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Abstract

In this paper, we prove two theorems on the local stability of isometries in connection
with (e, p)-isometries. These theorems reveal that a large class pj-isometries, defined
on various restricted domains, are stable.
0 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

Let (E,dg) and(F, dr) be metric spaces. A mappidg E — F is called an
isometry if I satisfies the equation
dr(1(x), 1(y)) =dg(x, y)

forallx,y e E.
Extending the definition by Hyers and Ulam [11], we may call a mapping
f:E — F ane-isometry if f satisfies the inequality

|dr (f (), f() —de(x, )| <e (%)
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for all x, y € E. If in this case there exist an isometfy E — F and a constant
k > 0 such thatdg(f(x), I(x)) < ke for all x € E, then we may say that the
isometry fromkE to F is stable (in the sense of Hyers and Ulam).

Hyers and Ulam proved in the same paper [11] the stability of isometries
between real Hilbert spaces. In fact, they proved that if a surjective mapping
f:E — E, whereE is a real Hilbert space, satisfigq0) = 0 as well as the
inequality (x) for somee > 0 and for allx, y € E, then there exists a surjective
isometryl : E — E such thaf] f(x) — I (x)|| < 10s forallx € E.

This result of Hyers and Ulam was the first one concerning the stability of
isometries and was further generalized by Bourgin [4]. Indeed, Bourgin proved
the following theorem: Assume thét is a Banach space and thatbelongs to a
class of uniformly convex spaces. If a mappifigt — F satisfiesf (0) =0 as
well as the inequalityx) for somee > 0 and for allx, y € E, then there exists a
linear isometryl : E — F such thaf| f(x) — I (x)| < 12¢ for eachx € E.

Subsequently, Hyers and Ulam [12] studied a stability problem for spaces
of continuous mappings: Lef; and S» be compact metric spaces agys;)
denote the space of real-valued continuous mappings; equipped with the
metric topology with| - ||s. If @ homeomorphisnT : C(S1) — C(S2) satisfies
the inequality

T =T@ | = If —8lloo| < ()

for somes > 0 and for allf, g € C(S1), then there exists anisometty. C(S1) —
C(S2) suchthal|T (f) — U(f)llco < 21 forevery f € C(S1).

This result of Hyers and Ulam was significantly generalized by Bourgin
again (see [5]): LetS; and S> be completely regular Hausdorff spaces and
let T:C(S1) — C(S2) be a surjective mapping satisfying the inequaliix)
for somees > 0 and for all f, g € C(S1). Then there exists a linear isometry
U:C(S51) — C(S2) suchthal|T(f) — U(f)]loo < 10¢ forany f € C(S1).

The study of stability problems for isometries on finite-dimensional Banach
spaces was continued by Bourgin [6].

In 1978, Gruber [10] obtained an elegant result as follows: Eeand F
be real normed spaces. Suppose that — F is a surjective mapping and it
satisfies the inequalityx) for somee > 0 and for allx, y € E. Furthermore,
assume thaf : E — F is an isometry withf(p) = I(p) for somep € E. If
| f(x) — I =o(lx|) as|lx|| — oo uniformly, then/ is a surjective linear
isometry and|| f(x) — I (x)|| < 5¢ for all x € E. If in addition f is continuous,
then| f(x) —I(x)|| < 3cforallx e E.

Gevirtz [9] established the stability of isometries between arbitrary Banach
spaces: Given real Banach spaesndF, let f : E — F be a surjective mapping
satisfying the inequalityx) for somes > 0 and for allx, y € E. Then there exists
a surjective isometry : E — F such that]| f (x) — I(x)| < 5¢ for eachx € E.
Later, the upper boundsEcould be improved to the sharp one, by OmladE
and Semrl [15].
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Itis surprising that Dolinar [7] recently proved the superstability of isometries.
Indeed, he proved that fgp > 1 every surjective(e, p)-isometry f: E — F
between finite-dimensional real Banach spaces is an isometry, where a mapping
f:E — Fiscalled an(e, p)-isometry if f satisfies the inequality

[ fG) = FO ] = llx = yll| <ellx = yIIP
for somes > 0 and for allx, y € E. (One can further refer to [7,19] for more exact
definition of (¢, p)-isometry.)

On the other hand, Swain [22] considered the stability of isometries on
bounded metric spaces and proved the following result: Mebe a subset of
a compact metric spadd, d) and lets > 0 be given. Then there exists an- 0
such that if f : M — E satisfies the inequalityx) for all x, y € M, then there
exists an isometry : M — E with d(f(x), I(x)) < foranyx e M.

