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Abstract

Background: Intra-arrest hypothermia induction may provide more benefit than
inducing hypothermia after return of spontaneous circulation. However, little is
understood about the interaction between patient physiology and hypothermia
induction technology choice during ongoing chest compressions.

Methods: After 10 min of untreated ventricular fibrillation, mechanical chest
compressions were provided for 60 min (100 CPM, 1.25" deep) in 26 domestic swine
(30.5 ± 1.7 kg) with concurrent hypothermia induction using one of eight cooling
methods. Four cooling methods included volume infusion with cold saline or an ice
particulate slurry through the femoral vein or carotid artery (volume infusion cooling
group, VC); three included cooling via an intra-vascular heat exchange catheter, nasal
cooling, or surface ice bags (no volume cooling group, NVC); and the other was a
control group with no cooling (no cooling group, NC). Physiological monitoring
included end-tidal carbon dioxide, aortic pressure, right atrial pressure, brain
temperature, esophageal temperature, and rectal temperature.

Results: During cardiopulmonary resuscitation (CPR), the volume infusion cooling
group cooled faster and to lower temperatures than the other groups (VC vs. NVC
or NC; ΔT = −5.6 vs. −2.1 °C or −0.6 °C; p < 0.01). The aortic pressure and right atrial
pressure were higher in the volume cooling group than the other groups (VC vs.
NVC or NC; AOP = 23.6 vs. 16.7 mmHg or 14.7 mmHg; p < 0.02). End-tidal carbon
dioxide measurements during CPR were also higher in the volume cooling group
(VC vs. NVC; EtCO2 = 23.4 vs. 13.1 mmHg; p < 0.05). Intra-corporeal temperature
gradients larger than 3 °C were created by volume cooling during ongoing chest
compressions.

Conclusions: Volume infusion cooling significantly altered physiology relative to
other cooling methods during ongoing chest compressions. Volume cooling led to
faster cooling rates, lower temperatures, higher end-tidal carbon dioxide levels, and
higher central vascular pressures.
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Background
Cooling during ischemia seems to confer more benefit than cooling after reperfusion

[1–3]. In animal models of myocardial ischemia, it has been shown that intra-

ischemia hypothermia improves defibrillation success rate, [4] reduces the ratio of

infarct area to area at risk in myocardial infarction, [5] and improves survival when

emergency cardiopulmonary bypass is used to treat asphyxial cardiac arrest [6]. Clin-

ical investigation also shows that intra-arrest cooling during emergency cardiopulmo-

nary bypass treatment of refractory cardiac arrest results in improved neurological

outcomes [7]. Due in part to this evidence, multiple cooling technologies have been

tested in the field during cardiopulmonary resuscitation (CPR) in the treatment of out

of hospital cardiac arrest [8–11].

We still do not understand many aspects of hypothermia induction during ongoing

cardiac arrest. Hemodynamics are affected by a reduction in body temperature, [12, 13]

particularly blood flow to the brain and the heart [14, 15]. Changes in blood flow are

known to alter the dynamics of heat transfer in the body [16]. Cardiac arrest leads to

the cessation of blood flow, and CPR is thought to restore 10–20 % of normal blood

flow [17]. Therefore, hypothermia induction during cardiac arrest or cardiac arrest with

ongoing CPR will be different than hypothermia induction with a beating heart.

Different cooling technologies are more dependent on blood flow for their effective-

ness than others. Cooling technologies such as cooling blankets, intra-vascular heat ex-

change catheters, and nasopharyngeal cooling use heat exchange interfaces to withdraw

heat from the body. These devices are highly dependent on heat convection by the

blood to achieve cooling. Methods that use cold volume infusions rely on the energy

balance of mixing a cold fluid with a warm one to reduce body temperature. Volume

infusions allow for cooling to be supplied without heat convection by the blood, al-

though temperature equalization in the body will be dependent on blood flow. Intra-

venous volume addition is going to increase the blood volume significantly and will

change many aspects of the patient’s hemodynamics [18].

