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Abstract

In this paper, we prove two theorems on the local stability of isometries in connection
with (ε,p)-isometries. These theorems reveal that a large class of(ε,p)-isometries, defined
on various restricted domains, are stable.
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1. Introduction

Let (E, dE) and(F, dF ) be metric spaces. A mappingI : E → F is called an
isometry ifI satisfies the equation

dF

(
I (x), I (y)

) = dE(x, y)

for all x, y ∈ E.
Extending the definition by Hyers and Ulam [11], we may call a mapping

f : E → F anε-isometry iff satisfies the inequality

∣∣dF

(
f (x), f (y)

) − dE(x, y)
∣∣ � ε (∗)
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for all x, y ∈ E. If in this case there exist an isometryI : E → F and a constant
k � 0 such thatdF (f (x), I (x)) � kε for all x ∈ E, then we may say that the
isometry fromE to F is stable (in the sense of Hyers and Ulam).

Hyers and Ulam proved in the same paper [11] the stability of isometries
between real Hilbert spaces. In fact, they proved that if a surjective mapping
f : E → E, whereE is a real Hilbert space, satisfiesf (0) = 0 as well as the
inequality(∗) for someε � 0 and for allx, y ∈ E, then there exists a surjective
isometryI : E → E such that‖f (x) − I (x)‖ � 10ε for all x ∈ E.

This result of Hyers and Ulam was the first one concerning the stability of
isometries and was further generalized by Bourgin [4]. Indeed, Bourgin proved
the following theorem: Assume thatE is a Banach space and thatF belongs to a
class of uniformly convex spaces. If a mappingf : E → F satisfiesf (0) = 0 as
well as the inequality(∗) for someε � 0 and for allx, y ∈ E, then there exists a
linear isometryI : E → F such that‖f (x) − I (x)‖ � 12ε for eachx ∈ E.

Subsequently, Hyers and Ulam [12] studied a stability problem for spaces
of continuous mappings: LetS1 and S2 be compact metric spaces andC(Si)

denote the space of real-valued continuous mappings onSi equipped with the
metric topology with‖ · ‖∞. If a homeomorphismT : C(S1) → C(S2) satisfies
the inequality∣∣∥∥T (f ) − T (g)

∥∥∞ − ‖f − g‖∞
∣∣ � ε (∗∗)

for someε � 0 and for allf, g ∈ C(S1), then there exists an isometryU : C(S1) →
C(S2) such that‖T (f ) − U(f )‖∞ � 21ε for everyf ∈ C(S1).

This result of Hyers and Ulam was significantly generalized by Bourgin
again (see [5]): LetS1 and S2 be completely regular Hausdorff spaces and
let T : C(S1) → C(S2) be a surjective mapping satisfying the inequality(∗∗)

for someε � 0 and for all f, g ∈ C(S1). Then there exists a linear isometry
U : C(S1) → C(S2) such that‖T (f ) − U(f )‖∞ � 10ε for anyf ∈ C(S1).

The study of stability problems for isometries on finite-dimensional Banach
spaces was continued by Bourgin [6].

In 1978, Gruber [10] obtained an elegant result as follows: LetE and F

be real normed spaces. Suppose thatf : E → F is a surjective mapping and it
satisfies the inequality(∗) for someε � 0 and for allx, y ∈ E. Furthermore,
assume thatI : E → F is an isometry withf (p) = I (p) for somep ∈ E. If
‖f (x) − I (x)‖ = o(‖x‖) as‖x‖ → ∞ uniformly, thenI is a surjective linear
isometry and‖f (x) − I (x)‖ � 5ε for all x ∈ E. If in addition f is continuous,
then‖f (x) − I (x)‖ � 3ε for all x ∈ E.

Gevirtz [9] established the stability of isometries between arbitrary Banach
spaces: Given real Banach spacesE andF , letf : E → F be a surjective mapping
satisfying the inequality(∗) for someε � 0 and for allx, y ∈ E. Then there exists
a surjective isometryI : E → F such that‖f (x) − I (x)‖ � 5ε for eachx ∈ E.
Later, the upper bound 5ε could be improved to the sharp one, 2ε, by Omladǐc
and Šemrl [15].
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It is surprising that Dolinar [7] recently proved the superstability of isometries.
Indeed, he proved that forp > 1 every surjective(ε, p)-isometryf : E → F

between finite-dimensional real Banach spaces is an isometry, where a mapping
f : E → F is called an(ε, p)-isometry iff satisfies the inequality∣∣∥∥f (x) − f (y)

∥∥ − ‖x − y‖∣∣ � ε‖x − y‖p

for someε � 0 and for allx, y ∈ E. (One can further refer to [7,19] for more exact
definition of(ε, p)-isometry.)

