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The mammalian cell lines HEK293 and CHO have become

important expression hosts in structural biology. Generating

stable mammalian cell lines remains essential for studying the

function and structure of recombinant proteins, despite the

emergence of highly efficient transient transfection protocols.

Production with stable cell lines can be scaled up easily and high

volumetric product yield can be achieved. Protein structure

reports of the past two years that used stable cell lines were

surveyed for this review. Well-established techniques and novel

approaches for generating stable cell lines and stable cell pools

are presented, including cell sorting, site-specific recombination,

transposons, the Lentivirus system and phage integrases. Host

cell line optimization by endoglycosidase overexpression and

sequence-specific genome engineering is highlighted.

Address

Helmholtz Centre for Infection Research, Structure and Function of

Proteins, Inhoffenstr. 7, 38124 Braunschweig, Germany

Corresponding author: Büssow, Konrad

(konrad.buessow@helmholtz-hzi.de)

Current Opinion in Structural Biology 2015, 32:81–90

This review comes from a themed issue on New constructs and

expressions of proteins

Edited by Imre Berger and Roslyn M Bill

For a complete overview see the Issue and the Editorial

Available online 23rd March 2015

http://dx.doi.org/10.1016/j.sbi.2015.03.002

0959-440X/# 2014 The Author. Published by Elsevier Ltd. This is an

open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).

Introduction
Generating pure, soluble and homogeneous protein is a

major step in the overall process of protein structure

determination. The choice of the expression system

has a great influence on the quality and quantity of the

produced recombinant protein. The Human Embryonic

Kidney cell line HEK293 and the Chinese Hamster

Ovary cell line CHO are excellent host cells for robust

secretion of mammalian proteins with appropriate post-

translational modifications [1]. These cell lines are used

for production of secreted mammalian and viral proteins

and soluble ectodomains of transmembrane proteins,

but also for complete membrane proteins (Table 1).

Cytosolic proteins and complexes can be produced

with stable mammalian cell lines, but the yield is usually

low compared with other expression systems. The

long-awaited crystal structure of the cytosolic mTORC
www.sciencedirect.com 
complex was obtained upon overexpression of its sub-

units in a stable HEK293 cell line [2��].

For recombinant protein overexpression, an expression

vector for the protein of interest is transferred into the

cell’s nucleus by transfection. In a transient transfection

experiment, the protein of interest is harvested a few days

later. Alternatively, a stable cell line is generated from

transfected cells that have integrated the vector into their

genome. Stable cell lines overexpress the target protein

uniformly and indefinitely. Protein production with a

stable cell line is therefore reproducible and can be scaled

up easily. Recent protein structure reports using HEK293

or CHO cell lines were surveyed for this review and it was

found that transient transfection and stable cell lines were

used with around the same frequency. New and improved

technologies for generating stable cell lines are expected

to increase their use in the future.

Establishing stable cell lines requires substantial time

and effort in comparison to transient transfection pro-

cesses. An expression vector with the gene of interest has

to be inserted into the host cell genome. Using standard

methods, the efficiency of genome integration is low.

Moreover, only very few cells will integrate the vector

into a highly transcribed region and will produce suffi-

cient amounts of recombinant protein. Even then, trans-

gene expression is often silenced upon long term cell

culture. Isolating and characterizing a large number of

clones is therefore required, which can take several

months of laboratory work. Fortunately, stable cell line

technology is improving rapidly on the levels of host cell

line, integration process and selection of high-producer

cells.

Crystal structures of proteins produced by stable cell lines

reported during the past two years are listed in

Table 1. The table provides an overview of the host cell

lines and experimental techniques currently used in

structural biology. The most common approach involves

transfection with vectors carrying a selectable marker for

random chromosomal integration, followed by isolation

and screening of single cell clones. This process was

reviewed in three recent publications [3,4,5] and proto-

cols for establishing stable cell lines for structural biology

with antibiotic selection markers have been published

[6,7]. The performance of the antibiotics hygromycin

B, neomycin, puromycin and Zeocin as selection markers

for stable cell line development was recently compared

[8].
Current Opinion in Structural Biology 2015, 32:81–90

https://core.ac.uk/display/81213617?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sbi.2015.03.002&domain=pdf
mailto:konrad.buessow@helmholtz-hzi.de
http://www.sciencedirect.com/science/journal/0959440X/32
http://dx.doi.org/10.1016/j.sbi.2015.05.006
http://dx.doi.org/10.1016/j.sbi.2015.03.002
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/0959440X


82 New constructs and expressions of proteins

Table 1

The Protein Data Bank (PDB) was searched for mammalian protein structures, excluding antibodies, that were released later than July

2012. Selected proteins that had been produced by stable cell lines are listed

Crystallized protein Host cell linea Vector Stable cell line

generationb
PDB entry

and Ref.