For all of these reasons, it seems likely that patients cooled intra-arrest with volume

infusion methods may exhibit very different thermokinetic and physiological responses

than patients cooled using heat extraction methods. In this manuscript, we report

hemodynamic and thermokinetics measured in a highly instrumented swine model of

prolonged CPR with concurrent hypothermia induction. Data are compared between

groups that received volume infusion cooling (VC), no volume cooling (NVC), and no

cooling (NC). This is a subgroup analysis from a larger study designed to study the im-

pact of blood flow on thermokinetics during hypothermia induction.

Methods
The study was approved by the Institutional Animal Care and Use Committee of the

University of Pennsylvania (protocol # 803178) and the Children’s Hospital of Philadelphia

(protocol # 997). All animals received treatment and care in compliance with the 1996

Guide for the Care and Use of Laboratory Animals by the National Research Council in

accord with the USDA Animal Welfare Act, PHS Policy, and the American Association

for Accreditation of Laboratory Animal Care. All experiments were conducted by quali-

fied personnel.
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Animal preparation

Twenty-six domestic swine (30.5 ± 1.7 kg) were sedated with intramuscular ketamine

(20 mg kg−1) and xylazine (2 mg kg−1), followed by induction of general anesthesia by

mask administration of 4 % isoflurane in 100 % oxygen. After endotracheal intubation,

a surgical plane of anesthesia was maintained with 1.5–2 % isoflurane and a mixture of

air and oxygen, adjusted to achieve an inspiratory oxygen fraction of 0.4. The animals

were mechanically ventilated with a pressure controlled ventilator (Modulus SE 7900;

Datex-Ohmeda Inc., USA) with a tidal volume of 12 ml/kg, PEEP of 6 cm H2O, and

rate of 12 breaths/min. The rate was titrated to maintain ETCO2 at 38–42 mmHg

(NICO2; Novametrix Medical Systems Inc.).

To collect accurate brain temperature data as a function of anatomical location

and time, seven temperature probes were placed in the brain. After aseptic prepar-

ation, seven thermocouples were advanced through three burr holes placed in the

skull. A single thermocouple (IT-18) was advanced through a burr hole that was

located on the left side of the intra-frontal suture. Triple thermocouple probes (IT-

18(3)), spacing 0.5″ between thermocouples, were advanced through two burr holes

drilled in the parietal bone, one on either side of the inter-parietal suture. Thermo-

couples were also placed in the esophagus and rectum (RET-1; PhysiTemp Instru-

ments, Inc.).

Solid state pressure transducers (MPC-500; Millar Instruments) were advanced through

introducers in the left femoral artery and vein to measure the aortic pressure (AOP) and

the right atrial pressure (RAP), respectively. When required for hypothermia induction,

an introducer was placed in the left femoral vein for femoral volume infusions or in the

left femoral artery for carotid volume infusions. Carotid infusions were delivered through

an interventional radiology catheter that was advanced from the femoral artery to the

carotid artery under fluoroscopic guidance.

After surgical prep, low blood pressures, if present, were treated with a 20 ml/kg in-

fusion of saline. Baseline measurements were recorded for 2 min, and then ventricular

fibrillation (VF) was electrically induced. After 10 min of untreated VF, chest compres-

sions were initiated at a rate of 100 per minute and a depth of 1.25 in. and cooling was

initiated. Chest compressions were provided by a mechanical device developed specific-

ally for use in swine models of cardiac arrest. After 60 min of chest compressions and

cooling, the experiment was terminated.

Cooling methods

Eight cooling technologies, both experimental and commercially available, were tested

in this study. The target number of animals for each cooling technology (experimental

group) was three. In some cases, the animal numbers are larger due to variability in the

collected data or to accommodate technical failure in some aspect of an experiment. In

addition, some data streams were excluded from analysis for technical reasons, such as

signal loss during the experiment.