The stability problem of isometries on bounded subsefR"ofvas studied by
Fickett [8]: Fors > 0, let us defineKo(r) = K1(r) = t, Ko(t) = 331, Ki(t) =
27" wherem(i) = 21~/ for i > 3. Let S be a bounded subset Bf* with di-
ameterd(S), and suppose thatk3, (¢/d(S)) < 1 for somes > 0. If a mapping
/S — R" satisfies the inequalitg) for all x, y € S, then there exists an isom-
etryl:S — R" such thal f(x) — I (x)| < d(S)Kn+1(g/d(S)) for eachx € §.

Recently, the author and Kim [13] investigated the stability of isometries on
restricted domains. For more general information on the stability of isometries
and related topics, one can refer to [17,18] (see also [1,3,7,14,16,20,21]).

In this paper, we will prove the local stability of a class of asymptotic isome-
tries. We refer the reader to the paper [21] of Skof for the exact definition of
asymptotic isometries. Indeed, Skof [21] has investigated many interesting prop-
erties of a large class of asymptotic isometries. It may be interesting to compare
our main results with those of [21].

2. Local stability of isometries on unbounded domains

Let (G, 4) be an abelian metric group with a metd¢ , -) satisfying
dix+z,y+2) =d(x,y) and d(2x,2y)=2d(x,y) (1)
forall x, y, z € G. Furthermore, we assume that for each givenG the equation

X+x=y
is uniquely solvable. We here promise that!'2 or y/2 stands for the unique
solution of the above equation and we inductively defin@®ly = 2-1(27"y)
for each giverny € G andn € N. We may usually writer /2" instead of 2" x for
eachx € G andn € N. The second condition in (1) also implies that

Xy 1
dl=,=z)==d
<2’ 2) 24 )

forx,yeG.



S.-M. Jung / J. Math. Anal. Appl. 276 (2002) 642—653 645

Theorem 1. Let E be a subset off with the property that

OcE and 2xeE (forxeE andkeN)
and let F be a real Hilbert space with the associated inner prod(ct). If a
mappingf : E — F satisfies the inequality
[ £0) = £ —dx, )| <ed(x, y)?
for somee > 0, 0< p <1 and for all x, y € E, then there exists an isometry
I : E — F that satisfies
| £ = 1) = £(O)
2(1-p)/2
S TmE 1
forall x € E. For 0 < p < 1, the isometryl is uniquely determined.

max{+/4.5¢, 2e } max{d (x, 0)”, d (x, 0):*7)/2} ©)

Proof. If we define a mapping: E — F by g(x) = f(x) — f(0), then we have

g =g —dx, )| <ed(x, y)? (3)
for anyx, y € E. With y = 0 andy = 2x separately, the inequality (3) together
with (1) yields

{ g0 —d(x, 0] < ed(x, 07,

|[|g(x) — gx) || —d(x,0)| <ed(x, 07,

respectively.
It follows from (4) that

4

A2 < g0)]* < [d(x, 0 +ed(x, 07]° 5)

and

l2t0) —g@0) > =g |? + |g@0) | - 2[g(x), g(2x))
<[d(x,0) +ed(x, 07T, 6)
where we set

0 ford(x,0) < V=P,

d(x,0) —ed(x,0)” ford(x,0) > ¥/A-p),

If d(x,0) > 271eYA=P) then A(2x) = d(2x,0) — ed(2x,0)? and A(2x)? <
llg(2x)||2. Hence, it follows from (1), (5) and (6) that

2

A(x):{

1
zHg(x) - Eg(zx)

1
=2]s)[*+ 3 g@0)|* ~ 2sx). g(2v))
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1
= Js@[*+ {Js@)[* + |s@0)|* = 2fg(). g@n)} - 5 s @)
<2[d(x,0) + sd(x,0)"]" — %[d(Zx, 0) — ed(2x, 0)"]?

1 1
:48(1+ T )d(x 0P 4 2¢ (1— m)d(x, 0)%”
< (4+ 27 4 %)sd(x, 0)YP < 9ed(x, 017,

On the other hand, fat(x, 0) < 2-1e¥/1-P) it analogously follows from (5) and
(6) that
2

ZHg(x) - %g(Zx) <2[d(x,0) + ed(x,0)"]* < 82d (x, 0)?7.