Cytosolic

proteins

mTOR:LST8 complex HEK293-F pcDNA 3.1 (+) Co-expression of mTORC

subunits using different

antibiotics

PDB: 4JSN [2��]

Membrane

proteins

Rhodopsin HEK293 GnTI� PDB: 4BEY [54]

GABAA receptor HEK293S GnTI� PDB: 4COF [55]

5-HT3A receptor T-REx-293 pcDNA5/TO PDB: 4PIR [56]

Secreted

proteins

Prothrombin BHK pNUT Lipofection, MTX PDB: 4HZH [57]

Aminopeptidase N CHO Lec3.2.8.1 pBJ5-GS MSX PDB: 4F5C [22]

Integrin a4 CHO Lec3.2.8.1 pcDNA3.1/Hygro PDB: 4IRZ [58]

MHC class II HLA-DQ1:

antigen:TCR complex

CHO Lec3.2.8.1 pEE13.1 MSX PDB: 4GRL [21]

CD200 receptor CHO Lec3.2.8.1 pEE14 PDB: 4BFE [59]

DC-LAMP CHO Lec3.2.8.1 pFS-sigHis Electroporation, RMCE,

G418

PDB: 4AKM [39�]

Neuroligin-1 CHO Lec3.2.8.1 pSGHV0 Electroporation, puromycin PDB: 3VKF [60]

HLA-DM CHO Lec3.2.8.1 PDB: 4FQX [61]

ICAM-5 CHO Lec3.2.8.1 MSX PDB: 4OI9 [20]

Tyrosine kinase receptor RET CHO Lec8 pcDNA3 Lipofection (Effectene), G418 PDB: 4UX8 [62]

Insulin receptor CHO Lec8 pEE14 Lipofection (Lipofectamine

2000), MSX

PDB: 3W11 [23]

Cholesteryl ester transfer

protein

CHO DG44 PDB: 4F2A [63]

Receptor tyrosine-kinase

erbB-4

CHO Lec1 pSGHV0 Lipofection (Fugene),

pcDNA3.1 co-transfection,

G418

PDB: 3U7U [64]

Folate receptor a CHO duk� (kifu.) pSGHV0 Electroporation, MTX PDB: 4KM6 [14]

Acetylcholinesterase CHO-K1 pGS jetPEI, MSX PDB: 4BDT [24]

LIMP-2 HEK293S GnTI� pNeoSec FC31 integrase (stable cell

pool)

PDB: 4Q4B [42]

Glutamate receptor 4 HEK293 GnTI� pHLsec PDB: 4GPA [65]

Tumor antigen 5T4/WAIF1 HEK293 GnTI� pURD FC31 integrase, puromycin PDB: 4CNC [48]

Transcobalamin-1 HEK293 GnTI� Lipofection (lipofectamine) PDB: 4KKI [66]

Integrin aXb2 heterodimer HEK293S GnTI� ET1 (pIRES2-EGFP),

pEF1-puro

Ca-phosphate, FACS,

puromycin,

G418

PDB: 4NEH [29]

von Willebrand factor HEK293S GnTI� ET8 PEI, G418 PDB: 4NT5 [67]

Aminopeptidase N HEK293S GnTI� PDB: 4FYQ [68]

NPP1 pyrophosphatase HEK293S GnTI� PDB: 4B56 [69]

Angiopoietin-2 HEK293 pcDNA3.1 hygro Lipofection PDB: 4JZC [70]

Netrin-1:neogenin complex HEK293 pcDNA3.1+ PDB: 4PLN [71]

RNaseT2 HEK293 (kifu.) pcDNA3.1/myc-His Lipofection (Effectene) PDB: 3T0O [15]

