
Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 223 (1999) 87-120
www.elsevier.com/locate/tcs

Independent parallelism in finite copying parallel
rewriting systems

Owen Rambowa, Giorgio Sattabs*

aCoGenTex, Inc., 840 Hanshaw Road, Suite II, Ithaca, NY 14850-1589, USA
‘Dipartimento di Elettronica ed Informatica. Universitci di Padova, via Gradenigo. 6/A.

I-35131 Padova. Italy

Received March 1994; revised February 1997
Communicated by G. Rozenberg

Abstract

We consider the class of parallel rewriting systems and investigate the interaction between
two complexity measures, that in the literature have been called synchronized parallelism and
independent parallelism. It is shown that, when the degree of synchronized parallelism is bounded
by some constant greater than one, the degree of independent parallelism induces an infinite
non-collapsing hierarchy within the family of generated languages. The result is obtained using
an original characterization of parallel rewriting systems. Other language-theoretic properties of
parallel rewriting systems are proved in this work, that together with our main result provide an
answer to some questions that were left open in the literature. @ 1999 Elsevier Science B.V.

All rights reserved.

Keywords: Parallel rewriting systems; Local unordered scattered context grammars;
Formal languages; Descriptional complexity

1. Introduction

Since the early 197Os, many rewriting systems have been presented in the formal lan-

guage literature that extend the generative power of the class of context-free grammars.

A family of these formalisms, called parallel rewriting systems, has been extensively

investigated; the reader is referred to [9] for an excellent review of many important

results about this family.

Two different kinds of parallelism are realized in parallel rewriting systems, that

in [9, p. 1511 have been called the synchronized parallelism and the independent
parallelism. The synchronized parallelism allows derivations of substrings to proceed

in a synchronous way, i.e., a sentence in the generated language may include substrings

* Corresponding author. Tel.: +39 (49) 827 783 1; fax: +39 (49) 827 7699; e-mail: satta@dei.unipd.it.

0304-3975/99/$ - see front matter @ 1999 Elsevier Science B.V. All rights reserved.

PII: so304-3975(97)00190-4

88 0. Rambow, G. Sattal Theoretical Computer Science 223 (1999) 87-120

that have been obtained by a common underlying derivation process. The independent

parallelism reflects the capability of the system to instantiate independent derivation

processes that are combined together to form the generated string. Context-free gram-

mars are the canonical example of a system with only independent parallelism, while

the ETOL systems of Rozenberg [181 are an example of parallel rewriting systems

with only synchronized parallelism. Examples of rewriting systems using both kinds

of parallelism include the generalized syntax-directed translation (GSDT) of Aho and

Ullman [2] and the top-down tree-to-string transducers (yT) of Engelfriet et al. [9].

(A transducer can be regarded as a controlled generative device.) Both classes gen-

erate the same languages. An interesting correspondence between the class of parallel

rewriting systems and the class of two-way machines has been established in [9], where

equivalence in generative power is shown using a generalized model called checking

tree-pushdown transducer.

If we restrict the synchronized parallelism to a finite degree, that is if we allow only

a bounded number of subderivations to be synchronized in a given grammar, we ob-

tain a subfamily of parallel rewriting systems that includes the so called finite copying

top-down tree-to-string transducers (yZ’rc) of Engelfriet et al. [9], the string generating

context-free hypergraph grammars (CFHG) of Bauderon and Courcelle [4] and Habel

and Kreowski [I 11, the multiple context-free grammars (MCFG) of Kasami et al. [14]

and Seki et al. [22] and the string-based linear context-free rewriting systems (LCFRS)

of Vijay-Shanker et al. [24] and Weir [25]. All these rewriting systems are weakly

equivalent, as shown in [8,26]. We will call jnite copying parallel rewriting systems

the family of parallel rewriting systems with finite degree of synchronized parallelism.

As far as the correspondence with two-way machines is concerned, the family of paral-

lel rewriting systems with finite synchronized parallelism generates the same languages

as the class of deterministic tree-walking transducers (DTWT) of Aho and Ullman [2].

At the same time, the size of the longest production in a given parallel rewriting sys-

tem always imposes a finite bound on the number of independent derivation processes

that can be interleaved. Hence, the degree of independent parallelism is always bounded

by some constant in parallel rewriting systems. In what follows, we will regard the

two kinds of parallelism introduced above as complexity measures.

Independent investigations of different formalisms in the family of finite copying

parallel rewriting systems have shown that the degree of synchronized parallelism es-

tablishes an infinite, non-collapsing hierarchy in the generated languages; i.e., by in-

creasing the degree of synchronized parallelism we gain additional generative power

(see, for instance, [9, 11,221). As an example, if the degree of synchronized parallelism

is bounded by an integer f 2 1, a grammar can “count” up to 2f, but cannot generate

the language L = {u;uz . . . u$-+i 1 n > 0). However, not much was known to date about

the second complexity measure, i.e. independent parallelism or maximum production

size. The major result of this paper is that, within parallel rewriting systems with syn-

chronized parallelism bounded by a fixed (but arbitrary) constant f 22, the degree

of independent parallelism induces an infinite non-collapsing hierarchy for the gene-

rated languages. However, as we show, independent parallelism can be “traded” for

0. Rambow, G. Sattal Theoretical Computer Science 223 (1999) 87-120 89

synchronized parallelism, in the sense that, given a finite copying parallel rewriting

system, a weakly equivalent system in the same family can be obtained with a re-

duced degree of independent parallelism, but with an increased degree of synchronized

parallelism. We investigate language theoretic properties of the hierarchy of rewrit-

ing systems of fixed degree of synchronized parallelism, and solve in the negative

a question left open in [9], about whether parallel rewriting systems with degree of

synchronized parallelism bounded by a fixed constant constitute a full principal AFL.

When the degree of synchronized parallelism is bounded by f = 1, that is when syn-

chronized parallelism is inhibited, the above rewriting systems can be cast in a normal

form defined by some bound on the size of the productions, that is some bound on the

degree of independent parallelism. (As already mentioned, in this case the generated

languages are exactly the context-free languages and the above fact is related to the

existence of two-normal forms for context-free grammars.) Our result shows that, when

f >2, such normal forms are not admitted. This solves a question left open in [2] and

has interesting consequences for the design of algorithms for the recognition problem

for these rewriting systems.

In a sense, our result is a generalization of a result in [l], concerning non-simple

syntax-directed translation schemata, that may be viewed as a restricted kind of parallel

rewriting systems with degree of synchronized parallelism bounded by f = 2. There,

the existence of an infinite non-collapsing hierarchy induced by the degree of indepen-

dent parallelism is shown for such systems. We generalize this formalism by introduc-

ing a new class of rewriting systems called local unordered scattered-context grammar

(LUSCG) which has the same generative power as finite copying parallel rewriting sys-

tems. The definition of LUSCG is based on a rewriting restriction, called locality, that

turns out to provide an exact characterization of finite copying parallel rewriting sys-

tems. We show our result by working on LUSCG in such a way that we can then trans-

fer our result to all other formalisms mentioned above. The choice of LUSCG renders

the proof of our result more intuitive, due to the intrinsic parallelism of these systems.

This paper is organized in the following way. In Section 2 we introduce local un-

ordered scattered context grammars and define two parameters for this class that are

related to synchronized and independent parallelism. In Section 3 we show that the

degree of independent parallelism induces an infinite hierarchy when the degree of

synchronized parallelism is bounded by a constant, and in Section 4 we prove some

language theoretic properties for members of such a hierarchy. In Section 5 we use

an equivalence result reported in the appendix to show how all our results can be

transferred to other formalisms in the class of parallel rewriting systems. Finally, in

Section 6 we discuss some other consequences of the presented results.

2. Definitions

In this section we introduce a new class of parallel rewriting systems, which we

will call local unordered scattered context grammar, and show how valid derivations in

90 0. Rambow. G. Satta I Theoretical Computer Science 223 (1999) 87-120

these systems can be represented by means of trees generated by context-free grammars.

We then define two (independent) parameters for this class, called fun-out and rank.

These two parameters are related to synchronized and independent parallelism, and

their mutual interaction will be investigated throughout this paper. In what follows,

we will use standard notational conventions. For an alphabet V, we denote by V* the

set of all finite strings over V. Let UE V and WE V*; #,(w) denotes the number of

occurrences of a in w. As usual, for a class %? of generative devices, _Y(%?) denotes

the class of all languages generated by e.

A class of rewriting systems called scattered context grammars was introduced by

Greibach and Hopcroft [lo]; an unordered version was proposed by Milgram and

Rosenfeld [17] and Mayer [16]. The following definition is based on Salomaa [20,

p. 2591 and Dassow and Phn [6, p. 1351.

Definition 1. An unordered scattered context grammar (USCG for short) is a quadru-

ple G = (VN, VT, P,S) where VN, VT are finite, disjoint sets of nonterminal and terminal

symbols, respectively, S E VN is the start symbol and P is a finite set of productions hav-

ing the form (Al,. . . ,A,) -+ (~11,. . . , M,), wheren31,AiEVN, QE(VNUVT)*, l<i<n.

We write y+~6 whenever there exist P=(A~,...,A,)~(~~,...,~,)EP and an ar-

bitrary permutation 7~ of { 1,. . . , n} such that

Y = YO4l)Y1&(2) . . . yn-1&Ip,,

6 = YO%(I)Y1%(2)~ . . Yn-lG(,)y,,

where YiE(VNU VT)*, Odi<n.

The class of all unordered scattered context grammars is also denoted USCG. USCGs

are known to be weakly equivalent to several other regulated rewriting systems, in-

cluding context-free matrix grammars and state grammars. The reader is referred to

Dassow and P&n [6] for details.

We now introduce a restriction on the derivation relation for USCG which we will

call locality. Informally, locality forces each production to rewrite only symbols which

were previously introduced together in a single step of the derivation. As a result, we

have that in a local rewriting system the set of all derivations can be characterized

by a recognizable set of trees in the sense of Thatcher [23], i.e., each derivation can

be represented by a tree generated by a (fixed) context-free grammar. The notion of

locality was first discussed in [25] and can be used to characterize the class of finite

copying parallel rewriting systems, as it will be discussed in Section 5.

We need to introduce some additional notation. In what follows, strings y in

(V, U VT)* will be viewed as sequences of instances of symbols in V, U VT. Let G be

an USCG and let y and 6 be two strings in (VN U VT)* such that y =+G 6. Intuitively

speaking, if we view y +G 6 as a rewriting step, then there is a one-to-one correspon-

dence between instances of nonterminals in 6 that have not been newly introduced by

the step and instances of nonterminals in y that have not been replaced. More formally,

0. Rambow, G. Satta I Theoretical Computer Science 223 (1999) 87-120 91

assume that there exist B, n and i, BE V~J, n > 1 and 0 <i <n, such that

d=yo~!lyl ‘. EiyiByiai+l . ’ .Yn-~CcnYn,

Then we say that the indicated instance of nonterminal B in 6 corresponds to the

indicated instance of B in y.

An equivalence relation Z is said to be associated with a string y E (VN U VT)* if Z is

defined on the set of elements of y that are instances of symbols in V,. We introduce

associated equivalence relations in the definition of the derive relation for USCG to

define a new class of rewriting systems. (We overload symbol +o .)

