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Leukocyte migration through activated venular walls is a fundamental immune response that is prerequisite
to the entry of effector cells such as neutrophils, monocytes, and effector T cells to sites of infection, injury,
and stress within the interstitium. Stimulation of leukocytes is instrumental in this process with enhanced
temporally controlled leukocyte adhesiveness and shape-changes promoting leukocyte attachment to the
inner wall of blood vessels under hydrodynamic forces. This initiates polarized motility of leukocytes within
and through venular walls and transient barrier disruption facilitated sequentially by stimulated vascular cells,
i.e., endothelial cells and their associated pericytes. Perivascular cells such as macrophages and mast cells
that act as tissue inflammatory sentinels can also directly and indirectly regulate the exit of leukocytes from
the vascular lumen. In this review, we discuss current knowledge and open questions regarding the mecha-
nisms involved in the interactions of different effector leukocytes with peripheral vessels in extralymphoid
organs.
INTRODUCTION

Circulating blood leukocytes are required to migrate to sites of

tissue injury and infection with the principal aim of eliminating

the primary inflammatory trigger and contributing to tissue

repair. In innate immunity, this process is largely initiated by

pathogen-associated molecular patterns (PAMPs), released by

invading microorganisms, and damage-associated molecular

patterns (DAMPs), derived from damaged and/or dead-cells, or

in response to tissue and/or cellular stress (Medzhitov, 2008).

In addition, antigens, largely through activation of resident mem-

ory T cells, can trigger recruitment of leukocytes via secretion of

various primary inflammatory cytokines. Tissue sentinel cells,

including mast cells, macrophages, and dendritic cells (DCs),

play a key role in detection of such danger signals and can

release a wide range of proinflammatory mediators to promote

leukocyte recruitment.

The primary step in leukocyte migration is the establishment of

weak and transient adhesive interactions between leukocytes

and endothelial cells of postcapillary venular walls in close vicin-

ity to inflamed tissues (Figure 1). This facilitates in situ stimulation

of leukocytes by endothelial presented chemoattractants dis-

played on the luminal side of blood vessels, propagating firm

leukocyte arrest, adhesion strengthening, crawling, and subse-

quently migration of cells out of the blood vasculature (reviewed

by [Ley et al., 2007]). This series of sequential but overlapping

steps termed the leukocyte-adhesion cascade, is primarily

mediated by twomajor adhesion receptor families, selectins (ex-

pressed on leukocytes and endothelial cells) and integrins (leu-

kocytes) (reviewed by [Ley et al., 2007]) (Figure 1). Activation of

endothelial cells is a decisive step in this process and can occur

in a rapid and protein-synthesis-independent manner (within mi-

nutes) resulting in cell-surface expression of preformed adhesion

molecules involved in initiating rapid attachment of leukocytes

to blood vessels (e.g., P-selectin). In addition, endothelial cell
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activation can occur more slowly (within hours) and involve tran-

scriptional induction of numerous leukocyte-trafficking mole-

cules (primarily endothelial cell selectins, integrin ligands, and

de novo transcribed chemoattractants [reviewed by Pober and

Sessa, 2007]). Rapid activation of endothelial cells can be

induced by inflammatory stimuli such as histamine and PAF

while slow activation can be driven by cytokines (e.g., inter-

leukin-1b [IL-1b] and tumor necrosis factor [TNF]). These modes

of endothelial cell stimulation have been termed type I and type II

activation, respectively (Pober and Sessa, 2007). Shortly after

arresting on their target blood vessel endothelial cells, leuko-

cytes must integrate additional chemotactic cues—primarily

chemokines or lipid chemoattractants (reviewed by [Alon and

Shulman, 2011; Rot and von Andrian, 2004]). These cues govern

the site and route of leukocyte migration along and through the

endothelial cell barrier, determining a potential need for chemo-

tactic crawling on the apical aspect of the endothelium to seek

permissive sites and/or additional exit cues. The latter is sup-

ported by the ability of leukocytes to extend ventral protrusions

through junctions between adjacent endothelial cells or into

the endothelial cell body, facilitating a sensing mechanism for

detection of chemotactic gradients associatedwith the endothe-

lium or in the subendothelial cell space.

Beyond the endothelium, leukocytes are required to traverse

through the pericyte layer embedded within the venular base-

ment membrane, a phase of leukocyte trafficking that can also

involve leukocyte sensitization by tissue-derived inflammatory

signals (Figure 1). The collective breaching of the venular wall

is a highly instructive process during which the transmigrating

leukocytes and both cellular and matrix components of the

vasculature undergo extensive alterations via spatially coordi-

nated bidirectional signaling events details of which have begun

to unfold (reviewed by [Nourshargh et al., 2010]). Most notably,

transmigrated leukocytes exhibit altered phenotype, enhanced

survival, and increased effector functions, such as greater ability
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Figure 1. Leukocyte-Vessel Wall Interactions
In response to a diverse range of proinflammatory triggers, released danger signals and other proinflammatory mediators can stimulate leukocytes and vascular
cells to initiate a cascade of leukocyte adhesion and motility responses on the luminal aspect of venular endothelial cells. This enables optimal scanning of the
vascular lumen for exit signals. Leukocyte rolling, firm attachment, and intravascular crawling are sequentially mediated by the indicated endothelial cell adhesion
molecules and leukocyte endothelial selectin and integrin ligands, responses that are prerequisites to leukocyte migration through venular walls. A delicate
balance between integrin-ligand microclusters and actomyosin machineries (inset) allows arrested leukocytes to scan the endothelial lumen for chemotactic exit
signals under hydrodynamic forces. This balance is spatially and temporally regulated by multiple GTPases activated primarily by chemoattractant signals. For
simplicity, initial capturing and fast rolling steps are omitted. More details of the molecular interactions are provided in the text and in Box 1. BM, basement
membrane.
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to kill and clear invading pathogens and tumor cells. Conse-

quently, breaching of venular walls not only provides a regulated

process for facilitating leukocyte migration into inflamed tissues

but also acts as a key process through which tissue-infiltrated

leukocytes are primed for delivering an effective immune

response (Nourshargh et al., 2010; Stark et al., 2013). Once in

the interstitial tissue, leukocytes can exhibit multiple forms of

leukocyte migration patterns where numerous cellular and

molecular regulatory mechanisms have been proposed (Läm-

mermann and Germain, 2014; McDonald and Kubes, 2011; We-

ninger et al., 2014). This review will provide a brief outline of

recent advances in our current knowledge of the bidirectional

interactions of effector leukocytes with different vascular beds

followed by a more in-depth discussion of the mechanisms

that regulate leukocyte breaching of postcapillary venules in

nonlymphoid tissues.

Luminal Leukocyte-Vessel Wall Interactions in
Postcapillary Venules
Within the leukocyte-adhesion cascade, each step is condi-

tional on the next (Figure 1) and multiple molecular choices at

each step provide a large combinatorial diversity and high spec-

ificity required for selective leukocyte recruitment at the right

tissue and within the correct context (reviewed by [Ley et al.,

2007]). Integrins constitute a family of about 30 heterodimers

that participate in a wide spectrum of cellular functions and

whose ligand-binding activity is rapidly regulated by cytoskele-

tally controlled conformational changes and mechanical forces,

as well as by redistribution from intracellular pools (Herter and
Zarbock, 2013). With the exception of effector lymphocytes

and certain monocyte subsets that express adhesive integrins

(Carlin et al., 2013; Lek et al., 2013; Shulman et al., 2012), all

circulating leukocytes maintain their integrins in largely inactive

states. Leukocyte integrins must develop high affinity and

avidity for their specific endothelial ligands in order to establish

firm shear-resistant adhesions (Alon and Dustin, 2007; Carman

and Springer, 2003; Ley et al., 2007). This transition requires

freely flowing leukocytes to be reversibly captured on the endo-

thelium, a step that is mediated by leukocyte glycoprotein (e.g.,

PSGL-1) interactions with members of the selectin family P- and

E-selectin. Selectins can be induced on acutely or chronically

stimulated postcapillary venules (e.g., P-selectin and P- and

E-selectin, respectively), as well as on platelets or platelet

microparticles deposited on injured blood vessels (reviewed

by [Ley et al., 2007; Zarbock et al., 2011]). Free-flowing leuko-

cytes can also interact with attached leukocytes through bind-

ing of leukocyte L-selectin to leukocyte PSGL-1 (Walcheck

et al., 1996).