To investigate the impact of cooling technologies on CPR hemodynamics, the cooling

technologies have been grouped into categories: volume infusion cooling (VC), no volume

cooling (NVC), and no cooling (NC), as shown in Table 1. Hypothermia targets were

established as follows: the Alsius IVTM system was set to target and maintain a
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body temperature of 32 °C and was run for 1 h; saline infusion cooling was set to

deliver 3 l of ice cold saline at a rate of 4 l/h; slurry infusion cooling was set to

deliver 3 l of ice particulate slurry at a rate of 5.2 l/h; the RhinoChill system evap-

orated 2 l of coolant at a gas flow rate of 40 l/min of O2 (it usually took about

45 min); large bags were filled with ice and water and placed on the abdomen,

thorax, and neck for 1 h; and passive cooling was allowed to occur unimpeded for

1 h. Differences in the saline and slurry pump rates arose due to difficulties pump-

ing the ice particulate saline at low flow rates.

Data analysis

Data were averaged over 67 1-min epochs (−2 ≤ t ≤ 65) and are presented in the

figures as lines. For statistical comparison, data from each cooling group were

compared and reported at 5-min intervals from minutes 15-65 and are presented

in the figures as error bars. Data values were compiled and grouped using the

scripting language Python (version 2.7). Statistical analyses were performed using R

(version 3.2.1).

The experimental groups do not contain the same number of experiments (un-

balanced experimental design). Therefore, we used the R library lme4 to perform a

linear fixed effects analysis of the relationships between the reported outcomes var-

iables (e.g., EtCO2) and cooling group (e.g., VC). As fixed effects, we entered time

and cooling group and their interaction. As random effects, we had intercepts for

each animal. p values for the validity of the role of the cooling group on the out-

come variable were obtained by likelihood ratio tests of the full model against a

model that omitted the cooling group fixed effect. When the linear fixed effects

analysis showed a significant contribution of the interaction between the time and

cooling group, we performed a post hoc pairwise t test (with no p value adjust-

ment) to determine which outcome variables were statistically different by cooling

group as a function of time.

The solubility of carbon dioxide in the blood is temperature dependent. Before com-

paring the amount of CO2 delivered to the lungs during CPR, the EtCO2 measure had

to be corrected for differences in temperature between the cooling groups. The

temperature dependence of the partial pressure of carbon dioxide is described by the

empirical equation [19]

Table 1 Map of experimental groups into cooling groups for analysis

Animal group Volume cooling (VC) No volume cooling (NVC) No cooling (NC)

Femoral saline n = 3 X

Femoral slurry n = 3 X

Carotid saline n = 5 X

Carotid slurry n = 3 X

Alsius IVTM n = 3 X

RhinoChill n = 3 X

Ice bags n = 3 X

Control n = 3 X

Lampe et al. Intensive Care Medicine Experimental  (2015) 3:37 Page 4 of 11



PCO2hot
¼ PCO2cold

.
100:019ΔT

ð1Þ

where

ΔT ¼ T−37thtruein∘C; ð2Þ

PCO2hot
is the partial pressure of CO2 in the blood stream at normal body temperature,

PCO2cold
is the measured EtCO2 value, ΔT is the change in body temperature, and T is the

experimental body temperature. For each epoch of data, the esophageal temperature was

assumed to most closely correlate with the temperature of the blood in the lungs and was

used in Eq. 2 to correct the measured EtCO2 values.

Results
Table 2 shows the pre-arrest data for each of the animal groups as well as how many

data streams were analyzed per group. There are no statistical differences in body

weight or initial temperatures between the groups. There is a statistical difference in

pre-arrest mean arterial blood pressures (MAP) and coronary perfusion pressures

(CPP) in the volume cooling group when compared to the other groups. This difference

was principally driven by low aortic blood pressure in the carotid infusion groups. This

could be due to several factors such as the number and location of vascular introducers

required for these experiments.

Table 3 shows the results of the statistical modeling and likelihood ratio tests for the

reported parameters. The intercept value represents the mean measure for all times in

the VC group. The mean values may be adjusted up or down according to the effects of

time and the cooling group as described in the rest of the fixed effects table. Our statis-

tical question is if the cooling group had a significant effect on the measured parame-

ters, and this is tested by the likelihood ratio test. For each measured parameter, the

inclusion of the cooling group and the interaction between the cooling group and time

led to a significant improvement in the model, as indicated by the likelihood ratio test

p values, suggesting that the cooling group was an important factor in the design. As

shown in the interaction column in Table 3, there was always a significant effect be-

tween the cooling group and time. Statistical differences between the cooling groups as

a function of time were determined using post hoc pairwise t tests.