TGF-b-receptor-3 HEK293 EBNA Lipofection (Lipofectamin

2000), puromycin

PDB: 4AJV [72]

Folate receptor a HEK293 pcDNA6 blasticidin PDB: 4LRH [73]

IgG receptor FcRn

subunit p51

HEK293-6E pLVX Lentivirus PDB: 4K71 [46]

Nectin1, 2, 3, Necl-5. HEK293-F pCEP4 Lipofection (Lipofectamin

2000), hygromycin B

PDB: 4FMF [74]

Monocyte differentiation

antigen CD14

HEK293-F pDisplay G418 PDB: 4GLP [75]

Acetylcholinesterase HEK293-H pJT1 Fast Dest Lipofection (Lipofectamin

2000), FC31, hygromycin B

PDB: 4EY4 [49]

Platelet glycoprotein Ib HEK293T ET-6 PDB: 4C2A [76]

Galactocerebrosidase HEK293T pSecTag2B PDB: 4CCC [77]

O-fucosyltransferase 2 HEK293T (kifu.) pSecTagB jetPEI, zeocin PDB: 4AP5 [13]

a kifu., the GnTI inhibitor kifunensine was used during protein production.
b Cells were transfected by lipofection, electroporation or with polyethylenimine (PEI, jetPEI). Recombinant cells were selected with antibiotics

(blasticidin, G418, hygromycin B, puromycin, Zeocin), with the glutamine synthase inhibitor methionine sulfoximine (MSX) or with the DHFR inhibitor

methotrexate (MTX). FACS, GFP-positive cells were isolated by cell sorting.

Current Opinion in Structural Biology 2015, 32:81–90 www.sciencedirect.com
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Engineering of host cell lines for stable cell
line generation
Glycosylation-deficient cell lines

Most secreted mammalian proteins are glycosylated,

which can interfere with crystallization [9��]. Glycosyla-

tion sites that are not required for folding or secretion are

therefore removed by mutagenesis [9��]. The processing

of N-linked glycans from the high-mannose type to the

larger, complex type requires the enzyme N-acetylglu-

cosaminyl-transferase I (GnTI, MGAT1) (Figure 1). The

GnTI-deficient host cell lines HEK293S GnTI� and

CHO Lec3.2.8.1 produce glycoproteins with high-man-

nose type glycans. These glycans can be readily trimmed

further to a single GlcNAc sugar unit by endoglycosidase

treatment [10,11]. The HEK293S GnTI� cell line [10]

(ATCC CRL-3022) is currently the most popular cell line

in structural biology (Table 1). It is used for transient and

stable expression. High-mannose type glycosylation is

also obtained by cultivation with the GnTI inhibitor

kifunensine [12]. Kifunensine was applied for crystal

structure determination of the glycoproteins O-fucosyl-

transferase [13], folate receptor a [14] and RNaseT2 [15]

(Table 1).

Intracellular endoglycosidase overexpression

Recently the ‘GlycoDelete’ HEK293 cell line was devel-

oped that carries a heterologous endoglycosidase in its

Golgi apparatus [16��]. This resulted in robust secretion
Figure 1
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(GnTI– cells)

Complex type
(wildtype cells)

NeuAc-Gal-GlcNAc
(GlycoDelete Endo T+ cells)
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Galactose (Gal)
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Asn Asn Asn
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N-linked sugar classes produced by mammalian cell lines. Complex-

type glycans are synthesized as a heterogeneous mixture of bi-

antennary, tri-antennary and tetraantennary forms. Lack of N-

acetylglucosaminyl-transferase I (GnTI) prevents the formation of

complex sugars and results in high-mannose type protein

glycosylation. High-mannose sugars consist of a variable number of

mannose residues attached to a chitobiose (GlcNAc2) core.

Overexpression of endoglycosidase T (Endo T) in the Golgi apparatus

of the GnTI� ‘GlycoDelete’ HEK293 cell line leads to intracellular

cleavage of N-linked sugars after the first GlcNAc residue. The

cleavage product is partly modified with galactose and N-

acetylneuramic acid residues.

www.sciencedirect.com 
of deglycosylated glycoproteins (Figure 1). The Glyco-

Delete study demonstrates that protein deglycosylation is

possible in the Golgi apparatus, where glycoproteins

traveling the secretory pathway have already passed

the quality control in the endoplasmic reticulum. Cells

that secrete glycoproteins with minimal glycosylation

would enable crystallization without further in vitro
deglycosylation.