Hence, we have

o) — %g(zx)H < Cmax{d(x, 0), d(x,0):+7)/2) (7)

forall x € E, where we se€ = max{«/4.5¢, 2¢}.
The last inequality implies the validity of the following inequality

Hg(x) - —g (2'x)

n—1
< Cmax{d(x, 007, d(x, 0)H+P/2} % “o-il=p)/2 (8)
i=0
for n = 1. Assume now that the inequality (8) is true for some N. It then
follows from (1), (7) and (8) that

1
’g(x) 2n+1g(2n+1 )

1 1
< e - ge@)| + | 3e@n) - prpe(z iy

n—1

< Cmax{d(x,0)”, d(x,0)tTP)/2) Z o=i(1-p)/2
i=0

1 (1+p)/2
+ §C max{d(Z”x, 0)p, d(Z”x, 0) 14 }
n

< Cmax{d(x, 07, d(x, 0472} 3" 27i0=)/2,

i=0
which implies the validity of (8) for alk € E andn € N.



S.-M. Jung / J. Math. Anal. Appl. 276 (2002) 642—653 647

For givenm, n € N with n > m, we use (1) and (8) to verify

1 1
‘ z—mg(Z’"x) - gg(Z"x)
1
= o |62 - ge(z o 2)

n—1
< Cmax{d(x,0)", d(x,0)1P/2) Z o—i(1-p)/2
i=m

— 0 asm — oo.

Thus,{27"¢(2"x)} is a Cauchy sequence for any E. Let us define a mapping
I.:E— Fby

I(x)= nILmoo Z—J;lg(Z"x). (9)

If we substitute 2x and 2y for x and y in (3) and divide the resulting
inequality by 2, and if we consider the case thatgoes to the infinity, then
we see thaf is an isometry. The inequality (8), together with (9), shows that the
inequality (2) holds true for any € E.

Now, assume that & p <1 andJ:E — F is an isometry satisfying the
inequality (2). Because of our assumptipn> 0, it then follows from (2) that
J(0) =0. Since

[7) =T | =d(x.y)
forall x, y € E, it follows from (1) that
|7(2x) = J(x)|| =d@x,x) =d(x,0)= | J(x)|
and
[7(2x) || =d(2x,0)=2d(x,0)=2||J(x)].
Hence, we have
[7@0) =y @)|* = |@0|* =2 @0). s @)+ [T [ = [ @)
Thus, we get

[/ @[]/ @] =7 @0). 1)

J(2x) =2J (x) (10)

for anyx € E. Assume that

1
?J(ka) =J(x) (11)
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for all x € E and some& € N. Then, by (10) and (11), we obtain

1 1
ﬁ](2k+lx) = §J(2kx) = J(X),

which implies that, for O< p < 1, the equality (11) is true for akl € E and all
k e N.

For some O< p < 1 and for an arbitrary € E, it follows from (2) and (11)
that

1@ — 1] = 2 |1@) ~ (2]
1 2.2(1-p)/2
S @ prz 1
1pa 2802
21-p)/2 _1q

— 0 ask— oo.

Ccmax{d(2'x,0)”, d(2"x, O)(1+p)/2}

<27k Cmax{d(x,0)”, d(x,0)1P)/2}

This implies the uniqueness offorthe case & p <1. O

It would be interesting to compare the previous theorem with Theorem 1
of [21] because the mapping involved in the former theorem is a kind of
asymptotic isometry. The following corollary may be proven by use of Theorem 1
or in a straight forward manner. Indeed, it is an immediate consequence of
Proposition 4 in [21].

Corollary 1. Let G be a real normed space and |ét be a real Hilbert space.
Assume that a mapping: G — F satisfiesf(0) = 0 and f(2¥x) = 2k f(x) for
all x € G andk € N. The mapping is a linear isometry if and only if there exists
a0 < p < lsuchthat

| fe) =] = llx =yl = 0(Ix = yII7)

as|x|| — oo and|y| — oo.

According to a theorem of Baker [1 may be assumed to be real normed
space which is strictly convex.
3. Local stability of isometries on bounded domains

Let (G, +) be the abelian metric group with the metti¢ , -) which satisfies
all the conditions given in the previous section.

