdfx?, y], [x, y]] nor

[x, [y, [z, w]]] provided that dim H > 2. This can be easily deduced from the standard PI
theory, and on the other hand one can easily chigiskdirectly. Now, assume that there is
N € M\{0, H}. Let E be the orthonormal projection onto. ThenZ (N) = Tri(A, M, B),
where A =T N1) = ET(NV)E, B=TMN2) =(1— E)T(N)(1— E) are nest algebras
and M = ET(N)(1 — E). By Remark 2.12 eitherd or B is noncommutative, since
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dime N > 1 or dimg N+ > 1. Hence by Lemma 2.77 (\) does not satisfy[[x2, y],
[x, y]]. On the other hand, setting

x=y=z=<1“4 8) and w:<0 'g)

for some nonzerm € M we see thakx, [y, [z, w]]]=w #0. O

3. Commuting traces of bilinear maps

Theorem 3.1. Let?l = Tri(A, M, B) be a triangular algebra over &-torsionfree commu-
tative ring R. If

(i) each commuting linear map o4 or B is proper,
(i) ma(Z(W) =Z(A) # Aandrp(Z(R) = Z(B) # B,
(i) M is loyal,

then each commuting trage 2( — 21 of a bilinear map is proper.

Proof. For convenience we set; = A, A = 5B and.A3 = M. We denote the unity afl;
by 1 and the unity ofd, by 1'. Suppose thaj is a trace of a bilinear map : 2l x 2 — 2.
Hence there exist bilinear mags : A; x A; — As, gij - Ai x Aj — Az andh;; : A; x
Aj — Az, 1<i < j <3, suchthat

q:(al a3>'_)(F(a1,az,a3) H(al,az,a3)>’

a G(az1, az, as)

where

F(ai,az2,a3) = Z fijlai,aj),

1<i<j<3
G(a1,az,a3) = Z gij(ai,aj),

1<i<i<3
H(a1,a2,a3) = Z hij(a;,aj).

1<i<j<3

Sinceq is commuting it follows that

0— F H ai as _([F,a1] Faz+ Haz —a1H — a3G
o G’ a» )| [G, a2] '
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Let us first consider the identity

0=[F.ail= )  [fijlai.aj).a1] foralla;e A, i=123 3)
1<I</<3

Settingaz = 0, a3 = 0 we see thal fi11(a1, a1), a1] = 0 for eacha; € A;. Next, putting
az =0 in (3) we get f12(a1, a2), a1l + [ f22(az2, a2), a1] = 0. Replacinga; by —a1 and
comparing both identities we obtain thdtfzz(ai, a2), a1] = 0. SinceRr is 2-torsionfree
we havel[ fi12(a1, a2), a1] = 0 and hencefza(az, a2) € Z(Aj) for all a1 € Aj, a2 € Aa.
Similarly, settingzo = 0 in (3) we obtaif f13(a1, az), a1] = 0 andf33(as, a3) € Z(Ay) for
all a; € A1, a3 € As. It now follows from (3) that alsg’23 maps intoZ (A1). Summarizing
the above conclusions we see that

a1+ fi11(a1,a1) is a commuting trace,
a1+ fio(a1,a2) is acommuting linear map for eaah € Ay,
a1+~ fi3(a1,as) is acommuting linear map for eaeh € As,

f22, f23, f33 mMap intoZ(Az).

Analogously, the identity

0=[G.azl= Y [gij(ai a)) az]

1<i<i<3
foralla; € A;,i =1, 2,3, implies
az +— goo(az, az) is acommuting trace,
az — gi2(a1,a2) is acommuting linear map for eaeh € A,

az — g23(az,a3) is acommuting linear map for eaeh € As,

811, 813, 833 Map intoZ(Az).
It remains to consider
Faz+ Hay —a1H — a3G =0. 4)
Leta; =0,a2 =0. Then
f33(a3, az)az = azgss(as, as) (5)

for all az € A3. Next, settingz1 = 0,a3 =0 in (4) it follows 0= Hap = h2(az, a2)az for
all az € Ay. Clearly,ho2(1', 1) = 0. Replacingz, by az + 1’ we get
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haa(az, az) + (h22(az, 1) + h22(1', az2)) (a2 +1') =0,

—hoo(az, az) — (hzz(az, 1/) + hzz(l/, az)) (az - 1/) =0.
Comparing both identities we get(/i®2(az, 1') + h22(1, a2)) = 0, which further im-
plies hoo(az, az) = 0 for all az € Az. Analogously, settingi = 0, az = 0 in (4) yields
h11(a1, a1) = 0 for all a1 € Aj. Further, lettingas = 0 in (4) we see thak12(a1, a2)az —
aihiz(a1, ap) = 0forallal € A1, az € Az. Replacingi; by —a; and comparing both iden-
tities yieldsaihi12(a1, a2) = 0 for all a1 € A1, a2 € A2. Sinceh12(1, az) = 0, the substitu-

tion a1 > a1 + 1 implieshi2(a1, a2) =0 for all ag € A1, a2 € A2. ThusH (a1, a2, a3) =
hi3(a1, az) + ho3(az, as) + haz(as, az). Our next aim is to prove that

h23(az, az)az = azgaa(az, az) — f22(az, az)as (6)
for all az € A3, a3 € Az. Settinga; = 0 in (4) and using (5) we obtain
(f22(a2. a2) + f23(a2, az))az + (h33(as, az) + h2s(az. ag))az
— az(g22(az, a2) + g23(az, az)) = 0. (7)
Replacingzy by —as we get
2 f22(az, az)az + 2hz3(az, az)az — 2azgzo(az, az) = 0
and hence (6) follows. Now, using (6) together with (7) one gets
h33(as, az)az = asgz3(az, az) — f23(az, az)az (8)

for all az € A2, a3 € As. In a similar manner, taking; = 0 in (4) and using (5), it follows
that

arhiz(ay, az) = fii(a1, ar)as — azgii(az, ai), 9
aihaz(az, az) = f13(a1, az)az — azgi3(ai, az) (10)

for all a; € A1, a3 € Az. Using (5), (6), (8), (9), (10) together with (4) we obtain

arho3(az, az) + azgi2(a, az) = hia(ay, az)az + fi2(a, az)az (11)

foralla; € A;,i=1,2,3.

