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Stress proteins are used by the immune system for cognate interactions
with anti-inflammatory regulatory T cells
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Since the initial discovery of the protective role of heat shock protein (HSP) 60 in arthritis, T cell rec-
ognition of endogenous HSP was found to be one of the possible underlying mechanisms. Recently
we have uncovered potent disease-suppressive Tregs (anti-inflammatory immunosuppressive T
cells) recognizing HSP70 self-antigens, and enabling selective targeting of such Tregs to inflamed tis-
sues. HSP70 is a major contributor to the major histocompatibility complex (MHC) Class II ligan-
dome and we have shown that a conserved HSP70-epitope (B29) is abundantly present in murine
MHC Class II. Upon transfer, B29-induced CD4+CD25+Foxp3+T cells suppressed established proteo-
glycan-induced arthritis (PGIA) in mice. These self-antigen specific Tregs were activated in vivo
and as little as 4.000 cells sufficed to fully inhibit arthritis. Furthermore, in vivo depletion of trans-
ferred Tregs abrogated disease suppression. Given that B29 can be presented by most human MHC
class II molecules and that B29 inhibited arthritis in HLA-DQ8 (human MHC) transgenic mice, we feel
that therapeutic vaccination with selected HSP peptides can be an effective route for induction of
anti-inflammatory Tregs as a novel intervention in chronic inflammatory diseases.
� 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

The fundamental problem of autoimmune diseases is faulty reg-
ulation of the inflammatory process. In the past we have regarded
autoimmune inflammation as a process initiated by the accidental
emergence of a forbidden clone of self-reactive effector T cells;
however, it is now clear that the immune systems of healthy peo-
ple are populated with T cells and B cells bearing receptors that can
bind self-antigens. Chronic inflammation and autoimmune dis-
eases result from the chronic activation or repeated reactivation
of self-reactive lymphocytes that are an intrinsic and normal ele-
ment of the healthy immune system. Inflammatory disease results
from the failure of the immune system to down-regulate these
potentially dangerous cells. Thus, the rational goal of therapy in
diseases of unregulated inflammatory activation is to reorganize
physiological regulation. Current therapies are oriented towards
indiscriminate suppression of immune cells and molecules and
are therefore less safe, as they create general immunosuppression
with risks of losing resistance against for instance infectious dis-
eases or cancer. For these reasons, the relatively recent discovery
of a specialized T cell subset with the capacity to regulate
(down-modulate) effector T cells has led to a very active area of re-
search aimed at the exploitation of these so-called Tregs for the
cure of autoimmune, atopic (allergy) and other inflammatory dis-
eases. In addition Tregs are analyzed for their potential to pro-
mote transplant tolerance. Clinical trials with adoptive transfer
therapy of autologous polyclonal Tregs are currently carried out
for graft-versus-host disease, type 1 diabetes and kidney trans-
plant rejection [1,2]. These involve the isolation and ex-vivo
expansion of Tregs and re-infusion into the patient. The logistics
of these forms of cellular therapies are however complicated. A
much more attractive and straight-forward approach would be
the in vivo expansion of Tregs by the immunization with the rel-
evant antigens. Such an approach would resemble the vaccination
approach of infectious diseases: in vivo administration of antigen
with the purpose of eliciting cognate interactions with antigen
specific receptors leading to an adaptive immune response. Like
other CD4+ T cells, Tregs are selected in the thymus on the basis
of cognate TcR interactions with self-antigens. Therefore, in
theory, antigen specific manipulation of Tregs through a vaccine
like approach must be possible. Based on recent findings obtained
in a mouse model of autoimmune arthritis we now have evidence
that stress proteins may constitute an attractive source for anti-
gens that can be used to engage into cognate interactions with
Tregs.

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.febslet.2013.05.024&domain=pdf
http://dx.doi.org/10.1016/j.febslet.2013.05.024
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2. Treg, the physiologic inhibitors of inflammatory diseases

The cellular part of the immune system comprises several spe-
cialized subsets of T cells, including regulatory T cells (Tregs) that
maintain homeostatic self-tolerance and control excessive immune
responses (230 Corthay,A. 2009). Dysfunction of Tregs can lead to
autoimmunity [3,4], while absence of Tregs results in multi-organ
autoimmune diseases [5]. Tregs are characterized by the expres-
sion of CD25, the IL-2 receptor alpha chain [5], and the transcrip-
tion factor forkheadbox P3 (FoxP3), which regulates the
expression of Treg associated molecules. Tregs can be subdivided
into natural occurring Tregs (nTregs), that come from the thymus
and mainly recognize self-antigens in the tissues [6]. Additionally,
induced Tregs (iTregs) [7] are another subset which differentiate
from CD25� precursors in the periphery and are located at muco-
sal tissue, while these cells recognize foreign antigens (such as
antigens from pathogens and commensals, allergens, alloantigens
and tumor antigens, or inflammatory antigens) [8,9].