Theorem 2. Let E be a subset ofr with the property that
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0OcE and 2*xeE (forxeE andkeN)

and let F be a real Hilbert space with the associated inner prod(ct). If a
mappingf : E — F satisfies the inequality

[0 = FO] —dx, )| <ed(x, y)P
for somee > 0, p > 1 and for all x, y € E, then there exists a unique isometry
I: E — F such that

| f) =100 = fO

2(p—1)/2
S-h21

foranyx € E.

max{2y/e, 2¢} max{d(x, 0)?, d(x, 0)1*P)/2} (12)

Proof. Let us define a mapping: E — F by g(x) = f(x) — f(0). Then, the
inequality (3) holds fop > 1 and for allx, y € E. Puty =0 andy = 2~ x in (3)
separately and consider the conditions in (1) to get

|g)| —d(x,0)] < ed(x,0)7,
_ _ _ (13)
llg(x) — g(271x) | — 271d (x, 0)| < 27Ped(x, 0)".
By (13), we have
A2 < e | <[d(x, 0+ ed(x, 0] (14)
and
2 2
= 2 - x
e —¢(3)] = lew P+ [¢(3) ] - 2ecore(3))
< [}d( 0) + —d( O)P}2 (15)
~X 2 x7 2[7 x7 ’

where we define

0 ford(x,0) > e VP-D,
d(x,0) —ed(x,0” ford(x,0) <e /P-D,

If d(x,0) <&~ Y®=D then it follows from (1), (14) and (15) that

1 X\ |2
ofsoo-(3)

:%ng(x)\lzﬂug(%)
= S lew]?+ Hé’(g)

A(x):{

o)

e (3

o)
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1 & 2
[d(x 0) — ed(x, O)p] I:Ed(x,O)—l—Ed(x,O)p}
(231, + )sd(x 017+ ;(%p - 1)szd(x,0>2"

2
(z—p+ )8d<x O)MP < 20d(x, 017,

¢~ V=D it analogously follows from (14) and (15) that

I\JII—\

Ford(x,0) >

1 X
EHg(x) - 28<§>
1 2 X 2 X
St sz (3) o)
<[e@)] wtscor+ Js(5)] ~seoe(3))
= 2 2 e\ 2

1 2
2[§d(x, 0 + zg—pd(x, 0)”] < 26%d(x, 0)2P.

2

Hence, we have
o) — 2g<%) H < Cmax{d(x,0), d(x,0) 1)/ (16)

for anyx € E, where we se€C = max2.,/¢, 2¢}.
The last inequality means the validity of the inequality

w0-25(3)|

e
< Ccmaxd(x,0)?, d(x,0)tTP)/2) Z o—i(p=1)/2
i=0

for n = 1. Assume that the inequality (17) holds true for someN. Then, by
(1), (16) and (17), we get

7 X
o027 )|
71 X 71 X 71 X
<fro-zs(3)] +[eo(3) -2l

n—1
< cmaxd(x,0)”, d(x,0)*P)/2) Z o—i(p=1)/2
i=0

. ¥ p X I+p)/2
+ 2 Cmax{d(§,0> ,d(§,0> }

17)
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n
< Cmax{d(x, 00, d(x,0) P/} % " omilr=D/2,
i=0
which implies the validity of (17) for alk € E andn € N.
Letm, n € N be given withn > m. By (1) and (17), we obtain

X X
2mg<27) B 2"g<z—n) H
X B 1 =x
-2 (z) -7 ()

n—1
< Ccmax{d(x,0)?, d(x,0 P72} Z o—i(p=1)/2

1=m

— 0 asm — oo,

which means tha2" g(27"x)} is a Cauchy sequence for everyg E. SinceF is
complete, we may define a mappihgk — F by

1) = lim 2"g(2x—n). (18)

Hence, the inequality (3), together with (18), implies thé& an isometry. The
inequality (12) is an immediate consequence of (17) and (18).

Now, let J: E — F be an isometry satisfying the inequality (12). It then
follows from (12) that/(0) = 0. Similarly as in the proof of Theorem 1, we may
verify

X
2’{1(§> =J(x) (19)
forall x € E and allk € N.

Finally, it follows from (12) and (19) that

(x) ()]

2.2(p—1)/2 p (+p)/2
< ZkWCmax{d<%,0> ,d(%,O) }
2(17+l)/2

2r-1/2 _ 1
— 0 ask — oo,

1) —J| =2

< 27kp=b/2 C max{d(x,0)”, d(x,0) P2}

for anyx € E, which implies the uniqueness 6f O

The following corollary may be proven by use of Theorem 2. However, the
assumptions are so strong that the corollary can easily be proven in a straight
forward manner. Hence we omit the proof.
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Corollary 2. Let G be a real normed space and |ét be a real Hilbert space.
Suppose a mapping: G — F satisfiesf (0) = 0 and f(2kx) = 2 f (x) for all

x € G andk € N. The mappingf is a linear isometry if and only if there exists a
p > 1such that

lf @) = r»] = llx = yll| = 0(lx — ylI?)
as|lx|| — Oand|y|| — O.

In the above corollary, we may assume thaits a strictly convex real normed
space (see [1]).
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