On the other hand, Swain [22] considered the stability of isometries on
bounded metric spaces and proved the following result: LetM be a subset of
a compact metric space(E, d) and letδ > 0 be given. Then there exists anε > 0
such that iff : M → E satisfies the inequality(∗) for all x, y ∈ M, then there
exists an isometryI : M → E with d(f (x), I (x)) � δ for anyx ∈ M.

The stability problem of isometries on bounded subsets ofRn was studied by
Fickett [8]: For t � 0, let us defineK0(t) = K1(t) = t , K2(t) = 3

√
3t , Ki(t) =

27tm(i), wherem(i) = 21−i for i � 3. Let S be a bounded subset ofRn with di-
ameterd(S), and suppose that 3Kn(ε/d(S)) � 1 for someε � 0. If a mapping
f : S → Rn satisfies the inequality(∗) for all x, y ∈ S, then there exists an isom-
etry I : S → Rn such that|f (x) − I (x)| � d(S)Kn+1(ε/d(S)) for eachx ∈ S.

Recently, the author and Kim [13] investigated the stability of isometries on
restricted domains. For more general information on the stability of isometries
and related topics, one can refer to [17,18] (see also [1,3,7,14,16,20,21]).

In this paper, we will prove the local stability of a class of asymptotic isome-
tries. We refer the reader to the paper [21] of Skof for the exact definition of
asymptotic isometries. Indeed, Skof [21] has investigated many interesting prop-
erties of a large class of asymptotic isometries. It may be interesting to compare
our main results with those of [21].

2. Local stability of isometries on unbounded domains

Let (G,+) be an abelian metric group with a metricd(· , ·) satisfying

d(x + z, y + z) = d(x, y) and d(2x, 2y) = 2d(x, y) (1)

for all x, y, z ∈ G. Furthermore, we assume that for each giveny ∈ G the equation

x + x = y

is uniquely solvable. We here promise that 2−1y or y/2 stands for the unique
solution of the above equation and we inductively define 2−(n+1)y = 2−1(2−ny)

for each giveny ∈ G andn ∈ N. We may usually writex/2n instead of 2−nx for
eachx ∈ G andn ∈ N. The second condition in (1) also implies that

d

(
x

2
,

y

2

)
= 1

2
d(x, y)

for x, y ∈ G.
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Theorem 1. Let E be a subset ofG with the property that

0∈ E and 2kx ∈ E ( for x ∈ E andk ∈ N)

and letF be a real Hilbert space with the associated inner product〈· , ·〉. If a
mappingf : E → F satisfies the inequality∣∣∥∥f (x) − f (y)

∥∥ − d(x, y)
∣∣ � εd(x, y)p

for someε � 0, 0 � p < 1 and for all x, y ∈ E, then there exists an isometry
I : E → F that satisfies∥∥f (x) − I (x) − f (0)

∥∥
� 2(1−p)/2

2(1−p)/2 − 1
max

{√
4.5ε, 2ε

}
max

{
d(x, 0)p, d(x, 0)(1+p)/2} (2)

for all x ∈ E. For 0 < p < 1, the isometryI is uniquely determined.

Proof. If we define a mappingg : E → F by g(x) = f (x) − f (0), then we have∣∣∥∥g(x) − g(y)
∥∥ − d(x, y)

∣∣ � εd(x, y)p (3)

for any x, y ∈ E. With y = 0 andy = 2x separately, the inequality (3) together
with (1) yields{∣∣∥∥g(x)

∥∥ − d(x, 0)
∣∣ � εd(x, 0)p,∣∣∥∥g(x) − g(2x)

∥∥ − d(x, 0)
∣∣ � εd(x, 0)p,

(4)

respectively.
It follows from (4) that

A(x)2 �
∥∥g(x)

∥∥2 �
[
d(x, 0) + εd(x, 0)p

]2 (5)

and ∥∥g(x) − g(2x)
∥∥2 = ∥∥g(x)

∥∥2 + ∥∥g(2x)
∥∥2 − 2

〈
g(x), g(2x)

〉
�

[
d(x, 0) + εd(x, 0)p

]2
, (6)

where we set

A(x) =
{

0 for d(x, 0) � ε1/(1−p),

d(x, 0) − εd(x, 0)p for d(x, 0) > ε1/(1−p).

If d(x, 0) > 2−1ε1/(1−p) then A(2x) = d(2x, 0) − εd(2x, 0)p and A(2x)2 �
‖g(2x)‖2. Hence, it follows from (1), (5) and (6) that

2

∥∥∥∥g(x) − 1

2
g(2x)

∥∥∥∥
2

= 2
∥∥g(x)

∥∥2 + 1

2

∥∥g(2x)
∥∥2 − 2

〈
g(x), g(2x)

〉
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= ∥∥g(x)
∥∥2 + {∥∥g(x)

∥∥2 + ∥∥g(2x)
∥∥2 − 2

〈
g(x), g(2x)

〉} − 1

2

∥∥g(2x)
∥∥2

� 2
[
d(x, 0) + εd(x, 0)p

]2 − 1

2

[
d(2x, 0) − εd(2x, 0)p

]2

= 4ε

(
1+ 1

21−p

)
d(x, 0)1+p + 2ε2

(
1− 1

22(1−p)

)
d(x, 0)2p

�
(

4+ 2p + 4

2p

)
εd(x, 0)1+p � 9εd(x, 0)1+p.