Tregs express a variety of effector molecules that enable the
suppression of target cells [10]. These mechamisms of suppression
can be characterized into four types. First, is the suppression via
anti-inflammatory cytokines like transforming growth factor beta
(TGF-b), interleukin (IL)-10 and IL-35 [11]. Secondly, Tregs are able
to lyse target cells via Granzyme A and B, and perforin [12]. Thirdly,
Tregs are able to influence the metabolic pathway of other cells, for
instance by depriving them from the growth factor IL-2, due to
high IL-2 consumption via CD25 [13]. Finally, the fourth mecha-
nism of suppression involves the action of inhibitory receptors like
cytotoxic T lymphocyte antigen-4 (CTLA-4) that binds B7 on anti-
gen presenting cells (APC) [14], which gives an inhibitory signal
to the APC. Additionally, lymphocyte activation gene 3 (LAG-3) that
binds major histocompatibility complex (MHC)-class II, delivers an
inhibitory signal [15].

Tregs are interesting cells to target because they can induce ‘by-
stander suppression’: once activated via their TCR, Tregs suppress
immune responses to other antigens [16]. Activating Tregs via dis-
ease relevant antigens is a suitable approach, however in the case
of RA, it is better to select for antigens that are up-regulated during
inflammation since the disease inducing antigens are unknown.
Not only the antigen-specificity of Tregs makes these cells ideal
targets for therapy, also the induction of new suppressor cells via
activated Tregs helps to control inflammation. This ‘infectious tol-
erance’ induced by Tregs can result in long term suppression of
inflammation.

3. Stress proteins and the MHCII ligandome

Being intracellular proteins, textbook immunology would pri-
marily teach that HSP do load MHC class I molecules. And indeed,
induction of HSP specific class I restricted CTL responses (cytotoxic
T cell responses) have been documented in many different situa-
tions of cell stress. One of the first observations was made with
CTL raised against mycobacterial HSP65, as these CD8+ class I re-
stricted T cells recognized macrophages subjected to various forms
of cells stress. This was a first demonstration of the fact that HSP
are processed in stressed host cells and can be presented in the
context of class I molecules [17]. Interestingly, besides class I, also
class II molecules are loaded with HSP peptides. In fact, HSP70 pep-
tides were prominently represented in the RP-HPLC profile of the
content of class II molecules of a human lymphoblastoid cell line
[18].

It is of interest to note that the loading of MHCII by intracellular
stress proteins occurs especially proficient in cells under stress. In
this case the routing of the intracellular cargo into the MHCII com-
partment is organized through autophagy [19]. Autophagy consists
of a collection of intracellular routing pathways and essential
homeostatic maneuvers by which cells break down their own com-
ponents in lysosomes and direct the fragments for presentation on
MHCII molecules. Perhaps a primordial function of this lysosomal
degradation pathway is adaptation to various forms of stress such
as nutrient deprivation. In addition, in complex multicellular
organisms, these pathways or autophagy proteins orchestrate di-
verse aspects of cellular and organismal responses to dangerous
stimuli such as infection [20]. Some HSP70 family members are di-
rectly involved with one of the molecular machineries that take
care of autophagy, such as so-called chaperone mediated autoph-
agy [21]. Chaperone-mediated autophagy (CMA) refers to the
chaperone-dependent selection of soluble cytosolic proteins that
are then targeted to lysosomes and directly translocated across
the lysosome membrane for degradation. This may well explain
why fragments of HSP70 have been found to dominate the MHCII
ligandome of both human and mouse cells [22,23], especially un-
der conditions of cellular stress. See Table 1 for a rather complete
listing of HSP70 peptides eluted from MHC Class II molecules.
The B29 sequences are in the boxed area.