The addition of fluid volume to the blood should raise blood pressures on the arterial

and venous sides of the cardiovascular system. In these experiments, the addition of fluid

volume was done continuously at relatively low flow rates: 67 ml/min for saline and

87 ml/min for slurry. Vascular pressures were monitored during treatment. Figure 1a

Table 2 Pre-arrest values for reported data

Experimental
group

Mass RecT EsoT BrainT CPP AOP RAP EtCO2

No cooling (NC) 30.1 ± 0.1
n = 3

36.3 ± 0.6
n = 3

35.8 ± 0.5
n = 3

35.3 ± 0.4
n = 3

84.2 ± 23.6
n = 3

98.4 ± 23.8
n = 3

14.3 ± 2.1
n = 3

38.4 ± 1.1
n = 3

No volume
cooling (NVC)

30.4 ± 1.7
n = 9

36.7 ± 0.8
n = 5

36.3 ± 0.7
n = 9

36.0 ± 0.5
n = 9

79.9 ± 13.0
n = 9

93.5 ± 10.7
n = 9

13.5 ± 5.4
n = 9

39.6 ± 1.4
n = 9

Volume cooling
(VC)

30.7 ± 1.0
n = 13

36.0 ± 2.6
n = 11

35.6 ± 2
n = 13

36.0 ± 1.0
n = 12

61.6 ± 22.3*
n = 13

78.2 ± 20.6*
n = 13

16.6 ± 4.9
n = 13

36.6 ± 8.3
n = 13

*Statistically significant difference in baseline parameters (p < 0.05)
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shows the MAP as a function of time. Figure 1b shows the RAP over time. The addition

of saline increased the MAP (t = 45 min) and the RAP (t = 45 min) in the VC group rela-

tive to the NVC and NC groups. The statistical differences in the RAP between the VC

and the NC groups are not as consistent as observed in the MAP.

Figure 2 shows the temperature profiles of the brain (a), esophagus (b), and rectum (c) as

a function of time. The VC cooling group had a significantly lower brain and esophageal

temperature at t = 30 min and a significantly lower rectal temperature at t = 45 min. No

significant differences between the NVC and NC groups were observed. After initi-

ation of cooling, the esophagus was cooler than the rectum was, regardless of the

cooling method. The coldest temperatures and fastest cooling rates were achieved

with fluid volume infusion cooling.

Figure 3 shows the temperature profiles of the brain, esophagus, and rectum in the

VC cooling group. At all times, the brain and the esophageal temperatures were differ-

ent than the rectal temperatures. However, statistical differences were not observed be-

tween the brain and the esophageal temperatures.

Table 3 Results of statistical modeling and likelihood tests

Test of fixed effects Likelihood ratio test

Measurement Intercept Time Cooling group Interaction Chi-square DF p value

MAP [mmHg] 29.3 −0.01 ± 0.04 5.9 ± 1.3 −0.02 ± 0.002 77.0 2 <2.2E−16

RAP [mmHg] 18.3 0.1 ± 0.02 2.8 ± 0.8 −0.08 ± 0.008 78.3 2 <2.2E−16

CPP [mmHg] 7.2 −0.1 ± 0.05 5.5 ± 1.7 −0.1 ± 0.03 24.5 2 4.7E−6

EtCO2 [mmHg] 24.7 0.3 ± 0.04 24.7 ± 3.5 −0.2 ± 0.02 80.0 2 <2.2E−16

BrainT [°C] 34.6 −0.2 ± 0.003 0.2 ± 0.2 0.06 ± 0.002 838.4 2 <2.2E−16

EsoT [°C] 35.9 −0.2 ± 0.003 0.2 ± 0.2 0.06 ± 0.002 838.4 2 <2.2E−16

RecT [°C] 39.4 −0.1 ± 0.001 −1.5 ± 0.1 0.003 ± 0.0007 1066.2 2 <2.2E−16

Statistically significant (p < 0.05) effects are presented in italicized text. Likelihood test shows that inclusion of cooling
group and interactions between cooling group and time in the model significantly reduced the residual error relative to
a model that depended only on time