Selectin-mediated leukocyte rolling is often stabilized by

leukocyte microvilli flattening that slows down the rolling

leukocyte and further enhances the topographical availability

of its chemokine receptors and integrins for interactions with

their respective endothelial ligands (Chen and Springer,

1999). This response is further supported by elongation of

rear tethers as well as by cell autonomous adhesive substrates

termed slings (Sundd et al., 2012). These rolling interactions

increase the efficiency of leukocyte encounters with endothe-

lial cell-expressed chemoattractants (largely chemokines) and
Immunity 41, November 20, 2014 ª2014 Elsevier Inc. 695



Box 1. Diversity of Integrin Regulatory Machineries Critical for
Luminal Leukocyte-Endothelial Cell Interactions

Initial attachment of leukocytes to the luminal aspect of venu-

lar walls is mediated by a complex and highly diverse array of

signaling molecules that collectively translate apical chemo-

kine and/or chemoattractant signals transmitted to leukocyte

GPCRs into Gi-protein-mediated stimulation of multiple acti-

vating guanine exchange factors (GEFs). This can trigger

different Rho family GTPase members and Rap-1 GTPases

and their downstream effector molecules leading to confor-

mational integrin activation followed by the microclustering

of ligand-occupied integrins in numerous ventral focal points

(reviewed by [Herter and Zarbock, 2013]). Stimulated GPCRs

can also coactivate Rho and Rap-1 by triggering JAK PTKs

independently of Gi-protein activation (Montresor et al.,

2013). In some settings, the recruitment of the GPCR adaptor

b-arrestin might be critical for optimal integrin activation (Mol-

teni et al., 2009). Rho GTPases are thought to both directly

(Bolomini-Vittori et al., 2009) and indirectly activate talin-1 by

activating Rap-1 (Montresor et al., 2013). Importantly, different

GEFs regulate the multiple Rho GTPase activities critical for

leukocyte arrest and subsequent crawling and formation of

protrusions and the mode of action of these GEFs and their

GTPase targets varies with both the leukocyte type and

the composition of endothelial displayed trafficking signals

(Garcı́a-Bernal et al., 2006; Nombela-Arrieta et al., 2004; Shul-

man et al., 2006). Some of these GEFs can be regulated

by different PI3K- and DAG-dependent PKC isoforms. To

facilitate the high adhesion turnover required for crawling

and detachment of the leukocyte rear during breaching of

the endothelium, integrin function must be spatially and

negatively regulated by one or multiple mechanisms. This

includes a rapid return of integrin activating GTPases to

their inactive GDP-bound states, negative crosstalk between

coexpressed integrins (Porter and Hogg, 1997), activation of

Rho family GTPases that antagonize Rho and Rap integrin

activating activities (Bolomini-Vittori et al., 2009), and

myosin-II driven detachment forces of the uropod (Morin

et al., 2008). These signals can be counterinhibited by inhibi-

tory receptors such as neutrophil PILRa (Wang et al., 2013),

the TGF-b superfamily myeloid cell member GDF-15 (Kempf

et al., 2011), and GPCR agonists that suppress Gi signals

(Chigaev et al., 2008).
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subsequent chemoattractant- and integrin-dependent leuko-

cyte arrest (Lefort et al., 2012). Neutrophil rolling on endothelial

E-selectin engages the leukocyte PSGL-1 and assembles a

multicomponent signaling machinery that triggers establish-

ment of short lived and/or weak bonds between leukocyte in-

tegrins (e.g., LFA-1 and VLA-4) and their associated endothelial

cell ligands (e.g., ICAM-1 and VCAM-1), leading to slowing

down of selectin-mediated rolling [Block et al., 2012; Srira-

marao and Broide, 1996; Stadtmann et al., 2011; Zarbock

et al., 2008]). VAP-1, an ectoenzyme, induced at various sites

of inflammation, might also contribute to stabilization of rolling

via modifications of endothelial and leukocyte ligands (Jaakkola

et al., 2000).
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Leukocyte arrest on endothelial cells of stimulated venules

requires activation of at least one of the major leukocyte integ-

rins, LFA-1 (all effector leukocytes) or Mac-1 (neutrophils and

monocytes), as well as VLA-4 and/or a4b7 (monocytes, eosino-

phils, and various effector T and B cells). This occurs by a strong

inside-out stimulatory signal, usually transmitted by chemoat-

tractant-mediated activation of G-protein-coupled receptors

(GPCRs) on rolling leukocytes (reviewed in [Alon and Feigelson,

2009; Dixit and Simon, 2012]). Lymphocyte arrest involves rapid

GPCR triggered activation of high-affinity integrin-ligand bonds

within focal adhesive contacts, postulated to consist of micro-

clusters of ligand-occupied integrins (Figure 1). These integrins

are initially bidirectionally stimulated within a fraction of a

second by coordinated cytoplasmic rearrangements of their

subunit tails and the binding of their own extracellular ligands

as mediated by primarily two cytoskeletal coactivators, the focal

adhesion proteins talin-1 and kindlin-3 (Lefort et al., 2012; Moser

et al., 2009; Ye et al., 2013). A subset of these focal contacts un-

dergo further adhesion, strengthening via recruitment of diffusive

integrins at distinct leukocyte compartments (Constantin et al.,

2000; Smith et al., 2005).

Post arrest, effector leukocytes either rapidly protrude and

translocate their body through the endothelial barrier, predomi-

nately at paracellular endothelial cell junctions, or use their integ-

rins to translocate (crawl) on the apical aspects of blood vessels

in search for exit cues (Phillipson et al., 2009) (Figure 1). In

most inflammatory settings, leukocyte crawling is both chemo-

kine-GPCR stimulated and integrin-dependent and is tightly

regulated by canonical actomyosin machineries serially trig-

gered by GPCR-activated small GTPases and integrin occu-

pancy events (Shulman et al., 2009) (Box 1). In vivo, intravascular

chemokine gradients have been postulated to provide a means

through which leukocytes are directed through healthy tissues

toward foci of sterile damage, thereby reducing potential collat-

eral damage of infiltrating effector leukocytes (McDonald et al.,

2010). As in other migratory processes, leukocytes reorganize

their actin cytoskeleton to generate a protrusive leading edge

and a contractile uropod (Hyun et al., 2012). Integrin recycling

to the leading edge of the leukocyte (Katagiri et al., 2006), as

well as polarized fusion of vesicles containing various signaling

molecules, might also contribute to directional leukocyte crawl-

ing toward venular exit sites.