Recall thaf f13(a1, az), a1] = 0 forallaj € A1, az € A3. Hence, replacingy by a1 + 1
implies thatf13(1, a3) € Z(A1) for eachas € Az. Thus, using (ii) we see that the identity
(10) yields

has(as, as) = a(az)as (12)
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for all az € A3z, wherea(az) = f13(1, az) — t~1(g13(1, a3)) € Z(A1). Next, we claim that
f33(az, a3) ® gas(as, az) € Z(A) (13)
for eachas € A3. Namely, by the complete learization of (5) we obtain
B, myn+ B(n,)m+ B(m,n)l =0 (14)
foralll,m,n € Az, where

Bm,n) = faz(m,n) — v *(gas(m, n)) + faz(n, m) — t*(gaa(n, m)).

Obviously, the mags : A3z x A3 — Z(Aj) is bilinear and symmetric. Pick, b € A; such
that[a, b] # 0. Replacing by al in (14) and subtracting (14) multiplied ywe get

(,B(al, m) — B, m)a)n + (,B(n, al) — B(n, l)a)m =0

for all I,m,n € A3z. According to Lemma 2.3,8(al,m) = B(,m)a and hence
B, m)[a,b] =0 for all I, m € A3. Now, since[a, b] # 0 Lemma 2.4 yield$8 = 0 and
S0, in particular8(m, m) = 0 for all m € Az. Thus, (13) holds. Our next aim is to prove
that

f13(a1, a3) = a(az)a1 + v (g13(a1, as)),

g23(az, az) = t(a(az))az + t( f23(az, as)) (15)
for all a; € A;, i = 1,2,3. Let E(a1,a3) = fiz(a1, a3) — a(az)ar — v~ 1(g13(a1, az)).
Using (10) and (12) we gef(a1,a3)az = 0, which further yieldsE (a1, a3)bs +
E (a1, b3)az =0 for all a1 € A1 andas, b3 € A3z. Using Lemma 2.3 we see that= 0.
Thus, f13 is as in (15). Analogously, using (8) one proves tiyathas the desired form as
well.

Next, we consider mapfi 2 andgi2. By (i) we may assume that each commuting linear

map on.Aj is proper. Sincei — fi2(a1, a2) is a commuting linear map oA for each
az € Az, there exist mapg : A2 — Z(Az) andé: A1 x A2 — Z(Ajp) such that

f12(a1, az2) =y (az)ay + 8(ax, az), (16)

whereé is R-linear in the first argument. Let us show thais R-linear and’ is R-bilinear.
Clearly

Sfi2(a1, a2 + b2) = y(az + b2)ay + 6(a1, a2 + b2),
fio(as, a2) + fio(a, bp) = y(a2)ai + 8(ax, az) + y (b2)ai + §(ax, b2)

and so

(v(az+ b2) — y(az) — y(b2))a1 + 8(a1, az + bp) — 8(a1, az) — (a1, b2) =0
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for all a1 € A1, az, ba € A2. Commuting withb1 € A1 we get(y (a2 + b2) — y(a2) —
y(b2))[a1, b1] =0 for all a1, b1 € A1, a2, b2 € A2 andaz € A3. Now, Lemma 2.4 yields
that y is R-linear. Consequentlyj is R-linear in the second argument. Let(ag) =
g12(a1,1) — ©(8(az, 1)) for all a; € A;. Sincet is R-linear and sinceg12 and§ are
both R-bilinear, it follows thaty’ is R-linear as well. We claim that

g12(at, a2) = y'(ar)az + t(8(a1, a2)) (17)

for all a1 € A1, a2 € A2. Namely by (9),h13(1, a3z) = f11(1, D)az — azgi1(1, 1) for all
a3 € Asz. Hence setting; = 1 in (11) we get

h23(az, a3) = az{naz + v (f12(1, a2)) — g12(1, az)} (18)

for all ap € A2 andas € Az, wheren = t(f11(1, 1)) — g11(1, 1). Similarly, using (6) and
(11) we obtain

his(a1, as) = {fa1 + v (g12(a1. 1)) — fr2(a1, 1) }as (19)

for all a1 € A1 andasz € As, where = 1 1(goo(1', 1)) — f22(1’, 1). Now (16), (18) and
(19) together with (11) imply

a1az(naz + t(f12(1, a2)) — g12(1, a2)) + azgiz(a1, az)
= (0a1+ 717 (g12(a1, 1)) — fr2(a1, 1'))azaz + (y (a2)a1 + (a1, az))as
and so
alag{ (77 +7 (y (1/) — 9))(12 +T (5(1, az)) —g12(1, az)} (20)
=az|y'(av)az + t(8(a1, a2)) — g12(a1, a2) }

forall ¢; € A;, i =1, 2, 3. Pickas, b1 € A1, such thafas, b1] # 0. Replacinguz by b1as
in (20) and subtracting (20) multiplied Iy we get

la1, b1]A3{(n + T(y (D) —0))az + 1(8(1, a2)) — g12(1,a2)} =0
for all ap € A>. SinceAs is loyal it follows that
g12(Loag) = (n+t(y (D) —0))az+ 1(8(1, a2))
for all a2 € A2. Consequently, (20) implies
As(y'(av)az + t(8(a1, a2)) — g12(a1, a)) =0

for all a1 € A1, a2 € A2, and so we see that (17) holds. let 0 — (1) ands’ =5 —
y’(1). Hence using (18) and (19) together with (16) and (17) we obtain
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ha3(az, az) = az(e'az + 1(y (a2))),
his(a1, as) = (ea1 + v 1(y'(a1)))az (21)

forall a; € A;, i =1, 2, 3. Next, let us prove that

fui(ar, a1) = eaf + vy (@) az + T (g11(a1. av)).