Fig. 1 Average mean arterial (a) and right atrial (b) pressures reported every 5 min. The asterisk symbol [*]
represents statistical difference (p < 0.05) between the VC and NC groups, and the pound sign [#] represents
statistical difference between the VC and NVC groups. Parentheses around a symbol represent a trend (p <
0.1) with the symbols keeping the same meaning
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Figure 4 shows the CPP in a and the temperature corrected ETCO2 in b. The CPP

did not differ among the cooling groups. ETCO2 measurements were higher in the VC

group relative to the NVC group after t = 45 min of CPR. Given the variability of the

ETCO2 measures during CPR and the small animal numbers in the NC group, no stat-

istical differences were observed between the VC group and the NC group.

All CPR animals underwent necropsy after the experiment for visual and tactile assess-

ment of the thoracic and abdominal cavities to assess potential trauma caused by 60 min

of continuous chest compression. The animals that received a fluid volume infusion dur-

ing CPR presented with significant fluid in the abdomen. The fluid in the abdomen did

not include hemoglobin but did appear yellow, suggesting the presence of protein. Upon

further inspection, it appeared that the fluid may have been released into the peritoneum

through the spleen. The spleen was enlarged and covered with a white biofilm that was

not present in the animals that did not receive fluid volume infusions. All animals sus-

tained broken ribs (5.3 ± 1.2 ribs/animal). Twenty-one out of 25 animals exhibited a

cramped left ventricle (stone heart), as observed by visual and tactile assessment. The

right ventricle showed evidence of distension (loss of muscle tone) in 25 of 25 animals, as

Fig. 2 Average brain (a), esophageal (b), and rectal (c) temperatures reported every 5 min. The asterisk
symbol [*] represents statistical difference (p < 0.05) between the VC and NC groups and the pound sign [#]
represents statistical difference between the VC and NVC groups. Parentheses around a symbol represent a
trend (p < 0.1) with the symbols keeping the same meaning
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observed by visual and tactile assessment. Atelectasis was always observed in the lung tis-

sue positioned under the heart. Blebbing was also observed on the surface of the lung. No

damage to the major blood vessels was observed.

Discussion
Our data demonstrates that cooling technology choice can lead to significantly different

hemodynamics and thermokinetics during intra-CPR cooling. As shown in Figs. 1 and

Fig. 4 Average coronary perfusion pressure (a) and end-tidal carbon dioxide (b) reported every 5 min.
The asterisk symbol [*] represents statistical difference (p < 0.05) between the VC and NC groups, and the
pound sign [#] represents statistical difference between the VC and NVC groups. Parentheses around a
symbol represent a trend (p < 0.1) with the symbols keeping the same meaning. The plus sign [+] repre-
sents a comparison of the NC and NVC groups

Fig. 3 Comparison of body temperatures in the VC group. The double asterisk symbol (**) represents
statistical difference between the rectal temperature and both the esophageal and brain temperatures.
No differences were determined between the brain and esophageal temperatures
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4, volume infusion cooling changes the central blood pressures and increases EtCO2, a

surrogate for cardiac output, [20, 21] during prolonged CPR. The data shown in Fig. 2

suggests that volume infusion cooling was more effective, e.g., faster cooling and colder

temperatures, during intra-CPR cooling. These differences take relatively long times

(5–30 min after initiation of cooling) to manifest, suggesting that they become more

important as resuscitation efforts are prolonged. Body temperature gradients were cre-

ated by inducing therapeutic hypothermia without a normal heart rhythm. These data

are important because they add to our understanding of the impact of the cooling

method on intra-ischemia therapeutic hypothermia, which has been shown to be pro-

tective in a variety of species and injury models [1–3].

Effect of volume infusion on blood pressures and quality of CPR

The addition of volume before the initiation of chest compressions has been reported

to increase the RAP, thereby decreasing the CPP [5, 18]. As shown in Fig. 1, the slow

addition of volume increases both the AOP and RAP and is therefore CPP neutral,

shown in Fig. 4. One possible explanation for the different result in this study is that sa-

line or slurry was infused at a rate less than 90 ml/min, while previous publications

used a rate of 140 ml/min [5] or as quickly as possible [18].

