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Abstract

Let A be a triangular algebra. The problem of describingthe form of a bilinear mapB :A × A →
A satisfyingB(x,x)x = xB(x, x) for all x ∈ A is considered. As an application, commutativ
preserving maps and Lie isomorphisms of certain triangular algebras (e.g., upper triangular
algebras and nest algebras) are determined.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

LetA be an algebra overR, a commutative ring with unity. ByZ(A) we denote the cen
ter ofA. An R-linear mapf :A → A is said to becommutingif it satisfies[f (x), x] = 0
for all x ∈ A (we denotexy − yx by [x, y], the commutator ofx andy). Each commuting
R-linear map of the formf (x) = λx+µ(x), whereλ is a central element inA andµ :A→
Z(A) is anR-linear map, will be calledproper. A trace of a bilinear map is a map of th
form x �→ B(x, x), whereB :A×A→ A is some bilinear map. We say that a commut
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traceq is proper if it can be written asq(x) = λx2 + µ(x)x + ν(x) for some central ele
mentλ in A, anR-linear mapµ :A→ Z(A), and a traceν :A → Z(A) of some bilinear
map. Commuting maps which are not proper will be called improper. For an accou
commuting maps we refer the reader to the forthcoming survey paper [20].

At the beginning of the 90s Brešar described the form of commuting additive maps
and also the form of commuting traces of biadditive maps [18] (see also [23]) on p
rings. These results have initiated the theory of functional identities, which deals
maps of rings satisfying some identical relations. We refer the reader to [19] for the s
of the theory of functional identities. More recently Cheung [27] considered comm
linear maps on triangular algebras (e.g., on upper triangular matrix algebras and n
gebras). He determined the class of triangular algebras for which every commuting
map is proper. Motivated by the results of Brešar and Cheung we consider comm
traces of bilinear maps on triangular algebras. The main purpose of this paper is
a certain class of triangular algebras for which every commuting trace is proper (
rem 3.1). Consequently, we will be able to consider commuting traces of bilinear ma
upper triangular matrix algebras and nest algebras. It should be mentioned that the
commuting traces of multilinear mapsof upper triangular matrix algebras has already b
described by Beidar, Brešar, and Chebotar [3].

Another important motivation for the present paper is the study of Lie isomorph
Let us mention that the first functional identity on prime rings which has turned out
important because of its applications was theone concerning commuting traces of biad
tive maps. Namely, in [18] the long-standing Herstein’s conjecture on Lie isomorph
of prime rings was settled using this identity. This initiated a series of papers on Lie h
morphisms, Lie derivations and some related maps [1,6,7,9,11–14,25,26,45] and s
the final solutions to all Herstein’s Lie map conjectures were obtained. Commuting tra
of biadditive maps appear also in some linear preserver problems [5,18,21,22], aut
continuity problems [15,16,46] and some other Lie algebra problems [10]. Therefo
may expect that commuting tracesof bilinear maps on triangular algebras shall also t
out to be useful. The results on Lie isomorphisms and commutativity preserving m
the last two sections already indicate this.

A Lie isomorphism of an algebraA onto an algebraB is a linear bijective mapθ which
preserves commutators, i.e.,

θ
([x, y]) = [

θ(x), θ(y)
]

for all x, y ∈ A.

Note that ifϕ is an isomorphism or the negative of an antiisomorphism fromA ontoB
and τ is a linear map fromA into the center ofB, sending commutators to zero, th
ϕ + τ is a Lie homomorphism. In [32] Hua proved that each Lie automorphism of th
gebra of alln × n matrices,n � 3, over a division ring is of such form. Somewhat lat
in the series of papers [36,38,39] Martindale has extended Hua’s theorem to more g
rings. Let us also mention that similar result for von Neumann factors (i.e., prime von
mann algebras) was obtained by Miers [40]. As we have already stated, it was Breš
who solved the problem of describing the form of Lie isomorphisms between prime
using his own result on commuting traces. In 1994 Ðoković [31] showed that every Lie
automorphism of upper triangular matrix algebrasTn(R) over a commutative ringR with-
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out nontrivial idempotents has the standard form as well. A few years later Marcou
Sourour [35] obtained a similar characterization for Lie isomorphisms between ne
gebras. Using our main result (Theorem 3.1) we shall be able to describe the fo
an arbitrary Lie isomorphism of a certain class of triangular algebras (Theorem 4.
corollaries to Theorem 4.3, characterizations of Lie isomorphisms ofn×n upper triangular
matrix algebras, and on nest algebras are obtained.

A commutativity preserving map is a mapθ :A → B satisfying[θ(x), θ(y)] = 0 when-
ever[x, y] = 0. The obvious examples are maps of the form

θ(x) = αϕ(x) + γ (x) for all x ∈ A, (1)

whereα is a nonzero central element inB, ϕ :A → B is an isomorphism or an antiiso
morphism, andγ :A → Z(B) is a linear map. Clearly, each Lie isomorphism prese
commutativity. Commutativity preserving maps have been studied for almost 30
The usual goal is to show that in certain cases maps of the form (1) are in fact th
examples of commutativity preserving maps. Probably the first result of this kind wa
tained by Watkins [47] for the case whereθ is a linear bijection andA = B is the algebra
of all n × n matrices,n � 4, over a field. Afterwards the series of papers [2,24,29,43
on commutativity preserving maps followed, refining Watkins’s result in several way
particular, Choi, Jafarian, and Radjavi [29] also obtained some extensions of these
to the algebra of bounded linear operators on aninfinite dimensional Hilbert space. Sim
ilar problems were solved for the algebra of all bounded linear operators of a non
Banach space [42] and also for von Neumann factors [41]. Using his result on comm
traces, Brešar [18, Theorem 2] described the form of linear bijective commutativity pre-
serving maps on a rather general class of prime algebras. Later Marcoux and Souro
obtained the characterization of linear mapspreserving commutativity in both direction
(i.e., [x, y] = 0 if and only if [θ(x), θ(y)] = 0) on upper triangular matrix algebrasTn(F )

over a fieldF . In the last section of the present paper we consider linear bijective mapsθ

satisfying

[
θ
(
x2), θ(x)

] = 0 for all x ∈ A, (2)

which is weaker than assuming thatθ preserves commutativity. Applying our main r
sult we describe the form of such maps on certain triangular algebras (see Theore
Consequently, we are able to characterize linear bijective maps satisfying (2) ofn × n

upper triangular matrix algebras withn > 2, which has already been done in [3]. Usi
our main results we also obtain the characterization of linear bijective maps between ne
algebras satisfying (2), which generalizes the above mentioned characterization of L
morphisms [35].

Finally, it should be mentioned that there is a close connection between Lie deriv
and Lie isomorphisms. Recall that a Lie derivationd on an algebraA is a linear map satis
fying d([x, y]) = [d(x), y]+[x, d(y)] for all x, y ∈A. In several cases it turns out that a
Lie derivation is the sum of a derivation and a linear map whose image is central (se
[18,28,37]). Using our main theorem and the same techniques as in the sequel we
obtain such result for a certain class of triangular algebras. However, since Cheun
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more direct approach, we omit stating it.

2. Triangular algebras

Definition 2.1. Let A andB be algebras. An(A,B)-bimoduleM is loyal if aMb = 0
impliesa = 0 orb = 0 for anya ∈ A, b ∈ B.

Obviously, each loyal(A,B)-bimoduleM is faithful as a leftA-module and also as
rightB-module. Following [27] we state

Definition 2.2. Let A andB be unital algebras over a commutative ringR, and letM be a
unital (A,B)-bimodule, which is faithful as a leftA-module and also as a rightB-module.
TheR-algebra

Tri(A,M,B) =
{(

a m

b

)
; a ∈ A, m ∈M, b ∈ B

}

under the usual matrix operations will be called atriangular algebra.

Consider a triangular algebraA = Tri(A,M,B). Any element of the form
(

a 0
b

)
∈ A

will be denoted bya ⊕ b. Let us define projectionsπA :A → A andπB :A → B by

πA :

(
a m

b

)
�→ a and πB :

(
a m

b

)
�→ b.

By [27, Proposition 3] we know that the centerZ(A) of A coincides with

{a ⊕ b | am = mb for all m ∈M}.
Moreover,πA(Z(A)) ⊆ Z(A) andπB(Z(A)) ⊆ Z(B), and there exists a unique algeb
isomorphismτ :πA(Z(A)) → πB(Z(A)) such thatam = mτ(a) for all m ∈M.

Lemma 2.3. LetM be a loyal(A,B)-bimodule and letf,g :M → A be arbitrary maps.
Supposef (m)n + g(n)m = 0 for all m,n ∈ M. If B is noncommutative, thenf = g = 0.