Definition 2. A local unordered scattered context grammar (LUSCG for short) is

an unordered scattered context grammar G = (VN, VT, P, S) for which a binary relation

+G is defined over pairs consisting of a string in (V, U VT)* and an associated

equivalence relation. We write (y,Z?) +o (~,Z,J) if and only if:

(i) there exist p=(Al ,..., A,)-+(al,..., cc,)~P and an arbitrary permutation rc of

{I,..., n} such that

y = YO4T(l)Y1&(2) . . . Yn-l&(n)Ym

6 = YO%(l)Yl~,(2) . . . Yn-l%(,)Ym

where Y~E(VNU VT)*, O<i<n,

(ii) the indicated instances of nonterminals A,(t),. . .,A,(,) in y are equivalent un-

der I,, and

(iii) all instances of nonterminals in the subsequences a,(t), . . . , c+) indicated in 6 are

equivalent under 16, as are any instances of nonterminals in 6 that correspond

to instances in y equivalent under ZY; no other instances are equivalent under Z6.

(This uniquely determines la.)

Note that, according to the above definition, string 6 is obtained from y as in

Definition 1, with the additional requirement that the indicated instances of &(r),&(2),

. . . , A n(n) in y are equivalent in the associated relation I,. Furthermore, the obtained

equivalence relation 16 makes equivalent all and only the instances of nonterminals

newly introduced by the derivation step, and “preserves”, with respect to Z,, equiv-

alences between instances of nonterminals that have not been newly introduced (see

Example 1 below). The class of all local unordered scattered context grammars is also

denoted LUSCG. The relationship between the non-local and local versions of USCG

will be discussed in Section 6.

We introduce additional notation to be used in the following. Given a string of

the form YO&(I)Y~ . . . Y~-~&(,)Y,, nal and n some permutation of {l,...,n}, we

denote with Z@l,...~~n) any associated relation that contains every pair of instances of

nonterminals Al , . . . ,A, indicated in y. If p: (Al,. . . ,A,) + (ccl,. . . , a,) belongs to P,

we say that (Al,..., A,,) is the left-hand tuple of p and (al,. . . , a,) is the right-hand

92 0. Rambow, G. Sattal Theoretical Computer Science 223 (1999) 87-120

GL = (VN, vT,p,s);

VN = {S,‘%B)

VT= {[>I)
p= {PI: (S)+W),

P2: MA) + (Ml, Ml),

P3: (‘%A)-+([I>1 I)>

p4: (AA)+ WJB),

P5: (~,~)-+~‘u))

Fig. 1. An LUSCG for language L = {WV (w EDI}.

tUpZe of p. Relation +o will sometimes be written Go to indicate that production p

was used in the rewriting. In order to represent derivations in G, we use the reflexive

and transitive closure of +o , written so. The language generated by a LUSCG G

is L(G) = {w 1 (L?, I(‘)) %IJc (IV, 8)) (note that relation Zcs) associated with S is uniquely

defined).

Example 1. Let D1 be the Dyck language of strings of properly balanced parentheses

and let L = {ww / w E III }. Language L can be derived by the LUSCG GL specified in

Fig. 1. In order to show a derivation in GL, we number instances of nonterminals in a

string from left to right, and specify equivalence relations by giving their equivalence

classes. Then string [[]][I[[]][I EL can be derived in GL as follows:

As already mentioned, the locality restriction makes it possible to represent the

underlying structure of a derivation by means of a tree from a recognizable set of

trees. The following definition specifies how this can be done. Let G = (VN, VT, P, S)

be a LUSCG. Define P(O) = {p 1 p E P, there are no nonterminals in the right-hand tuple

of p} and P(l) =P -P(O). W e assume an arbitrary canonical (linear) ordering < of

the productions in P. Without loss of generality, we also assume that ps is the unique

production in P that rewrites S (i.e., has left-hand tuple (S)) and ps~P(‘).

Definition 3. The derivation grammar of a LUSCG G = (VN, VT, P, S), denoted der(G),

is the context-free grammar (PC’), P(O), II, ps) where P(l) and P(O) are the set of non-

terminal and terminal symbols, respectively, ps is the initial symbol and ZZ contains

0. Rambow, G. Satta I Theoretical Computer Science 223 (1999) 87-120 93

der(GL) = (P(‘),P(‘), l7, ~1);

p(l)= {Pl>P2,P4,PS),

p(O) = {P3)>

n= {Pl+Pz, PI -+ P3. PI + P4,

P2 --t P2, P2 -+ P3> P2 - P41

P4 -f P2PS> P4 -+ P3P5, P4 4 P4P5,

PS -+ P29 P5 - P3> PS’P4 1

Fig. 2. The derivation grammar of GL.

P4

n

P2 P5
I I

P3 P3

Fig. 3. The derivation tree in der(GL) corresponding to the derivation in GL of string [[]][][[]][].

all and only productions of the form p + p1 . . . p,,, where p, ~1,. . . , p,, E P and n 2 1,

suchthat pi<p2<... d pn and the multiset of instances of nonterminals in the right-

hand tuple of p equals the multiset of instances of nonterminals in the left-hand tuples

of PI,...,Pn.

We remark that, as a consequence of the canonical ordering of the productions

in P in Definition 3, two productions in der(G) cannot differ only in the order of

the right-hand symbols. Note also that to every derivation in G corresponds exactly

one derivation in der(G), in a straightforward way, and to every derivation in der(G)

corresponds at least one derivation in G.

Example 1 (continued). Assume the canonical ordering of productions of GL such that

pi < pj for 1 <i <j < 5. Then the derivation grammar der(CL) is given in Fig. 2. Note

how production p4 -+ p2ps in II, for instance, satisfies Definition 3, since productions

p2 and p5 together rewrite all instances of nonterminal symbols of G introduced by

the right-hand mple of ~4. The (leftmost) derivation in der(GL) corresponding to the

derivation of string [[]][][[]][] p reviously presented is p1 + p4 + p2p5 + p3 p5 + p3 p3

and is represented as a derivation tree in Fig. 3.

We conclude the present section with the definition of two parameters associated

with grammars in the class LUSCG. In the next sections these parameters will be

considered as complexity measures and their interaction will be investigated.

Definition 4. Let G = (VN, VT, P, S) be a LUSCG, PEP, and let der(G) = (P(‘),P(‘),
IZ, ps) be the derivation grammar of G. The fan-out of production p, written y(p),

is the length of its tuples. The fan-out of G is defined as cp(G) = maxpEP q(p). The

94 0. Rambow, G. SattaiTheoretical Computer Science 223 (1999) 87-120

mnk of production p, written p(p), is defined as p(p) =max(,+,)~n 1~1 (assuming

max 0 = 0). The rank of G is defined as p(G) = maxpEP p(p).

Example 1 (continued). For the sample grammar GL, we have &PI)= 1 and

&pi) = 2 for 2 d i < 5; hence we have cp(GL) = 2. Furthermore, from the specification

of der(GL) we see that p(p4) = max(p4+ol)En Jc((=2. This implies p(G~)=2, since all

the remaining productions in P have rank smaller than two.

For integers f> 1 and r> 0, LUSCG(f) will denote the class of all LUSCG having

fan-out bounded by f and r-LUSCG will denote the class of all LUSCG with rank

bounded by r; r-LUSCG(f) will denote the intersection of the two.

3. A rank hierarchy

This section presents the main result of the paper. We show that the rank parameter

defines an infinite (non-collapsing) hierarchy within each class LUSCG(f), f 22. The

technique we have adopted has been inspired by a technique used in [l] to prove the

existence of an infinite hierarchy induced by the rank in non-simple syntax-directed

translation schemata (SDTS). The result in [l] concerns the class of translations be-

tween two context-free grammars, i.e., between parallel rewriting systems with degree

of synchronized parallelism bounded by f = 1. This class may be viewed as a (proper)

subclass of the parallel rewriting systems with f =2. Indeed, the definition we have

given for the derive relation for LUSCG is very similar to the definition of derivation

in SDTS.

Let G = (I’,, VT, P,S) be a LUSCG. We first introduce some notions that describe

productions of G in terms of derivations in which they can participate.

Definition 5. Let &c VT. A production p in P of the form (A,,...,At)~(al,...,a,),

t > 1, covers d if and only if for every integer d 2 1 there exists a derivation q such

that the following conditions are satisfied:

(i) n has the form

($1(S)) so (uoA,(i)u, . . . ul_lA,(t)ul,I1(A”...‘A,))

% (~O~,(l)~l . . . &-l&I(,)d2)

s,, (~0~1~1 . ..~t-*Wt.0h (1)

where Ui, Uj E VT, OdiGt, I<j<t, and rc is some permutation of {l,...,t};

(ii) string vi . f. vf includes more than d instances of each terminal in d and string

u(jviui ... ut_ 1 vt ut includes more than d instances of each terminal in VT.

In the following we will use symbol a to denote the covering relation, and will

write p aa to abbreviate pa {u}. Furthermore, we will write ‘4 a & by means of p

0. Rambow, G. SattalTheoretical Computer Science 223 (1999) 87-120 95

if there exists a production p of the form (Al,. . . ,A,) -+ (al,. . .,a,), t> 1, such that

A =A) for some 1, 1 < 1 <t, and for every integer d >, 1 there exists a derivation y of

the form (1), such that string u/ includes more than d instances of each terminal in d

and string usviui . . . ut- I utut includes more than d instances of each terminal in VT.

Note that if A a &! by means of p, then pa d. Note also that pa d (A a ~4) implies

paB @aSi?) for every BCC.

We present a sufficient condition for a production p to cover a subset of VT, that will

be used throughout this section. Let p : (A 1,. . . ,A,) -+ (al,. . . ,Q), t> 1, be a production

in P, and let & C VT. If p does not cover d (written p $ -02) there must be a constant

M P,d such that, for every derivation of the form in (1), either MP,d bounds the number

of instances of a symbol from d appearing in viv2 . . ut, or M&d bounds the number of

instances of a symbol from VT appearing in u~viui . . . vtut. If pa d, we let MP,d = - 1.

Let MG be the maximum among all Mp,,d, p E P and d C k’~. Then, whenever p E P is

used in a derivation of w E L(G), in such a way that p derives more than Mo instances

of each symbol in some set & C VT and w itself includes more than MG instances of

each symbol in VT, we can conclude that p covers d.

The following fact will also be used several times in this section.

Lemma 1. Let PEP beaproduction of theform (A1,...,At)--t(GI,,...,Clt), t>l. Zf p

covers some .& & VT, then there exist sets &i, 1 <i < t, such that Ui=, &i = d and,
for every integer d 2 1, there exists a derivation y such that the following conditions
are both satisjed:

(i) n has the form (1); and
(ii) for each i, 1 bi ,< t, string vi includes more than d instances of each termi-

nal in &i and string u~vlul . . ’ ut_,vtut includes more than d instances of each
terminal in VT.

Proof. Let m 2 1 be an integer. Since pa s9, there exists a derivation n of the form (1)

such that string vi . . . ut includes more than mt instances of each terminal in d and

string u~viui . . . ut_lvtut includes more than m instances of each terminal in VT. Let

P’,= (=dl,l,~m,z~ . . . , aZm,,) be a partition of d specified as follows. For each aE d,
choose the least 1, 1 Q 1 Gt, such that VI includes more than m instances of a, and let

a E dm,* (there is always such an 1 by a counting argument; some of the A$,+, 1 <i <t,
may remain empty). We thus have an infinite sequence of partitions o = Pi, 9$,

Since there are finitely many partitions of SB, there exists some partition B that occurs

infinitely often in 0. Clearly, the members of 9 meet the requirements on the ~~2~‘s set

out in the proposition. Cl

We first prove a separation result for classes r-LUSCG(f), r 23. In order to do

so, we define a particular family of languages to which we will henceforth restrict our

attention.