Interestingly, the slow addition of fluid volume increased EtCO2 as shown in Fig. 4.

EtCO2 is thought to be a surrogate for CC quality, [20, 21] correlating with venous deliv-

ery of blood to the heart. We posit that EtCO2 was improved in the VC group because

the imposition of a physiologically forward flow via fluid infusion, either arterial or ven-

ous, had the effect of increasing venous return of blood to the heart.

In combination, these data suggest that slow volume infusion has a net positive im-

pact on blood flow generated by chest compressions.

Effect of volume infusion on temperatures

Comparing the rectal, brain, and esophageal temperatures within the VC cooling group,

shown in Fig. 3, it is apparent that intra-CPR cooling can create temperature gradients

within the body. In the VC group, the maximum temperature difference between the

rectal and esophageal temperatures is 3 °C and occurs at the end of the experiment.

The maximum temperature difference between the esophageal and brain temperatures

is 2 °C, which occurs at 15 min. These temperature differences are approximately the

same size as the target temperature reduction and are consistent with previously pub-

lished data [22, 23].

The VC group cools faster and deeper than the NVC group or the NC group, as shown

in Fig. 2. The addition of fluid volume should increase convective heat transfer during

CPR. The NVC methods rapidly cooled the tissue volume closest to the heat exchange

interface (data not shown) but were dependent on CPR-generated blood flow for convect-

ive heat transfer. Fluid volume infusion in the VC cooling group increases convective heat

transfer relative to the other groups. The pump flow rates were small relative to the typical

cardiac output for a 30-kg swine, ~67 ml/min for saline and ~87 ml/min for ice particulate

saline. However, CPR generates relatively low volumetric blood flow, ~ 500–1000 ml/min.

Therefore, the pumps increase the net forward blood flow during CPR by approximately

20 %. This percentage may increase with time as CPR efficacy declines. Improved
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convective heat transfer conferred a significant heat transfer advantage to volume infusion

cooling during low blood flow states.

Study limitations

This study was performed on adolescent swine. While there are clear physiological dif-

ferences between the animal subjects used in this study and the typical cardiac arrest

patient, the chosen size/weight and species are most commonly used in pre-clinical car-

diac arrest/CPR studies. The animals in this study were never resuscitated. As a result,

the effects of hypothermia technology choice on return of spontaneous circulation and

survival remain unknown. Coronary perfusion pressures were not very high, suggesting

that CPR was not optimal. While it would be expected that convective heat transfer

would increase with improved CPR, this is unlikely to change the conclusions of the

study because CPR results in less blood flow than a beating heart and more blood flow

than untreated cardiac arrest, regardless of its efficacy.

Subgroup analyses by cooling methods shown in Table 1, e.g., femoral saline, are not

reported because the analysis did not demonstrate any significant differences between

subgroups for any measured parameter. The data that are reported here are highly vari-

able between animals, particularly animals undergoing prolonged chest compression.

As a result, the small number of animals per group (three in most cases) was not suffi-

cient to provide statistical findings.

Conclusions
Volume cooling during CPR resulted in faster cooling and achieved lower final temper-

atures compared with no volume cooling and no cooling. In addition, volume cooling

was associated with higher end-tidal carbon dioxide, suggesting increased cardiac out-

put. Temperature gradients between 2 and 3 °C are created in the body during intra-

CPR cooling.

Competing interests
JWL reports significant competing interests due to employment at The Feinstein Institute for Medical Research, federal
and industrially sponsored research grants in resuscitation and hypothermia, and owndership in a privately held
company (Helar Technologies) which is commercializing the slurry described herein. TRW and GB report significant
competing interests due to employment at the Children's Hospital of Philadelphia. UI reports a significant competing
interest due to employment at ZOLL Circulation. RAB reports no competing interests. LBB reports significant
competing interests due to employment at The Feinstein Institute for Medical Research, federal and industrially
sponsored research grants in resuscitation and hypothermia, and owndership in a privately held company
(Helar Technologies) which is commercializing the slurry described herein.