Proof. Usingf (m)n + g(n)m = 0 for all m,n ∈M, we see that

(
f (m)nb1

)
b2 = −g(nb1)mb2 = (

f (mb2)n
)
b1 = −(

g(n)m
)
b2b1 = f (m)nb2b1

for all m,n ∈ M andb1, b2 ∈ B. Therefore,f (M)M[B,B] = 0. SinceM is loyal andB
is noncommutative it follows thatf = 0. Clearly,f = 0 yieldsg = 0. �
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Lemma 2.4. Let A = Tri(A,M,B) with a loyal(A,B)-bimoduleM. Letα ∈ πA(Z(A))

and leta ∈ A be a nonzero element. Ifαa = 0, thenα = 0.

Proof. We have 0= αam = amτ(α) for all m ∈ M. SinceM is loyal it follows that
τ (α) = 0. Therefore,α = 0. �
Lemma 2.5. Let A = Tri(A,M,B) with a loyal (A,B)-bimoduleM. Then the cente
Z(A) of A is a domain.

Proof. Let λ = α ⊕ τ (α),µ = β ⊕ τ (β) ∈ Z(A). Supposeλµ = 0. Thenαβ = 0. By
Lemma 2.4 it follows that eitherα = 0 orβ = 0. Therefore,λ = 0 orµ = 0. �
Lemma 2.6. A = Tri(A,M,B) does not contain nonzero central ideals.

Proof. Let I be a central ideal ofA. Supposeα ⊕ τ (α) ∈ I . Hence,

(
α 0

τ (α)

)(
0 m

0

)
=

(
0 αm

0

)
∈ I

for all m ∈ M. This yieldsαM = 0 and soα = 0 = α ⊕ τ (α). �
Lemma 2.7. LetR be2-torsionfree. ThenA = Tri(A,M,B) satisfies the polynomial iden
tity [[x2, y], [x, y]] if and only if bothA andB are commutative.

Proof. If A andB are commutative it follows easily thatA satisfies the polynomial identit
[[x2, y], [x, y]].

Next, suppose that[[x2, y], [x, y]] = 0 for all x, y ∈ A. Assume that, e.g.,A is noncom-
mutative. Leta1, a2 ∈A andm ∈M be arbitrary elements and let

x =
(

a1 0
0

)
and y =

(
a2 m

0

)
.

Then[[x2, y], [x, y]] = 0 yieldsa1[a1, a2]a1m = 0 for all a1, a2 ∈ A andm ∈ M. Since
M is faithful as a leftA-module we havea1[a1, a2]a1 = 0 for all a1, a2 ∈ A. Replacinga1
by a1 ± 1A and comparing both identities, so obtained, it follows that 2[a1, a2] = 0 for all
a1, a2 ∈A. However, this contradicts our assumption.�

Recently, Cheung [27, Theorem 2] proved that each commuting linear map ofA =
Tri(A,M,B) is proper if πA(Z(A)) = Z(A) (or A = [A,A]), πB(Z(A)) = Z(B) (or
B = [B,B]), and

Z(A) = {
a ⊕ b | a ∈ Z(A), b ∈ Z(B), am0 = m0b

}

for somem0 ∈ M. A similar result can be proved in the caseM is loyal:
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Remark 2.8. Every commuting linear map ofA = Tri(A,M,B) is proper if the following
conditions hold:

(i) πA(Z(A)) = Z(A) andπB(Z(A)) = Z(B),
(ii) eitherA or B is noncommutative,
(iii) M is loyal.

Proof. Let F :A → A be a commuting linear map. Without loss of generality we m
assume thatB is noncommutative. By [27, Proposition 4]F is of the form

F :

(
a m

b

)
�→

(
f1(a) + f2(b) + f3(m) f1(1)m − mg1(1)

g1(a) + g2(b) + g3(m)

)
,

wheref1 :A → A, f2 :B → Z(A), f3 :M → Z(A), g1 :A → Z(B), g2 :B → B and
g3 :M → Z(B) are linear maps. Moreover,

f3(m)m = mg3(m)

for all m ∈ M. SinceπA(Z(A)) = Z(A) andπB(Z(A)) = Z(B), by [27, Theorem 1(ii)]
it suffices to prove thatf3(m) ⊕ g3(m) ∈ Z(A) for all m ∈ M. Linearizing (f3(m) −
τ−1(g3(m)))m = 0 and using Lemma 2.3 we getf3(m) = τ−1(g3(m)) and thusf3(m) ⊕
g3(m) ∈ Z(A) for all m ∈M. �

We close this section with the following two standard examples of triangular alge
i.e., upper triangular matrix algebras and nest algebras.

Upper triangular matrix algebras

Let Ml×m(R) denote the set of alll × m matrices and letTn(R) denote the algebra o
all n × n upper triangular matrices overR. Forn � 2 and each 1� l � n − 1 the algebra
Tn(R) can be represented as a triangular algebra of the form

Tn(R) =
(
Tl (R) Ml×(n−l)(R)

Tn−l (R)

)
.

Remark 2.9. If R is a commutative domain thenM = Ml×(n−l)(R) is a loyal (Tl (R),

Tn−l (R))-bimodule.

Proof. SupposeA ∈ Tl (R) andB ∈ Tn−l (R) are nonzero. Hence there exists a nonz
(i, j)th entryaij of A and a nonzero(s, t)-entrybst of B for some 1� i � j � l, 1� s �
t � n− l. PickM ∈M such thatmjs = 1 and all its other entries are zero. ThenAMB �= 0,
since its(i, t)th entry equalsaij bst �= 0. Thus,M is loyal. �
Remark 2.10. Let n > 2 be an integer andR be 2-torsionfree. ThenTn(R) does not satisfy
the polynomial identity[[x2, y], [x, y]].
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Proof. Since Tn(R) = Tri(R,M1×(n−1)(R),Tn−1(R)) and Tn−1(R) is noncommuta
tive it follows by Lemma 2.7 thatTn(R) does not satisfy the polynomial identi
[[x2, y], [x, y]]. �
Nest algebras

A nest is a chainN of closed subspaces of a complex Hilbert spaceH containing
{0} andH which is closed under arbitrary intersections and closed linear span. Thnest
algebraassociated toN is the algebra

T (N ) = {
T ∈ B(H) | T (N) ⊆ N for all N ∈N

}
.

A nestN is called trivial if N = {0,H }. The reader is referred to [30] for the gene
theory of nest algebras. We will make use of a standard result (see [27, Proposi
and [30, Chapter 2]) which allows one to consider a nontrivial nest algebra as a tria
algebra. Namely, ifN ∈N\{0,H } andE is the orthonormal projection ontoN , thenN1 =
E(N ) andN2 = (1 − E)(N ) are nests ofN andN⊥, respectively. Moreover,T (N1) =
ET (N )E, T (N2) = (1− E)T (N )(1− E) and

T (N ) =
(
T (N1) ET (N )(1− E)

T (N2)

)
.

Remark 2.11. M = ET (N )(1− E) is a loyal(T (N1),T (N2))-bimodule.

Proof. SupposeA ∈ T (N1) andB ∈ T (N2) are nonzero operators. Clearly, there ex
u ∈ N andv ∈ N⊥ such thatAu �= 0 andBv = w �= 0. Let M :x �→ 〈x,w〉u. Note that
M ∈ ET (N )(1− E) andAMBv �= 0. This means thatM is loyal. �

Recall that the center of each nest algebra coincides withC1 [30, Corollary 19.5]. Using
this the following assertion follows almost immediately.

Remark 2.12. Let N be a nest on a Hilbert spaceH with dimC H > 1. ThenT (N ) is
noncommutative.

Remark 2.13. LetN be a nest on a Hilbert spaceH with dimC H > 2. Then[[x2, y], [x, y]]
and[x, [y, [z,w]]] are not polynomial identities onT (N ).

Proof. If N is trivial, thenT (N ) = B(H) does not satisfy neither[[x2, y], [x, y]] nor
[x, [y, [z,w]]] provided that dimC H > 2. This can be easily deduced from the standar
theory, and on the other hand one can easily checkthis directly. Now, assume that there
N ∈N\{0,H }. LetE be the orthonormal projection ontoN . ThenT (N ) = Tri(A,M,B),
whereA = T (N1) = ET (N )E, B = T (N2) = (1 − E)T (N )(1 − E) are nest algebra
and M = ET (N )(1 − E). By Remark 2.12 eitherA or B is noncommutative, sinc
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dimC N > 1 or dimC N⊥ > 1. Hence by Lemma 2.7,T (N ) does not satisfy[[x2, y],
[x, y]]. On the other hand, setting

x = y = z =
(

1A 0
0

)
and w =

(
0 m

0

)

for some nonzerom ∈M we see that[x, [y, [z,w]]] = w �= 0. �

3. Commuting traces of bilinear maps

Theorem 3.1. LetA = Tri(A,M,B) be a triangular algebra over a2-torsionfree commu
tative ringR. If

(i) each commuting linear map onA or B is proper,
(ii) πA(Z(A)) = Z(A) �= A andπB(Z(A)) = Z(B) �= B,
(iii) M is loyal,

then each commuting traceq :A → A of a bilinear map is proper.