During crawling, leukocytes generate numerous millipede-like

integrin-mediated contacts with the lumenal aspect of stimu-

lated vessels (Shulman et al., 2009) (Figure 1). Consequently,

physiological leukocyte crawling can persist also in opposite or

perpendicular to the direction of blood flow, allowing optimal

scanning capacity of the endothelial luminal surface (Carlin

et al., 2013; Phillipson et al., 2006; Sumagin et al., 2010). In

some settings, leukocytes bypass chemokine signals and

use their own integrins for activating leukocytes via integrin

outside-in signaling (Dixit et al., 2011; Jakus et al., 2009; Phillip-

son et al., 2009). Another modality of integrin activation, used by

subsets of neutrophils and monocytes involves TNF receptor

signaling on these leukocytes, as triggered by apically displayed

TNF (Sumagin et al., 2010; Woodfin et al., 2009). Endothelial-dis-

played TNF can activate adherent neutrophils directly via ampli-

fying integrin signaling or indirectly via promoting autocrine

chemokine and/or chemoattractant activation of the crawling
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Figure 2. Paracellular Leukocyte TEM
(A) Paracellular leukocyte migration through
endothelial cell junctions is the primary mode
through which leukocytes breach the endothelial
cell barrier in the peripheral vasculature (A). The
images are video micrographs of a stimulated
postcapillary venule of Lys-EGFP-ki mice (ex-
pressing green neutrophils & monocytes) in which
endothelial cell borders have been stained redwith
an anti-PECAM mAb. The left image illustrates
luminal leukocyte-venular wall interactions. The
right image, acquired in the red channel only,
shows intense PECAM-1 labeling of endothelial
cell contact points and also nonjunctional PECAM-
1-labeling that likely represents intracellular pools
of PECAM-1 (e.g., within the LBRC). Importantly,
the image shows micron-sized pores in PECAM-
labeled regions between adjacent endothelial cells
that represent sites of paracellular TEM.
(B) Paracellular TEM involves the coordinated
disassembly of VE-cadherin assemblies and of
other homophilic molecular interactions by serial
leukocyte occupancy events. ICAM-1, ICAM-2,
VCAM-1, and other CAM clustering events trans-
duce multiple outside-in signals, which involve
activation of endothelial Src and rise in cytosolic
free Ca2+. These events modulate numerous
endothelial targets, including cytoskeletal remod-
eling machineries that facilitate junction opening
and leukocyte crossing of endothelial cell junc-
tions. VE-cadherin internalization and recycling

are mediated by multiple tyrosine phosphorylation and dephosphorylation events temporally controlled by distinct endothelial sensors triggered by leukocyte
occupancy. Other endothelial cell border molecules can also be subjected to local proteolytic cleavage and changes in cytoskeletal anchorage states that further
facilitate their disassembly and transient internalization and recycling. Although the LBRCwas originally defined as a depot for PECAM-1, it is likely that additional
junctional adhesion molecules need to recycle between the endothelial surface and the LBRC, and other intracellular vesicles and VVOs. The cytoplasmic tails of
these multiple adhesion molecules might target the structures within which they are stored to fuse with the plasma membrane at specific endothelial com-
partments engaged by emigrating leukocytes. Some of these machineries might also be used for the relatively rare transcellular TEM route. These various
intracellular pools are distinct from vesicular stores of endothelial-produced chemokines that are tethered to submembranal actin filaments, as well as fromDARC
vesicles specialized to transcytose basolateral chemokines to the apical endothelial membrane. For simplicity, only representatives of key molecules expressed
between adjacent endothelial cells are shown without their counterparts on neighboring endothelial cells, and leukocyte integrins and CAMs are omitted.
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leukocytes (Smith et al., 2004). The usage of chemoattractant

GPCR, integrin outside-in, and TNF machineries provides enor-

mous diversity and ensures robustness of leukocyte migration

on and through the endothelium (Box 1). These responses are

also tightly regulated by the relative density of available integrin

ligands, chemoattractants, and other endothelial displayed cyto-

kines and adhesive ligands encountered by the arrested and

crawling leukocytes (Shulman et al., 2012; Williams et al., 2011).

Breaching of the Endothelium
Multiple molecular and cellular events enable crawling leuko-

cytes to initiate breaching of the endothelium and exhibit trans-

endothelial cell migration (TEM). This includes detection of exit

cues that provide chemotactic and haptotactic guidance out of

the vascular lumen and beyond (see below), accurately timed

adhesive interactions with the luminal aspect of the endothelium,

and changes in leukocytemorphology that guide the large leuko-

cyte nucleus through tight endothelial junctions and pores. Such

responses generally coordinate the polarized movement of

leukocytes through endothelial cells in a luminal to abluminal di-

rection (Nourshargh et al., 2010). Leukocyte TEM can occur via

migration of leukocytes through junctions between adjacent

endothelial cells (paracellular TEM) or through the body of the

endothelium (transcellular TEM). In vitro and in vivo studies

have illustrated that TEM across stimulated endothelial cells of

the peripheral circulation is largely via the paracellular route
(�70%–90%) with transcellular TEM being a relatively low-fre-

quency event (Ley et al., 2007; Muller, 2011; Woodfin et al.,

2011) (Figure 2). Brain vascular endothelial cells seem to be an

exception to this rule as they support a higher proportion of

transcellular leukocyte TEM, a phenomenon that has been attrib-

uted to the specialized tight junctional structures expressed by

brain endothelial cells that can restrict paracellular TEM (Engel-

hardt and Ransohoff, 2012).

Both paracellular and transcellular modes of TEM are sup-

ported by leukocyte-driven molecular changes in the endo-

thelium. For example, integrin-mediated leukocyte adhesion

can trigger clustering of endothelial ICAM-1, and concomitant

recruitment of VCAM-1 into membranous structures that provide

platforms for stable leukocyte firm arrest and TEM (Barreiro

et al., 2008; Carman and Springer, 2004). Ligation of ICAM-1

and VCAM-1, and their tetraspannin or pentaspanin partners

(e.g., CD9, CD151 or CD47, respectively) (Azcutia et al., 2012),

by adherent and crawling leukocytes can also elicit multiple

signaling events in endothelial cells postulated to reduce endo-

thelial barrier properties (Figure 2). This includes increased intra-

cellular Ca2+ (Huang et al., 1993; Pfau et al., 1995), reactive

oxygen species (ROS) generation (Deem et al., 2007; Martinelli

et al., 2009), and activation of p38 mitogen-activated protein ki-

nase (MAPK) (Hu et al., 2000). In addition, ICAM-1 ligation can

result in tyrosine phosphorylation of key endothelial cell junc-

tional molecules through activation of endothelial proline-rich
Immunity 41, November 20, 2014 ª2014 Elsevier Inc. 697
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tyrosine kinase 2 (Pyk2) and Src kinase (Allingham et al., 2007).

These responses can couple to the triggering of RhoA (a small

GTPase involved in regulation of actin cytoskeletal networks)

and its downstream Rho-associated protein kinase (ROCK), as

well as to endothelial myosin light-chain kinase (Saito et al.,

2002). ICAM-1 occupancy by leukocytes can also lead to the

translocation of clustered ICAM-1 to actin- and caveola-rich do-

mains that recruits vesiculovacuolar organelles (VVOs) to form

intracellular channels through which leukocytes can breach

endothelial cells via a transcellular pore (Carman et al., 2007;

Millán et al., 2006).