Authors’ contributions
JWL and LBB conceived the study and developed the IACUC protocols. JWL, TW, UI, TRW, and GB developed the
surgical procedures and performed the experiments. JWL analyzed the data and drafted the manuscript. All authors
reviewed the manuscript for content. All authors read and approved the final manuscript.

Acknowledgements
Research reported in this publication was supported by the NHLBI of the National Institutes of Health under award
number RO1HL67630 (LBB). The authors also would like to recognize the support in terms of material and equipment
from Benechill Inc. (RhinoChill device and coolant) and ZOLL Circulation (Alsius IVTM).
The content is solely the responsibility of the authors and does not necessarily represent the official views of the
National Institutes of Health, Benechill Inc, or ZOLL Circulation.

Author details
1The Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA.
2Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, Philadelphia, PA, USA.
3Department of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA. 4ZOLL Circulation, Sunnyvale,
CA, USA.

Lampe et al. Intensive Care Medicine Experimental  (2015) 3:37 Page 10 of 11



Received: 2 September 2015 Accepted: 20 December 2015

References
1. Abella BS, Zhao D, Alvarado J, et al. (2004) Intra-arrest cooling improves outcomes in a murine cardiac arrest

model. Circulation 109:2786-2791. doi:10.1161/01.CIR.0000131940.19833.85
2. Zhao D, Abella BS, Beiser DG et al (2008) Intra-arrest cooling with delayed reperfusion yields higher survival than

earlier normothermic resuscitation in a mouse model of cardiac arrest. Resusc 77:242–249
3. Gorman RC, Kanemoto S, Matsubara M et al (2009) Mild hypothermia to limit myocardial ischemia-reperfusion

injury: importance of timing. Ann Thorac Surg 87:157–163. doi:10.1016/j.athoracsur.2008.08.012
4. Menegazzi JJ, Rittenberger JC, Suffoletto BP et al (2009) Effects of pre-arrest and intra-arrest hypothermia on

ventricular fibrillation and resuscitation. Resuscitation 80:126–132. doi:10.1016/j.resuscitation.2008.09.002
5. Yannopoulos D, Zviman M, Castro V et al (2009) Intra-cardiopulmonary resuscitation hypothermia with and

without volume loading in an ischemic model of cardiac arrest. Circulation 120:1426–1435. doi:10.1161/
CIRCULATIONAHA.109.848424

6. Han F, Boller M, Guo W et al (2010) A rodent model of emergency cardiopulmonary bypass resuscitation with
different temperatures after asphyxial cardiac arrest. Resusc 81:93–99

7. Nagao K, Kikushima K, Watanabe K et al (2010) Early induction of hypothermia during cardiac arrest improves
neurological outcomes in patients with out-of-hospital cardiac arrest who undergo emergency cardiopulmonary
bypass and percutaneous coronary intervention. Circ J 74:77–85

8. Vergnion M, Storm C, Pesenti A et al (2010) Intra-arrest transnasal evaporative cooling: a randomized,
prehospital, multicenter study (PRINCE: Pre-ROSC IntraNasal Cooling Effectiveness). Circulation 122:729–736.
doi:10.1161/CIRCULATIONAHA.109.931691

9. Kämäräinen A, Virkkunen I, Tenhunen J et al (2009) Prehospital therapeutic hypothermia for comatose survivors of
cardiac arrest: a randomized controlled trial. Acta Anaesthesiol Scand 53:900–907. doi:10.1111/j.1399-6576.2009.02015.x

10. Garrett JS, Studnek JR, Blackwell T et al (2011) The association between intra-arrest therapeutic hypothermia and
return of spontaneous circulation among individuals experiencing out of hospital cardiac arrest. Resusc 82:21–25.
doi:10.1016/j.resuscitation.2010.09.473

11. Bruel C, Parienti J-J, Marie W et al (2008) Mild hypothermia during advanced life support: a preliminary study in
out-of-hospital cardiac arrest. Crit Care Lond Engl 12:R31. doi:10.1186/cc6809