Proof. For convenience we setA1 =A, A2 = B andA3 =M. We denote the unity ofA1
by 1 and the unity ofA2 by 1′. Suppose thatq is a trace of a bilinear mapB :A × A → A.
Hence there exist bilinear mapsfij :Ai × Aj → A1, gij :Ai × Aj → A2 andhij :Ai ×
Aj →A3, 1� i � j � 3, such that

q :

(
a1 a3

a2

)
�→

(
F(a1, a2, a3) H(a1, a2, a3)

G(a1, a2, a3)

)
,

where

F(a1, a2, a3) =
∑

1�i�j�3

fij (ai, aj ),

G(a1, a2, a3) =
∑

1�i�j�3

gij (ai, aj ),

H(a1, a2, a3) =
∑

1�i�j�3

hij (ai, aj ).

Sinceq is commuting it follows that

0 =
[(

F H

G

)
,

(
a1 a3

a

)]
=

( [F,a1] Fa3 + Ha2 − a1H − a3G

[G,a ]
)

.

2 2
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Let us first consider the identity

0 = [F,a1] =
∑

1�i�j�3

[
fij (ai, aj ), a1

]
for all ai ∈ Ai , i = 1,2,3. (3)

Settinga2 = 0, a3 = 0 we see that[f11(a1, a1), a1] = 0 for eacha1 ∈ A1. Next, putting
a3 = 0 in (3) we get[f12(a1, a2), a1] + [f22(a2, a2), a1] = 0. Replacinga1 by −a1 and
comparing both identities we obtain that 2[f12(a1, a2), a1] = 0. SinceR is 2-torsionfree
we have[f12(a1, a2), a1] = 0 and hencef22(a2, a2) ∈ Z(A1) for all a1 ∈ A1, a2 ∈ A2.
Similarly, settinga2 = 0 in (3) we obtain[f13(a1, a3), a1] = 0 andf33(a3, a3) ∈ Z(A1) for
all a1 ∈A1, a3 ∈ A3. It now follows from (3) that alsof23 maps intoZ(A1). Summarizing
the above conclusions we see that

a1 �→ f11(a1, a1) is a commuting trace,

a1 �→ f12(a1, a2) is a commuting linear map for eacha2 ∈ A2,

a1 �→ f13(a1, a3) is a commuting linear map for eacha3 ∈ A3,

f22, f23, f33 map intoZ(A1).

Analogously, the identity

0 = [G,a2] =
∑

1�i�j�3

[
gij (ai, aj ), a2

]

for all ai ∈ Ai , i = 1,2,3, implies

a2 �→ g22(a2, a2) is a commuting trace,

a2 �→ g12(a1, a2) is a commuting linear map for eacha1 ∈A1,

a2 �→ g23(a2, a3) is a commuting linear map for eacha3 ∈A3,

g11, g13, g33 map intoZ(A2).

It remains to consider

Fa3 + Ha2 − a1H − a3G = 0. (4)

Let a1 = 0, a2 = 0. Then

f33(a3, a3)a3 = a3g33(a3, a3) (5)

for all a3 ∈ A3. Next, settinga1 = 0, a3 = 0 in (4) it follows 0= Ha2 = h22(a2, a2)a2 for
all a2 ∈ A2. Clearly,h22(1′,1′) = 0. Replacinga2 by a2 ± 1′ we get
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h22(a2, a2) + (
h22

(
a2,1′) + h22

(
1′, a2

))(
a2 + 1′) = 0,

−h22(a2, a2) − (
h22

(
a2,1′) + h22

(
1′, a2

))(
a2 − 1′) = 0.

Comparing both identities we get 2(h22(a2,1′) + h22(1′, a2)) = 0, which further im-
plies h22(a2, a2) = 0 for all a2 ∈ A2. Analogously, settinga2 = 0, a3 = 0 in (4) yields
h11(a1, a1) = 0 for all a1 ∈ A1. Further, lettinga3 = 0 in (4) we see thath12(a1, a2)a2 −
a1h12(a1, a2) = 0 for all a1 ∈ A1, a2 ∈A2. Replacinga1 by −a1 and comparing both iden
tities yieldsa1h12(a1, a2) = 0 for all a1 ∈ A1, a2 ∈ A2. Sinceh12(1, a2) = 0, the substitu-
tion a1 �→ a1 + 1 impliesh12(a1, a2) = 0 for all a1 ∈ A1, a2 ∈ A2. ThusH(a1, a2, a3) =
h13(a1, a3) + h23(a2, a3) + h33(a3, a3). Our next aim is to prove that

h23(a2, a3)a2 = a3g22(a2, a2) − f22(a2, a2)a3 (6)

for all a2 ∈A2, a3 ∈A3. Settinga1 = 0 in (4) and using (5) we obtain

(
f22(a2, a2) + f23(a2, a3)

)
a3 + (

h33(a3, a3) + h23(a2, a3)
)
a2

− a3
(
g22(a2, a2) + g23(a2, a3)

) = 0. (7)

Replacinga2 by −a2 we get

2f22(a2, a2)a3 + 2h23(a2, a3)a2 − 2a3g22(a2, a2) = 0

and hence (6) follows. Now, using (6) together with (7) one gets

h33(a3, a3)a2 = a3g23(a2, a3) − f23(a2, a3)a3 (8)

for all a2 ∈ A2, a3 ∈ A3. In a similar manner, takinga2 = 0 in (4) and using (5), it follows
that

a1h13(a1, a3) = f11(a1, a1)a3 − a3g11(a1, a1), (9)

a1h33(a3, a3) = f13(a1, a3)a3 − a3g13(a1, a3) (10)

for all a1 ∈A1, a3 ∈A3. Using (5), (6), (8), (9), (10) together with (4) we obtain

a1h23(a2, a3) + a3g12(a1, a2) = h13(a1, a3)a2 + f12(a1, a2)a3 (11)

for all ai ∈ Ai , i = 1,2,3.
Recall that[f13(a1, a3), a1] = 0 for all a1 ∈A1, a3 ∈A3. Hence, replacinga1 by a1 +1

implies thatf13(1, a3) ∈ Z(A1) for eacha3 ∈ A3. Thus, using (ii) we see that the identi
(10) yields

h33(a3, a3) = α(a3)a3 (12)
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for all a3 ∈A3, whereα(a3) = f13(1, a3) − τ−1(g13(1, a3)) ∈ Z(A1). Next, we claim that

f33(a3, a3) ⊕ g33(a3, a3) ∈ Z(A) (13)

for eacha3 ∈A3. Namely, by the complete linearization of (5) we obtain

β(l,m)n + β(n, l)m + β(m,n)l = 0 (14)

for all l,m,n ∈A3, where

β(m,n) = f33(m,n) − τ−1(g33(m,n)
) + f33(n,m) − τ−1(g33(n,m)

)
.

Obviously, the mapβ :A3 ×A3 → Z(A1) is bilinear and symmetric. Picka, b ∈A1 such
that[a, b] �= 0. Replacingl by al in (14) and subtracting (14) multiplied bya we get

(
β(al,m) − β(l,m)a

)
n + (

β(n, al) − β(n, l)a
)
m = 0

for all l,m,n ∈ A3. According to Lemma 2.3,β(al,m) = β(l,m)a and hence
β(l,m)[a, b] = 0 for all l,m ∈ A3. Now, since[a, b] �= 0 Lemma 2.4 yieldsβ = 0 and
so, in particular,β(m,m) = 0 for all m ∈ A3. Thus, (13) holds. Our next aim is to pro
that

f13(a1, a3) = α(a3)a1 + τ−1(g13(a1, a3)
)
,

g23(a2, a3) = τ
(
α(a3)

)
a2 + τ

(
f23(a2, a3)

)
(15)

for all ai ∈ Ai , i = 1,2,3. Let E(a1, a3) = f13(a1, a3) − α(a3)a1 − τ−1(g13(a1, a3)).
Using (10) and (12) we getE(a1, a3)a3 = 0, which further yieldsE(a1, a3)b3 +
E(a1, b3)a3 = 0 for all a1 ∈ A1 anda3, b3 ∈ A3. Using Lemma 2.3 we see thatE = 0.
Thus,f13 is as in (15). Analogously, using (8) one proves thatg23 has the desired form a
well.