96 0. Rambow, G. Sattal Theoretical Computer Science 223 (1999) 87-120

Definition 6. Let r and f be two integers, r, f > 1. Let also V$“f) = {al?j (1 Qi <r,
1 <j<-f) and 71, a permutation of {1,2,. . . , Y) defined as fallows. If r is even:

71,(i) =
{

2i- 1, iE{l,...,r/2};

2i - r, iC{r/2+ l,...,r}.

If r is odd:

I’ 1, iE{l,r};

n,(i) =

i

r- 1, i=(r + 1)/Z;

r-2(i- l), iE{2,...,(r+ 1)/2- 1);

2i-r- 1, iE{(r+ 1)/2 + l,...,r- l}.

Language L,,f is specified as follows:

Note that if r=Zn then nt, is the permutation [1,3,5 ,..., 2n - 1,2,4,6 ,..., 2n], if

r=2n-1 then q. is the permutation [1,2n-3,2n-5 ,..., 5,3,2n-2,2,4 ,..., 2n-4,
2n - 11. The effect of rc, in the cases r = 6 and r = 7 is shown for illustrative purposes

in Fig. 4. Below we often use the fact that for all r > 1, n,(1) = 1 and z,.(r) = r.
Observe that there is an order cl, cz,, . , c,.f of Vpf) such that L,f C c:ct . . . c$.

In the following we wil\ call segment each substring wh, 1 dh Gf, in the definition of

a string in L,f. For 1 <S <Y, we will also use ?& to denote the set {a, 1, us.2 . . . , as,f},
which we will refer to as a terminal group for L,f. Let 2 be a set of terminal

i 1

I

n,(i) 1

i 1

I

A,lif I

3 5 2 4 6

r =6

2M i
5 3 6 2 4 7

r =7

Fig. 4. The permutation xr for r = 6 and r = 7.

0. Rambow, G. SattalTheoretical Computer Science 223 (1999) 87-120 97

G = (VN, V~+‘,S);
P = {piIl<i<3+2r};

PI : (S)+(AI,IQI . ..AI./Q~);

PZ : (QI,...,QI)-‘(RIA,I,...,R/A,/);
p3 : (RI ,..., Rf)-‘(d’) ,..., u(f)), a(‘)=A2,,A3,,...Ar-l,,,

a(l) =A n,(2),jAnr(3),j ” .ff+(r-l),j, 2<j<f;

P3+j : (Aj,I,...,Aj,/)--‘(a~,IA,,l,...,aj,fAj,f), 1 <j<r;

P3+r+j : (Aj,I,...,Ai,f)--‘(ai,i,...,aj,f) 1 <j<r;

Fig. 5. A (r - 2)-LUSCG(f) grammar for L,f.

groups for L,,f. If pa{aIa~&, &EZ}, then we write paz. For r>3, the set

{i& 12 <s <r - 1 } will be denoted 3@~f).

Example 2. Language L,f can be derived by a grammar in (r - 2)-LUSCG(f), for

f 2 1 and r 24: such a grammar is defined in Fig. 5. We have p(pl) = p(pz) = 2,

p(p3) = r - 2 and p(ps+j) = 1, P(ps+r+j) = 0 for 1 <j 6r; the rank of p3 determines

the rank of G. Observe that p3 covers &?(‘,f).

In Lemma 5 below we will show a basic fact about our family of languages, namely

that, for any r > 6 and f > 2, any grammar in LUSCG that derives L,,f cannot have a

production that covers more than one, but fewer than r - 2, terminal groups in .@@,f).

To do this, we need first some intermediate results. In the following discussion, we will

be referring to an implicit LUSCG of fan-out f generating L,,f; hence, for example,

whenever we mention a symbol as,q, the ranges of s and q are implicitly stated.

The next lemma shows that for languages L,f, the properties of covering a set

of terminal symbols and of covering the set of associated terminal groups cannot be

distinguished.

Lemma 2. Zf a production p covers some ~2 C VP’), then p covers {a~ 1 as,q E ~2).

Proof. Let d’ = Ua,,,Ed &. If d = &’ the statement trivially holds. Otherwise, let

by&’ be such that pad but p $ dU{(b}. C onsider a derivation of the form

(S,Z@)) so (usAtz4, . . . Ut__lAtut,zl(A”...‘A’))

%2 ~~0~1~1 ..~k_Iwt,~2)

SiSG (~O~IW . . . klW,0), (2)

where ui,vjE(Vpf))*, and t 3 1. (Note that such a derivation exists since p covers &.)

Let m be the number of instances of b in uoui . . . ut. Since p covers d, there exists

98 0. Rambow, G. Sattal Theoretical Computer Science 223 (1999) 87-120

a second derivation

with u:,x~ E (VP’))* and 7~ some permutation of { 1,. . . , t}, such that the number of

instances of each a E &’ in string ~1x2 . .xt exceeds M&m and the number of instances

of each aE V$r,f) in string z.&xx(t)u~ . . u~_~x~(~)u~ exceeds MG. Since J$! U {b} is not

covered by p, the overall number of instances of b distributed within ~1x2 . xt must be

bounded by MG. We can combine (2) and (3) to obtain a third string uoxrul . . . ut-lxtut

in L,f, for which the number of instances of some aS,q E& with bEG differs from

that of b, contradicting the definition of L,f. We conclude that no such a b could

exist. 0

Next we show (in Lemma 4) that whenever (an instance of) a nonterminal A in

the left-hand tuple of a production p covers {as,q,as,q~}, i.e. a set of two symbols

belonging to the same terminal group but to different segments, then p covers the

whole of V4”,f). We prove the result in two steps.

Let a and b be two symbols in V$‘Tr). Observe that the set of all terminal symbols

occurring between a and b (including a and b) is the same for all strings in L,f.
We will call this set the in-between set of a and b.

Lemma 3. Let p be a production such that an instance of a nonterminal symbol A

in the left-hand tuple of p covers (by means of p) the set {a, b} C V$r,f’. Then p
covers the in-between set of a and b.

Proof. Let & be the in-between set of a and b. If Se = {a, b}, the lemma holds

trivially. Otherwise, let d’= JZZ - {a, b} (~8 f0). Since A a {a, b}, there must be a

derivation of the form

where A=Ak, Ui,vjE(V$r’f))* and t 2 1, such that more than Mo instances of symbols

a and b are found in nk and more than k& instances of each symbol in V$“’ are dis-

tributed within the String uOUl . . . uk_, Vk,.dk . . . wt. From the definition of L,/ it follows

that all instances of the symbols in &” must occur in ok. But then p covers &‘. 0

We can now prove the previously mentioned result.

0. Ramhow, G. Sattal Theoretical Computer Science 223 (1999) 87-120 99

Lemma 4. Let f 22 and r 2 1. Zf a nonterminal A from the left-hand tuple of a

production p covers {aS,q, as,q/ } & Vpf) for some s and q <q’, then p covers Vpf).

Proof. Since x,(r) = r and n,(1) = 1, c+,~ and al,q+l are in the in-between set of a,,q

and aS,4/. Then p must cover {a,.,qral,q+l } by Lemma 3. By Lemma 2, p must cover

{~,a,}. Let B b e a nonterminal that covers ai,i by means of p (which should exist

by Lemma 1 applied to d = F U ZG). If B covers {a,,~, a}, a a member of C, then

by Lemma 3, pa {aj, 1 1 1 <j < r}, and we are done by Lemma 2. Suppose instead that

B covers no member of &. Since every U,i is covered by at least one nonterminal

from the left-hand tuple of p (again by Lemma 1 applied to d =F U a,) and since

we assume that p has at most f nonterminals, there must be a nonterminal from the

left-hand tuple of p which covers two members of Zi& say ar,u and a,.,,/ with u <u’.

Again by Lemma 3, p a {aj,u/ 1 1 d j d r}, and we are done by Lemma 2. 0

We now use the previous results to derive a basic property of G that will be used

to show the major result.

Lemma 5. Let f a2 and r >6. Zf a production p covers more than one terminal

group in B@,f), then p covers S&,f).

Proof. Assume that (Al,. . . , A,), t > 1, is the left-hand tuple of p. First we show that,

if p a {a,,=} for 6, a,~ E C8(r,r), s <s’, then the only interesting case for us is t = f

and Ai a {a,i, a,~,~} for 1 <i < f. By Lemma 1 (applied to d = G U a,/) symbols aS,q

and a,,‘, q # q’, must be covered by some (instances of) nonterminals in the left-hand

tuple of p. If any nonterminal A in the left-hand tuple of p covers {~~,~,a~,~~}, then by

Lemma 4, p covers all symbols in Vpf). A similar statement holds for s’ instead of s.

The remaining possibility is that t = f and for all i, 1 <i < f, Ai covers a set including

exactly one terminal in & and exactly one terminal in q. W.1.o.g. we may assume

that Ai a a,i, 1 <i < f. Assume also that I is the least index such that Ai a {a,[, a,/,j},

for some j > 1. Then we would have that instances of a,/,1 follow instances of a,l,j in

the derived string, contrary to the definition of L,,f. Thus, in the following, we will

deal only with the case Ai a {a,i, a_yt,i} for 1 did f.
Since A, covers {a,i,a,~,l} by means of p, by Lemma 3 we conclude that p must

also cover {a,~,a,+i,i}, and hence {&a,+~ } by Lemma 2. Again we restrict our atten-

tion to the only interesting case in which Ai a {Cls,i, a,+l,i}, 1 d i d f. By investigating

the case i = 2, we now show that pa {u~_Q, aI,z}. We distinguish three cases.

Case 1: r is even. It can be seen from the definition of L,f that ar_1,2 and ~22,~

are in the in-between set of as,2 and aS+1,2. We have that p covers {ur-~,2,a2,2} by

Lemma 3.

Case 2: r is odd and s # r - 2. It again follows from the definition of L, f and from

Lemma 3 that pa {u~_~,J,u~,J}.

Case 3: r is odd and s=r-2. Then A2a{a,_z,~,a,_i,z}. By Lemma 3 and from the

definition of L,,,f, p must also cover {u~_~,J,u~,J}; by Lemma 2 p covers {us,ur_-2}.

100 0. Rambow, G. Sattal Theoretical Computer Science 223 (1999) 87-120

One more time we restrict our attention to the case in which Ai a {q, 1, q-2,1}. Since

r > 6, we can apply the same reasoning to see that p covers {G, q}. But since 3 # r-2,

we are now in Case 2.