Sequence-specific genome engineering

The cell lines CHO Lec3.2.8.1 and HEK293S GnTI�

were created by chemical mutagenesis, followed by

selection for glycosylation deficiency. Chemical muta-

genesis lacks specificity, leading to random mutations

throughout the genome. Sequence-specific genome en-

gineering represents an elegant alternative that greatly

reduces unwanted mutations. Meganucleases with long

recognition sequences cleave genomic DNA at rare sites

and can be used to introduce gene-inactivating mutations

more specifically [17]. Nucleases linked to programma-

ble, sequence-specific DNA-binding modules, such as

zinc finger nucleases (ZFN), TALE nucleases and the

CRISPR/Cas9 nucleases allow for modification of arbi-

trary genetic loci with excellent specificity [18]. Both

alleles of a gene can be inactivated with high frequency

with these nucleases. Especially with CRISPR/Cas9,

mammalian genome engineering has become simple,

reliable and cheap [19].

Glutamine synthetase knockout cells

The glutamine synthetase (GS) gene is used widely as a

selection marker for stable CHO cells. Cells overexpres-

sing GS can be selected by inhibiting the endogenous

glutamine synthetase with the inhibitor methionine sul-

foximine (MSX). The GS marker and MSX-selection of

stable CHO cell lines were used to produce protein for

structure determination of the ICAM-5 ectodomain [20],

a TCR:MHC:antigen heterotetramer [21], aminopepti-

dase N [22], the insulin receptor ectodomain [23] and

acetylcholinesterase [24]. A novel CHO host cell was

created by knocking out the GS gene and the GnTI gene

with specific zinc finger nucleases [25�]. With GS-defi-

cient CHO host cells, MSX selection of cells stably

transfected with a GS vector is much more efficient than

with normal cells. The selection of low-producing cell

clones was largely prevented by using a GS-deficient host

cell line [26]. Moreover, among MSX-selected, stably

transfected cell clones, a six-fold higher proportion of

top producing clones (>2 g/L) was found when a GS-

deficient host cell line was used, in comparison to the

original host cell line.

New cell lines developed by sequence-specific genome

engineering such as GnTI and GS double knockouts

are potentially useful for structural biology. Genome

engineering could also be used for removing genes of
Current Opinion in Structural Biology 2015, 32:81–90
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unwanted host cell proteins that are co-purified with the

target protein.

Methods of stable cell line generation
GFP and cell sorting

Transgene insertion into a host cell chromosome upon

transfection is a rare event and, to make things worse,

most of the integrated transgenes will be inactivated by

epigenetic mechanisms. Cells that received an active

genome-integrated transgene therefore have to be select-

ed by a marker. Antibiotic resistance is commonly used,

but can be an unreliable reporter for high level, uniform

transgene expression [27]. Green fluorescent protein

(GFP) is a useful alternative [28]. Cells that stably inte-

grate a GFP expression vector are directly identified by

intracellular fluorescence and can be isolated by prepara-

tive FACS cell sorting. Cell sorting can isolate a small

number of high-producer clones from millions of cells. By

repeating the process at different time points, cells that

express GFP stably over time can be isolated. By this

method, clonal cell lines with constantly high GFP ex-

pression over several months can be obtained without

applying selective pressure [27].

GFP expression can be coupled to expression of the gene

of interest by constructing internal ribosome entry site

(IRES)-based bicistronic vectors comprising the gene of

interest and a GFP gene. IRES-based GFP co-expression

in combination with cell sorting and antibiotic selection

was used to generate a stable HEK293S GnTI� cell line

for production of a soluble integrin aXb2 heterodimer for

structure determination [29]. In an alternative approach,

the GFP gene can be excised by site-specific recombina-

tion upon clone isolation, thereby bringing a gene of
Figure 2

GOI

GO

GOI
Flp

FRTP

FRTGFPFRTP

FRT
GFP

FRTP

(a)

(b)

(c)

Replacing a GFP marker with a gene of interest by Flp-mediated excision for 

cell line is established by cell sorting. (b) Then, the GFP gene is replaced by t

recombinase. Flp mediates recombination of the FRT-sites flanking the GFP-g

becomes activated by the transgene’s promoter. P: promoter, GOI: gene of in

Figure adapted from Wilke et al. [30].