Next, we consider mapsf12 andg12. By (i) we may assume that each commuting lin
map onA1 is proper. Sincea1 �→ f12(a1, a2) is a commuting linear map onA1 for each
a2 ∈ A2, there exist mapsγ :A2 → Z(A1) andδ :A1 ×A2 → Z(A1) such that

f12(a1, a2) = γ (a2)a1 + δ(a1, a2), (16)

whereδ is R-linear in the first argument. Let us show thatγ is R-linear andδ is R-bilinear.
Clearly

f12(a1, a2 + b2) = γ (a2 + b2)a1 + δ(a1, a2 + b2),

f12(a1, a2) + f12(a1, b2) = γ (a2)a1 + δ(a1, a2) + γ (b2)a1 + δ(a1, b2)

and so

(
γ (a2 + b2) − γ (a2) − γ (b2)

)
a1 + δ(a1, a2 + b2) − δ(a1, a2) − δ(a1, b2) = 0
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for all a1 ∈ A1, a2, b2 ∈ A2. Commuting withb1 ∈ A1 we get(γ (a2 + b2) − γ (a2) −
γ (b2))[a1, b1] = 0 for all a1, b1 ∈ A1, a2, b2 ∈ A2 anda3 ∈ A3. Now, Lemma 2.4 yields
that γ is R-linear. Consequently,δ is R-linear in the second argument. Letγ ′(a1) =
g12(a1,1′) − τ (δ(a1,1′)) for all a1 ∈ A1. Sinceτ is R-linear and sinceg12 and δ are
bothR-bilinear, it follows thatγ ′ is R-linear as well. We claim that

g12(a1, a2) = γ ′(a1)a2 + τ
(
δ(a1, a2)

)
(17)

for all a1 ∈ A1, a2 ∈ A2. Namely by (9),h13(1, a3) = f11(1,1)a3 − a3g11(1,1) for all
a3 ∈ A3. Hence settinga1 = 1 in (11) we get

h23(a2, a3) = a3
{
ηa2 + τ

(
f12(1, a2)

) − g12(1, a2)
}

(18)

for all a2 ∈ A2 anda3 ∈ A3, whereη = τ (f11(1,1)) − g11(1,1). Similarly, using (6) and
(11) we obtain

h13(a1, a3) = {
θa1 + τ−1(g12

(
a1,1′)) − f12

(
a1,1′)}a3 (19)

for all a1 ∈ A1 anda3 ∈ A3, whereθ = τ−1(g22(1′,1′)) − f22(1′,1′). Now (16), (18) and
(19) together with (11) imply

a1a3
(
ηa2 + τ

(
f12(1, a2)

) − g12(1, a2)
) + a3g12(a1, a2)

= (
θa1 + τ−1(g12

(
a1,1′)) − f12

(
a1,1′))a3a2 + (

γ (a2)a1 + δ(a1, a2)
)
a3

and so

a1a3
{(

η + τ
(
γ
(
1′) − θ

))
a2 + τ

(
δ(1, a2)

) − g12(1, a2)
}

(20)

= a3
{
γ ′(a1)a2 + τ

(
δ(a1, a2)

) − g12(a1, a2)
}

for all ai ∈ Ai , i = 1,2,3. Picka1, b1 ∈ A1, such that[a1, b1] �= 0. Replacinga3 by b1a3
in (20) and subtracting (20) multiplied byb1 we get

[a1, b1]A3
{(

η + τ
(
γ (1) − θ

))
a2 + τ

(
δ(1, a2)

) − g12(1, a2)
} = 0

for all a2 ∈A2. SinceA3 is loyal it follows that

g12(1, a2) = (
η + τ

(
γ (1) − θ

))
a2 + τ

(
δ(1, a2)

)

for all a2 ∈A2. Consequently, (20) implies

A3
(
γ ′(a1)a2 + τ

(
δ(a1, a2)

) − g12(a1, a2)
) = 0

for all a1 ∈ A1, a2 ∈ A2, and so we see that (17) holds. Letε = θ − γ (1′) andε′ = η −
γ ′(1). Hence using (18) and (19) together with (16) and (17) we obtain
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h23(a2, a3) = a3
(
ε′a2 + τ

(
γ (a2)

))
,

h13(a1, a3) = (
εa1 + τ−1(γ ′(a1)

))
a3 (21)

for all ai ∈ Ai , i = 1,2,3. Next, let us prove that

f11(a1, a1) = εa2
1 + τ−1(γ ′(a1)

)
a1 + τ−1(g11(a1, a1)

)
,

g22(a2, a2) = ε′a2
2 + τ

(
γ (a2)

)
a2 + τ

(
f22(a2, a2)

)
(22)

for all a1 ∈A1 anda2 ∈A2. Using (9) together with (21) we get

(
f11(a1, a1) − εa2

1 − τ−1(γ ′(a1)
)
a1 − τ−1(g11(a1, a1)

))
a3 = 0

for all a1 ∈ A1 anda3 ∈ A3. Now, sinceA3 is faithful as a leftA1-module it follows that
f11 has the desired form. Analogously, we see thatg22 has the form described in (22
Settinga1 = 1, a2 = 1′ in (11) and using (16), (17) and (21) we see thatεa3 = a3ε

′ for
all a3 ∈ A3. This means thatε ⊕ ε′ ∈ Z(A). We are now able to make the final step of
proof. Let us defineλ = ε ⊕ ε′ and the mapµ :A → Z(A) by

(
a1 a3

a2

)
�→

(
τ−1(γ ′(a1)) + γ (a2) + α(a3) 0

γ ′(a1) + τ (γ (a2) + α(a3))

)
.

Obviously,µ is linear. Using all conclusions derived above we see thatν(x) = q(x) −
λx2 − µ(x)x belongs toZ(A) for eachx ∈ A. �

Recall that an algebraA over a commutative ringR is said to becentral over R if
Z(A) = R1. We continue with a technical lemma, which will be used to cover some sp
situations where the theorem above does not work.

Lemma 3.2. Let A = Tri(R,M,B), whereB is noncommutative and bothA andB are
central over a commutative2-torsionfree ringR. If

(i) each commuting linear map onB is proper,
(ii) for anyr ∈ R andm ∈ M, rm = 0 impliesr = 0 or m = 0,
(iii) there existm0 ∈ M and b0 ∈ B such thatm0b0 and m0 are linearly independen

overR,

then each commuting traceq :A → A of a bilinear map is proper.

Proof. We shall follow the proof of Theorem 3.1; therefore we will use the same nota
The proof is almost the same except at the following three places.

The first one concerns the proof of (13):

f33(a3, a3) ⊕ g33(a3, a3) ∈ R1 for all a3 ∈ A3.
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Namely, by (5) we have(f33(a3, a3) − τ−1(g33(a3, a3)))a3 = 0. Sincef33(a3, a3) −
τ−1(g33(a3, a3)) ∈ R1 it follows according to the assumption (ii) thatf33(a3, a3) =
τ−1(g33(a3, a3)) for all a3 ∈A3.

The second place concerns the proof of (15):

f13(a1, a3) = α(a3)a1 + τ−1(g13(a1, a3)
)
,

g23(a2, a3) = τ
(
α(a3)

)
a2 + τ

(
f23(a2, a3)

)

for all ai ∈ Ai , i = 1,2,3. Namely, by (10), (8) and (12) we see that

(
f13(a1, a3) − α(a3)a1 − τ−1(g13(a1, a3)

))
a3 = 0,

a3
(
g23(a2, a3) − τ

(
α(a3)

)
a2 − τ

(
f23(a2, a3)

)) = 0 (23)

for all ai ∈Ai , i = 1,2,3. Sincef13(a1, a3) − α(a3)a1 − τ−1(g13(a1, a3)) ∈ R1 it follows
easily from (ii) thatf13 has the desired form. Sincea2 �→ g23(a2, a3) is a commuting linea
map onA2 there exist mapsψ :A3 → R1′ andω :A2 ×A3 → R1′ such that

g23(a2, a3) = ψ(a3)a2 + ω(a2, a3),

whereω is linear in the first argument. Let us prove thatψ is linear andω is bilinear.
Clearly,

g23(a2, a3 + b3) = ψ(a3 + b3)a2 + ω(a2, a3 + b3),

g23(a2, a3) + g23(a2, b3) = ψ(a3)a2 + ω(a2, a3) + ψ(b3)a2 + ω(a2, b3)

and so

(
ψ(a3 + b3) − ψ(a3) − ψ(b3)

)
a2 + ω(a2, a3 + b3) − ω(a2, a3) − ω(a2, b3) = 0

for all a2 ∈A2, a3, b3 ∈ A3. Commuting withb2 ∈ A2 we get

(
ψ(a3 + b3) − ψ(a3) − ψ(b3)

)[a2, b2] = 0

for all a2, b2 ∈ A2, a3, b3 ∈ A3. Picka2, b2 ∈ A2 such that[a2, b2] �= 0. SinceA3 is faithful
as a rightA2-module there existsc3 ∈ A3 such thatc3[a2, b2] �= 0. Thus,

τ−1(ψ(a3 + b3) − ψ(a3) − ψ(b3)
)
c3[a2, b2] = 0

for all a3, b3 ∈A3. Now (ii) yields thatψ is linear. Consequently,ω is linear in the second
argument. Now, (23) can be rewritten as

a3
((

ψ(a3) − τ
(
α(a3)

))
a2 + ω(a2, a3) − τ

(
f23(a2, a3)

)) = 0 (24)
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for all a2 ∈A2 anda3 ∈A3. Settinga2 = b0 anda3 = m0 we get

(
τ−1(ψ(m0)

) − α(m0)
)
m0b0 + (

τ−1(ω(b0,m0)
) − f23(b0,m0)

)
m0 = 0.