Once leukocytes have engaged with endothelial cell junctions,

breaching of the endothelium is exquisitely regulated by adhe-

sion molecules expressed selectively, or at high density, be-

tween adjacent endothelial cells (Figure 2). Two key junctional

structures are adherens junctions that include VE-cadherin,

and tight junctions that incorporate members of the junctional

adhesion molecule (JAM) family (e.g., JAM-A, JAM-B, JAM-C,

and endothelial cell-selective adhesion molecule [ESAM]) and

claudins (Dejana, 2004). A number of other adhesion molecules

are also enriched at borders of adjacent endothelial cells, such

as PECAM-1, CD99, ICAM-2, and the polio virus receptor

(PVR) (Muller, 2011; Nourshargh et al., 2010). The roles of these

multiple molecules and their respective leukocyte ligands in

leukocyte TEM are well established, but most probably vary for

different leukocytes, different venules, and inflammatory models

(reviewed by [Ley et al., 2007; Muller, 2011; Nourshargh et al.,

2010; Vestweber, 2012; Voisin and Nourshargh, 2013]).

Intriguingly, expression of endothelial cell border adhesion

molecules can be temporally and spatially regulated by inflam-

matory stimuli and TEM (Figure 2) (Muller, 2011; Voisin and Nour-

shargh, 2013). Such molecular reorganization of the endothelial

cell contact points can play key roles in regulation of vascular

permeability tomacromolecules and leukocyte TEM (Vestweber,

2012). Leukocyte TEM in itself can affect the cell surface

redistribution and internalization of key cell border structures,

the recycling of intracellular pools of these molecules and their

enzymatic cleavage (reviewed by [Ley et al., 2007; Muller,

2011; Vestweber, 2012; Voisin and Nourshargh, 2013]). Notably,

multiple junctional endothelial cell adhesion molecules are

thought to recycle in a variety of intracellular compartments

and/or vesicles including the membranous lateral border recy-

cling compartment (LBRC), endosomes, and possibly VVOs (re-

viewed by [Ley et al., 2007; Muller, 2011; Vestweber, 2012]).

Although relatively little is known about these intracellular pools

in terms of their potential crosstalk and regulation by leukocyte

occupancy, they appear to contribute tomaintaining the integrity

of the endothelium and to provide new membranous pools that

surround the leukocyte as it passes across endothelial cells

(Mamdouh et al., 2003). For example, the LBRC acts as a depot

for molecules such as PECAM-1, CD99, JAM-A, and PVR and

supports leukocyte TEM through efficient recruitment of key

molecules to sites of leukocyte diapedesis (Muller, 2011)

(Figure 2). This structure although primarily implicated in paracel-

lular leukocyte TEM has also been associated with transcellular

leukocyte TEM (Mamdouh et al., 2009). The precise endothelial

signals that stimulate LBRC and other vesicle trafficking and

recycling are still unclear but might involve Src kinase activities

(reviewed by [Muller, 2011]). Better understanding of the spatio-
698 Immunity 41, November 20, 2014 ª2014 Elsevier Inc.
temporal distribution and function of individual endothelial cell

border moleculesmight help identify previously unknown regula-

tory pathways involved in the onset and resolution of leukocyte

trafficking.

Successful paracellular leukocyte TEM also depends on a

transient loss of cell-surface VE-cadherin (Weber et al., 2007).

VE-cadherin plays a critical role in maintaining the integrity of

endothelial cell contacts via homotypic associations between

neighboring endothelial cells, as well as maintaining the barrier

function of the endothelium to macromolecules and emigrating

leukocytes (Vestweber, 2012). These numerous functions of

VE-cadherin are regulated by multiple cytoplasmic catenins

that control the functional interaction between VE-cadherin

and the cortical actin endothelial cytoskeleton (reviewed by

[Weber et al., 2007]). VE-cadherin is also constitutively associ-

ated with a specialized phosphatase, VE-PTP, that needs to

dissociate from its neighbor VE-cadherin complex in response

to leukocyte occupancy (Vockel and Vestweber, 2013). This pro-

motes tyrosine phosphorylation events of both VE-cadherin and

its associated catenins (Broermann et al., 2011), while a distinct

SHP-2-dependent tyrosine dephosphorylation event recruits the

endocytic adaptor a-adaptin to drive a reversible endocytosis of

VE-cadherin in close vicinity of adherent leukocytes (Wessel

et al., 2014). Indeed, leukocyte diapedesis is strongly sup-

pressed in vivo in several mice models genetically perturbed in

VE-cadherin endocytosis and turnover (Broermann et al., 2011;

Vestweber, 2012). VE-cadherin endocytosis is not triggered by

ICAM-1- or VCAM-1-occupancy events and is therefore mecha-

nistically distinct from the numerous ICAM-1 and VCAM-1

transduced signaling events discussed above. Of importance,

leukocyte TEM and increased endothelial permeability to solutes

are mediated by two distinct phosphorylation states of VE-

cadherin (Wessel et al., 2014). Although a gatekeeper of para-

cellular endothelial junctions, VE-cadherin is dispensable for

transcellular leukocyte TEM.

Breaching Venular Walls Post Transendothelial Cell
Migration
To fully exit venular walls, leukocytes that have penetrated the

endothelial cell barrier are subsequently required to cross the

pericyte sheath and the venular basement membrane (BM) (re-

viewed by [Nourshargh et al., 2010]). Pericytes are mural cells

that form the second cellular component of all venules and are

typically found in a discontinuous manner wrapped around

endothelial cells and embedded within the venular BM (Armulik

et al., 2005; Nourshargh et al., 2010). While pericytes have long

been considered as important players in vascular development

and function (Armulik et al., 2005), there is now a growing body

of evidence highlighting the significance of these cells as regula-

tors of immune responses and inflammation and interpreters

of danger signals (reviewed by [Nourshargh et al., 2010; Pober

and Tellides, 2012; Voisin and Nourshargh, 2013], Figures 1

and 3). Specifically, pericytes can inducibly express key adhe-

sion molecules (e.g., ICAM-1, VCAM-1), chemokines (e.g.,

human and murine CXCL1, CXCL8, MIF), and receptors for

proinflammatory molecules (TNFRI, TNFRII, IL-1R, TLRs, Nod-

like receptors) (Pober and Tellides, 2012; Stark et al., 2013; Voi-

sin andNourshargh, 2013). In vitro, pericyte-expressed adhesion

molecules and chemokines support leukocyte attachment,



A

B

Figure 3. Establishment of Exit Cues for Leukocytes Breaching Venular Walls
Multiple mechanisms support the efficient migration of leukocytes through endothelial cells, the venular BM, and the pericyte layer. This includes preferential sites
of migration and the establishment of chemotactic and haptotactic gradients that translate initial leukocyte protrusions into a stable leading edge. The confocal
images shown in (A), acquired from fluorescently-labeled stimulated mouse cremaster venules, demonstrate the existence of low protein deposition regions
within the laminin-511 network of the venular BM (left panel). These regions (termed LERs) are alignedwith gaps in the pericyte sheath (middle panel) and are used
by emigrating leukocytes preferentially to breach the venular wall (right panel). In addition, components of the vasculature, perivascular cells, and possibly
migrating leukocytes themselves can generate series of chemotactic signals to support a directional luminal-to-abluminal leukocyte transmigration response (B).
This includes endothelial-cell-derived chemotacticmolecules aswell as proinflammatory and promigratory signals released by pericytes, perivascular leukocytes
(macrophages and mast cells), and recently emigrated leukocytes. Soluble and GAG-immobilized chemokines recognized by leukocyte GPCRs (B, inset) can
cooperatively guide emigrating leukocytes out of the vasculature. Loss of net attractant cues might result in disrupted directional motility of leukocytes. Pericyte
chemokines and cytokines (not shown) can also guide and instruct emigrating leukocytes with costimulatory and possibly prosurvival signals. Emigrating leu-
kocytes can also use their b2 integrins (not shown) to migrate on both the abluminal endothelial aspects and on pericytes expressing ICAM-1 (inset) and get
instruction signals of costimulation and survival. Lymphocyte b2 integrins might be alternatively triggered by local cognate antigen-driven signals presented by
perivascular macrophages (not shown). In some settings, leukocyte b1 integrins can recognize specific ECM ligandswithin the basement membrane (not shown).
Further details are described in the text.
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costimulation, and differentiation (Ayres-Sander et al., 2013;

Pober and Tellides, 2012; Stark et al., 2013; Voisin and Nour-

shargh, 2013). A large variation in the profile of pericyte-leuko-

cyte communications has been reported, very likely due to the

heterogeneity of pericytic cells from different blood vessels,

tissues, species, isolation procedures, and inflammatory set-

tings. The relevance of such interactions to leukocyte trafficking

in vivo is only just beginning to emerge (Voisin and Nourshargh,

2013). The application of confocal intravital microscopy to anal-

ysis of neutrophil-pericyte interactions within cytokine-stimu-

latedmouse cremastermuscles identified a key role for pericytes

in subendothelial cell neutrophil motility (Proebstl et al., 2012).