We may conclude that pa{a,_i,z,az,z}. By Lemma 2, {u2,i,ar_i,~} must also be

covered by p. The only interesting case is if this set is covered by Al. But then by

Lemma 3 pa{aj,l 12<jdr - I}, and we are done by Lemma 2. 0

The following lemma presents a property of derivations in G that will be used to

“factorize” derivations for some sentences in L,,f. We need to introduce two additional

notions. Let p be a production whose left-hand tuple is (Al,. . . ,At), t d f. Assume the

existence of a derivation of the form

(S,I(‘)) sSG (uoA,(,)u, . . ut_lA.(t)ut,I(A1,...,A,)),

where ui E (V$“f))* and 7c is some permutation of {l,...,t}. Then uoA,(,)ul “‘~~-1

A,ct)ur is called a p-factorized sentential form. Let a, b, c be different symbols in

Vpf’. We say that b is isolated in the above sentential form whenever, for strings

x,y V z&q*, > 2 one of the following conditions is realized: (i) uo =xbycv, (ii) ui =

xuybvcz for some j, 1 <j <t - 1, or (iii) tit =xuybv. Note that whenever a terminal

symbol b is isolated in a p-factorized sentential form, then p cannot generate b (be-

cause all occurrences of b in a sentence of L,f are consecutive).

Lemma 6. Let f 22, Y > 6. Let p be a production such that p a%?(‘,f) and let

uoAlu, . . ul_lAtut, t d f, be a p-factorized sentential form. Then for every termi-

nal group KE.G?@~~) there exists a terminal symbol aE?& such that a is not found in

the string UOUI . . ut.

Proof. For the sake of contradiction, assume that ucui . . . ut contains instances of every

terminal symbol in some z~98(‘,f). First of all, we claim that no Ui, Odid t, can

contain two different terminals from a,. From the definition of L,.,f it can be seen that

for any as,qr aS,qf in K, q # q', the in-between set of aS,4 and aS,4~ contains at least one

terminal b from some GE %?@,f), s’ # s. If us,q and as,qf are included in Ui, then b will

be isolated in the p-factorized sentential form and p could not generate b, contrary to

the hypotheses. This proves our claim.

Let I= x,(r - l), i.e., I= r - 2 if r is even, I = r - 3 if r is odd. To prove the

lemma, we will distinguish three cases.

Case 1: s${2, I}. If any as,q EG is included in us, then u2,1 to its left will be

isolated and p could not generate a2,1, contrary to the hypotheses. Similarly, if any

aS,4 is included in ut, then al,f to its right will be isolated and p could not generate ar,f,

again a contradiction. We conclude therefore that the terminals in & are all contained

within ~1 . . . ~~-1. Since t < f, there will be some ui, 1 <i < t - 1, which contains two

different terminals from &, contradicting our claim.

Case 2: s = 2. If any a2,q E& is contained in ut, then ai,f to its right will be isolated

and p could not generate such a symbol. From our claim and the definition of L,f, it

0. Rambow, G. Sattal Theoretical Computer Science 223 (1999) 87-120 101

follows that t = f and each a2,q is contained in q-1 for 1 <q < f. Consider now Ai.

Since p covers 9P,f) and ui contains a2,2, Al must cover at least the set {a2,1,a3,~}

(whose elements occur to the left of a2,2 in strings of L,,f). By Lemma 3 p covers the

in-between set of a2,1 and a3,2, which includes al,2; therefore p covers Zii by Lemma 2.

But this is impossible, since us contains an instance of a2,1, which would be to the

left of the instances of al,1 generated by p, contradicting the definition of L,,f.
Case 3: s = 1. If any aj,q EZ~ is contained in ~0, then a2,1 to its left will be isolated

and p could not generate such a symbol. Again it follows from our claim that t = f
and each al,q is contained in uq, for 1 <q < f. Consider Al. Since p covers B@,f),
u1 contains al,l, and 242 contains al,2, A2 must cover at least the set {a,._~,l,a3,2}
(whose elements occur in between al,1 and al,2 in strings of L,f). By Lemma 3, p

covers the in-between set of a,_,,, and a3,2, which includes a, 1; therefore p covers K

by Lemma 2. This is impossible, because uf contains an instance of ai,f, which would

be to the right of the instances of a,f generated by p, contradicting the definition

of L,f. 0

The proof of the following theorem, which refers to all previous results, shows that,

for all sentences w in some subset of L,f, any derivation in G of w can be partitioned

into two parts. In a sense to be made more precise below, the first part of the derivation

cannot generate all terminal symbols in any terminal group in 9?(raf), while the second

part of the derivation uses productions that do cover g@,f).

Theorem 1. Let f 32, r 36. Then we have L,,f c_Y((r - 2)-LUSCG(f)) -

P((r - 3)-LUSCG(f)).

Proof. A grammar in (r - 2)-LUSCG(f) that derives L,,f has been presented in

Example 2. To prove the statement, we show that the assumption of the existence

of GE (r - 3)-LUSCG(f) such that L(G) = L,,f leads to a contradiction.

Let AG be the maximum number of terminal symbols in the right-hand tuple of a

production of G. Let w be a sentence in L,f such that #,(w)>(r - 3) .A4o + AC

for every a E Vpf), and let also 9 be a derivation in G for w. Let pl be the first

production used in q, i.e., n has the form (,!$Z(‘))%o (cc,Z’) %G (w,@). S is a pl-

factorized sentential form and, by the choice of w, p1 covers .@“,f). Let pl,~, . . . , pl,k,,

1 d kl br - 3, be the sequence of productions used in ye to rewrite the right-hand tuple

of pl. (Hence, for some string < which is a permutation of pi,J,. . . , pl,k,, p--f 5 is

a production in II of der(G).) If among these productions there are some that cover

@‘,f), we arbitrarily choose one and call it ~2. We iterate the step until either we

arrive at a production pt, 12 1, whose right-hand tuple contains only terminal symbols,

or we arrive at some production pl, 12 1, used in q such that pi covers 98”~f) and

none of the productions that are used in q to rewrite the right-hand tuple of pt covers

#,f) (see Fig. 6).

Let (Al , . . . ,At), t < f, be the left-hand tuple of pt, let rt be some permutation

of { 1,. . . , t} and let w = UOU,(~)U~ . . ~~-lu~(~)u~, where vi is the substring derived

102 0. Rambow, G. Satta I Theoretical Computer Science 223 (1999) 87-120

W

Fig. 6. A derivation of w in G, represented as a derivation tree in der(G). The part of the tree above pro-

duction p, cannot generate all terminal symbols of any of the terminal groups in ~#(~,f). By the construction

of w, these symbols must therefore be covered by the productions that are the daughters of pt.

under q by the nonterminal Ai in the left-hand tuple of PI, 1 <i < t. Then string

uo&(l)ul . . . z.Q_~~,(~)u~ is a pr-factorized sentential form. By Lemma 6 we have

that, for every terminal group %~%?@,f), there exists a terminal a,,, that is not con-

tained within string uoul . . . ut. Hence, more than (r - 3) . A4c + AC instances of each

a s,q,, 26s<r - 1, are generated under q from the nonterminals in the left-hand tu-

ple of pt. Thus, the right-hand tuple of pt cannot contain only terminal symbols.

Now let pl,1,...,pl,k,, 1 ,< kl dr - 3, be the sequence of productions used in y to

rewrite the right-hand tuple of PI. (Again, for some string r which is a permutation

of Pl,I,..., p&k,, pt --f 5 is a production in ZZ of der(G).) The right-hand tuple of pl

itself cannot contain more than AC instances of each as,qz, and therefore pl, 1,. . . , pl,k,

must generate more than (r - 3) . hi% instances of each as,qz. Since kl <r - 3, by a

counting argument we conclude that for each s, 2 <s <r - 1, there must be at least one

pl,i, 1 <i <kl, such that pl,i generates under q more than Mo instances of as,q,. Again

by a counting argument, we derive that at least one pl,i, 1 <id $, generates more than

Mo instances of two symbols as,q, and a,~,,, , s # s’. Hence pl,i a {as,qs,ast,q,, }. Then

we have that pl,i covers two terminal groups in 9@,f), by Lemma 2, and pl,i covers

&?(“,f) by Lemma 5. This contradicts the choice of production PI: we conclude that

there can be no derivation in G for w, that is, grammar G does not exist. 0

We now turn to subclasses 2-LUSCG(f) and 3-LUSCG(j7, f32. We first show

that for f =2, they collapse.

Theorem 2. 9(2-LUSCG(2)) = 9(3-LUSCG(2)).

Proof. We show how to convert a grammar GEM-LUSCG(2) - 2-LUSCG(2) into

G’ ~2-LUSCG(2) such that L(G) =L(G’). Let p be a production of G of rank three.

Assume first that q(p)=2 and let p be of the form (At,Az)+(crt,a2) with al =ug

Blul ... ul_ 1 Bpq and d12 = v&t VI . . *v,.-~C~V,., where BiyCiEVN, ui,viEV,*, and where

1, r are nonnegative integers with 3 < I + r < 6. Let ZZ, = { ~1, ~2, ps} be any multiset

of productions of G that rewrites the right-hand tuple of p. We distinguish three

cases.

0. Rambow, G. Sattal Theoretical Computer Science 223 (1999) 87-120 103

Case 1: 1, r > 1. By a counting argument, there must be Ph E II, such that (p(ph) = 2

and ph rewrites two nonterminals among B,, BI, Cl and C,. Assume ph rewrites B, and

Ci. For new nonterminal symbols [p, ph, l] and [p, ph, 21, construct productions

([P, Ph, 11, [I’, ph,21) 4 (~04 . . .Bl-lwl, fJ1c2.. . cJJr> (5)

to be used by G’. By assumption, the productions in (5) have rank not greater than

two. The remaining cases for ph are handled in a similar way.

Case 2: I= 1 or r = 1. Assume I= 1. Choose production ph E IIp such that ph

IXXTiteS B1. If cp(ph) = 2, ph also rewrites nonterminal C, for some 1 <q < r.

If q $ { 1, r}, then for new nonterminal symbols [p, ph, l] and [p, ph, 21 construct pro-

ductions

([p,Phr1l,[P,Ph,2l)~(~OCl .“cq-luq-1, Q&+1 . . * G&I (6)

Productions in (6) have rank not greater than two. If q = 1, q = r or q(ph) = 1, we

have subcases that can be handled with just one new nonterminal.

Case 3: I = 0 or r = 0. Assume I= 0. Choose production ph EIIp such that ph

rewrites Cl. If q(ph) = 2, ph also rewrites nonterminal Cq for some 2 <q <r. If q $!

(2, r}, then for new nonterminal symbols [p, ph, l] and [p, ph,2] construct productions

([p,Ph,1],[P,Ph,21)t(~lC2’..Cq-l~q-l, ~qcq+l”‘crb). (7)

Again, productions in (7) have rank not greater than two. If q = 2, q = r or q(ph) = 1,

we have two subcases that can be handled with just one new nonterminal. This exhausts

all cases in which (p(p) = 2.

Finally, if p is of the form (A) + (a), we can proceed as in Case 3 above. q

Next we will show that for any integer f>3, the class 2-LUSCG(f) is properly

included in 3-LUSCG(f). The family of languages L5,f studied at the beginning of

this section cannot be used in order to prove this separation result, and we have to

define new languages to which we will restrict our attention in what follows.

Definition 7. Let f be an integer, f 2 3, and let @) = {Ui,h, a&h, Us&, a4,h, as,h 1

1 <h < f }. Language Qf is specified as follows:

Qf = {w~Jv~...w~ 1 w1 =a~,,a~,,a~,,a~,,a~,,, ~2=a~,~a~,~a~,~a~,~a~,~,

Wh = a~,ha~,ha~ha~,ha~,h9 3dhdf,ij21, l<j<5}.