According to (iii) this implies thatα(m0) = τ−1(ψ(m0)), f23(b0,m0) = τ−1(ω(b0,m0)).
Replacinga3 by a3 + m0 anda2 by b0 in (24) we obtain

(
τ−1(ψ(a3)

) − α(a3)
)
m0b0 + (

τ−1(ω(b0, a3)
) − f23(b0, a3)

)
m0 = 0.

Now, assumption (iii) yieldsα(a3) = τ−1(ψ(a3)) for all a3 ∈ A3. Consequently, (24) ca
be rewritten as

(
τ−1(ω(a2, a3)

) − f23(a2, a3)
)
a3 = 0,

which further implies thatω(a2, a3) = τ (f23(a2, a3)) for all a2 ∈ A2 anda3 ∈ A3. Thus,
g23 has the desired form as well.

The final place that must be changed is the one concerning the form of the maf12
andg12. Sincea2 �→ g12(a1, a2) is a commutingR-linear map onA2 there exist maps
γ ′ :A1 → R1′ andδ′ :A1 ×A2 → R1′ such that

g12(a1, a2) = γ ′(a1)a2 + δ′(a1, a2), (25)

whereγ ′ is R-linear andδ′ is R-bilinear. Note that sinceτ :A1 → A2 is R-linear and
A1 = R1, we haverm = mr for all m ∈ A3 andr ∈ R. We also point out that here each
the mapsfij takes values inR1. Now (25), (18), (19) together with (11) yield

a1a3
(
ηa2 + τ

(
f12(1, a2)

) − γ ′(1)a2 − δ′(1, a2)
) + a3

(
γ ′(a1)a2 + δ′(a1, a2)

)
= (

θa1 + τ−1(g12
(
a1,1′)) − f12

(
a1,1′))a3a2 + f12(a1, a2)a3

and hence

a3
{
τ
(
a1τ

−1(η) + τ−1(γ ′(a1) − γ ′(1) − g12
(
a1,1′)) − θa1 + f12

(
a1,1′))a2

+ τ
((

f12(1, a2) − τ−1(δ′(1, a2)
))

a1 + τ−1(δ′(a1, a2)
) − f12(a1, a2)

)} = 0 (26)

for all ai ∈ Ai , i = 1,2,3. Picka2, b2 ∈ A2 such that[a2, b2] �= 0. SinceA3 is faithful as
a rightA2-module the last identity yields

τ
(
a1τ

−1(η) + τ−1(γ ′(a1) − g12
(
a1,1′)) − θa1 + f12

(
a1,1′))[a2, b2] = 0

and hence

(
a1τ

−1(η) + τ−1(γ ′(a1) − g12
(
a1,1′)) − θa1 + f12

(
a1,1′))a3[a2, b2] = 0
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for all a1 ∈ A1, wherea3 ∈ A3 is such thata3[a2, b2] �= 0. Therefore, (ii) implies tha
a1τ

−1(η)+τ−1(γ ′(a1)−g12(a1,1′))−θa1+f12(a1,1′) = 0 for all a1 ∈ A1. Accordingly,
(26) implies

f12(a1, a2) = (
f12(1, a2) − τ−1(δ′(1, a2)

))
a1 + τ−1(δ′(a1, a2)

)

for all a1 ∈ A1, a2 ∈ A2. Let γ (a2) = f12(1, a2) − τ−1(δ′(1, a2)) and δ(a1, a2) =
τ−1(δ′(a1, a2)). Hencef12(a1, a2) = γ (a2)a1 + δ(a1, a2).

Following the rest of the proof of Theorem 3.1 we obtain the conclusion of
lemma. �

Next, we give an example of a triangular algebra with an improper commuting t
The example was constructed using the improper linear commuting map from [27, E
ple 1].

Example 3.3. For a fieldF let

A =







t a x y

t 0 z

s b

s


 ; a, b, s, t, x, y, z ∈ F




and letA = Tri(A,F 4,F ). Note that by Remark 2.8 each commuting linear map onA is
proper. However, there exists an improper commuting linear map onA [27, Example 1].
Thus,A does not satisfy the condition (i) from Lemma 3.2 and the condition (ii) from
Theorem 3.1. We claim thatq :A → A defined by




t a x y m1
t 0 z m2

s b m3
s m4

r


 �→




0 (t − r)x 0 xz xm2
0 0 0 0

0 (s − r)z zm4
0 0

0




is an improper commuting trace of a bilinear map. Namely, picku ∈ A such that
x = m2 = 1 and all its other entries are 0. Obviously,q(u) /∈ Fu2 + Fu +F1.

Corollary 3.4. Let n � 2 and letR be a 2-torsionfree commutative domain. Then ea
commuting traceq :Tn(R) → Tn(R) of a bilinear map is proper.

Proof. First, let n > 3. Note thatTn(R) = Tri(A,M,B) for A = T2(R), B = Tn−2(R)

andM = M2×(n−2)(R). By [27, Corollary 6] each commuting linear map onA andB is
proper. The assumption (ii) of Theorem 3.1 clearly holds in our case and by Rema
M is a loyal(A,B)-bimodule. Thus, Theorem 3.1 yields the conclusion.
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Further, if n = 3 we may writeT3(R) = Tri(R,M1×2(R),T2(R)). Now Lemma 3.2
yields the desired conclusion. Since the assumptions (i) and (ii) of Lemma 3.2 obv
hold true, let us just verify (iii). Set

M = [1 0] ∈ M1×2(R) and B =
[

0 1
0

]
∈ T2(R).

ThenMB andM are linearly independent overR.
In the casen = 2 one can obtain the conclusion by a direct but tedious computatio

we omit details in this case.�
Corollary 3.5. Let N be a nest of a Hilbert spaceH . Then each commuting trac
q :T (N ) → T (N ) of a bilinear map is proper.

Proof. Note that the corollary trivially holds in the case dimC H = 1. If dimC H = 2 we
have eitherT (N ) ∼= T2(C) or T (N ) ∼= M2(C). Corollary 3.4 implies the conclusion i
the first case, while [23, Theorem 3.1] implies it in the second one.

Further, suppose that dimC H > 2. We consider the following three cases.

Case 1. Assume thatN is trivial. ThenT (N ) = B(H) is a centrally closed prime algeb
and hence the result follows from [18, Theorem 1].

Case 2. Suppose that there existsN ∈ N\{0,H } such that dimN > 1 and dimN⊥ > 1.
Let E be an orthonormal projection ontoN . Note that

T (N ) =
(
A M

B

)
,

whereA = T (N1) = ET (N )E andB = T (N2) = (1−E)T (N )(1−E) are nest algebra
andM = ET (N )(1 − E). By Cheung’s result [27, Corollary 7] each commuting line
map onA andB is proper. Since the center of each nest algebra coincides withC1, we
haveπA(Z(T (N ))) = Z(A) and alsoπB(Z(T (N ))) = Z(B). By Remark 2.12,A andB
are noncommutative, since dimC N > 1 and dimC N⊥ > 1. By Remark 2.10,M is a loyal
(A,B)-bimodule. Thus, we may apply Theorem 3.1, which completes the proof in
case.

Case 3. Finally, assume that for eachN ∈ N\{0,H } we have either dimN = 1 or
dimN⊥ = 1. Without loss of generality we may assume that there existsN ∈ N\{0,H }
with dimN = 1. Consequently, we have eitherN = {0,N,H } orN = {0,N,L,H }, where
N ⊂ L and dimL⊥ = 1. Let E be the orthonormal projection ontoN . Hence we have
T (N ) = Tri(A,M,B), whereA = ET (N )E = CE andB = (1 − E)T (N )(1 − E) are
nest algebras andM = ET (N )(1 − E). Note that our nest algebraT (N ) satisfies the
assumptions (i) and (ii) of Lemma 3.2. We claim that (iii) also holds true. First, suppo
N = {0,N,H }. Take nonzero vectorsu ∈ N andv,w ∈ N⊥ such that〈v,w〉 = 0. We de-
fineBx = 〈x,w〉v andMx = 〈x, v〉u. Note thatB ∈ B andM ∈M. One can easily verify
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that MB andM are linearly independent overC. Next, assume thatN = {0,N,L,H }.
Pick nonzero vectorsu ∈ N , v ∈ L ∩ N⊥ and w ∈ L⊥ and defineBx = 〈x,w〉v and
Mx = 〈x, v〉u. Again, note thatB ∈ B, M ∈ M, andMB, M are linearly independen
overC. �

4. Lie isomorphisms

Lemma 4.1. LetA = Tri(A,M,B) andA′ = Tri(A′,M′,B′) be triangular algebras ove
a commutative ringR with 1/2∈ R and letθ :A → A′ be a Lie isomorphism. If

(i) each commuting trace of a bilinear map onA′ is proper,
(ii) at least one ofA, B and at least one ofA′, B′ are noncommutative,
(iii) M′ is loyal,

thenθ = ϕ + τ , whereϕ :A → A′ is a homomorphism or the negative of an antihomom
phism,ϕ is one-to-one, andτ :A→Z(A′) is a linear map sending commutators to ze
Moreover, ifA′ is central overR, thenϕ is onto.