Specifically, pericytes were observed to provide an adhesive

substrate for neutrophils crawling within the venular wall and
seeking portals to the extravascular tissue (Proebstl et al.,

2012) (Figure 3). This response was mediated through the inter-

action of pericyte-expressed ICAM-1 with neutrophil Mac-1 and

LFA-1. Of relevance, the use of an endothelial cell pericyte

in vitro coculture model indicated that the TEM process itself

can prime neutrophils for enhanced interactions with pericytes

(Ayres-Sander et al., 2013). Adhesion of fully extravasated

myeloid cells with the abluminal aspect of pericytes has also

been proposed as a mechanism through which various leuko-

cyte effector functions are enhanced by specific instructing sig-

nals presented by subsets of inflamed pericytes (Stark et al.,

2013). Collectively, pericytes appear to fine-tune leukocyte traf-

ficking and instruct emigrated leukocytes for optimized naviga-

tion and effector responses at sites of inflammation. The impact
Immunity 41, November 20, 2014 ª2014 Elsevier Inc. 699



Box 2. Regulatory Roles of Perivascular Mast Cells in Leukocyte
Diapedesis

Along with tissue-resident macrophages, mast cells are the

prototypical tissue-resident immune sentinels that reside in

most peripheral tissues, often in close vicinity of arterioles, ve-

nules and postcapillary venules (Duffy et al., 2012; Kunder

et al., 2011). These granule rich cells store a multitude of in-

flammatory (e.g., inflammatory cytokines, myeloid-attracting

chemokines) and vasoactive mediators (e.g., histamine, pros-

taglandins, leukotrienes, and thromboxanes), critical for trig-

gering the onset of acute and chronic inflammatory reactions

(Abraham and St John, 2010). Mast cell secretion is tightly

regulated by a variety of inflammatory and stress signals,

including tissue damage, microbial infections and the binding

of allergen-coated crosslinked immunoglobulin E to their FcRe

receptors (Cheng et al., 2013). During acute allergic re-

sponses, infection, and injury, mast cell degranulation results

in immediate (type I) endothelial upregulation of endothelial

stored P-selectin and rapid PAF synthesis critical for early

neutrophil recruitment and extravasation (Lorant et al., 1991;

Ostrovsky et al., 1998). Of interest, mast cells have been

shown to act cooperatively with tissuemacrophages to recruit

neutrophils in response to LPS, with TLR stimulation providing

rapid neutrophil recruitment via release of preformed CXC

chemokines nearby vessels followed by slower macrophage-

mediated recruitment of the leukocytes deeper into the extra-

vascular tissue (De Filippo et al., 2013). Despite such studies

and the clear potential role of mast cells in inflammation,

further investigations are required to fully elucidate the func-

tions of these versatile sentinel cells in leukocyte trafficking.
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of specific leukocyte-pericyte interactions on the phenotype,

morphology, and immune responses of both cell types requires

further investigations.

Like their endothelial cell counterparts, pericytes contribute to

the generation and barrier properties of the venular BM. The ven-

ular BM is composed of a complex network of laminins (primarily

isoforms �411 and �511) and collagen IV, interconnected by

molecular bridges involving numerous other glycosaminoglycan

(GAG)-decorated glycoproteins such as nidogens and perlecan

(Sorokin, 2010). This structure provides a formidable barrier to

emigrating cells, but the mechanism through which leukocytes

breach the venular BM is not fully understood (Rowe and Weiss,

2008). Proteolytic cleavage of BM constituents by emigrating

leukocytes has long been considered as a possible mechanism,

because it has been implicated in cancer cell invasiveness and

intravasation (Sabeh et al., 2009). However, the physiological im-

plications of degrading a structure that is key to maintaining

vascular integrity renders this option unlikely and indeed conten-

tious (Rowe and Weiss, 2008). A more plausible mechanism is

the potential existence of leukocyte-permissive regions within

the venular BM. In this context, immunofluorescent studies

have demonstrated the existence of regions within the venular

BM that exhibit low deposition of certain matrix proteins (lami-

nin-511 and type IV collagen) (Voisin and Nourshargh, 2013; Voi-

sin et al., 2010; Wang et al., 2006) (see Figure 3). These sites,

which have been termed low-expression regions (LERs), consti-
700 Immunity 41, November 20, 2014 ª2014 Elsevier Inc.
tutively exist in all vascular beds analyzed and are commonly

directly alignedwith gaps between adjacent pericytes, indicating

the importance of pericytes in generation of BM constituents. As

predicted by their permissive nature, LERs act as ‘‘gates’’ for

transmigrating neutrophils and monocytes in vivo (Voisin and

Nourshargh, 2013; Voisin et al., 2010; Voisin et al., 2009; Wang

et al., 2006). Interestingly, LERs are transiently enlarged during

neutrophil transmigration through subtle disassembly and phys-

ical carriage of neutrophil-bound BM components, most notably

laminins (Voisin et al., 2010; Voisin et al., 2009; Wang et al.,

2006). Such molecular remodeling might be facilitated by leuko-

cyte adhesion to the venular BM as numerous studies have indi-

cated roles for b1 integrin laminin receptors a6b1 and a3b1 in

neutrophil migration through the venular BM (Dangerfield et al.,

2002; Hyun et al., 2012). Other mechanisms that could

contribute to leukocyte migration include possible ‘‘thinning’’ of

the BM as caused by tractional forces exerted on the matrix net-

works by pericyte shape-change (Finsterbusch et al., 2014; Pro-

ebstl et al., 2012) or other physical and enzymatic processes

(Rowe and Weiss, 2008). In addition, subunits of laminins with

lower capacity for crosslinking with collagen type IV molecules

(e.g., the short a4 chain of laminin-411) might provide more

penetrable LERs due to easier dissociation of the laminin and

collagen IV networks during cell migration.

Exit Cues for Leukocyte Transmigration
The contribution of chemokines and other chemoattractants for

distinct steps of leukocyte TEM has been extensively studied

both in vitro (reviewed by [Shulman and Alon, 2012]) and in vivo

(reviewed by [Blanchet et al., 2012; Ingersoll et al., 2011]). While

endothelial cells are accepted as a major source of chemotactic

molecules for effector leukocytes, pericytes (Proebstl et al.,

2012), fragments of the venular BM, perivascular macrophages

(Abtin et al., 2014), certain subsets of mast cells (see Box 2), anti-

genic signals (Box 3), and recently extravasated leukocytes are

postulated to also send short-range guidance cues for transmi-

grating leukocytes.