As in the case of languages L,f, we will call segment each substring Wh, 1 d h Q f,
in the definition of a string in Qf. We will also use the terminal group notation

104 0. Rambow, G. Sattal Theoretical Computer Science 223 (1999) 87-120

4 = {4,1,4,2 CZ,,~}, l<s<5. F’ mally, the set {Z&@,a} will be denoted 9??(f).

We now study some properties that are common to all grammars in LUSCG that derive

languages Qf. (Henceforth, we will always assume f 23.) In what follows, there is

a strong similarity with the properties of languages L,f that have been investigated

so far; for this reason, sometimes proofs will be omitted; in the remaining cases, our

arguments will be simpler than those used for languages L,,f, due to the fact that

languages Qr depend upon only one parameter.

Assume that G ELUSCG is a grammar of fan-out f deriving some language Qf.

We start with three properties of G that correspond to Lemmas 24. Let a and b be

two symbols in V+r). For any string w in Qf, the set of all terminal symbols occurring

between a and b in w (including a and b) is always the same. Again this set will be

called the in-between set of a and b.

Lemma 7. For every production p of G, the following statements hold:

(i) if p covers some d L V$” then p covers {Z& 1 as,q E &};
(ii) if a nonterminal symbol A in the left-hand tuple of p covers (by means of p)

the set {a, b}, then p covers the in-between set of a and b;
(iii) if a nonterminal symbol A in the left-hand tuple of p covers (by means of p)

the set {aS,q, a,,,/}, q #q’, then p covers V$f’.

Proof. Statements (i) and (ii) can be proved using the same arguments found in the

proofs of Lemmas 2 and 3. To prove statement (iii), observe from the definition of

Qf that as,q and u~,~+l are in the in-between set of aS,4 and aS,4/. We then proceed

exactly as in the proof of Lemma 4, taking r = 5. 0

We now derive a basic property of productions in G. What follows is the analogue

of Lemma 5 for languages Qf .

Lemma 8. If a production p of G covers more than one terminal group in 9&f), then
p covers BCf).

Proof. Let p cover groups z and G in 93(f), s <s’; assume also that (Al,. . . ,At),
1 d t d f, is the left-hand tuple of p. As in the proof of Lemma 5 we may restrict

ourselves to the case that t = f and Ai a {a,,i,a,~,i} for 1 did f. There is a finite

number of cases for the pair s,s’: from the definition of Qf we see that in all cases

a terminal symbol a,jt,i is included in the in-between set of a,i and a,t,i for some

i, where FE .9?(f) and s” 6 {s,s’}. By Lemma 7, p must cover {a,i, a,~,i,a,~~,i} and

therefore 98(f). 0

The notion of p-factorized sentential form for a production p and the associated

notion of isolated symbol have been introduced in the discussion preceding Lemma 6.

These notions will also be used in the following statement, which represents for lan-

guages Qf the analogue of Lemma 6.

0. Rambow, G. Sattal Theoretical Computer Science 223 (1999) 87-120 105

Lemma 9. Let p be a production of G such that pa 93(f) and let uoA,ul ’ . . ut_lAtut,
t d f, be a p-factorized sentential form. Then for every terminal group KE B(f) there
exists a terminal symbol a EK such that a is not found in the string uoul . . . ut.

Proof. We assume that ~0~1 . . . ut contains instances of every terminal symbol in some

a, ES@“) and derive a contradiction. First, we claim that no Ui, 0 <i< t, can contain

two different terminals from &. Assume the contrary. From the definition of Qf it can

be seen that at least one terminal from some a,l~ 99(f), s’ #s, will be isolated in the

p-factorized sentential form. Then p could not generate it, contrary to the hypotheses.

To prove the lemma, we then proceed by distinguishing three cases.

Case 1: s = 4. If any a4,q EG is included in ug, then a2,1 to its left will be isolated

and p could not generate az,~, contrary to the hypotheses. A similar argument applies

if any a4,q is included in ut. Since t d f, we conclude that there is some Ui, 1 < i < t - 1,

which contains at least two different terminals from a. But this contradicts the above

claim.

Case 2: s = 2. If any a2,q EG is contained in ut, then a3,f to its right will be isolated

and p could not generate such a symbol. If t < f we establish a contradiction using

again the claim above. Assume therefore t = f and each a2,q is contained in uq-i

for 1 d q < f. Since p covers %9(f), by Lemma 1, ax, 1 and a3,2 must be covered by

some nonterminals in the left-hand tuple of p. Since ug contains a2,1, u1 contains

a2,2 and symbols a3,1 and ax,2 occur between symbols a2,1 and a2,2 in strings in Qf,

no nonterminal other than Al in the left-hand tuple of p can cover a3,1 and a3,2.
We conclude that Al must cover {a3,1, a3,2}. By statement (iii) of Lemma 7, p covers

V4f) and then Fi. But this is impossible, since uo must contain at least one instance

of al, 1 to the left of a2,1, which is therefore isolated.

Case 3: s = 3. If any a3,q EG is contained within ug, then al, 1 to its left will be

isolated and p could not generate such a symbol. Again we deal with the case t = f
and a3,q in uq for 1 dq < f. With an argument similar to Case 2, we can argue that

p covers as. Again this is not possible, because uf must contain at least one instance

of a5,f to the right of a3,,{, which is therefore isolated. 0

The technique used in the proof of Theorem 1 along with the above lemmas can be

used to show the following result. The proof is omitted because of its strong similarity

with the one of Theorem 1.

Theorem 3. Let f be an integer, f 33. Then we have Q,f E _Y(3-LUSCG(f)) -

9(2-LUSCG(f)).

To conclude this section and to complete our picture of the rank hierarchy for fixed

values of the fan-out parameter, we give a last result that compares the subclasses of

LUSCG of ranks one and two. The proof of the result, however, must be deferred to

Section 5, where we will use results of Section 4 along with an equivalence result that

allows us to transfer to LUSCG some facts that are already known for the class of

finite copying parallel rewriting systems.

106 0. Rambow, G. Sattal Theoretical Computer Science 223 (1999) 87-120

Theorem 4. Let f > 1. Then _Y(l-LUSCG(f)) is properly included in _Y(2-

LUSCG(f)).

Section 5 will complete our investigation of the interaction between the fan-out and

rank complexity measures by transferring the rank hierarchy results of this section to

parallel rewriting systems and combining them with a fan-out hierarchy result that is

well known for the latter class.

4. Closure properties

This section investigates some language-theoretic properties of classes r-LUSCG(f),

r, f 3 1. We will use these results in Section 5.

A family of languages is called an abstract famiZy of languages (for short AFL), if

it is closed under union, concatenation, E-free Kleene closure, E-free homomorphism,

inverse homomorphism and intersection with regular languages. A full AFL is an AFL

which is also closed under arbitrary homomorphism.

Theorem 5. For integers r 32 and f 3 1, Z’(r-LUSCG(f)) is a substitution-closed
fuZZ AFL.

Proof. Since for r 22 and f 2 1, r-LUSCG(f) contains all regular languages, it is suf-

ficient to show closure under substitution and under intersection with regular languages

[20, p. 1261.

To show closure under substitution, consider a grammar G = (V,, VT, P,S) in

r-LUSCG(f). For each a in VT, let L Cal be a language in Z(r-LUSCG(f)) and

let Gca) = (V$), VF’, P(‘), SC”)) b e a grammar in r-LUSCG(f) that generates L@). We

assume that V$) and V$” are disjoint for all a, b E VT, a # b, and that V$) and VN are

disjoint for all aE VT. We construct a new grammar

where VA and P’ are defined as follows. Let 6~ be the length of the longest sequence

of consecutive terminal symbols introduced by a rule in P. Let

To construct P’, let p be a production in P of the form (At,. . .,A,) +(a~,. . .,at),
where l<t=Gf and for each k, I<k<t, We have ak=Uk,OBk,lUk,l”‘Uk,[~__lBk,[~Uk,It,

lk 20, Bk,i E V, for 1 <i< Zk and f.dk,jE VT* for O<j< lk. For every lmpk Z= (~1, VI,

. . . . U~,Z+) such that ui,UiEV,* and Iuil,/uil<8o, 1 di < t, we add to P’ the production

PT : ([~I~l~ll,..., [~th+l> + (CwAlQ, PI,. . .T [Got, PI).

0. Rambow, G. Sattal Theoretical Computer Science 223 (1999) 87-120 107

Furthermore, for every r as above and for every a E VT and 1 d h d t, we add to P’ the

production

Pr,h,a:(Ml,Pl,..., L&-l, PI, bwhh, PI,. . . , [4dh, PI)

-+([~l,Pl,..., [J&-l, pl,~%wh, PI,. . ., [%4% PI)

and the production

P:,h,a:([4>Pl,~~~, k-1, PI, [w&w, PI,. . . , [w&h PI)

-([~l,Pl,..., k-1, PI, [Wash, PIS’? . . ., [&Ah PI).

Finally, we add to P’ the production

where ~~=[ucoB~II[u~,~B~,~I...[u[k- B 1 k, lk uk, 1~1, 1 d k d t. The construction is carried

out for every p in P.
It is straightforward to show that G’ generates the language whose strings are ob-

tained from strings in L(G) by replacing each a E VT with some string in L@); we omit

the details. We have p(p’) = p(p), p(pT) = 1 and p(p,,h,,) = p(p&) = 2, for every

p in P and every choice of r, h and a. Thus, p(G’) = p(G). Since all productions in

P’ derived from p in P preserve the fan-out of p, we have G’EPLUSCG(f). This

proves closure under substitution.

As far as intersection with regular languages is concerned, we anticipate here some of

the contents of the next section (Theorem 6) where an equivalence result is presented

between classes r-LUSCG(f) and classes r-MCFG(f) studied in [22]. In [22, Theorem

3.91 it is shown that, for every f 2 1, U,> 1 r-MCFG(f) is closed under intersection

with regular languages; their proof preserves parameter Y. Hence our result follows

from Theorem 6. 0

We obtain the following two corollaries, the first of which was proven (more simply)

in [9, Theorem 5.11 (for finite copying top-down tree-to-string transducers) and in [22,

Theorem 3.91 (for multiple context-free grammars).

Corollary 1. For f S 1, Z(LUSCG(f)) LY a substitution-closed full AFL.

Corollary 2. For Y 3 2, Y(r-LUSCG) is a substitution-closed full AFL.

5. Implications for parallel rewriting systems

In this section we provide an overview over some classes of finite copying paral-

lel rewriting systems that have been defined in the literature. We start by proving a

generative equivalence relation between these formalisms and the class LUSCG. The

108 0. Rambow, G. Sattal Theoretical Computer Science 223 (1999) 87-120

importance of such a result is that it provides an original characterization of finite

copying parallel rewriting systems in terms of the locality restriction that was intro-

duced in Section 2. At the same time, the equivalence result maps the fan-out and rank

parameters defined for LUSCG into synchronized parallelism and independent paral-

lelism, respectively, as defined for the parallel rewriting systems we consider here. In

this way we can transfer the results presented so far and show how independent par-

allelism induces an infinite non-collapsing hierarchy in parallel rewriting systems with

degree of synchronized parallelism bounded by a constant greater than one. This hierar-

chy is orthogonal to the non-collapsing hierarchy induced by synchronized parallelism

that has been previously discussed in the literature. The hierarchy result, combined with

the results of Section 4, also provides an answer to a question that was left open in

the literature. In what follows, we will use the term rank of a context-free grammar to

refer to the greatest number of nonterminal symbols that can be found in the right-hand

side of the productions of the grammar.