Proof. It is clear thatθ satisfies[θ(x), θ(x2)] = 0 for all x ∈ A. Replacingx by θ−1(y),
y ∈ A′, we get [y, θ(θ−1(y)2)] = 0 for all y ∈ A′. This means that the mapq(y) =
θ(θ−1(y)2) is commuting. Sinceq is also the trace of a bilinear mapB :A′ × A′ → A′,
B(y, z) = θ(θ−1(y)θ−1(z)), there existλ ∈ Z(A′), a linear mapµ1 :A′ → Z(A′), and a
traceν1 :A′ → Z(A′) of a bilinear map such that

θ
(
θ−1(y)2) = λy2 + µ1(y)y + ν1(y) (27)

for y ∈ A′. Let µ = µ1θ andν = ν1θ . Henceµ andν are mappings ofA into Z(A′) andµ

is linear. Note that (27) can be rewritten as

θ
(
x2) = λθ(x)2 + µ(x)θ(x) + ν(x) (28)

for all x ∈ A. We claim thatλ �= 0. Assumeλ = 0. Then by (28) we haveθ(x2) −
µ(x)θ(x) ∈ Z(A′), and so

θ
([[

x2, y
]
, [x, y]]) = [[

θ
(
x2), θ(y)

]
,
[
θ(x), θ(y)

]] = µ(x)
[[

θ(x), θ(y)
]
,
[
θ(x), θ(y)

]]
= 0

for all x, y ∈ A. Consequently,[[x2, y], [x, y]] = 0 for all x, y ∈ A. According to our as
sumptions this contradicts Lemma 2.7. Thus,λ �= 0. Next, we defineϕ : A → A′ by

ϕ(x) = λθ(x) + 1

2
µ(x). (29)

According to (28) we have
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ϕ
(
x2) = λθ

(
x2) + 1

2
µ

(
x2) = λ2θ(x)2 + λµ(x)θ(x) + λν(x) + 1

2
µ

(
x2),

while on the other hand

ϕ(x)2 =
(

λθ(x) + 1

2
µ(x)

)2

= λ2θ(x)2 + λµ(x)θ(x) + 1

4
µ(x)2.

Comparing these two relations we get

ϕ
(
x2) − ϕ(x)2 ∈ Z

(
A′) (30)

for all x ∈ A. Linearizing (30) we obtain

ϕ(x ◦ y) − ϕ(x) ◦ ϕ(y) ∈ Z
(
A′) (31)

for all x, y ∈ A, wherex ◦ y denotesxy + yx. By (29) we have

λϕ
([x, y]) = λ2θ

([x, y]) + 1

2
λµ

([x, y]) = [
λθ(x), λθ(y)

] + 1

2
λµ

([x, y])

=
[
ϕ(x) − 1

2
µ(x),ϕ(y) − 1

2
µ(y)

]
+ 1

2
λµ

([x, y])

= [
ϕ(x),ϕ(y)

] + 1

2
λµ

([x, y])

and hence

λϕ
([x, y]) − [

ϕ(x),ϕ(y)
] ∈ Z

(
A′) (32)

for all x, y ∈ A. Multiplying (31) byλ and comparing with (32) we get

2λϕ(xy) − (λ + 1)ϕ(x)ϕ(y) − (λ − 1)ϕ(y)ϕ(x) ∈ Z
(
A

′)

for all x, y ∈ A. Consequently, the map

ε(x, y) = λϕ(xy) − 1

2
(λ + 1)ϕ(x)ϕ(y) − 1

2
(λ − 1)ϕ(y)ϕ(x)

maps fromA × A into Z(A′). Denote1
2(λ + 1) by α. Therefore

λϕ(xy) = αϕ(x)ϕ(y) + (α − 1)ϕ(y)ϕ(x) + ε(x, y) (33)

for all x, y ∈ A. Our aim is to show thatε = 0 and that eitherα = 0 or α = 1. According
to (33) we have
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λ2ϕ(xyz) = λ2ϕ
(
x(yz)

) = λαϕ(x)ϕ(yz) + λ(α − 1)ϕ(yz)ϕ(x) + λε(x, yz)

= αϕ(x)
(
αϕ(y)ϕ(z) + (α − 1)ϕ(z)ϕ(y) + ε(y, z)

)
+ (α − 1)

(
αϕ(y)ϕ(z) + (α − 1)ϕ(z)ϕ(y) + ε(y, z)

)
ϕ(x) + λε(x, yz)

= α2ϕ(x)ϕ(y)ϕ(z) + α(α − 1)ϕ(x)ϕ(z)ϕ(y)+ α(α − 1)ϕ(y)ϕ(z)ϕ(x)

+ (α − 1)2ϕ(z)ϕ(y)ϕ(x) + λε(x, yz) + λε(y, z)ϕ(x).

On the other hand,

λ2ϕ(xyz) = λ2ϕ
(
(xy)z

) = λαϕ(xy)ϕ(z) + λ(α − 1)ϕ(z)ϕ(xy)+ λε(xy, z)

= α2ϕ(x)ϕ(y)ϕ(z) + α(α − 1)ϕ(y)ϕ(x)ϕ(z)+ α(α − 1)ϕ(z)ϕ(x)ϕ(y)

+ (α − 1)2ϕ(z)ϕ(y)ϕ(x) + λε(xy, z) + λε(x, y)ϕ(z).

Comparing these two identities we obtain

α(α − 1)
[
ϕ(y),

[
ϕ(z),ϕ(x)

]] + λε(y, z)ϕ(x) − λε(x, y)ϕ(z) ∈ Z
(
A′) (34)

for all x, y, z ∈ A. Replacingz by x2 in (34) and using (30) we get

λε
(
y, x2)ϕ(x) − λε(x, y)ϕ(x)2 ∈ Z

(
A′) (35)

for all x, y ∈ A, which can be in view of (29) written as

−λ3ε(x, y)θ(x)2 + λ2(ε(y, x2) + µ(x)ε(x, y)
)
θ(x) ∈ Z

(
A′) (36)

for all x, y ∈ A. Commuting with arbitraryu ∈ A′ and then with[θ(x), u] we get

λ3ε(x, y)
[[

θ(x)2, u
]
,
[
θ(x), u

]] = 0 (37)

for all x, y ∈ A. We may assume thatA′ is noncommutative. Picka1, a2 ∈ A′ such that
a1[a1, a2]a1 �= 0 (see the proof of Lemma 2.7). Setting

θ(x0) =
(

a1 0
0

)
and u =

(
a2 m

0

)

for somex0 ∈ A and an arbitrarym ∈M′ in (37) we obtain

πA′
(
λ3ε(x0, y)

)
a1[a1, a2]a1m = 0

for all m ∈ M′. By the loyality ofM′ we haveπA′(λ3ε(x0, y))a1[a1, a2]a1 = 0 and hence
by Lemma 2.4πA′(λ3ε(x0, y)) = 0, sincea1[a1, a2]a1 �= 0. Thereforeλ3ε(x0,A) = 0.
Since λ �= 0, Lemma 2.5 impliesε(x0,A) = 0. According to (36) we now hav
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λ2ε(y, x2
0)θ(x0) ∈ Z(A′) for all y ∈ A, which further yields thatε(A, x2

0) = 0. We claim
thatε is symmetric. Namely, settingz = x in (34) and using (29) we get

λ2(ε(y, x) − ε(x, y)
)
θ(x) ∈ Z

(
A′) (38)

for all x, y ∈ A. If x = x0, thenλ2ε(y, x0)θ(x0) ∈ Z(A′) for all y ∈ A. Thus, similarly as
above, we see thatε(A, x0) = 0. Next, replacingx by x + x0 in (38) we obtain

λ2(ε(y, x) − ε(x, y)
)
θ(x0) ∈ Z

(
A′)

for all x, y ∈ A. This, however, implies thatε is symmetric.
Replacingx by x0 + y in (35) we obtain

λ
(
ε
(
y, y2) + ε(y, x0 ◦ y)

)
ϕ(x0) + λε(y, x0 ◦ y)ϕ(y)

− λε(y, y)
(
ϕ(x0) ◦ ϕ(y)

) − λε(y, y)ϕ(x0)
2 ∈ Z

(
A′).