g22(az, az) = €'a3 + 1 (y(a2))az + 1( fo2(az, az)) (22)

for all a; € A; anday € Az. Using (9) together with (21) we get

(f11(a1. a1) — ea? — vy (a1))ar — T Y(g11(a1, a1)))az =0

for all a1 € A1 andas € A3z. Now, sinceAs is faithful as a left4;-module it follows that
f11 has the desired form. Analogously, we see thgt has the form described in (22).
Settinga; =1, a2 =1’ in (11) and using (16), (17) and (21) we see thai = as¢’ for

all az € Az. This means that @ ¢’ € Z(2(). We are now able to make the final step of the
proof. Let us defing. = ¢ & ¢’ and the map : 2 — Z(2l) by

a az\ _ (17Hr'(a1) +y(az) +alaz) 0
az y'(a1) + 7(y(a2) + a(a3)) )

Obviously, u is linear. Using all conclusions derived above we see tfiaj = g (x) —
Ax2 — u(x)x belongs taZ () foreachx € A. O

Recall that an algebrd over a commutative ringR is said to becentral over R if
Z () = R1. We continue with a technical lemma, which will be used to cover some special
situations where the theorem above does not work.

Lemma 3.2. Let2A = Tri(R, M, B), whereB is noncommutative and both and B are
central over a commutativa-torsionfree ringRr. If

(i) each commuting linear map dhis proper,
(ii)y foranyr € R andm € M, rm =0impliesr =0orm =0,
(iii) there existmg € M and bg € B such thatmobg and mg are linearly independent
overR,

then each commuting traee 2( — 2L of a bilinear map is proper.
Proof. We shall follow the proof of Theorem 3.1; therefore we will use the same notation.
The proof is almost the same extapthe following three places.

The first one concerns the proof of (13):

f33(as, az) ® ga3(as,az) € R1 forallaz € As.
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Namely, by (5) we have f33(as, a3) — 7~ *(g33(a3, as)))as = 0. Since f33(az, az) —
17 1(g33(a3, a3)) € R1 it follows according to lte assumption (i) thatfzz(as, az) =
Tﬁl(g33(a3, az)) for all az € As.

The second place concerns the proof of (15):

f13(a1. a3) = a(az)a1 + v~ *(g13(a1. as)),
g23(az, az) = t(a(az))az + t( f23(az, as))
forall a; € A;, i =1, 2, 3. Namely, by (10), (8) and (12) we see that
(f13(a1. a3) — a(az)ar — 1~ *(g13(a1. as)))as =0,
a3(g23(az, a3) — t(a(az))az — t(f23(a2, az))) =0 (23)
foralla; € A;,i =1, 2, 3. Sincefi3(a1, a3) — a(az)al — t_l(glg(al, a3)) € R1 it follows

easily from (ii) thatf13 has the desired form. Sinae — g»23(a2, az) is a commuting linear
map onAy there exist mapg : A3 — R1 andw: A2 x A3 — R1 such that

g23(az, a3z) = y(az)az + w(az, as),

wherew is linear in the first argument. Let us prove thatis linear andw is bilinear.
Clearly,

g23(az, a3z +b3) =y (az + bz)az + w(az, a3+ b3z),
g23(az, az) + g23(az, b3) = Y (az)az + w(az, az) + Y (b3)az + w(az, bz)
and so
(¥ (az+b3) — ¥(az) — ¥ (b3))az + w(az, a3 + ba) — w(az, a3) — w(az, b3) =0
for all az € A», a3, b3 € A3z. Commuting withb, € A2 we get
(V(as+bs) — ¥(az) — ¥ (b3))laz, b2] =0

forall ag, bo € Az, as, bz € As. Pickay, by € Az such thataz, b2] # 0. SinceAs is faithful
as a right42-module there existss € A3 such thats[az, b2] # 0. Thus,

v Yy (az + b3) — ¥ (az) — ¥ (b3))cslaz, ba] =0

for all az, b3 € Az. Now (ii) yields thaty is linear. Consequently, is linear in the second
argument. Now, (23) can be rewritten as

a3((¥(az) — t(x(az)))az + w(az, az) — (f23(az, az))) =0 (24)
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for all a2 € A2 andas € Asz. Settingaz = bg andaz = mg we get
("1 (¥ (m0)) — a(mo))mobo + (t~*(w(bo, mo)) — f23(bo, mo))mo = 0.

According to (iii) this implies thatr(mo) = t=1(y (mo)), f23(bo, mo) =~ L(w(bo, mo)).
Replacingzz by a3z + mg andaz by bg in (24) we obtain

(" (a3)) — a(az))mobo + (™ (w(bo, az)) — f23(bo, az))mo=0.