Type II protein synthesis-dependent activation of endothelial

cells can result in the expression of a variety of chemoattractants

for myeloid leukocytes and effector T cells (Pober and Sessa,

2007). Chemokines constitute a key component of the repertoire

of endothelial cell-derived exit cues and the expression of these

molecules on the endothelium is regulated by numerous modes,

most notably via binding to heparin sulfate (HS) glycosaminogly-

cans (GAGs) (Proudfoot, 2006). These largeGAGs decorate a va-

riety of membranous and extracellular matrix proteins and can

serve as chemokine scaffolds in multiple types of interstitial

spaces (Sarris et al., 2012), as well as different types of blood

vessels and lymphatics (Bao et al., 2010; Wang et al., 2005;

Weber et al., 2013). A recent study suggests that blood vessels

both in lymphoid and nonlymphoid tissues pattern steep gradi-

ents of HS scaffolds between their luminal and basolateral endo-

thelial aspects (Stoler-Barak et al., 2014). The enriched HSGAGs

might be necessary to maintain functional chemokine gradients

toward the basolateral aspects of blood vessels. Indeed, excess

deposition of the HS binding chemokine CXCL1 on apical as-

pects of inflamed blood vessels results in reduced neutrophil

diapedesis (Yao et al., 2013). Of note, HS or other GAGs do

not appear to be essential for all types of inflammatory reactions



Box 3. A Role for Antigenic Signals in T Cell Diapedesis and
Retention in Tissues

In the context of the adaptive immune response, the migratory

patterns acquired by antigen-experienced effector T lympho-

cytes that egress lymphoid organs and migrate to affected

tissues are still not fully elucidated (Agace, 2006). In addition

to upregulating selectin ligands and integrins, as well as

GPCRs for multiple inflammatory chemokines (Reinhardt

et al., 2003; Weninger et al., 2001), these T cells likely undergo

tissue-restricted imprinting of specific trafficking molecules

depending on the organ they were generated in (Woodland

and Kohlmeier, 2009). A long-standing question is whether

and when antigenic signals presented to these effector

T cells and their memory counterparts by the vasculature at

the site of infection or inflammation also contribute to the

recruitment of these lymphocyte subsets (Marelli-Berg and

Jarmin, 2004; Pober et al., 2001). Apical presentation of

cognate antigenic peptides by endothelial MHC-I and perivas-

cular DCs might potentially augment integrin adhesiveness

and diapedesis of CD8 subsets, especially within vascular

beds deficient in adhesive and chemotactic activities (Savinov

et al., 2003;Walch et al., 2013). Antigen-specific CD4 effectors

can use cognate antigen-driven signals presented by MHC-II

for entry into pancreatic islets in early stages ofmouse autoim-

mune diabetes (Calderon et al., 2011) and extravasating CD4

T cells can readily interact with antigenic moieties presented

by perivascular macrophages at various chronic sites of

inflammation (Bartholomäus et al., 2009). It is likely, however,

that such vascular and perivascular antigenic signals recog-

nized by cognate effector T cells contribute to their emigration

only when the expression of vascular and perivascular traf-

ficking signals become limited.
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because neutrophil chemoattractants like PAF, LTB4, formylated

peptides, and C5a lack affinity for GAGs (Goodarzi et al., 2003).

As well as generating chemokines, endothelial cells can actively

import chemokines produced by perivascular cells by various

transcytosis machineries (Middleton et al., 1997). The atypical

GPCR like molecule DARC (Duffy antigen) displays promiscuous

affinity for most CXC chemokines and inflammatory CC chemo-

kines (reviewed by [Mantovani et al., 2006]) and plays amajor but

probably not an exclusive role in both the transcytosis of perivas-

cular chemokines and their correct positioning on the apical

surface of the endothelium (Middleton et al., 1997) (Figure 2).

Interestingly, DARC-mediated transcytosis of chemokines to

the apical aspect of endothelial cells is also HS dependent (Mid-

dleton et al., 1997; Wang et al., 2005). The key role of DARC in

chemokine transcytosis is supported by its expression profile,

recently found to be restricted to postcapillary venules (U. von

Andrian, personal communication).

Other vascular-derived sources of chemotactic cues are peri-

cytes and the vascular BM (Figure 3). As discussed above, peri-

cytes can generate chemokines and immobilize them on GAGs

(Stramm et al., 1987). Conceptually, the generation of pericyte-

derived chemokines and/or chemokine depots is likely to play

a key role in facilitating continued migration of leukocytes

through venular walls after the breaching of the endothelium.
The constitutive existence of the venular BM LERs might also

provide a mechanism through which guidance molecules gener-

ated in the extravascular tissue, or released from perivascular

macrophages or mast cells, penetrate the venular wall and

hence create a chemotactic gradient toward these preferential

vascular exit sites. Thus, multiple mechanisms enable vascular

and perivascular components to cooperatively guide the pas-

sage of leukocytes from the vascular lumen to the extravascular

tissue. This includes the release of proinflammatory mediators

and chemotactic molecules from extravasated or tissue-resident

leukocytes. Specifically, because blood leukocytes are a rich

source of preformed granular chemoattractants, such as

cathepsin G, LL-37, and azurocidin (Borregaard et al., 2007;

Soehnlein et al., 2008), and can also release lipid and protein

chemotactic molecules (e.g., LTB4, PAF, and various chemo-

kines), recently extravasated myeloid leukocytes might further

stimulate leukocyte recruitment via a relay phenomenon, typi-

cally observed in interstitial spaces (Afonso et al., 2012; Lämmer-

mann et al., 2013). With respect to tissue-resident leukocytes

(Figure 3; Box 2), in infectious models, neutrophils extravasate

from inflamed dermal venules in close proximity to perivascular

macrophages and mast cells that produce large amounts of

both neutrophil and monocyte attracting chemoattractants

(e.g., CXCL1, CXCL2, and CCL2) (Abtin et al., 2014; De Filippo

et al., 2013). The repertoire of perivascular macrophages

and mast cells is highly versatile with different subsets of these

cells generating different profiles of inflammatory mediators

in response to distinct danger signals (Figure 1) (Galli et al.,

2011). Notably, later on during the inflammatory process, extrav-

asating neutrophils phagocytosed by perivascular macro-

phages can negatively regulate further leukocyte extravasation

by secreting a variety of resolution mediators such as resolvins,

lipoxins (Wolf et al., 2008), TGF-b, and IL-10. These mediators

can directly reduce leukocyte adhesion and responsiveness to

chemoattractants, as well as attenuate endothelial expression

of trafficking molecules (reviewed by [Soehnlein et al., 2009]).

MMPs secreted from perivascular macrophages might also

contribute to this resolution by cleaving chemokines (Wolf

et al., 2008).