Current Opinion in Structural Biology 2015, 32:81–90 
interest, located downstream, under the control of the

promoter driving transgene expression (Figure 2) [27,30].

Cell sorting may require optimization to maintain cell

viability. In our own experience, the viability of CHO

Lec3.2.8.1 cells grown in suspension can be low upon cell

sorting. Shear stress was reported to cause low cell viabil-

ity upon sorting of insect cell lines. Addition of Pluronic

acid F-68 improved the survival of sorted insect cells [31�]
and may also have a positive effect on mammalian cells.

Secreted GFP fusion proteins

A secreted GFP marker was used for studying the struc-

ture of a sialyltransferase [32�]. The sialyltransferase was

fused to a codon-optimized, folding-enhanced GFP ver-

sion called ‘superfolder’ [33]. The fusion protein was

secreted by a stable HEK293S GnTI� cell line with high

yield (75 mg/L). The GFP tag allowed for direct protein

quantification by fluorescence spectroscopy during cell

line development and protein purification. It was re-

moved by proteolysis from the sialyltransferase before

crystallization.

Recombinase-mediated cassette exchange

The productivity of a stable cell line depends on the

genetic locus of transgene integration. Instead of random

integration, it would be desirable to target the transgene to

a specific locus that allows for strong and stable transgene

transcription. This can be achieved by recombinase-

mediated cassette exchange (RMCE) using site-specific

recombinases [34,35]. RMCE requires a ‘master’ cell line

carrying a single copy of a reporter gene at a suitable

genetic locus. By RMCE, the reporter gene is exchanged

against the gene of interest (GOI). For RMCE with the
I
Cell line with stably
genome-integrated GFP
gene.

Recombination by
transient Flp expression.

GFP is excised and the
gene of interest is
activated by the promoter.
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generating stable producer cell lines [27]. (a) First, a stable GFP-positive

he gene of interest. This is achieved by transient overexpression of Flp

ene, which leads to the gene’s excision. (c) The gene of interest now

terest, FRT: Flp recognition target site.
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site-specific Flp recombinase, the reporter gene is flanked

by two distinct Flp recognition target (FRT) sites that have

been engineered so that they cannot recombine with each

other (Figures 3 and 4). RMCE is initiated by introducing

the Flp recombinase and a vector with the gene of interest

(GOI), flanked by FRT sites, into the master cell line.

Recombination of FRT sites leads to exchange of the

reporter gene and the GOI, placing the GOI at a highly

active, stable genetic locus (Figure 4). The same master

cell line can be used for generating producer cell lines for

many different target proteins [34,35].

The stable CHO Lec3.2.8.1 cell line SWI3a-26 is a master

cell line for RMCE that was generated by random inte-

gration of a FRT-flanked GFP reporter gene [36]. It

contains a single copy of the GFP reporter transgene at

a genetic locus that is protected from silencing. The

integrated GFP cassette contains a ‘selection trap’ that

allows for selection of recombinant cells upon RMCE

[37]. The selection trap is an inactive selection marker,

lacking a promoter and a start codon (Figure 4). It is

complemented upon RMCE and allows for antibiotic

selection of recombinant cells. Using SWI3a-26, produc-

tion cell lines were established by RMCE for different

mammalian glycoproteins [36,38], including the ectodo-

main of the lysosomal membrane protein DC-LAMP. In

consequence, the DC-LAMP domain structure was

solved by X-ray crystallography [39�].

In our experience, RMCE takes about 7 weeks from the

day of transfection to cryopreservation of clonal produc-

tion cell lines [36]. In comparison to random integration,

the process is faster and the effort of screening of large

numbers of clones is avoided. The multi-host expression

vector pFlpBtM allows for protein production in E. coli,
transiently transfected mammalian cells and Baculovirus-

infected insect cells and for construction of stable cell

lines by RMCE with a single vector [38].

RMCE-derived production cell lines contain only a single

copy of the transgene. Nevertheless, high-yield antibody

production of up to 2 g/L shake flask culture was achieved

with an RMCE system that uses Cre-lox recombination

[40�]. With this system, about 5 weeks were required

from transfection to completion of stable pool production

cultures.