To activate CD4+ T cells, and thus Treg, peptides should be pre-
sented by MHC class II molecules. Cytosolic proteins, like HSP70,
are by default loaded on MHC class I molecules while extracellular
proteins will be presented on MHC class II. The classical ‘‘textbook’’
distinction between MHC class I and MHC class II loading pathways
has been proven not fully correct because cytosolic proteins have
been eluted from MHC class II and vice versa. It is known that nat-
ural MHC class II ligands are preferentially generated from long-
lived cytosolic or nuclear proteins [24], and that long lived proteins
are preferentially turned over by autophagy. HSP70 and HSC70
seem to have relatively long half-lives of between 4 and 20 h and
are found more frequently in MHCII than in MHCI molecules
[25]. Autophagy has been initially found as a process to sustain
metabolic fitness during food deprivation through bulk protein
degradation [26]. The role of autophagy in the immune system is
only now becoming clear [27]. Two pathways can result in loading
of intracellular peptides on MHC class II. First, intracellular pro-
teins can be incorporated into autophagosomes that subsequently
fuse with lysosomes for degradation of their cargo (macroauto-
phagy). In addition, cytosolic proteins can be transported via LAM-
P2a directly into the lysosome (chaperone mediated autophagy)
[28,29]. Recently, the role of autophagy in loading HSP70 peptides
has been described; in human HLA-DR4+ B cells a striking increase
of especially HSP70 peptides was eluted from HLA-DR4 upon
induction of autophagy by amino acid deprivation [22]. Autophagy
induction coincided with elevated HSP70 mRNA levels. In other
words, especially under conditions of cell stress, fragments of
HSP70 will be presented on antigen presenting cells to T cells, pos-
sibly initiating a regulatory T cell response.

A recent paper by Costantino et al. [30] analysed peptides ob-
tained from MHCII molecules of human activated T cells. It was al-
ready known that antigens derived from CD4+ T cells injected as a
vaccine can activate so called antigen-specific idiotypic and ergo-
typic responses [31,32], which also can have a regulatory activity.
HLA-DR+CD4+ T cells themselves have been hypothesized to pres-
ent T cell-derived proteins such as CD25 or HSP60 [22]. Costantino
et al. were unable to identify any peptides derived from HSP60;
interestingly, however, they identified peptides derived from heat
shock cognate 71 kDa protein (HSPA8), a ubiquitously expressed
chaperone protein.

4. HSP are abundant at sites of inflammation

To understand the pathogenesis of autoimmune diseases an
intensive search has been made to delineate specific antigens being
involved in the break-down of self-tolerance and leading to these



Table 1
Hsp70 peptides eluted from MHC Class II molecules. (See below-mentioned references for further information.)
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diseases. This has resulted in a broad range of distinct antigens
possibly causally involved. On theoretical grounds however one
would have doubts whether low numbers of autoantigen specific
Tregs in polyclonal T cell populations would be able to exert suffi-
cient effect to suppress ongoing inflammation. For this process to
be effective the likely scenario is that only sufficiently prevalent
Tregs with the ability to engage into cognate interactions with an
abundantly produced autoantigen would be able to have signifi-
cant impact on such a process.

And here heat shock proteins are interesting candidate antigens
to serve as targets for Tregs at sites of inflammation. Inflammation
goes together with the production of various mediators that trigger
the up-regulation of HSP. Most prominent in this can be the reac-
tive oxygen species (ROS), toxic factors that lead to tissue damage
and amplification of the inflammatory reaction. In addition to this
the lipid mediators of inflammation (products of the arachidonic
acid cascade) and pro-inflammatory cytokines (IL1, IL6, TNFa) are
known inducers of the heat shock response [33]. It is probably this
up-regulated presence of HSP that induces the production of HSP
specific antibodies in patients with chronic inflammatory condi-
tions. Local presence of up-regulated HSP at sites of inflammation
was already shown by HSP60 antibody staining in light microscopy
immunohistochemistry of synovial membranes of patients with
juvenile chronic arthritis. The increased staining for LK1, with a un-
ique specificity for mammalian HSP60, the mitochondrial chaper-
one, thus unequivocally demonstrated that this is due to a raised
expression level of endogenously produced host HSP60 and not
to deposition of bacterial antigens [34].

Aging is known to impact the capacity of cells to upregulate
stress proteins. A decrease in HSF1 (the transcription factor which
organizes HSP expression) activity has been seen in normally aging
individuals, and in aging fruit flies and worms, leading to relative
loss of the heat shock system [35,36].The reason for the decrease
in the HSF1 activity is unknown but it results in an attenuated heat
shock response and a decrease in the ability of an individual to
cope with stress. Possibly, along similar lines, the relative loss of
expressed HSPs can contribute to a loss of Treg activity, resulting
in a relative loss of self-tolerance. If so, this may be an explanation
for the increased occurrence of chronic inflammatory diseases in
aged individuals.

Besides reduced expression, also structural changes in HSPs
might influence the maintenance of self-tolerance. HSP70 poly-
morphisms have been associated with inflammatory or autoim-
mune diseases such as Crohn’s disease [37], Alzheimer’s disease
[38], pancreatitis [39] and with development of graft versus host
disease upon allogeneic haematopoietic stem cell transplantation
[40].