Now, assumption (jii) yields:(a3) = (v (a3)) for all a3 € Az. Consequently, (24) can
be rewritten as

(t Y (w(az, a3)) — fo3(az, az))az=0,
which further implies thai (a2, az) = t(f23(az, az)) for all a2 € A2 andas € As. Thus,
g23 has the desired form as well.
The final place that must be changed is the one concerning the form of the fipaps

and g12. Sinceay — g12(a1, ap) is a commutingR-linear map onA, there exist maps
y': A1 — R1 andé’': A; x Ao — R1 such that

g12(a1, ap) = y'(a1)az + &' (a1, az), (25)
wherey’ is R-linear ands§’ is R-bilinear. Note that since : A1 — A is R-linear and

A1 = R1, we haverm = mr for all m € A3 andr € R. We also point out that here each of
the mapsf;; takes values irR1. Now (25), (18), (19) together with (11) yield

a1az(naz + t(f12(1, a2)) —y' Daz — §'(1, a2)) + as(y’ (a1)az + &' (a1, a2))
= (0a1 + v Y (g12(a1, 1)) — f12(a1. 1))asaz + fiz(a1. az)as
and hence
as{t(ait " ) + 171y (@) — ¥'(D) — g12(a1, 1)) — Oa1 + fi2(a1. 1))az
+1((f12, a) — 718 (1, a2)))ar + T 71(8 (a1, a2)) — frz(a1,a2))} =0 (26)

forall ¢; € A;, i =1, 2, 3. Pickag, ba € Az such thafay, b2] # 0. SinceAs is faithful as
a rightA2-module the last identity yields

(a1t r ) + T (¥ (@0) — g12(a1. 1)) — Ba1 + fiz(a1, 1'))laz. b2l =0
and hence

(axt ) + 771y (@1) — g12(aa. 1)) —6a1 + fi2(a1,1))aslaz, b2] =0
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for all a1 € A1, whereas € Az is such thataz[ay, b2] # 0. Therefore, (ii) implies that
al‘ril(n) + Tﬁl(]//(al) —g12(a1, 1)) —0a1+ fi2(a1, 1) = 0forallas € A;. Accordingly,
(26) implies

fr2(a1, az) = (fr2(L,a2) — (8’ (1, a2)) a1 + (8 (a1, a2))

for all ay € A1, a» € Ay. Let y(a2) = fi12(1,a2) — 1718 (1, a2)) and §(az, ap) =
t71(8' (a1, a2)). Hencefiz(a1, az) = y (az)a1 + 8 (a1, az).

Following the rest of the proof of Theorem 3.1 we obtain the conclusion of the
lemma. O

Next, we give an example of a triangular algebra with an improper commuting trace.
The example was constructed using the improper linear commuting map from [27, Exam-
ple 1].
Example 3.3. For a fieldF let

t

~ Q

;abs,t,x,y,zeF

v O =

y
<
b
s

and let?2l = Tri(A, F?, F). Note that by Remark 2.8 each commuting linear mag(ds
proper. However, there exists an improper commuting linear mag {27, Example 1].
Thus, 2l does not satisfy the condition (i) fromeimma 3.2 and the condition (ii) from
Theorem 3.1. We claim that: 2 — 2( defined by

t a x y mi 0O ¢—r)x O Xz xma
t 0 z mp 0 0 0 0

s b m3|— 0 (s—r)z zma
s ma 0 0
r 0

is an improper commuting trace of a bilinear map. Namely, pick 2 such that
x =m2 =1 and all its other entries are 0. Obviousjyu) ¢ Fu?+ Fu +F1.

Corollary 3.4. Letn > 2 and let R be a2-torsionfree commutative domain. Then each
commuting trace : 7, (R) — 7, (R) of a bilinear map is proper.

Proof. First, letn > 3. Note thatZ,(R) = Tri(A, M, B) for A= T(R), B=T,_2(R)
and M = Mo, -2 (R). By [27, Corollary 6] each commuting linear map @nandB is
proper. The assumption (ii) of Theorem 3.1 clearly holds in our case and by Remark 2.9,
M is a loyal(A, B)-bimodule. Thus, Theorem 3.1 yields the conclusion.
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Further, ifn = 3 we may writeZ3(R) = Tri(R, M1x2(R), 72(R)). Now Lemma 3.2
yields the desired conclusion. Since the assumptions (i) and (ii) of Lemma 3.2 obviously
hold true, let us just verify (iii). Set

M=[1 0]e Mix2(R) and B:[O é}e?’z(R).

ThenM B andM are linearly independent ove.
In the case: = 2 one can obtain the conclusion by a direct but tedious computation, so
we omit details in this case.O

Corollary 3.5. Let N be a nest of a Hilbert spacé/. Then each commuting trace
q:TN)— TWN) of a bilinear map is proper.

Proof. Note that the corollary trivially holds in the case dirff = 1. If dim¢ H = 2 we
have either7 (V) = 72(C) or T (N) = M3(C). Corollary 3.4 implies the conclusion in
the first case, while [23, Theorem 3.1] implies it in the second one.

Further, suppose that dini{ > 2. We consider the following three cases.

Case 1. Assume that\/ is trivial. Then7 (V) = B(H) is a centrally closed prime algebra
and hence the result follows from [18, Theorem 1].

Case 2. Suppose that there existéé € A\{0, H} such that dinvV > 1 and dimV-+ > 1.
Let E be an orthonormal projection onfd. Note that

T(N)=<A Ag)

whereA =7 (N1) = ET(N)E andB =T (N2) = (1— E)T(N)(1— E) are nest algebras
and M = ET(N)(1 — E). By Cheung’s result [27, Corollary 7] each commuting linear
map on.A and B is proper. Since the center of each nest algebra coincidesGtittwe
haver 4(Z(T (N))) = Z(A) and alsarg(Z(7 (N))) = Z(B). By Remark 2.124 andB

are noncommutative, since dinv > 1 and dim: N*- > 1. By Remark 2.10M is a loyal

(A, B)-bimodule. Thus, we may apply Theorem 3.1, which completes the proof in this
case.