Two independent genetic loci can be targeted with two

different transgenes by RMCE with a single transfection.

This has been achieved by designing new synthetic FRT
site variants [41].

Transfection efficiency and stable pools

Transfection of HEK293 and CHO cells leads to integra-

tion of transgene DNA at random chromosomal loci, but

the frequency of these integration events is very low

with commonly used vectors. Highly efficient systems
www.sciencedirect.com 
for chromosomal integration of transgenes accelerate cell

line generation and allow for protein production with

stable pools, thereby eliminating time-consuming cloning

steps. For protein production with a stable pool, the bulk

of stably transfected cells are selected and used directly

for protein production. The structure of lysosomal inte-

gral membrane protein (LIMP2) was solved using a stable

pool obtained by transfection with the FC31 integrase

system (described below) and antibiotic selection [42].

Efficient chromosomal integration is also achieved with

Lentivirus particles and transposons (Figure 3).

Lentivirus

Lentiviral transduction of mammalian cells is very effi-

cient and highly productive cells are generated at a high

frequency. The usefulness of the Lentivirus system was

demonstrated by establishing stable cell lines and stable

pools for production of antibodies and blood coagulation

factor VIII [43,44,45]. The Lentivirus efficiently trans-

ports the transgene cDNA into the nucleus, where it is

integrated into the host cell genome by the viral integrase

(Figure 3). A stable cell line for production of an IgG

receptor subunit, which resulted in crystal structure

determination, was established with a recombinant

Lentivirus [46]. Stable cell line generation by Lentivirus

transduction and by non-viral plasmid transfection was

compared [45]. Gene delivery into nearly 100% of CHO

cells grown in serum-free suspension culture was

obtained by Lentivirus. GFP overexpression was up to

five times higher in comparison to plasmid transfection.

Potential drawbacks of the Lentivirus system are safety

concerns, the error-prone replication of the viral RNA

genome by reverse transcription and the extra step of

virus particle preparation.

Phage FC31 integrase

The integration system of the Streptomyces phage FC31

represents a non-viral alternative for active transgene

integration. The FC31 integrase performs recombination

between the attP site of the phage genome and the attB
site in the host bacterial chromosome. In mammalian

cells, it mediates integration of plasmids bearing an attB
site into chromosomal sequences that have sequence

similarity with attP, termed pseudo attP sites [47]. Stable

mammalian cell lines are generated by co-transfection

with a FC31 integrase expression vector and an expres-

sion vector for the gene of interest that has an attB site

(Figure 3). This system was used for protein production

and structure determination of LIMP-2 [42], tumor anti-

gen 5T4 [48] and acetylcholinesterase [49].

Transposons

High rates of chromosomal integration have also been

achieved with transposon vectors. The terminal inverted

repeats of the ‘piggyBac’ transposon are recognized by

the transposon’s integrase, which leads to integration of

the flanked sequence into a chromosomal TTAA site
Current Opinion in Structural Biology 2015, 32:81–90
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Figure 3
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Techniques of transgene genome integration for generating stable cell lines. Random integration: The linearized expression vector with the gene of

interest (yellow) is integrated by non-homologous end joining into the host cell genome at the position of a random chromosome break. RMCE

(recombinase-mediated cassette exchange): A master cell line, engineered to carry FRT sites at a suitable locus of its genome, is co-transfected

with a vector with an FRT-flanked gene of interest (GOI) and a second vector for overexpression of Flp recombinase. The Flp recombinase

catalyses site-specific genome integration of the GOI (see also Figure 4). Lentivirus: The host cell line is transduced by a Lentivirus that carries the

GOI in its genome. The viral RNA genome is reverse-transcribed into cDNA, which is integrated into the host cell genome by the viral integrase at

random locations. FC31 integrase: The host cell line is co-transfected with an expression vector for phage FC31 integrase and an expression

vector for the GOI which contains an attB recombination site. The FC31 integrase is expressed and catalyses recombination of the attB site with

genomic sequences that resemble the attP recombination site (pseudo attP sites). Transposase: The host cell line is co-transfected with an

expression vector for the transposase of the piggyBac transposon and a vector containing the GOI, flanked by the transposon’s inverted terminal

repeats. The integrase recognizes the repeats and integrates the flanked sequence into a chromosomal TTAA site.