Aberrant Modes of Leukocyte Extravasation
A number of aberrant modes of leukocyte extravasation, at

odds with the well-described sequence of molecular and

cellular responses described by the classical leukocyte-adhe-

sion cascade, have also been reported. As discussed, leukocyte

crawling on the luminal aspect of the endothelium represents a

key phase of the leukocyte-adhesion cascade that enables leu-

kocytes to seek exit cues and preferential sites of leukocyte

migration within the venular wall. Nevertheless, in certain nonin-

flammatory settings, leukocyte crawling is not followed by

emigration into tissues because it is mainly used for patrolling

for intravascular signs of injury or infection (Auffray et al., 2007;

Carlin et al., 2013). Specifically, Ly6Clo monocytes comprise a

noninflammatory subset of monocytes that crawl at steady state,

exhibiting long-range luminal lateral migration responses, within

blood vessels of noninflamed tissues (Auffray et al., 2007; Carlin

et al., 2013). This response is supported by basally expressed

ICAM-1 and ICAM-2 and constitutively adhesive LFA-1 ex-

pressed by the crawling subset of monocytes (Carlin et al.,
Immunity 41, November 20, 2014 ª2014 Elsevier Inc. 701
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2013). Of interest, this LFA-1-dependent crawling does not

depend on a prior stimulation by a P-selectin-mediated rolling

phase and does not require chemokine signals (Carlin et al.,

2013). Furthermore, while patrolling small blood vessels in

various organs (e.g., skin, kidney), and reportedly scavenging

luminal endothelial microparticles as part of their tissue surveil-

lance functions, these monocytes appear to recruit neutrophils

upon encounter of stimuli, but rarely breach venular walls them-

selves (Carlin et al., 2013). Abortive emigration of leukocytes to

blood vessels is observed in other settings including natural killer

(NK) and NKT cell crawling inside liver sinusoids (Geissmann

et al., 2005) and retention of immature B cells in the bone-

marrow vasculature (Pereira et al., 2009). These and other forms

of leukocyte-vessel wall interactions that are futile in terms of

breaching the vessel wall could comprise an important range

of essential physiological homeostatic leukocyte surveillance

responses, important in leukocyte survival, differentiation, or re-

programming by organ-specific intraluminal vascular signals.

Leukocyte-vessel wall interactions without the need for extrava-

sation might also regulate vascular permeability through luminal

release of leukocyte-derived vasoactive factors such as TNF

(Finsterbusch et al., 2014) or via signaling to endothelial cells

after ligation of key adhesion molecules such as ICAM-1 (Suma-

gin et al., 2011).

Unsuccessful breaching of vessel walls could also constitute

pathological forms of leukocyte-vessel wall interactions as

a result of excessive intraluminal leukocyte activation. Such

responses can typically cause vascular injury through release

of damaging neutrophil-derived factors (e.g., ROS, proteases),

as exemplified by FcgRIIIB-triggered b2 integrin-dependent

neutrophil arrest following immune-complex deposition on

resting blood vessels (Mayadas et al., 2009). Of interest, multi-

photon intravital microscopy has additionally illustrated that in

noninflamed murine kidneys, neutrophils and monocytes are

commonly retained in glomerular capillaries (static or crawling)

and that the duration of this phenomenon is enhanced after im-

mune-complex-elicited glomerular injury (Devi et al., 2013). Intra-

vascular activation can also occur following severe sepsis, a

condition during which live neutrophils can release neutrophil

extracellular traps (NETs) within the vascular lumen while main-

taining some irregular crawling responses (McDonald et al.,

2012).

While leukocyte migration through endothelial cells commonly

occurs in a luminal-to-abluminal direction, there is now unequiv-

ocal evidence for the occurrence of TEM in the basal to apical di-

rection of the endothelium. This leukocyte reverse TEM (rTEM)

response has been reported for human monocyte, neutrophil,

and T cell migration through cultured endothelial cells (Buckley

et al., 2006; Lee et al., 2009; Randolph and Furie, 1996) and for

neutrophils in zebra fish embryos (Mathias et al., 2006). Neutro-

phil rTEM, and a TEM mode that involves multiple oscillatory

movements within endothelial cell junctions (termed ‘‘hesitant’’

TEM), have also been observed in stimulatedmouse cremasteric

venules in vivo (Woodfin et al., 2011). Of importance, these

events were totally localized to the endothelium, and leukocytes

that had breached the pericyte and venular BM layer were never

seen to exhibit reverse motility back into the vascular lumen.

Neutrophil and monocyte rTEM is significantly enhanced under

conditions of reduced expression and/or functionality of endo-
702 Immunity 41, November 20, 2014 ª2014 Elsevier Inc.
thelial cell JAM-C (Bradfield et al., 2007; Woodfin et al., 2011),

suggesting that JAM-C plays a key role in regulating the direc-

tional movement of leukocytes from the apical to basal aspect

of the endothelium. The underlying mechanism of leukocyte

rTEM is at present unclear but might involve disruption of local

organization of exit cues, existence of competing gradients of

chemoattractants and repellents, and/or desensitization of

leukocyte GPCRs following high-receptor occupancy (Hutten-

locher and Poznansky, 2008). Leukocyte migration into the

vascular lumen can be physiologically important, such as

encountered during trafficking of leukocytes from the bone

marrow to the vasculature as part of leucocytosis and during

lymphocyte migration from lymphoid tissues to the vascular

compartment as part of immune surveillance (Huttenlocher and

Poznansky, 2008). However, the functional role of this response

within inflammatory scenarios remains unclear and requires

further investigations. Interestingly, neutrophil rTEM following

ischemia-reperfusion injury has been associated with dissemi-

nation of systemic inflammation (Woodfin et al., 2011), and

rTEMcould be involved in dissemination of pathogens from a pri-

mary site of infection to distant organs (Duffy et al., 2012).

Furthermore, based on findings in zebra fish embryos where

neutrophils have been seen to migrate away from the site of

injury, leukocyte reverse motility has also been proposed as a

means of resolving an inflammatory response (Deng and Hutten-

locher, 2012).

Finally, important examples of aberrant modes of leukocyte

trafficking relate to tissue-specific responses, in line with the

specialized vascular morphology and/or rheological properties

of certain organs such as the lungs, liver, and the brain (Engel-

hardt and Ransohoff, 2012; Lee and Kubes, 2008). Most

notably, neutrophil migration into the lung parenchyma is

selectin- and b2-integrin-independent where adhesion and

TEM occurs in the absence of rolling in pulmonary capillaries (re-

viewed by [Doerschuk, 2001]). Furthermore, in the liver, blood

drains through sinusoids, which are capillary-like vessels that ex-

press a unique type of endothelium that is discontinuous and

fenestrated, lacking basal lamina and tight junctions (Jenne

and Kubes, 2013). Liver sinusoidal endothelial cells also lack

the capacity to express E- and P-selectins, and in line with

this, leukocyte adhesion within sinusoids appears to occur inde-

pendently of rolling. In addition, sinusoidal endothelial cells ex-

press low inducible expression of VCAM-1 but high constitutive

expression of ICAM-1 and, most notably, of the adhesion mole-

cule VAP-1 (Salmi and Jalkanen, 2001) and the CD44 ligand,

hyaluronan (McDonald et al., 2008). Collectively, there is ample

evidence to support the concept that organ-specific anatomical,

cellular, molecular, and hemodynamic features are critical for

mediating specific leukocyte trafficking responses in line with

the specialized immune-surveillance requirements and functions

of different organs.

Concluding Remarks and Future Perspectives
While the identity of key molecular and cellular players involved

in orchestrating an effective leukocyte trafficking reaction is

well established, there remains a need for better understanding

of the intricacies, dynamics, cellular interplays, and diversities

of this critical immune response. In this context, advancements

in versatile imaging modalities have dramatically enhanced our
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ability to dissect these standing questions in different leukocyte

and vessel types and in an organ-specific manner. In addition

to building on these fundamental issues, a number of specific

avenues not discussed in the present review also require further

explorations. These include a better understanding of the impact

and regulatory effects of the neuronal and the endocrine system

on both vascular components and leukocytes. For example,

almost all blood vessels are intimately associated with peripheral

nerves, and at present it is unclear whether and how neuro-

transmitters affect leukocyte extravasation to peripheral and

lymphoid tissues in homeostasis and inflammation. Further-

more, although there is much evidence for different susceptibil-

ities of men and women to infections and inflammatory diseases

(reviewed by [Libert et al., 2010]), the underlying molecular basis

of this gender-difference on leukocyte trafficking and leukocyte-

vessel-wall crosstalk remains unclear. Similarly, despite much

interest in the impact of circadian rhythm on inflammatory

responses (reviewed by [Scheiermann et al., 2013]), it remains

unclear whether and how different endothelial cells, and their

associated pericytes, are subjected to circadian modulation of

transcription and how this impacts trafficking and recruitment

of different leukocyte subsets during different times of the day.