Case 3. Finally, assume that for eacN € M\{0, H} we have either dinv = 1 or
dim N+ = 1. Without loss of generality we may assume that there eXists\'\{0, H}
with dim N = 1. Consequently, we have eith®r= {0, N, H} or N = {0, N, L, H}, where

N C L and dimL+ = 1. Let E be the orthonormal projection ontd. Hence we have
TWN) =Tri(A, M, B), whereA = ET(N)E =CE andB=(1—- E)T(N)(1—E) are
nest algebras and1 = E7 (V) (1 — E). Note that our nest algebrA(N) satisfies the
assumptions (i) and (ii) of Lemma 3.2. Weanh that (iii) also holds true. First, suppose
N ={0, N, H}. Take nonzero vectoise N andv, w € N such thatv, w) = 0. We de-
fine Bx = (x, w)v andMx = (x, v)u. Note thatB € B andM € M. One can easily verify
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that M B and M are linearly independent ovét. Next, assume that/ = {O, N, L, H}.
Pick nonzero vectora € N, v e L N N+ andw € L+ and defineBx = (x, w)v and
Mx = (x,v)u. Again, note thatB € B, M € M, andM B, M are linearly independent
overC. O

4. Lieisomorphisms

Lemma4.1. Letl =Tri(A, M, B) andl' =Tri(A’, M’, B') be triangular algebras over
a commutative ring? with 1/2 € R and letf : 2l — 2’ be a Lie isomorphism. If

(i) each commuting trace of a bilinear map @ihis proper,
(i) atleast one of4, B and at least one ofl’, 5’ are noncommutative,
(iiiy M’ is loyal,

thend = ¢ + 7, wherep : 2 — 2" is a homomorphism or the negative of an antihomomor-
phism,¢ is one-to-one, and :A—Z(2l') is a linear map sending commutators to zero.
Moreover, if2l’ is central overRr, theng is onto.

Proof. It is clear that satisfies[0(x), 6 (x?)] = 0 for all x € 2. Replacingx by 671(y),
y e A, we get[y,8(01(y)?] =0 for all y € 2. This means that the map(y) =
60~ 1(y)?) is commuting. Since is also the trace of a bilinear map: A’ x A — A/,
B(y,z) = 60(0~1(y»)671(2)), there exist. € Z(A), a linear mapu1: A — Z('), and a
tracevy : A’ — Z () of a bilinear map such that

0671 (1)?%) = 1y% + 1)y +11(y) (27)

fory e . Let u = u10 andv = v10. Henceu andv are mappings dll into Z(2l") andu
is linear. Note that (27) can be rewritten as

0(x?) =20 (x)? + ()0 (x) + v(x) (28)

for all x € 2. We claim thats # 0. Assumex = 0. Then by (28) we havé(x?) —
w(x)8(x) e Z@"), and so

0([[x% y]. Ix, 1)) = [[6 (D, 6], [0(), 6] = n@)[[6 (), 6], [6(x), 6]
0

for all x, y € 2. Consequentlyj[x2, y], [x, y]] = 0 for all x, y € 2. According to our as-
sumptions this contradicts Lemma 2.7. Thus: 0. Next, we defing : 2l — 2’ by

1
px) =A0(x)+ Eu(x). (29)

According to (28) we have
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o(x?) =216(x?) + %u(xz) = 220(x0)% + A ()0 (x) + Av(x) + %/L(xz),

while on the other hand

p(x)? = (Wx) + %u(x)>2 = 320()% + ()0 (x) + %M(X)Z-
Comparing these two relations we get
(p(xz) —p(x)?e Z(A) (30)
for all x € 2. Linearizing (30) we obtain

p(xoy) —px)op(y) e Z(2) (31)

forall x, y € 2, wherex o y denotescy + yx. By (29) we have

1 1
rp(lx, y1) = 220([x, y1) + Em([x, y1) = [2Mx), 0] + Em([x, 1)
1 1 1
= [<ﬂ(x) = SH),e() = Eu(y)} + Eku([x, y])

1
= [p(x), p(] + Eku([x, 1)

and hence
2p(x, y1) = [0(x), 0(»)] € Z(A) (32)
for all x, y € 2. Multiplying (31) by » and comparing with (32) we get
20p(xy) — (A + Do()e(y) — (A — De(n)ex) € Z(2A)

for all x, y € 2. Consequently, the map
1 1
e(x, y) =Arp(xy) — 5()» +Dex)e(y) — E(k —De(nex)

maps froml x 2 into Z(A'). Denote% (A +1) by «. Therefore

rp(xy) =ap(x)e(y) + (@ — De(»)ex) +e(x, y) (33)

for all x, y € 2. Our aim is to show that = 0 and that eithee = 0 or« = 1. According
to (33) we have
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220 (xyz) = 220 (x (y2)) = rap(1)@(y2) + Ala — De(y2)p(x) + Ae(x, y2)
= ap(x) (e ()e(2) + (@ — De@)e(y) +£(y,2))
+ (@ — D(xp(»e) + (@ — De@)e(y) + (v, 2))p(x) + re(x, yz)
=0 ()p(NP(2) + a@ — De(x)e@)e(y) +ale — De(»)e@)e(x)
+ (@ — D2p@e(nex) + he(x, y2) + Ae(y, D)o (x).

On the other hand,
22p(xyz) = Azw((xy)z) = rap(xy)@(2) + Ao — De(2)p(xy) + re(xy, z)

= ?p()p(N9(2) + ale — De(»e(x)¢(2) + ald — De@)e(x)e(y)
+ (@ — D20 (2)0 (1)) + re(xy, 2) + re(x, V) (2).