Current Opinion in Structural Biology 2015, 32:81–90 www.sciencedirect.com
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Figure 4
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Recombinase-mediated cassette exchange (RMCE) with the CHO Lec3.2.8.1 cell line SWI3a-26 [36]. (1) The SWI3a-26 master cell line was

generated from CHO Lec3.2.8.1 cells by random integration of a vector with a GFP reporter gene, flanked by a wild-type FRT site and a synthetic

variant (FRT3). The cell line was isolated by cell sorting and contains a single copy of the GFP vector integrated at a genomic locus that allows for

high-level gene expression. The GFP vector contains a selection trap consisting of an inactive neomycin resistance gene, Dneo, that lacks a

promoter and a start codon. (2) Cassette exchange is initiated by co-transfecting the master cell line with vectors for the Flp recombinase and the

gene of interest (GOI), flanked by compatible FRT sites. The transiently expressed Flp recombinase exchanges the FRT-flanked cassettes. The

selection trap is triggered by activating the Dneo gene with a promoter and a start codon from the GOI vector, thereby enabling selection of

recombinant clones.

Figure adapted from Wilke et al. [36].
(Figure 3). In stable CHO cell development, the piggy-

Bac system strongly increased the frequency of stable

integration and lead to up to fourfold higher protein yield

from pools of transfected cells [50]. Similarly positive

results were obtained with the ‘Sleeping Beauty’ trans-

poson system and HEK293 cells [51]. A stable cell line

overexpressing the four subunits of a g-secretase complex

was established in one step with the piggyBac system

[52��]. A newly designed vector set for doxycycline-in-

ducible overexpression utilizes multiple-copy integration

by the piggyBac integrase and was used with HEK293S

GnTI� cells for high-level secretion of 14 proteins with

stable pools [53�].

Conclusions
Protein production with stable cell lines for structural

biology relies strongly on glycosylation-deficient host cells.

A novel HEK293 cell line, called ‘GlycoDelete’, was

equipped with an intracellular endoglycosidase for secre-

tion of deglycosylated glycoproteins. Host cells can be

improved by sequence-specific genome engineering, allow-

ing for efficient and highly specific knock out of multiple

genes. A CHO cell was reported that lacks both GnTI and

glutamine synthetase (GS) activity, which allows for highly

efficient selection of stable cell lines with GS markers.
www.sciencedirect.com 
A survey of recent reports of protein crystal structures

indicated that transient transfection of mammalian cells

and stable mammalian cell lines were used with around

the same frequency. In comparison to transient transfec-

tion protocols, the generation of stable cell lines has

several bottlenecks. The frequency of stable genome

integration upon transfection with plasmid vectors is

low and, moreover, most integrated transgenes will be

silenced. Top producers are usually rare in the pool of

stably transfected cells and their identification requires

isolating and characterizing a large number of clones.

Techniques for improved genome integration of trans-

genes and for improved selection of high-producing

stable cell lines have been developed. Using fluorescent

proteins as selection markers allows for isolating high-

producing stable cells among millions of transfected cells

by cell sorting. Novel glutamine synthetase knock out

cells generated by sequence-specific genome engineering

allow for a more efficient selection of high-producer cells

with the glutamine synthetase selection marker. The

problem of transgene silencing has been addressed by

the recombinase-mediated cassette exchange (RMCE)

technique. Here, site-specific recombination is used for

targeting the gene of interest to specific genetic loci that
Current Opinion in Structural Biology 2015, 32:81–90
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are protected from silencing and that allow for high-level

gene expression.

Plasmid DNA introduced into the nucleus of host cells is

integrated into the genome by host cell factors at random

sites with a low frequency. Much more efficient genome

integration is achieved when additional, heterologous

integration factors are introduced. This is accomplished

with Lentiviruses, piggyBag and Sleeping Beauty trans-

posons and the phage FC31 integrase. Transfection of

host cells with these highly efficient systems results in a

pool of cells with a high proportion of stable high-produ-

cers. Such a stable pool can be used directly for protein

production, thereby avoiding time-consuming clone

isolation and characterization steps.
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