We start by relating the class LUSCG to a class of rewriting systems known as

multiple context-free grammars (MCFG) introduced in [14,22]. For notational con-

venience, we present MCFG through a notational variant of this class that in [26]

is called string-based linear context-free rewriting system. This variant requires the

“information-1ossless” condition (see [22]) while MCFG does not. However, Seki et

al. [22] show that this does not affect the generative power of the class (their Lemma

2.2). ’ We discuss the relationship between LUSCG and MCFG in some detail, since

existing results will then allow us to relate LUSCG to other known formalisms as well.

Let Vr be an alphabet of terminal symbols; in the following we will be interested in

functions mapping tuples of strings in VT into tuples of strings in VT. For integers r

and f, r 2 0 and f > 1, we say that g is an r-ary function if there exist integers f; > 1,

l<i<r, suchthatgisdefinedon(VT)fi x(V;)f’x ... x(V,*)J; wesaythat g has

fan-out f if the range of g is a subset of (I’,*)f . Let yh, xij, 1 <h < f, 1 < i < r and

1 <j <h, be string-valued variables. A function g as above is said to be linear regular
if it is defined by an equation of the form

d(Xl, 1 ,...,xl,f,),..‘,(xI;l,...,~r,~)>=(Yl,...,Yf), (8)

where (yi,..., yf) represents some grouping into f sequences of all and only the vari-

ables appearing in the left-hand side of (8) (without repetitions) along with some ad-

ditional terminal symbols (with possible repetitions). The following definition is based

on [26, p. 1371 and [22, p. 1961, and can easily seen to be a notational variant of

either.

t String-based linear context-free rewriting system is a member of the family of linear context-free rewriting
system (LCFRS) introduced in [24, 251 independently of MCFG. This family groups together a large class

of rewriting systems that operate on different types of objects, such as strings, tuples of strings, trees, graphs,
and so on. The result of rewriting is then associated with terminal strings by “yield functions”, in order to

generate string languages.

0. Rambow, G. Sattal Theoretical Computer Science 223 (1999) 87-120 109

G; = (VN, vT>s,p);

VN = {‘%%B}

VT = I[, 1)
P={p,: s --f S(A),

P2: A -+ flO9

p3: A + J-264),

p4: A + .fW>A))

Y((XIlJl2J) = (XllXl2L

fl0 = a I> [I),

.M~~llrx12)) = (tXlllr[X121),

f3((Xll,xl2), (x21,x22)) = bllX2l,xl2X22)~

Fig. 7. A multiple context-free grammar for language L = {NW 1 w E 01).

Definition 8. A multiple context-free grammar (MCFG) is a quadruple G = (V,, VT,

P,S) where V, and VT are defined as for an unordered scattered context grammar, every

symbol A E VN is associated with an integer q(A) S 1, S is a symbol in VN such that

q(S) = 1, and P is a finite set of productions of the form $:A + g(Br,&, . . . ,B,(,)),

where p(p)> 0, A,& E VN, 1 <i <p(p) and where g is a linear regular function having

arity p(p) and fan-out q(A), defined on (VT)q@I) x ... x (V;)@,(p)).

For every A E V, and tE(V;)Q(A), we write A +G t, if one of the following condi-

tions is met:

(i) A-+~()EP and go-t;

(ii) A 4 g(B1,. . . , B,(,))EP, Bi +G ti for every 1 <i<p(p), where tiE(V:)‘p(B’), and

s(t1 ,...,tp(,))=t.

We emphasize that in MCFG the rewrite relation always relates a single nonterminal

symbol to a tuple of terminal strings. For AE VN, we call q(A) the fan-out of A;

for PEP, we call p(p) the rank of p and we write q(p) = &A) whenever A is

the left-hand side symbol of p. For G E MCFG, we define q(G) = maxAEVN q(A) and

p(G) = maxpEp p(p). For r > 0 and f B 1, the class of all linear context-free rewriting

systems with rank bounded by r and fan-out bounded by f is denoted r-MCFG(f). ’

The language derived by G is the set of strings L(G) = {w (S +G (w)}.

Example 3. Let 15 be the language considered in Example 1. A grammar Gi E

2-MCFG(2) that generates L is defined in Fig. 7. Observe that nonterminal A gen-

erates all tuples of the form (w, w), with w EQ.

The following theorem establishes a strong (rank- and fan-out-preserving) equiva-

lence relation between LUSCG and MCFG. The proof is conceptually straightforward

but notationally complex; we defer it to the appendix.

2 Seki et al. [Z!] use the notation f-MCFG to refer to MCFG of fan-out f, while we use r-MCFG to
refer to MCFG of rank r.

110 0. Rambow, G. SattaITheoretical Computer Science 223 (1999) 87-120

Theorem 6. Let r, f be integers such that r, f > 1. Then we have Y(r-MCFG(f)) =

Z(r-LUSCG(f)).

We can immediately obtain the following rank hierarchy result for MCFG.

Theorem 7. For each f >2, the rank parameter induces a non-collapsing hierarchy

in class MCFG(f).

Proof. The statement directly follows from our main result and from Theorem 6. 0

Next we switch to other finite copying parallel rewriting systems that have been

defined in the literature, and use Theorem 6 to transfer our main result to these for-

malisms. Deterministic tree-walking transducers (DTWT) were introduced by Aho and

Ullman [2] (called TAT there). A DTWT is an automaton with a finite state control,

that visits in checking mode an input tree generated by a context-free grammar and

outputs a translation string. Since this (sequential) device can visit a given subtree

more than once, the output tree will contain separated substrings that are “homomor-

phic” to (a string representation of) that structure. Two complexity measures can be

defined for the class DTWT, usually called the crossing number and the rank. The

crossing number of a DTWT represents the maximum number of times the automaton

crosses (enters and exits) any subtree in the input tree language; because of the deter-

minism, this number is always finite (see [2]). The rank of a DTWT is the rank of the

context-free grammar that generates the input language and is finite by definition. For

f > 1 and ~20, let us denote by r-DTWT(f) the subclass of all DTWT with crossing

number bounded by f and rank bounded by r. If we regard DTWT as generative

devices controlled by some tree language, we have the following result.

Theorem 8. For each f 22, the rank parameter induces a non-collapsing hierarchy

in class DTWT(f).

Proof. In [26] it is shown that, for every f 2 1, MCFG(f) has the same generative

power as DTWT(f). The proof preserves the rank parameter. The claim then imme-

diately follows from our main result and Theorem 6. 0

Note that in [2, p. 4731 the authors mention the existence of an analogue of the

Chomsky normal form for the class DTWT, that is, the language produced by a DTWT

of any rank can also be obtained by some DTWT of rank two. We remark that this

does not contradict Theorem 8,. since the conversion into the normal form increases

the crossing number. In Theorem 11 below we give a formal proof of their statement,

by showing that if the rank is greater than two, it is always possible to decrease the

rank at the expense of increasing the crossing number.

Top-down tree-to-string transducers (yT) have been introduced in [9] as a model

of the generalized syntax-directed translation (GSDT) of Aho and Ullman [2] and,

in case the degree of independent parallelism is bounded by one, as a model of the

0. Rambow, G. Sattal Theoretical Computer Science 223 (1999) 87-120 111

controlled ETOL systems of Rozenberg [181. These parallel rewriting devices take a

tree as input, and convert it through a series of rewrite steps into a string. Each rewrite

step consumes the root node of a tree in the sentential form, and rearranges the subtrees

that are immediately dominated by this node, interleaving them with terminal strings;

these subtrees may also be copied. Rewriting is controlled by states which are explicitly

represented in the sentential form.

In what follows, we regard yT as a class of generative devices controlled by the

family of tree languages that can be generated by context-free grammars. With this

assumption, two parameters can be defined for these systems. If in a derivation the

number of copies of a subtree of the input that a tree-to-string transducer can generate

is finite, we say that the transducer has jinite copying degree. Furthermore, the rank
of a transducer is the rank of the context-free grammar that generates the controlling

tree language. We denote as r-yTf,(f) the class of all devices in yT with finite copying

degree bounded by f and rank bounded by r, f, Y > 1. The following result can now

be easily established.

Theorem 9. For each f 22, the rank parameter induces a non-collapsing hierarchy

in class yTf,(f).

Proof. In [9, Theorem 4.91 it is shown that, for each f 2 1, Y(yTf,(f))=
_!Z(DTWT(f)) (the result is achieved using a model called deterministic checking

tree transducer). The proof preserves the rank parameter for both classes. Hence the

statement follows from Theorem 8. 17

The class of ETOL systems of finite index (ETOLrm) was introduced by Rozenberg

and Vermeir [191 and Latteux [151. In [9, Theorem 3.2.21 it is shown that, for each

f 2 1, the family of languages generated by ETOL FIN(f) and 1-yTf,(f) are the same.

This gives us the following corollary.

Corollary 3. For every integer f 3 1, l-LUSCG(f) = ETOLrtN(f).

Using this result, we can now supply the missing proof for Theorem 4 in Section 3,

whose statement is repeated here.

Theorem 4. Let f > 1. Then _9(l-LUSCG(f)) is properly included in 9(2-

LUSCG(f)).

Proof. Inclusion holds trivially. We have seen that, for every f > 1, 9(2-LUSCG(f))
is a substitution-closed AFL (Theorem 5), and thus closed under concatenation. In [15]

it is shown that ‘_Y(ETOLFm(f,) is not closed under concatenation. Properness of the

inclusion follows then from Corollary 3. 0

An alternative proof of the above result can be obtained using the well known

fact that there exists a context-free language that is not contained in any of the

112 0. Rambow, G. Sattal Theoretical Computer Science 223 (1999) 87-120

subclasses _!Z’(ETOLFN(~,), fa 1 (see [9]). But we have already observed that the

subclass 2-LUSCG(1) generates all and only the context-free languages.

We can also answer an open question raised in [9, p. 1891, about whether family

_Y(yTf,(f)) is full principal for each f 22. 3

Corollary 4. For each f 22, .Z(yTf,(f)) is not full principal.

Proof. This follows immediately from the fact that, for every r 92 and for every f 22,

_!Z’(r-LUSCG(f)) is a full AFL (Theorem 5) and from our rank hierarchy result. 0

Context-free hypergraph grammars (CFHG) are rewriting systems that derive sets of

edge-labeled hypergraphs; these systems were introduced as a generalization of edge

rewriting graph grammars (see, for instance, [4]). In a CFHG, each production speci-

fies some replacement of a labeled hyperedge with a hypergraph, along with particular

conditions that allow the replacing hypergraph to be embedded within the host hyper-

graph. In this way a derivation proceeds sequentially, by replacing hyperedges in a

sentential hypergraph; but due to the many tentacles associated with each hyperedge,

the derivation can mimic some sort of parallelism. In CFHG, edge rewriting is per-

formed in a context-free fashion, so that the locality restriction is observed. It turns

out that each derivation can be associated with an underlying tree structure that can

be generated by a context-free grammar (see [8]). Two independent parameters can be

identified for a CFHG. The first one is the maximum number of tentacles associated

with a hyperedge in the grammar. The second parameter is the rank of the underlying

context-free grammar associated with the CFHG. For integers r, f > 1, we denote by

r-CFHG(f) the subclass of all context-free hypergraph grammars with rank bounded

by r and maximum number of tentacles bounded by f.