On the other hand, replacingx by −x0 + y in (35) we get

λ
(−ε

(
y, y2) + ε(y, x0 ◦ y)

)
ϕ(x0) − λε(y, x0 ◦ y)ϕ(y)

+ λε(y, y)
(
ϕ(x0) ◦ ϕ(y)

) − λε(y, y)ϕ(x0)
2 ∈ Z

(
A′).

Comparing these two relations it follows that

2λε(y, x0 ◦ y)ϕ(x0) − 2λε(y, y)ϕ(x0)
2 ∈ Z

(
A′)

for all y ∈ A, which can be in view of (29) written as

−2λ3ε(y, y)θ(x0)
2 + 2λ2(ε(y, x0 ◦ y) − µ(x0)ε(y, y)

)
θ(x0) ∈ Z

(
A′)

for all y ∈ A. Consequently,

2λ3ε(y, y)
[[

θ(x0)
2, u

]
,
[
θ(x0), u

]] = 0

for all y ∈ A andu ∈ A′. Similarly as above it follows that 2λ3ε(y, y) = 0 and soε(y, y) =
0 for all y ∈ A. The linearization ofε(y, y) = 0 gives 0= ε(x, y) + ε(y, x) = 2ε(x, y) for
all x, y ∈ A. Whence it follows thatε = 0. Accordingly, (34) yields

λ4α(α − 1)
[
θ(x),

[
θ(y),

[
θ(z), θ(w)

]]] = 0

for all x, y, z,w ∈ A. Sinceθ is onto we haveλ4α(α − 1)[x ′, [y ′, [z′,w′]]] = 0 for all
x ′, y ′, z′,w′ ∈ A′. Let us set

x ′ = y ′ = z′ =
(

1A′ 0
0

)
and w′ =

(
0 m

0

)
,
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wherem ∈ M′ is arbitrary. HenceπA′(λ4α(α − 1))m = 0 for all m ∈ M′. Therefore
πA′(λ4α(α − 1)) = 0 and henceλ4α(α − 1) = 0. Using Lemma 2.5 we see thatα = 0
or α = 1.

First, assume thatα = 0. Sinceα = (λ + 1)/2 it follows λ = −1, which by (33) further
implies thatϕ is an antihomomorphism. Letτ (x) = µ(x)/2. By (29) we see thatθ =
−ϕ + τ , which clearly yields thatτ ([x, y]) = 0 for all x, y ∈ A. In an analogous manne
we see that ifα = 1 thenθ = ϕ + τ , ϕ is a homomorphism andτ (x) = −µ(x)/2 sends
commutators to zero.

We also have to prove thatϕ is one-to-one. Suppose thatϕ(w) = 0 for somew ∈ A.
Thenθ(w) ∈ Z(A′) and hencew ∈ Z(A). Thus, ker(ϕ) ⊆ Z(A). However, by Lemma 2.6
our triangular algebraA does not contain nonzero central ideals. Hence, ker(ϕ) = 0.

It remains to prove thatϕ is onto in the caseA′ is central overR. First, we show
that ϕ(1) = 1′. Namely, sinceθ is a Lie isomorphism we haveθ(1) ∈ Z(A′) and hence
ϕ(1) = θ(1) − τ (1) ∈ Z(A′). Further, sinceϕ is a homomorphism or the negative of
antihomomorphism we see thatϕ(x) = ϕ(x1) = ϕ(1)ϕ(x) for all x ∈ A. Using ϕ(x) =
θ(x) − τ (x) we get(ϕ(1) − 1′)θ(x) − (ϕ(1) − 1′)τ (x) = 0 for all x ∈ A. Hence we see
that(ϕ(1) − 1′)[A′,A′] = 0. Consequently,πA′(ϕ(1) − 1′)[A′,A′] = 0. Then Lemma 2.4
implies πA′(ϕ(1) − 1′) = 0 and soϕ(1) = 1′. Obviously, we may writeτ (x) = f (x)1′
for some linear mapf :A → R. Sinceϕ is R-linear we haveθ(x) = ϕ(x) + f (x)1′ =
ϕ(x + f (x)1) for all x ∈ A. Consequently,ϕ is onto, sinceθ is bijective. The proof of the
lemma is thus completed.�

Let us point out that the proof just given is in its first part only a modification of
of [18, Theorem 3]. By a careful inspection of this proof one could easily verify tha
following result holds true.

Remark 4.2. Let A andA′ be unital algebras central over a fieldF with char(F ) �= 2 and
let θ :A → A′ be a Lie isomorphism. If

(i) each commuting trace of a bilinear map onA′ is proper,
(ii) A andA′ do not satisfy the polynomial identity[[x2, y], [x, y]],
(iii) A′ does not satisfy the polynomial identity[x, [y, [z,w]]],

thenθ = ϕ+τ , whereϕ :A → A′ is an isomorphism or the negative of an antiisomorphi
andτ :A → F1′ is a linear map sending commutators to zero.

Theorem 4.3. Let A = Tri(A,M,B) and A′ = Tri(A′,M′,B′) be triangular algebras
over a commutative ringR with 1/2 ∈ R and letθ :A → A′ be a Lie isomorphism. If

(i) each commuting linear map onA′ or B′ is proper,
(ii) πA′(Z(A′)) = Z(A′) �=A′ andπB′(Z(A′)) = Z(B′) �= B′,
(iii) eitherA or B is noncommutative,
(iv) M′ is loyal,
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thenθ = ϕ + τ , whereϕ :A → A′ is a homomorphism or the negative of an antihomom
phism,ϕ is one-to-one, andτ :A→Z(A′) is a linear map sending commutators to ze
Moreover, ifA′ is central overR, thenϕ is onto.

Proof. Using Theorem 3.1 we see that each commuting trace of a bilinear map onA′ is
proper. Thus, we may apply Lemma 4.1, which yields the conclusion.�
Corollary 4.4. Letn � 2 and letR be a commutative domain with1/2 ∈ R. If θ :Tn(R) →
Tn(R) is a Lie isomorphism, thenθ = ϕ + τ , whereϕ :Tn(R) → Tn(R) is an isomorphism
or the negative of an antiisomorphism andτ :Tn(R) → R1 is a linear map sending com
mutators to zero.

Proof. In the casen = 2 we refer to [31, Theorem 6]. Next, supposen > 2. We may write

Tn(R) = Tri
(
R,M1×(n−1)(R),Tn−1(R)

)
.

By Corollary 3.4 each commuting trace of a bilinear map onTn(R) is proper. Moreover
Tn−1(R) is noncommutative andM1×(n−1)(R) is a loyal(R,Tn−1(R))-bimodule. Thus,
Lemma 4.1 yields the conclusion.�
Corollary 4.5. LetN andN ′ be nests on a Hilbert spaceH . If θ :T (N ) → T (N ′) is a Lie
isomorphism, thenθ = ϕ+τ , whereϕ :T (N ) → T (N ′) is an isomorphism or the negativ
of an antiisomorphism, andτ :T (N ) → C1′ is a linear map sending commutators to ze

Proof. Note that the corollary trivially holds in case dimC H = 1 (namely,θ = id+
(θ − id)). If dimC H = 2 we have eitherT (N ) = T (N ′) ∼= T2(C) or T (N ) = T (N ′) ∼=
M2(C). Corollary 4.4 implies the conclusion inthe first case, while [23, Proposition 4.
implies it in the second one.

Further, suppose that dimC H > 2. Obviously, each nest algebra is central overC.
We claim that assumptions (i)–(iii) of Remark 4.2 hold in this case. Namely, (i) foll
from Corollary 3.5, while (ii) and (iii) follow from Remark 2.13. Thus, we may ap
Remark 4.2, which concludes the proof.�

As mentioned in the introduction, the last two corollaries are similar to the main re
from [31] and [35].

5. Commutativity preserving maps

Lemma 5.1. Let A and A′ be unital algebras central over a fieldF with char(F ) �= 2.
Suppose thatθ :A → A′ is a bijective linear map satisfying[θ(x2), θ(x)] = 0 for all x ∈ A.
If

(i) each commuting trace of a bilinear map onA′ is proper,
(ii) A andA′ do not satisfy the polynomial identity[[x2, y], [x, y]],
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θ(x) = αϕ(x) + γ (x)1′ for all x ∈ A,

whereα ∈ F , α �= 0, ϕ :A → A′ is a Jordan isomorphism, andγ :A → F is a linear map.