In recent years, the impact of aging on vascular morphology

has received much attention, but there remains a paucity of

understanding of whether and how vascular senescence im-

pacts leukocyte-vessel-wall interactions. Other open questions

include the variation of blood vessel glycocalyx and basement

membrane composition between different organs and inflamma-

tory conditions. In this regard, the pulmonary vasculature has

been shown to contain a particularly thick HS stabilized glycoca-

lyx believed to mask endothelial-expressed adhesion molecules

including integrin ligands frommarginating leukocytes before it is

degraded by inflammatory signals (Schmidt et al., 2012). Never-

theless, similarmasking functions have not been attributed to the

glycocalyx of venules. Likewise, differing composition and bar-

rier properties of distinct basement membranes might result in

different subsets of leukocytes using different venular breaching

strategies to extravasate these distinct perivascular barriers.

Experimentally, in spite of the increasing use of genetically

modified mouse models in leukocyte trafficking studies, it is

not yet possible to use similar models for silencing key endothe-

lial and pericyte machineries involved in leukocyte trafficking,

due to the high toxicity of such systemic genetic approaches.

As a result, there is a growing need to not only temporally silence

genes of interest in blood-vessel-wall cells, using newly devel-

oped conditional and cell-type recombinase-based targeting

approaches, but also restrict the temporal gene silencing to a

confined subset of vessels.

In summary, leukocytes are provided with a diverse range of

highly versatile and selective options in responding to different

molecular cues in breaching blood vessel walls at different

sites of inflammation. The studies reviewed here highlight

considerable heterogeneity in vessel-wall composition, resulting

in extremely large combinatorial range of trafficking signals

and endothelial barrier regulatory molecules that shape leuko-

cyte recruitment and activation in distinct tissues. The assort-

ment of vascular trafficking molecules discussed, and the

large combinatorial diversity they provide, introduce new chal-

lenges to the future design of composite antimigration therapies
and their implementations for personalized anti-inflammatory

medicine.
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P.N., Gratton, E., Caiolfa, V.R., and Sánchez-Madrid, F. (2008). Endothelial
adhesion receptors are recruited to adherent leukocytes by inclusion in pre-
formed tetraspanin nanoplatforms. J. Cell Biol. 183, 527–542.
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Voisin, M.B., Pröbstl, D., and Nourshargh, S. (2010). Venular basement mem-
branes ubiquitously expressmatrix protein low-expression regions: character-
ization in multiple tissues and remodeling during inflammation. Am. J. Pathol.
176, 482–495.

Walch, J.M., Zeng, Q., Li, Q., Oberbarnscheidt, M.H., Hoffman, R.A., Williams,
A.L., Rothstein, D.M., Shlomchik, W.D., Kim, J.V., Camirand, G., and Lakkis,
F.G. (2013). Cognate antigen directs CD8+ T cell migration to vascularized
transplants. J. Clin. Invest. 123, 2663–2671.



Immunity

Review
Walcheck, B., Moore, K.L., McEver, R.P., and Kishimoto, T.K. (1996). Neutro-
phil-neutrophil interactions under hydrodynamic shear stress involve L-selec-
tin and PSGL-1. A mechanism that amplifies initial leukocyte accumulation of
P-selectin in vitro. J. Clin. Invest. 98, 1081–1087.

Wang, L., Fuster, M., Sriramarao, P., and Esko, J.D. (2005). Endothelial hep-
aran sulfate deficiency impairs L-selectin- and chemokine-mediated neutro-
phil trafficking during inflammatory responses. Nat. Immunol. 6, 902–910.

Wang, S., Voisin, M.B., Larbi, K.Y., Dangerfield, J., Scheiermann, C., Tran, M.,
Maxwell, P.H., Sorokin, L., and Nourshargh, S. (2006). Venular basement
membranes contain specific matrix protein low expression regions that act
as exit points for emigrating neutrophils. J. Exp. Med. 203, 1519–1532.

Wang, J., Shiratori, I., Uehori, J., Ikawa, M., and Arase, H. (2013). Neutrophil
infiltration during inflammation is regulated by PILRa via modulation of integrin
activation. Nat. Immunol. 14, 34–40.

Weber, C., Fraemohs, L., and Dejana, E. (2007). The role of junctional adhesion
molecules in vascular inflammation. Nat. Rev. Immunol. 7, 467–477.

Weber, M., Hauschild, R., Schwarz, J., Moussion, C., de Vries, I., Legler, D.F.,
Luther, S.A., Bollenbach, T., and Sixt, M. (2013). Interstitial dendritic cell guid-
ance by haptotactic chemokine gradients. Science 339, 328–332.

Weninger, W., Crowley, M.A., Manjunath, N., and von Andrian, U.H. (2001).
Migratory properties of naive, effector, and memory CD8(+) T cells. J. Exp.
Med. 194, 953–966.

Weninger, W., Biro, M., and Jain, R. (2014). Leukocyte migration in the intersti-
tial space of non-lymphoid organs. Nat. Rev. Immunol. 14, 232–246.

Wessel, F., Winderlich, M., Holm, M., Frye, M., Rivera-Galdos, R., Vockel, M.,
Linnepe, R., Ipe, U., Stadtmann, A., Zarbock, A., et al. (2014). Leukocyte
extravasation and vascular permeability are each controlled in vivo by different
tyrosine residues of VE-cadherin. Nat. Immunol. 15, 223–230.
Williams, M.R., Azcutia, V., Newton, G., Alcaide, P., and Luscinskas, F.W.
(2011). Emerging mechanisms of neutrophil recruitment across endothelium.
Trends Immunol. 32, 461–469.

Wolf, M., Albrecht, S., and Märki, C. (2008). Proteolytic processing of chemo-
kines: implications in physiological and pathological conditions. Int. J. Bio-
chem. Cell Biol. 40, 1185–1198.

Woodfin, A., Voisin, M.B., Imhof, B.A., Dejana, E., Engelhardt, B., and Nour-
shargh, S. (2009). Endothelial cell activation leads to neutrophil transmigration
as supported by the sequential roles of ICAM-2, JAM-A, and PECAM-1. Blood
113, 6246–6257.

Woodfin, A., Voisin, M.B., Beyrau, M., Colom, B., Caille, D., Diapouli, F.M.,
Nash, G.B., Chavakis, T., Albelda, S.M., Rainger, G.E., et al. (2011). The junc-
tional adhesion molecule JAM-C regulates polarized transendothelial migra-
tion of neutrophils in vivo. Nat. Immunol. 12, 761–769.

Woodland, D.L., and Kohlmeier, J.E. (2009). Migration, maintenance and recall
of memory T cells in peripheral tissues. Nat. Rev. Immunol. 9, 153–161.

Yao, L., Yago, T., Shao, B., Liu, Z., Silasi-Mansat, R., Setiadi, H., Lupu, F., and
McEver, R.P. (2013). Elevated CXCL1 expression in gp130-deficient endothe-
lial cells impairs neutrophil migration in mice. Blood 122, 3832–3842.

Ye, F., Petrich, B.G., Anekal, P., Lefort, C.T., Kasirer-Friede, A., Shattil, S.J.,
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