If we restrict our attention to CFHG generating string languages, that is chain-like

hypergraphs, we find the same generative power as the class DTWT, as shown in [8],

thus relating CFHG to parallel rewriting systems. We can use their result to transfer

our rank hierarchy to CFHG.

Theorem 10. For each f > 1, the rank parameter induces a non-collapsing hierarchy
in class CFHG(f).

Proof. In [8] it is shown that, for each f > 1, classes DTWT(f) and (string language

generating) CFHG(2 f - 1) U CFHG(2 f) generate the same family of languages. The

proof fails to preserve the rank parameter only in their Lemma 5.3 (p. 349). However,

in the proof of Theorem 6.5 (p. 356) the authors provide an alternative proof of

Lemma 5.3 which is in fact rank-preserving. The result then directly follows from our

main result and Theorem 8. 0

3 We are grateful to Joost Engelfriet for drawing our attention to the relevance of our result to this issue.

0. Rambow, G. Satta I Theoretical Computer Science 223 (1999) 87-120 113

r

Fig. 8. Inclusion relations of languages generated by r-LUSCG(f). The rank parameter corresponds to

columns, the fan-out parameter corresponds to rows in the array. Proper inclusion between adjacent entries

is indicated by a separation line; no separation line signifies equality.

To conclude the present section, we combine our rank hierarchy result with well-

known facts about parallel rewriting systems, in order to investigate how synchronized

parallelism and independent parallelism interact. In [9] it is observed that each sub-

class r-yTf,(i), Y 22, generates all and only the context-free languages, while subclass

1-yTf,(i) generates all and only the linear context-free languages. It is well known that

the family of linear context-free languages is strictly included in the family of context-

free languages (see, for instance, [12]). In [9, Theorem 3.2.51 it is also shown that, for

each f 3 1, there exists a language generated by subclass 1-yTr~+i) that cannot be

generated by the class yTf,(,-). We are then led to the conclusion that the two complex-

ity measures investigated in this work induce two orthogonal non-collapsing hierarchies

for finite copying parallel rewriting systems. The two hierarchies are schematically rep-

resented in Fig. 8 by means of an array.

The two hierarchies state that there is proper inclusion of Y(ri-LUSCG(fi)) in

6P(rz-LUSCG(f2)) if fi < f2 and ri <r2, or if r-1 <r2 and fi < f2. The question arises

whether we can “trade” the two types of parallelism, i.e, what the relation between

Y(ri -LUSCG(fi)) and Z(Y~ -LUSCG(f2)) is when fi < f2 and t-1 > r2, or when f I> f2
and rl <r2. As we have already mentioned, Engelfriet et al. [9, Theorem 3.2.51 show

that, for each f 2 1, there exists a language in _Y(l-LUSCG(f + 1)) that cannot be

generated by any grammar in r-LUSCG(f), f or any r 3 1. Therefore, synchronized

parallelism cannot be traded for independent parallelism. In the following theorem, we

show that the converse is not true. The theorem, which is stated for class MCFG,

shows that the rank parameter can be traded with the fan-out parameter. In the proof,

we will use the following convention: a sequence Xi,. . . ,Xj denotes the empty sequence

whenever j < i.

Theorem 11. Let f 2 1 and r>3. Then for 1 dk <r - 2 we have Z(r-MCFG(f)) 2

Y((r - k)-MCFG((K + 1)f)).

114 0. Kamhow. G. Satto/ Theoretical Computer S&nw 223 f 1999) 87-120

Proof. Let G = (V,, VT.P,S) be a grammar in r-MCFG(f‘) and let k be an integer,

1 <k<r - 2. We will exhibit a grammar G’ in (r - k)-MCFG((k + l).f) such that

L(G’)=L(G). Let G’=(V&,Vr,P’,S), where

V~=VNU{A~.,~~EP and Odi<k- I}.

We define P’ as follows. For each production PEP, p: A --t g(Bi,. . . ,B,) with t =

p(p)>r - k, we add the following productions to P’:

p’:A--tg’(B,,...,B,-li-,,A,o),

PO :A,.0 -+.~oUh,A,x~)t

PI :A,.] +a(B,-k+l,Ap,2),

pk-2 :Ap.k-2 -‘.Yk-2(&2,A,x-1)~

pk-I :f$,.k-1 -‘gk-I(&-1,B,).

The functions g; introduced above simply form larger and larger tuples from their

arguments, without appending any strings:

gk-l((Xl.1 ,...Jl,q+L,))> (XZ,I,...,,~2.~~(R,)))

= hlXl.cp(tI. ,,.XZ.l,...,X2,,,H,,),

.Yk-2~~~l.l~~~~.~I,~(B,_~))~~~2,l~~..~~2.~(R,_,)-~(B,))~

= (X1.I 9.. ~,~l,~~(R,.,)r~2,1~~~~~~2,~(B,_,),~(B,))~

9l((~I,I,...r~I,~~(H,_r,,~)r(~2,I~...~~2.~(61,_x.~,,-...+~(B,)))

= h,I ~~~.~~~l.~(E,_I,,)~~2.1 r...,XZ.rp(B,-t,:)~...~~(4))3

9O((Xl.l ~...Jl.V(B,_~))~ (x2,1 9.. .,x2.~~,(E,_I,,)~...I~(B,)))

= hl 3~~~,~l.l&?_r)~XZ.I ,...,X2,~(B,_r,,)T...+~(B,) .)

Thus, for 0 <I’ dk - I, we have the following relation:

~(yi)=;&(B,-14 <(k + I)./‘.

Now let us turn to function g’ used in production p’. In order to define this

function, we first introduce a homomorphism h from {x;.j 1 1 did t, 1 <j d cp(Bi)} U VT

to {X;,jIIdidt-k- 1,ldj~cp(Bi)}U{x,-k,,) l~j~cp(B,-k)+...+cp(B,)}UV~.

Homomorphism h is specified as follows:

if <=u, aEVr,

ift=x;,j, I,<i,<t-k-- I,

XI-k,~(B,_,)+...+w(E,_,)+/ if t=x,,j, t - k<i,<r.

0. Rambow, G. Sattal Theoretical Computer Science 223 (1999) 87-120 115

Now assume that g is defined by a relation of the kind

g(h1 ,...,Xl,rp(B,)),...,(Xt,l,...,Xl,cp(B,)))=(al,...,cr,(p)).

Then we have

S’((Xl,i,... ,+p(B,)),..., (Xt-k-l,l,...,Xt-k-l,~(~,-~_~)),

(uf,l,... ,Xt-k,cp(B,_k)+...+cp(BI)))= @(al),. . .J@,(,)))

(g’ is linear regular because g is and because h is a bijection). Thus, p(G’)dr - k,

and cp(G’)<(k + 1)f. It can easily be seen that L(G’)=L(G). 0

The above result transfers in the obvious way to the other parallel rewriting sys-

tems discussed in this section. We remark that, in the above theorem, the contain-

ment is proper, since we have already observed that there exist languages gener-

ated by l-LUSCG(f + 1) that cannot be generated by class LUSCG(f), for each

f 3 1. It is not known whether the result is optimal, i.e., whether there exist r, f

and k as in the hypotheses of Theorem 11 such that Z(r-MCFG(f)) is not included

in _%‘((r - k)-MCFG((k f 1)f - 1)). Such a result would complete our knowledge

about the class of languages generated by LUSCG, and remains as an open research

issue.

6. Remarks

We have characterized finite copying parallel rewriting systems by imposing a re-

striction, called locality, in the definition of derivation for the class USCG. This

significantly alters the formal properties of USCG. While LUSCG is known to generate

only semi-linear languages [9,25,22], USCG can also generate non-semi-linear lan-

guages [6]. And while the class Y(LUSCG) is only composed of languages in P, that

is languages whose sentences can be recognized in deterministic polynomial time,4

[7,24,22] USCG can generate NP-complete languages [5]. As shown in this work,

rewriting systems in LUSCG generate an infinite non-collapsing hierarchy with respect

to the fan-out and rank parameters. The result implies that these rewriting systems do

not admit normal forms that are defined by some bound on both complexity measures.

In contrast, two-normal forms are admitted for grammars in USCG, with respect to both

parameters. This result has been shown for matrix grammars (see, for instance, [6])

and it unproblematically transfers to USCG. Furthermore, it has been conjectured that

language L = {ww (WE@} (see Section 2) is not in p(USCG) [6, p. 421; if this

conjecture in fact holds, then _%‘(USCG) and Y(LUSCG) are incomparable.

The results of Section 3 also have interesting consequences for the recognition/

parsing problem of the generated languages, as discussed in the following. Tabular

4 In fact, [7] shows the stronger result that OUT(SAG), the class of output languages generated by a

string-valued attribute grammar, is in LOG(CFL).

116 0. Rambow, G. Sattal Theoretical Computer Science 223 (1999) 87-120

methods for the solution of the recognition problem for the class MCFG have been

presented in [22], generalizing in this way the well known Cocke-Kasami-Younger

tabular method for the recognition of context-free languages [27,3]. It is worth ob-

serving that, in contrast with the Cocke-Kasami-Younger method, these methods do

not behave “uniformly” on MCFG, in the sense that for each grammar GEMCFG a

method using a recognition matrix with a number of dimensions proportional to dc is

needed, where dc = cp(G) . (p(G) + 1) is called the degree of G. The existence of a

k-rank normal form G’ for any G in the class MCFG, such that G’ can be obtained

in polynomial deterministic time from G, would have entailed that the uniform recog-

nition problem for MCFG could be solved in deterministic polynomial time. This is

quite unlikely, since in [13,21] NP-completeness results were independently shown for

the uniform recognition problem for classes MCFG(j), f 22. (These results easily

transfer to classes LUSCG(f).) Assuming P #NP, the existence of a k-rank normal

form obtainable in an amount of time not bounded by any polynomial in the size of

the input grammar was still an open issue, leading to a possible solution to the uniform

recognition of these languages. The result presented in this paper shows that tabular

methods of the kind usually employed in context-free language recognition are not a

viable solution to the problem.

Appendix: Equivalence of LUSCG and MCFG

Class MCFG has been introduced in Definition 8 and an equivalence relation between

MCFG and LUSCG has been stated in Theorem 6; this appendix provides the proof

of Theorem 6. We have already remarked that the recursive definition of the rewrite

relation in MCFG observes the locality restriction. As a consequence, we find that in

MCFG derivations can be associated with underlying trees that can be generated by

context-free grammars. We develop here this idea and introduce concepts analogous to

those presented in Definition 3.

For a given context-free grammar G,, we call complete any derivation of the form

A so, q, v] a string of terminals of G,. As done previously in this paper, we represent

derivations in G, by means of trees whose nodes are labeled by symbols of G,. We

write T(G,) to denote the set of trees representing all complete derivations in G,. Let

G = (V,, VT, P, S) be a multiple context-free grammar. Define P(O) = {p 1 p(p) = 0) and

P(l) = P - P(O). (We are overloading symbols P(O) and PC’); it will always be clear

from the context whether these symbols denote subsets of productions of a grammar

in LUSCG or of a grammar in MCFG.) Without loss of generality, we assume that

ps is the only production in P with left-hand side S and ps EP(‘).