Proof. Since[θ(x2), θ(x)] = 0 for all x ∈ A we may argue as in the proof of Lemma 4
Noting that[y, θ(θ−1(y)2)] = 0 for all y ∈ A′ we see that there existλ ∈ F1′, a linear map
µ :A → F , and a mapν :A → F such that

θ
(
x2) = λθ(x)2 + µ(x)θ(x) + ν(x)1′

for all x ∈ A. In order to prove thatλ �= 0, we first show thatθ mapsF1 ontoF1′. Sinceθ

is linear it suffices to prove thatθ(1) ∈ F1′. Takingx ± 1 for x in [θ(x2), θ(x)] = 0 we get
2[θ(x), θ(1)] = 0 for anyx ∈ A. Sinceθ is bijective and char(F ) �= 2 it follows thatθ(1)

lies in the center ofA′ which is by our assumption equal toF1′. Thus we haveθ(F1) =
F1′. Supposeλ = 0. Thenθ(x2) − µ(x)θ(x) ∈ F1′ for all x ∈ A. Henceθ(x2 − µ(x)x) ∈
F1′, which further implies thatx2−µ(x)x ∈ F1 for allx ∈ A. Therefore[[x2, y], [x, y]] =
0 for all x ∈ A, which contradicts (ii). Thusλ �= 0. Next, defineϕ :A → A′ by

ϕ(x) = λθ(x) + 1

2
µ(x)1′. (39)

Clearly,ϕ is linear. We claim thatϕ is a Jordan homomorphism. Namely, the same a
ment as in the proof of Lemma 4.1 gives us

ϕ
(
x2) − ϕ(x)2 ∈ F1′

for all x ∈ A. Whence it follows that the mapε :A × A → A′ defined by

ε(x, y) = ϕ(x ◦ y) − ϕ(x) ◦ ϕ(y)

is a symmetric bilinear map with range inF1′; herex ◦ y = xy + yx. Our aim is to show
thatε = 0. Pick anyx, y ∈ A. Note that

ϕ
(
x2 ◦ (y ◦ x)

) = ϕ
(
x2) ◦ ϕ(y ◦ x) + ε

(
x2, y ◦ x

)

=
(

ϕ(x)2 + 1

2
ε(x, x)

)
◦ (

ϕ(x) ◦ ϕ(y) + ε(x, y)
) + ε

(
x2, y ◦ x

)

= ϕ(x)2 ◦ (
ϕ(y) ◦ ϕ(x)

) + ε(x, x)
(
ϕ(y) ◦ ϕ(x)

)
+ 2ε(x, y)ϕ(x)2 + ε(x, x)ε(x, y) + ε

(
x2, y ◦ x

)

and
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ϕ
((

x2 ◦ y
) ◦ x

) = ϕ
(
x2 ◦ y

) ◦ ϕ(x) + ε
(
x2 ◦ y, x

)

=
((

ϕ(x)2 + 1

2
ε(x, x)

)
◦ ϕ(y) + ε

(
x2, y

)) ◦ ϕ(x) + ε
(
x2 ◦ y, x

)

= (
ϕ(x)2 ◦ ϕ(y)

) ◦ ϕ(x) + ε(x, x)
(
ϕ(y) ◦ ϕ(x)

)
+ 2ε

(
x2, y

)
ϕ(x) + ε

(
x2 ◦ y, x

)
.

However,x2 ◦ (y ◦ x) = (x2 ◦ y) ◦ x and so it follows that

ε(x, y)ϕ(x)2 − ε
(
x2, y

)
ϕ(x) ∈ F1′. (40)

Commuting with arbitraryu ∈ A′ and then with[ϕ(x),u] we get

ε(x, y)
[[

ϕ(x)2, u
]
,
[
ϕ(x),u

]] = 0.

Thus, using (39) we obtain

λ3ε(x, y)
[[

θ(x)2, u
]
,
[
θ(x), u

]] = 0

for all x, y ∈ A and u ∈ A′. Since θ is onto, by (ii) there existx0 ∈ A and u0 ∈ A′
such that[[θ(x0)

2, u0], [θ(x0), u0]] �= 0. Henceλ3ε(x0,A) = 0, which in turn implies
ε(x0,A) = 0. Then according to (40) we also haveε(x2

0,A)ϕ(x0) ∈ F1′ and hence
λε(x2

0,A)[θ(x0), u0] = 0. Sinceλ �= 0 and[θ(x0), u0] �= 0 it follows thatε(x2
0,A) = 0.

Replacingx by x0 + y in (40) we obtain

ε(y, y)ϕ(x0)
2 + ε(y, y)

(
ϕ(x0) ◦ ϕ(y)

) − ε(x0 ◦ y, y)ϕ(x0)

− ε(x0 ◦ y, y)ϕ(y) − ε
(
y2, y

)
ϕ(x0) ∈ F1′.

On the other hand, replacingx by −x0 + y in (40) we get

ε(y, y)ϕ(x0)
2 − ε(y, y)

(
ϕ(x0) ◦ ϕ(y)

) − ε(x0 ◦ y, y)ϕ(x0)

+ ε(x0 ◦ y, y)ϕ(y) + ε
(
y2, y

)
ϕ(x0) ∈ F1′.

Comparing these two relations it follows that

2ε(y, y)ϕ(x0)
2 − 2ε(x0 ◦ y, y)ϕ(x0) ∈ F1′

for all y ∈ A. Consequently,ε(y, y)[[ϕ(x0)
2, u0], [ϕ(x0), u0]] = 0, which further implies

λ3ε(y, y)[[θ(x0)
2, u0], [θ(x0), u0]] = 0 for all y ∈ A. Henceε(y, y) = 0 for all y ∈ A. The

linearization ofε(y, y) = 0 gives 0= ε(x, y)+ε(y, x) = 2ε(x, y) for all x, y ∈ A. Whence
it follows thatε = 0. Thus, we have just proved thatϕ is a Jordan homomorphism. Settin
α = λ−1 andγ (x) = −λ−1µ(x)/2, we haveθ(x) = αϕ(x) + γ (x)1′. As θ(F1) = F1′, we
see thatϕ(1) ∈ F1′ which further yieldsϕ(1) = 1′ sinceϕ is a Jordan homomorphism an
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sinceθ is surjective. Whenceθ(x) = ϕ(αx + γ (x)1), showing thatϕ is surjective. Finally,
ϕ(x) = 0 impliesθ(x) ∈ F1′ and hencex = β1 for someβ ∈ F . Consequently,β1′ = 0
and soβ = 0 proving thatϕ is one-to-one. �

It should be mentioned that the proof just given is actually a modification of the
of [18, Theorem 2]. However, the proof given here is somewhat shorter and also mo
in such a way that the assumption char(F ) �= 3 is not needed. This improved argument w
suggested to us by our colleague Maja Fošner.

Theorem 5.2. Let A = Tri(A,M,B) andA′ = Tri(A′,M′,B′) be algebras central ove
a field F with char(F ) �= 2, and let θ :A → A′ be a bijective linear map satisfyin
[θ(x2), θ(x)] = 0 for all x ∈ A. If

(i) each commuting linear map onA′ or B′ is proper,
(ii) Z(A′) = F1A′ �=A′ andZ(B′) = F1B′ �= B′,
(iii) eitherA or B is noncommutative,
(iv) M′ is loyal,

then

θ(x) = αϕ(x) + γ (x)1′ for all x ∈ A,

whereα ∈ F , α �= 0, ϕ :A → A′ is a Jordan isomorphism, andγ :A → F is a linear map.

Proof. Using Theorem 3.1 we see that each commuting trace of a bilinear map onA′ is
proper. According to Lemma 2.7,A andA′ do not satisfy[[x2, y], [x, y]]. Thus, we may
apply Lemma 5.1, which concludes the proof.�

Recall that any Jordan isomorphismon a triangular matrix algebraTn(F ) over a fieldF
with char(F ) �= 2 is either an isomorphism or an antiisomorphism [4]. Using Corollary
and Remark 2.10 together with Lemma 5.1 we may conclude

Corollary 5.3. Letn > 2 be an integer and letF be a field withchar(F ) �= 2. Suppose tha
θ :Tn(F ) → Tn(F ) is a bijective linear map satisfying[θ(x2), θ(x)] = 0 for all x ∈ Tn(F ).
Then

θ(x) = αϕ(x) + γ (x)1 for all x ∈ Tn(F ),

whereα ∈ F , α �= 0, ϕ :Tn(F ) → Tn(F ) is either an isomorphism or an antiisomorphis
andγ :Tn(F ) → F is a linear map.

We remark that Corollary 5.3 is almost identical to [3, Theorem 1.2].
Recently, Zhang [48] and also Lu [33] proved that any Jordan isomorphism be

nest algebras is either an isomorphism or an antiisomorphism. Using Corollary 3
Remark 2.13 together with Lemma 5.1 we may therefore conclude
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Corollary 5.4. Let N and N ′ be nests on a Hilbert spaceH with dimC H > 2. If
θ :T (N ) → T (N ′) is a bijective linear map satisfying[θ(x2), θ(x)] = 0 for all x ∈ T (N ),
then

θ(x) = αϕ(x) + γ (x)1′ for all x ∈ T (N ),

whereα ∈ C, α �= 0, ϕ :T (N ) → T (N ′) is either an isomorphism or an antiisomorphis
andγ :T (N ) → C is a linear map.
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