Interestingly, decreased HSP expression has been observed in
some immune disorders. A low HSP70 response has also been de-
scribed in a subtype of Biobreeding (BB) rats with a high suscepti-
bility for development of autoimmune diabetes [41]. Similar
results have been found in human PBMC from patients with newly
diagnosed type-1 diabetes. In that study, stress responses were
found to become re-established again in patients with longstand-
ing diabetes, more than eight months after disease manifestation.
So, defective HSP70 induction coincided with beta cell directed
inflammatory activity, and seemed modulated by pro-inflamma-
tory cytokines rather than metabolic factors [42].

Additional evidence for the role of HSPs as targets for Tregs may
have come from studies of in vivo manipulation of HSP expression
levels. In one of our previous studies we have identified carvacrol,
one of the main essential oils of many oregano species, as an effec-
tive co-inducer for HSP70. Oral administration of carvacrol in mice
was found to up-regulate the expression of HSP70 in Peyer’s
patches, the secondary lymphoid organs of the gut. When lympho-
cytes were collected from carvacrol treated animals, raised T cell
responses to HSP70 were observed. Moreover, the induction of
arthritis in carvacrol treated animals was almost fully impossible.
The inhibitory effect on arthritis turned out to be transferable with
CD4+ T cells obtained from carvacrol fed mice. Altogether, the ef-
fects seen with the HSP co-inducer carvacrol were fully compatible
with the induction of HSP specific anti-inflammatory Tregs that
merely resulted from the upregulated HSP70 in gut lymphoid
tissues[43].

Also by other means, such as serological identification of anti-
gens by recombinant expression cloning (SEREX), stress proteins
such as DNAJA1 (a HSP70 associated co-chaperone), were defined
as targets for naturally occurring Tregs [75].

5. Peptide B29: a conserved Treg inducing HSP70 epitope

As mentioned above, fragments of stress proteins, such as
HSP70 family members, are frequent and relatively abundant in
the MHCII ligandome of cells and stressed cells in particular. This
means that HSP epitopes are well represented on cells poised for
presenting their internal cargo to T cells. Regulatory T cells are
for their function dependent on triggering through their TcR (T cell
receptor). That such stress protein fragments can be targeted by
Treg was demonstrated recently by van Herwijnen et al. (159
[23]). A conserved mycobacterial HSP70 peptide (B29) (see Fig. 1
for its structure, conservation and position in the HSP70 sequence)
was found to have the capacity to induce a very potent regulatory T
cell response. Due to its conservation, various self-homologs with
amino acid sequences almost identical with B29, were identified
in the mammalian HSP70 family members. Interestingly, the mam-
malian B29 homologs were also found to be present in human
HLA-DR4 molecules obtained from stressed B cells (130 [22]). Fol-
lowing immunization with B29, responding spleen lymphocytes
were selected by cell-sorting for regulatory T cells on the basis of
CD4+CD25+Foxp3+expression. By adoptive transfer of these sorted
Tregs we found that these cells had a remarkable capacity to sup-
press (ongoing) disease. The latter was shown in an experimental
model of autoimmunity, proteoglycan induced arthritis. By the
in vitro re-stimulation of the B29 induced Treg with the mamma-
lian homolog’s, the up-regulation of Treg associated activation
markers was seen, indicating that indeed the mammalian homo-
logs were in vivo targets of these Tregs.

By using a congenic cell marker (CD90.1) is was possible to
trace back transferred CD90.1.2 positive T cells in the CD90.2 reci-
pient animals. By doing this the Treg phenotype (Foxp3+, CD25+)
was found to remain stable, even until day 50 after the transfer.
The cells were found in peripheral blood, bone-marrow, draining
lymph-nodes, spleen and also the joint synovium. In addition, by
infusing anti-CD90.1 specific antibodies to deplete transferred dis-
ease suppressive CD90.1.2+ cells in vivo, it was shown that the dis-
ease returned, providing direct proof of the disease suppressive
nature of the transferred Treg.

Therefore, as it seems, we have identified peptide B29 as an evo-
lutionary conserved HSP70 epitope with homologues abundantly
present in human and mouse MHC class II molecules. T cells recog-
nizing B29 and these homologues were found to be strongly disease
suppressive and characterized by CD25+Foxp3+LAG3+expression.
Exceptionally low numbers of these cells, up to as few as 4000 cells,
were capable of preventing induction of disease and of suppressing
already established disease. These cells were long-lived and found to
reside in the joints and draining lymph-nodes.