Comparing these two identities we obtain
ale —Dp). [¢@), p@)]] +re(y, Do (x) — re(x, y)p(z) € Z(A) (34)
for all x, y, z € 2. Replacing by x2 in (34) and using (30) we get
re(y, x?)p(x) — re(x, y)p(x)? € Z(A') (35)
for all x, y € 2, which can be in view of (29) written as
—23e(x, O)2+ 22 (e (v, x2) + n()ex, »))0(x) € Z(A') (36)
for all x, y € 2l. Commuting with arbitrary: € 21" and then witH9(x), u] we get
e, M[[6)? u], [6(x), u]] =0 (37)

for all x, y € 2[. We may assume that’ is noncommutative. Pick1, a2 € A" such that
ailai, az]ay # 0 (see the proof of Lemma 2.7). Setting

e(xo)z(“l 8) and u:(az ’g)

for somexg € 2 and an arbitraryn € M’ in (37) we obtain
3 —
4 (Ae(xo, y))aila, azlaym = 0
for all m € M’. By the loyality of M’ we haver 4 (13¢(xo, y))a1[a1, a2]lai = 0 and hence

by Lemma 2.47 4 (3¢ (x0, y)) = 0, sinceai[az, aslar # 0. Thereforer3e (xg, 2) = 0.
Since A # 0, Lemma 2.5 impliess(xp,2) = 0. According to (36) we now have
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A2e(y, x2)0 (x0) € Z(@') for all y € A, which further yields that (2, x3) = 0. We claim
thate is symmetric. Namely, setting= x in (34) and using (29) we get

A2 (e(y,x) —e(x,))0(x) € Z(A') (38)

for all x, y € . If x = xo, thenr?s(y, x0)8(xo) € Z(') for all y € . Thus, similarly as
above, we see that2, xo) = 0. Next, replacinge by x + xp in (38) we obtain

A2 (e(y, x) — e(x, ¥))0(x0) € Z(A)

for all x, y € 2. This, however, implies thatis symmetric.
Replacingx by xg + y in (35) we obtain

A(e(y, ¥%) +e(y. x00 )@ (x0) + Ae(y, x0 0 )@(y)
—2e(y, Y)(9(x0) 0 9 (1)) — 2 (y, M (x0) € Z(A').
On the other hand, replacingby —xg + y in (35) we get
A(—e(y, ¥%) + ey, x00¥))p(x0) — 2e(y, X0 0 Y)g(y)
+ 16y, ¥ (9(x0) 0 9(1)) = ey, @ (x0)” € Z(A).
Comparing these two relations it follows that
218y, x00 )@ (x0) — 24&(y, Mg (x0)” € Z()
for all y € 2, which can be in view of (29) written as
—2)%6(y, »)0(x0)” + 20%(e(y, X0 0 y) — £ (x0)e(y, )6 (x0) € Z(2)
for all y € 2. Consequently,
2)3e(y, »[[6(x0)2 u], [0 (x0), u]] =0
forall y € 2 andu € 2. Similarly as above it follows that@e (v, y) = 0 and sa:(y, y) =

0 for all y € 2. The linearization of(y, y) =0 gives O=¢(x, y) + (y, x) = 2¢(x, y) for
all x, y € 2. Whence it follows that = 0. Accordingly, (34) yields

Moo = D[O@). [0(). [0(), 6w)]]] =0

for all x, y,z, w € 2. Sinced is onto we have\*a(a — 1)[x’, [y, [z/, w']]] = O for all
x',y, 7, w e Letus set

., {(1x O , (0 m
x_y_z_( 0) and w—< 0)7
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wherem € M’ is arbitrary. Hencer 4 (Aa(a — 1))m = 0 for all m € M’. Therefore
74 (\*a(a — 1)) = 0 and hencé.*a (e — 1) = 0. Using Lemma 2.5 we see that= 0
ora=1.

First, assume that = 0. Sincex = (A + 1)/2 it follows A = —1, which by (33) further
implies thate is an antihomomorphism. Let(x) = n(x)/2. By (29) we see thad =
—¢ + t, which clearly yields that ([x, y]) = 0 for all x, y € 2. In an analogous manner
we see that itx = 1 thend = ¢ + 7, ¢ is @ homomorphism and(x) = —u(x)/2 sends
commutators to zero.

We also have to prove that is one-to-one. Suppose thatw) = 0 for somew € .
Thend(w) € ZRl') and hencav € Z(2l). Thus, kefy) € Z(21). However, by Lemma 2.6
our triangular algebr@l does not contain nonzero central ideals. Hencegket 0.

It remains to prove thap is onto in the casé@!l’ is central overR. First, we show
that ¢(1) = 1. Namely, since is a Lie isomorphism we hawg(1l) € Z(2l') and hence
(1) =6(1) — (1) € Z@&'). Further, sincey is a homomorphism or the negative of an
antihomomaorphism we see thatx) = ¢p(x1) = ¢(Le(x) for all x € 2. Usingp(x) =
0(x) — t(x) we get(p(l) — 1)0(x) — (p(1) — 1)t (x) =0 for all x € A. Hence we see
that (¢ (1) — 1)[l', '] = 0. Consequentlyr 4 (¢(1) — 1)[A’, A1 =0. Then Lemma 2.4
implies 7 4 (¢(1) — 1') = 0 and sop(1) = 1’. Obviously, we may writer (x) = f(x)1’
for some linear mapf :2l — R. Sincegy is R-linear we haved (x) = p(x) + f(x)1' =
e(x + f(x)1) for all x € 2. Consequentlyy is onto, since is bijective. The proof of the
lemma is thus completed.o

Let us point out that the proof just given is in its first part only a modification of that
of [18, Theorem 3]. By a careful inspection of this proof one could easily verify that the
following result holds true.