Definition A.l. The derivation grammar of an MCFG G, written der(G), is a context-

free grammar (P cl), P(O), II, ps), where P(l) and P(O) are the sets of nonterminal

and terminal symbols, respectively, ps is the initial symbol and n is a (finite) set

of productions specified as follows. For every p : A -+ g(B1,. . . , B,(,)) in P and for

0. Rambow, G. Sattat Theoretical Computer Science 223 (1999) 87-120 117

every sequence ~1,. . . , pp(p) of productions such that the left-hand side of pi is Bi,

16 i < p(p), production p -+ p1 . . . pP(P) belongs to II.

It should be clear that any instance A +G (Y,, . . . , Yip) of the derivation relation

in G can be associated with a complete derivation in der(G) of the form p +&G) q

for some pi P and q E (P(O))*, that is with a derivation tree in Z’(der(G)) with root

node labeled by p.

The main idea in the next theorem is to compare underlying context-free derivations

in MCFG with underlying context-free derivations in LUSCG. To do so, we need to ex-

tend the rewrite relation in LUSCG to string tuples. Let G = (V,, Vr, P, S) be a grammar

in LUSCG; in what follows we write ((yi,...,y,),Zi) +o ((81,. ..,&),&), n21, when-

ever (Yi#Y2#.“#Yn,11) +G (>#’ . . #t&,12) holds (where # is a new symbol). Let

p be a production in G having left-hand tuple (Al,. . . , A,), n b 1. Similar to the case

of MCFG, any derivation in G having the form ((Al,. . .,A,),Z(A1”‘An))%G ((WI,. . .,

w,,), @), wi E VT* for 1 <i <n, can be associated with a complete derivation in der(G)

of the form p+zer(G) v, ~E(P(‘))*, that is with a derivation tree in T(der(G)) with

root node labeled by p. We are now ready to prove Theorem 6, whose statement is

repeated here.

Theorem 6. Let r, f be integers such that Y, f S 1. Then we have 2(r-MCFG(f)) =
Z(r-LUSCG(f)).

Proof. (C) Let G = (VN, VT, P,S) be in r-MCFG(f). We construct G’ in r-LUSCG(f)
such that L(G) = L(G’). In what follows, let p : A + g(B1,. . . ,B,(,)) be a production

in P and let g be defined by an equation of the form

Assume also that symbol ps~ does not denote any production in P. We define

and G’ = (VA, VT, P’, [psr, O,O]), where set P’ is constructed as follows. We associate

with each p, specified as above, a homomorphism hp mapping set (xi,j 1 16 i < p(p),

1 <j d q(Bi)} U VT into set Vi U VT and defined as follows:

h,(t) =
[P,i,_d if t=Xi,jy

5 if (El+.

Assume that p’ is a production in P containing in the kth position of its right-hand

side the symbol A in the left-hand side of p. We add to P’ the production

118 0. Rambow, G. Sattal Theoretical Computer Science 223 (1999) 87-120

We iterate the process for every pair p, p’ as above. In addition, let ps : S -+

m,..., II,(be defined by an equation (recall that q(ps)= 1)

dh 1 >. 4l,cp(B,)),~ ..> (X&Q).1 2.. . Am>~(B,(ps),)> = (Yl).

We add to P’ the production

Note that p(G)=p(G’) and q(G)=cp(G’).

We claim that A +o (~1,. . . , yVp(~)), Yic VT*, 1 <i<cp(A), if and only if

(([P’J, 11,. . * 9 [P’h?w1M (b’J%ll >...a b’hP(41)) SG, ((yl,. . .) y&&Jj),

for any p’ and k such that the kth nonterminal in the right-hand side of p’ is A. The

claim can be easily established by associating with the derivations above the corre-

sponding trees in T(der(G)) and T(der(G’)) (which have the same height) and then

proceeding by induction on the height of these trees. Relation L(G) = L(G’) immedi-

ately follows from the claim.

(2) Let G = (VN, V,,P,S) be in r-LUSCG(f) and let der(G)= (P(‘),P(‘),17,ps)

be the derivation grammar associated with G. We construct G’E~-MCFG(f) such that

L(G) =L(G’). Define

V;={[AI,...,A q(p)] 1 (Al,. . . , A,(,)) is the left-hand tuple of p E P}

and let G’ = (VA, VT, P’, [S]), where P’ is specified as follows.

Let po be a production in P of the form

and, for l<i<cp(po), let ~i=ui,aCi,~t~i,i . ..Ci.k,~i,k,, where k,aO, u~,JEV<, O<j<ki

and Ci,j E V,, 1 <j < ki. Let also p be a production in II of the form po --) p1 . . . p,,,

and let (&,I,...,&,(~,~) be the left-hand tuple of pi, 1 <i <n. Let o be a bijection

from the set {(i,j) 1 1 <idcp(po), 1 <j<ki} to the set {Xi,j 1 1 <i<n, 1 <j<cp(pi)},

such that o((i,j)) =xif,jf always implies Ci,j = Bi’,jf. The existence of at least one

such a bijection follows from the definition of II, since ~1,. . . , p,, together must rewrite

exactly the nonterminals introduced by PO. Then, for 1 <i < cp(p~), let Yi = ui,oo((i, 1))

ui, 1 ’ ’ . O((i, k)h,k,.

We add to P’ the production

[A 1,...,A~p(p~)l~go([B1,1,...,B1,~(~,)l,...,[Bn,l,...,Bn,~p(~,)l),

where ga is a linear regular function of arity cp(po) and rank II defined by the equation

%((Xl,l ~~~~~~l,~(p,fj,-~~~(x~,l~~~~~~,,cp(p,)))= (Y1>-VYtp(pO)).

In the construction of P’, this process is iterated for every possible choice of CJ as above,

and then for every possible choice of po E P and p E II. Note that p(G) = p(G’) and

V(G) = cp(G’).

0. Rambow, G. Sattal Theoretical Computer Science 223 (1999) 87-120 119

We claim that ((Ai,...,Aq(~)), I’A’~.“A~p(R”)~jc((Y,,...)Y~(A)),O), YiEV,*, ldid

q(A), if and only if there exists a derivation in G’ of the form [AI,...,&(A)] +G’

(~1,. . .,y+,(A)). As before, this can be easily established by induction on the common

height of trees in T(der(G)) and T(der(G’)) associated with the above derivations.

Again, relation L(G) =L(G’) immediately follows from the claim. 0

Acknowledgements

We are grateful to Joost Engelfriet, Ryuichi Nakanisi and David Weir for helpful

discussion on topics related to this paper. We would also like to thank an anony-

mous reviewer for extremely helpful and detailed comments. He or she pointed out

the need for Lemma 1, and an error he or she found in a previous draft made us

change some key definitions. This research was conducted while Rambow was with

the Department of Computer and Information Science of the University of Pennsyl-

vania, and Satta was a post-doctoral fellow at the Institute for Research in Cognitive

Science at the University of Pennsylvania. The research was sponsored by the following

grants: AR0 DAAL 03-89-C-0031; DARPA NOOO14-90-J-1863; NSF IRI 90-16592;

and Ben Franklin 91S.3078C-1. Rambow was also supported by the North Atlantic

Treaty Organization under a Grant awarded in 1993 while at TALANA, Universite

Paris 7.

References

[1] A.V. Aho, J.D. Ullman, Syntax directed translations and the pushdown assembler, J. Comput. System

Sci. 3(l) (1969) 37-56.
[2] A.V. Aho, J.D. Ullman, Translations on a context-free grammar, Inform. Control 19 (1971) 439-475.

[3] A.V. Aho, J.D. Ullman, The Theory of Parsing, Translation and Compiling, vol. 1, Prentice-Hall,

Englewood Cliffs, NJ, 1972.
[4] M. Bauderon, B. Courcelle, Graph expressions and graph rewritings, Math. Systems Theory 20 (1987)

83-127.
[5] E. Dahlhaus, M.K. Warmuth, Membership for growing context-sensitive grammars is polynomial,

J. Comput. System Sci. 33 (1986) 456472.
[6] J. Dassow, G. P&n, Regulated Rewriting in Formal Language Theory, Springer, Berlin, 1989.
[7] J. Engelfriet, The complexity of languages generated by attribute grammars, SIAM J. Comput. 15(1)

(I 986) 70-86.
[8] J. Engelfriet, L. Heyker, The string generating power of context-free hypergraph grammars, J. Comput.

System Sci. 43 (1991) 328-360.
[9] J. Engelfriet, G. Rozenberg, G. Slutzki, Tree transducers, L systems, and two-way machines, J. Comput.

System Sci. 20 (1980) 150-202.
[lo] S. Greibach, J. Hopcrofi, Scattered context grammars, J. Comput. System Sci. 3 (1969) 233-247.
[I 1] A. Habel, H.J. Kreowski, Some structural aspects of hypergraph languages generated by hyperedge

replacement, in Proc. STACS, Lecture Notes in Computer Science, vol. 247, Springer, Berlin, 1987,
pp. 207-2 19.

[12] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages and Computation, Addison-

Wesley, Reading, MA, 1979.
[13] Y. Kaji, R. Nakanisi, H. Seki, T. Kasami, The universal recognition problems for multiple context-

free grammars and for linear context-free rewriting systems, IEICE Trans. Inform. Systems E75-D(1):

78-88, 1992.

120 0. Rambow, G. Sattal Theoretical Computer Science 223 (1999) 87-120

[14] T. Kasami, H. Seki, M. Fujii, Generalized context-free grammars, multiple context-free grammars and

head grammars, Tech. Report, Dept. Information and Computer Science, Osaka University, 1987.

[15] M. Latteux, Substitutions dans les EDTOL-systtmes ultralintaires, Inform. Control 42 (1979)

194-260.

1161 0. Mayer, Some restrictive devices for context-free grammars, Inform. Control 20 (1972) 69-92.

[17] D. Milgram, A. Rosenfeld, A note on scattered context grammars, Inform. Processing Lett. 1 (1971)

47-50.

[18] G. Rozenberg, Extension of tabled OL-system and languages, Int. J. Comput. Inform. Sci. 2 (1973)

31 l-336.

[19] G. Rozenberg, D. Vermeir, On ETOL systems of finite index, Inform. Control 38 (1978) 103-133.

[20] A. Salomaa, Formal Languages, Academic Press, Orlando, FL, 1973.

[21] G. Satta, Recognition of linear context-free rewriting systems, in 30th Meeting of the Association for

Computational Linguistics (ACL’92), 1992.

[22] H. Seki, T. Matsumura, M. Fujii, T. Kasami, On multiple context-free grammars, Theoret. Comput. Sci.

88 (1991) 191-229.

[23] J.W. Thatcher, Tree automata: an informal survey, in: A.V. Aho (Ed.), Currents in the Theory of

Computing, Ch. 4, Prentice-Hall, Englewood Cliffs, NJ, 1973, pp. 143-172.

[24] K. Vijay-Shanker, D.J. Weir, A.K. Joshi, Characterizing structural descriptions produced by various

grammatical formalisms, in: 25th Meeting of the Association for Computational Linguistics (ACL’87),

1987.
[25] D.J. Weir, Characterizing mildly context-sensitive grammar formalisms, Ph.D. Thesis, Department of

Computer and Information Science, University of Pennsylvania, 1988.

[26] D.J. Weir, Linear context-free rewriting systems and deterministic tree-walk transducers, in: Proc. 30th

Meeting of the Association for Computational Linguistics (ACL’92), Newark, Delaware, 1992.

[27] D.H. Younger, Recognition and parsing of context-free languages in time n3, Inform. Control 10 (1967)

189208.