The findings made with the B29 epitope of HSP70 in Balb/c mice
concur with earlier findings of disease inhibition with a conserved



Fig. 1. Protein alignment of the human and microbial HSP70 family. The blue square contains the B29 microbial sequence and the mammalian homologous sequences. The
extreme degree of sequence conservation is notable for the B29 regulatory T cell epitope.
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mycobacterial HSP70 derived peptide in rats with mycobacteria
induced adjuvant arthritis [76]. In this case the peptide, p111,
was found to be effective upon nasal and not upon parenteral
administration. The analysis of responding T cells following
activation with p111, revealed the production of IL10 as the possi-
ble disease suppressive mechanism of the p111 specific T cells.

6. Other examples of HSP specific Treg that inhibit
inflammatory diseases

In the model of atherosclerosis induced by a, cholesterol rich,
western type diet in LDL receptor knock-out mice, oral administra-
tion of HSP60 was found to inhibit plaque formation in the
clipped (partially obstructed) carotid artery and in the aortic root.
Reduction in plaque size correlated with an increase in
CD4(+)CD25(+)Foxp3(+) regulatory T cells in several organs and
in an increased expression of Foxp3, CD25, and CTLA-4 in athero-
sclerotic lesions of HSP60-treated mice. The production of interleu-
kin (IL)-10 and transforming growth factor (TGF)-beta by lymph
node cells in response to HSP60 was observed after tolerance
induction [44]. Similar observations with oral administration of
whole (mycobacterial) HSP60 had been made by others earlier,
very much in line with the accumulating evidence for a pivotal role
of HSP60 in atherosclerosis [45–48]. In the study of van Puijvelde
[44], however, the same disease inhibitory effect was seen with
both whole HSP60 and a defined HSP60 derived T cell epitope:
253–268. Therefore, the latter study provides additional evidence
for a disease suppressive mechanism mediated by HSP specific
Tregs.

HSP90 was also found to inhibit spontaneous diabetes in NOD
mice, although in this case mechanisms may have remained to
be solved [49]. A more exciting set of findings was made with an
HSP60 peptide, HSP60 peptide 277, in type I diabetes. This peptide,
also known as DiaPep277 may well be the first therapeutic vaccine
with the capacity to reinstall the HSP-mediated immune regulation
in this important clinical entity [50]. The Cohen group (Weizmann
Institute) has done pre-clinical studies of HSP60 peptides in NOD
mice, the model of spontaneous type I diabetes [51,52] and has
gone onto develop DiaPep277 in particular for the treatment of
developing diabetes mellitus in humans. DiaPep277 performed
very well in phase II ([53] and recently in phase III clinical studies:
Newly diagnosed patients were randomized to receive injections of
1 mg DiaPep277� or placebo subcutaneously for 2 years at quar-
terly intervals. Insulin treatment was administered by the patients’
physicians as needed. The primary efficacy endpoint was the
change from baseline to study end in glucagon-stimulated C-pep-
tide. The study was carried out in 40 centers in Europe, Israel
and South Africa. Excitingly enough, DiaPep277�-treatment was
safe, well tolerated and significant preservation of C-peptide levels
was observed. Treated patients experienced fewer hypoglycemic
events with a significant difference in the rate of decline in the
hypoglycemic events/month. More patients in the treated group



Fig. 2. HSP peptide based vaccines have been shown to enhance regulatory activity in chronic inflammatory disorders through expansion of Tregs amongst others via peptide
MHC complex activation. Direct expansion of Tregs is hampered by the pro-inflammatory cytokines produced by the inflammatory T effector cells. To enhance the Treg
inducing capacity of the vaccines, tolerogenic adjuvants and routes of administration will be exploited.
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were in partial remission maintaining target HbA1c levels while
requiring less insulin. Thus, HSP60 peptide treatment preserved
beta-cell function and improved clinical outcomes over 2 years in
newly diagnosed type 1 diabetes patients).

7. Conclusion

Findings on the role of HSP in the induction of anti-inflammatory
T cell responses have led to a concept wherein the regulatory T
cells of the immune system exploit the abundant presence of
stress proteins for their default suppressive activity. The cellular
interaction in this concept are presented in Fig. 2. In the occa-
sion of inflammatory stress the further up-regulation of stress
proteins by antigen presenting cells leads to a further enforce-
ment of the regulatory T cell activity. By artificial immunization
with stress proteins such as HSP60 and HSP70 the repertoire of
HSP specific Tregs is increased leading to a raised resistance
against inflammatory diseases. The first clinical trials with HSP
peptides in autoimmune diseases have been promising and
therefore lead to the expectation that further development of
immuno-modulatory vaccines will be possible with the use of
HSP proteins and peptides.
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