12. Remba SJ, Varon J, Rivera A, Sternbach GL (2010) Dominique-Jean Larrey: the effects of therapeutic hypothermia
and the first ambulance. Resusc 81:268–271. doi:10.1016/j.resuscitation.2009.11.010

13. O’Sullivan ST, O’Shaughnessy M, O’Connor TPF (1995) Baron Larrey and cold injury during the campaigns of
Napoleon. Ann Plast Surg 34:446–449

14. Ehrlich MP, McCullough JN, Zhang N et al (2002) Effect of hypothermia on cerebral blood flow and metabolism in
the pig. Ann Thorac Surg 73:191–197

15. Kullmann R, Schönung W, Simon E (1970) Antagonistic changes of blood flow and sympathetic activity in
different vascular beds following central thermal stimulation. Pflüg Arch 319:146–161. doi:10.1007/BF00592493

16. Pennes HH (1948) Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol
1:93–122

17. Luce JM, Ross BK, O’Quin RJ et al (1983) Regional blood flow during cardiopulmonary resuscitation in dogs using
simultaneous and nonsimultaneous compression and ventilation. Circulation 67:258–265. doi:10.1161/01.CIR.67.2.258

18. Ditchey RV, Lindenfeld J (1984) Potential adverse effects of volume loading on perfusion of vital organs during
closed-chest resuscitation. Circulation 69:181–189. doi:10.1161/01.CIR.69.1.181

19. Nunn JF, Bergman NA, Bunatyan A, Coleman AJ (1965) Temperature coefficients for Pco2 and Po2 of blood in
vitro. J Appl Physiol 20:23–26

20. Falk JL, Rackow EC, Weil MH (1988) End-tidal carbon dioxide concentration during cardiopulmonary resuscitation.
N Engl J Med 318:607–611. doi:10.1056/NEJM198803103181005

21. Kolar M, Križmarić M, Klemen2 P, Grmec Š (2008) Partial pressure of end-tidal carbon dioxide successful predicts
cardiopulmonary resuscitation in the field: a prospective observational study. Crit Care 12:R115. doi:10.1186/
cc7009

22. Boller M, Lampe JW, Katz JM, Barbut D, Becker LB. Feasibility of intra-arrest hypothermia induction: A novel
nasopharyngeal approach achieves preferential brain cooling. Resuscitation 2010;81:1025–30.

23. Polderman KH. Mechanisms of action, physiological effects, and complications of hypothermia. Crit Care Med
2009;37:S186–S202. doi:10.1097/CCM.0b013e3181aa5241.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

Lampe et al. Intensive Care Medicine Experimental  (2015) 3:37 Page 11 of 11

http://dx.doi.org/10.1161/01.CIR.0000131940.19833.85
http://dx.doi.org/10.1016/j.athoracsur.2008.08.012
http://dx.doi.org/10.1016/j.resuscitation.2008.09.002
http://dx.doi.org/10.1161/CIRCULATIONAHA.109.848424
http://dx.doi.org/10.1161/CIRCULATIONAHA.109.848424
http://dx.doi.org/10.1161/CIRCULATIONAHA.109.931691
http://dx.doi.org/10.1111/j.1399-6576.2009.02015.x
http://dx.doi.org/10.1016/j.resuscitation.2010.09.473
http://dx.doi.org/10.1186/cc6809
http://dx.doi.org/10.1016/j.resuscitation.2009.11.010
http://dx.doi.org/10.1007/BF00592493
http://dx.doi.org/10.1161/01.CIR.67.2.258
http://dx.doi.org/10.1161/01.CIR.69.1.181
http://dx.doi.org/10.1056/NEJM198803103181005
http://dx.doi.org/10.1186/cc7009
http://dx.doi.org/10.1186/cc7009
http://dx.doi.org/10.1097/CCM.0b013e3181aa5241

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Animal preparation
	Cooling methods
	Data analysis

	Results
	Discussion
	Effect of volume infusion on blood pressures and quality of CPR
	Effect of volume infusion on temperatures
	Study limitations

	Conclusions
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References