Remark 4.2. Let 20 and2l’ be unital algebras central over a figfdwith chai( F) # 2 and
let6:2( — 2’ be a Lie isomorphism. If

(i) each commuting trace of a bilinear map2his proper,
(i) A and2’ do not satisfy the polynomial identifyx2, y1, [x, 11,
(iii) 21" does not satisfy the polynomial identity, [y, [z, w]]],

thend = ¢+ 7, wherep : 2( — 2l" is an isomorphism or the negative of an antisomorphism,
andr : 2l — F1'is alinear map sending commutators to zero.

Theorem 4.3. Let 24 = Tri(A, M, B) and 2’ = Tri(A’, M’, B’) be triangular algebras
over a commutative rin® with 1/2 € R and let6 : 2l — 2’ be a Lie isomorphism. If

(i) each commuting linear map o#’ or B’ is proper,

(i) ma(Z@)) =Z(A) # A andrp(Z(A) = Z(B) # B/,
(iii) either.4 or B is noncommutative,
(iv) M'is loyal,
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thend = ¢ + 7, whereyp : 24 — 2" is a homomorphism or the negative of an antihomomor-
phism,¢ is one-to-one, and :2l— Z(2') is a linear map sending commutators to zero.
Moreover, if2l’ is central overr, theng is onto.

Proof. Using Theorem 3.1 we see that each commuting trace of a bilinear mapisn
proper. Thus, we may apply Lemma 4.1, which yields the conclusian.

Corollary 4.4. Letn > 2 and letR be a commutative domain with2 € R. If 6 : 7,(R) —
7,(R) is a Lie isomorphism, theth= ¢ + t, wherep : 7,,(R) — 7,(R) is an isomorphism
or the negative of an antisomorphism and7,(R) — R1is a linear map sending com-
mutators to zero.

Proof. Inthe case: = 2 we refer to [31, Theorem 6]. Next, suppose 2. We may write
T.(R) = Tri(R, M1x(n-1)(R), Tr—1(R)).

By Corollary 3.4 each commuting trace of a bilinear mapZQaR) is proper. Moreover,
T,—1(R) is noncommutative and 11, ,—1)(R) is a loyal (R, 7,—1(R))-bimodule. Thus,
Lemma 4.1 yields the conclusiono

Corollary 4.5. Let NV and N be nests on a Hilbert spadé. If 9 : T(N) — T(N”) is a Lie
isomorphism, theé = ¢ + 1, wheregp : T(N) — T (N’) is an isomorphism or the negative
of an antiisomorphism, and: 7 (N) — C1’ is a linear map sending commutators to zero.

Proof. Note that the corollary trivially holds in case dintf = 1 (namely,6 = id+
@ —id)). If dim¢ H =2 we have eithef (W) =T N) = TC) or TN)=TN) =
M3(C). Corollary 4.4 implies the conclusion the first case, while [23, Proposition 4.1]
implies it in the second one.

Further, suppose that dinH{ > 2. Obviously, each nest algebra is central o{er
We claim that assumptions (i)—(iii) of Remark 4.2 hold in this case. Namely, (i) follows
from Corollary 3.5, while (ii) and (iii) follow from Remark 2.13. Thus, we may apply
Remark 4.2, which concludes the proofa

As mentioned in the introduction, the last two corollaries are similar to the main results
from [31] and [35].
5. Commutativity preserving maps
Lemma 5.1. Let 2l and 2’ be unital algebras central over a fiel# with char(F) # 2.
Suppose that: 2 — 2’ is a bijective linear map satisfying (x2), 6 (x)] = 0for all x € 2.
If

(i) each commuting trace of a bilinear map 2ihis proper,
(i) A and2’ do not satisfy the polynomial identitix2, y1, [x, y11,
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then

O(x)=ap(x)+y(x)1 forall x e,
wherea € F,a #0, ¢ 12 — ' is a Jordan isomorphism, and: 2l — F is a linear map.
Proof. Since[#(x2), 8(x)] =0 for all x € 2A we may argue as in the proof of Lemma 4.1.
Noting that[y, 8(6~1(y)2)] = 0 for all y € 2’ we see that there existe F1/, a linear map
w:A— F,and amap:2 — F such that

0(x?) = 20(x) + ()0 (x) + v(x)1
for all x € 2. In order to prove that # 0, we first show tha®# mapsF1 ontoF1'. Sinced
is linear it suffices to prove that(1) € F1'. Takingx + 1 for x in [#(x2), 8(x)] = 0 we get
2[0(x),6(1)] =0 for anyx € 2. Sinced is bijective and chaif') # 2 it follows that6 (1)
lies in the center ofl’ which is by our assumption equal fol’. Thus we haveé (F1) =
F1'. Supposé. = 0. Thend (x?) — u(x)0(x) € F1 forall x € 2. Henced (x? — ju(x)x) €

F1’, which further implies that? — u(x)x € F1forallx € 2. Thereford[x2, y], [x, y]] =
0 for all x € A, which contradicts (ii). Thus # 0. Next, definey : 2l — 2’ by

1
P(x) =A10(x) + Eu(x)l’. (39)

Clearly, ¢ is linear. We claim thap is a Jordan homomorphism. Namely, the same argu-
ment as in the proof of Lemma 4.1 gives us

go(xz) —p(x)?eFY
for all x € 2. Whence it follows that the mag: 2l x 2 — 2’ defined by
e(x,y)=¢xoy) —@x)op(y)

is a symmetric bilinear map with range iil’; herex o y = xy + yx. Our aim is to show
thate = 0. Pick anyx, y € 2(. Note that

(p(xzo (y ox)) = go(xz) op(yox) +8(x2, y ox)
1
= (cp(x)z + 56, x)) o (p(x) 0 p(y) +e(x,y)) +e(x% youx)

=970 (p(y) 0 p(x)) +e(x, 1) (9(1) 0 9 (x)
+ 2¢e(x, y)go(x)2 +e(x,x)e(x,y)+ s(xz, yo x)

and
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(p((x2 oy)ox)= (p(x2 oy)opx)+ 8(x2 0y, x)
= ((go(x)2+ %S(x,x)) 0p(y) +e(x?, y)> 0p(x) +e(x?oy,x)
= (p(0)%09() 0 p(x) +£(x, M) (p(¥) 0 9(x))
+ 28(x2, y)e(x) + 8(x2 0y, x).
However,x2o (y o x) = (x% 0 y) o x and so it follows that
e(x, Y)p(x)? — s(xz, y)px) e F1'. (40)
Commuting with arbitrary: € 2" and then witH¢(x), u] we get
e(x. M[[e)% u]. [px), u]] =0.
Thus, using (39) we obtain
We(x, [[0)2 u], [6(x),u]] =0
for all x,y € 2 andu € 2. Since® is onto, by (ii) there existg € 2l and ug € A’
such that[[6 (x0)2, uol, [0 (x0), uol] # 0. Hencea3e(xo, A) = 0, which in turn implies
£(x0,2) = 0. Then according to (40) we also havexg,m)w(xo) e F1' and hence

re(x3, A)[0(x0), ugl = 0. Sincexr # 0 and[6 (xq), uol # O it follows thate(x3,2) = 0.
Replacingx by xg + y in (40) we obtain

e(y, V)¢ (x0)? +e(y, ¥)(¢(x0) 0 () — e(x0 0 ¥, ¥)¢(x0)
—e(xg0y, M) — e(y% y)p(xo) € F1'.

On the other hand, replacingby —xg + y in (40) we get

e(y, V) (x0)? — e(y, ) (¢(x0) 0 () — e(x0 0 ¥, ¥)¢(x0)
+e(xooy, Vo) +e(y% y)e(xo) € F1'.

Comparing these two relations it follows that

2¢(y, y)9(x0)? — 2e(x0 0 y, y)@(xo) € F1

for all y € 2. Consequentlys(y, W@ (x0)2, uol, [¢(xo), uol] = 0, which further implies
13e(y, V)[[0(x0)2, uol, [0 (x0), uol] = 0 for all y € A. Hences(y, y) =0 forall y € 2. The
linearization ofe(y, y) =0 gives O=e(x, y) +&(y, x) = 2¢(x, y) forall x, y € 2. Whence

it follows thate = 0. Thus, we have just proved thats a Jordan homomorphism. Setting
a=2r"tandy(x) = —2"1u(x)/2, we haved (x) = ap(x) +y (x)1. AsO(F1) = F1', we
see thaip(1) € F1' which further yieldsp(1) = 1’ sincey is a Jordan homomorphism and
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sinced is surjective. Whenceé(x) = ¢(ax + y (x)1), showing that is surjective. Finally,
@(x) =0 impliesd(x) € F1' and hencer = 81 for somep € F. Consequently8l’ =0
and soB = 0 proving thaily is one-to-one. O

It should be mentioned that the proof just given is actually a modification of the one
of [18, Theorem 2]. However, the proof given here is somewhat shorter and also modified
in such a way that the assumption aoffay # 3 is not needed. This improved argument was
suggested to us by our colleague Maja FoSner.

Theorem 5.2. Let 2l = Tri(A, M, B) and2l' = Tri(A’, M’, B’) be algebras central over
a field F with cha(F) # 2, and let9:2l — 21’ be a bijective linear map satisfying
[6(x?),0(x)] =0forall x € 2. If

(i) each commuting linear map o#’ or B’ is proper,
(i) Z(A)=Fly #A andZ(B)=Flg #8B,
(iii) either.4 or B is noncommutative,
(iv) M'’is loyal,

then
0(x)=ap(x)+y(x)1 forall x e,
wherea € F,a #0, ¢ 12 — ' is a Jordan isomorphism, and: 2l — F is a linear map.

Proof. Using Theorem 3.1 we see that each commuting trace of a bilinear mgpisn
proper. According to Lemma 2.% and2l’ do not satisfy{[x2, y], [x, y]]. Thus, we may
apply Lemma 5.1, which concludes the proota

Recall that any Jordan isomorphigm a triangular matrix algebrg, (F) over a fieldF
with chal(F) # 2 is either an isomorphism or an antiisomorphism [4]. Using Corollary 3.4
and Remark 2.10 together with Lemma 5.1 we may conclude

Corollary 5.3. Letn > 2 be an integer and leF" be a field withchat(F) # 2. Suppose that
0:7,(F) — T,(F) is a bijective linear map satisfying (x2), 6 (x)] = 0for all x € 7,,(F).
Then

0(x) =ap(x)+yx)1 forall x € 7,,(F),

wherex € F,a #0, ¢:7,(F) — 7,(F) is either an isomorphism or an antiisomorphism,
andy :7,(F) — F is alinear map.

We remark that Corollary 5.3 is almost identical to [3, Theorem 1.2].

Recently, Zhang [48] and also Lu [33] proved that any Jordan isomorphism between
nest algebras is either an isomorphism or an antiisomorphism. Using Corollary 3.5 and
Remark 2.13 together with Lemma 5.1 we may therefore conclude
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Corollary 5.4. Let N/ and A be nests on a Hilbert spac& with dim¢ H > 2. If
0:7T(N)— T(N") is abijective linear map satisfying (x?), 6(x)] = Oforall x € T(\),
then

0(x) =apkx)+yx)1 forall x e TWN),

wherea € C, a0 #0, ¢ : T(N) — T (N') is either an isomorphism or an antisomorphism,
andy :T(W) — Cis a linear map.
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