On the other hand, ford(x, 0) � 2−1ε1/(1−p), it analogously follows from (5) and
(6) that

2

∥∥∥∥g(x) − 1

2
g(2x)

∥∥∥∥
2

� 2
[
d(x, 0) + εd(x, 0)p

]2 � 8ε2d(x, 0)2p.

Hence, we have∥∥∥∥g(x) − 1

2
g(2x)

∥∥∥∥ � C max
{
d(x, 0)p, d(x, 0)(1+p)/2} (7)

for all x ∈ E, where we setC = max{√4.5ε, 2ε}.
The last inequality implies the validity of the following inequality∥∥∥∥g(x) − 1

2n
g
(
2nx

)∥∥∥∥
� C max

{
d(x, 0)p, d(x, 0)(1+p)/2} n−1∑

i=0

2−i(1−p)/2 (8)

for n = 1. Assume now that the inequality (8) is true for somen ∈ N. It then
follows from (1), (7) and (8) that∥∥∥∥g(x) − 1

2n+1 g
(
2n+1x

)∥∥∥∥
�

∥∥∥∥g(x) − 1

2n
g
(
2nx

)∥∥∥∥ +
∥∥∥∥ 1

2n
g
(
2nx

) − 1

2n+1g
(
2n+1x

)∥∥∥∥
� C max

{
d(x, 0)p, d(x, 0)(1+p)/2} n−1∑

i=0

2−i(1−p)/2

+ 1

2n
C max

{
d
(
2nx, 0

)p
, d

(
2nx, 0

)(1+p)/2}
� C max

{
d(x, 0)p, d(x, 0)(1+p)/2} n∑

i=0

2−i(1−p)/2,

which implies the validity of (8) for allx ∈ E andn ∈ N.
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For givenm, n ∈ N with n > m, we use (1) and (8) to verify∥∥∥∥ 1

2m
g
(
2mx

) − 1

2n
g
(
2nx

)∥∥∥∥
= 1

2m

∥∥∥∥g
(
2mx

) − 1

2n−m
g
(
2n−m · 2mx

)∥∥∥∥
� C max

{
d(x, 0)p, d(x, 0)(1+p)/2} n−1∑

i=m

2−i(1−p)/2

→ 0 asm → ∞.

Thus,{2−ng(2nx)} is a Cauchy sequence for anyx ∈ E. Let us define a mapping
I : E → F by

I (x) = lim
n→∞

1

2n
g
(
2nx

)
. (9)

If we substitute 2nx and 2ny for x and y in (3) and divide the resulting
inequality by 2n, and if we consider the case thatn goes to the infinity, then
we see thatI is an isometry. The inequality (8), together with (9), shows that the
inequality (2) holds true for anyx ∈ E.

Now, assume that 0< p < 1 andJ : E → F is an isometry satisfying the
inequality (2). Because of our assumptionp > 0, it then follows from (2) that
J (0) = 0. Since∥∥J (x) − J (y)

∥∥ = d(x, y)

for all x, y ∈ E, it follows from (1) that∥∥J (2x) − J (x)
∥∥ = d(2x, x) = d(x, 0) = ∥∥J (x)

∥∥
and ∥∥J (2x)

∥∥ = d(2x, 0) = 2d(x, 0) = 2
∥∥J (x)

∥∥.

Hence, we have∥∥J (2x) − J (x)
∥∥2 = ∥∥J (2x)

∥∥2 − 2
〈
J (2x), J (x)

〉+ ∥∥J (x)
∥∥2 = ∥∥J (x)

∥∥2
.

Thus, we get∥∥J (2x)
∥∥∥∥J (x)

∥∥ = 〈
J (2x), J (x)

〉
,

i.e.,

J (2x) = 2J (x) (10)

for anyx ∈ E. Assume that

1

2k
J
(
2kx

) = J (x) (11)
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for all x ∈ E and somek ∈ N. Then, by (10) and (11), we obtain

1

2k+1
J
(
2k+1x

) = 1

2k
J
(
2kx

) = J (x),

which implies that, for 0< p < 1, the equality (11) is true for allx ∈ E and all
k ∈ N.

For some 0< p < 1 and for an arbitraryx ∈ E, it follows from (2) and (11)
that ∥∥I (x) − J (x)

∥∥ = 1

2k

∥∥I
(
2kx

) − J
(
2kx

)∥∥
� 1

2k

2 · 2(1−p)/2

2(1−p)/2 − 1
C max

{
d
(
2kx, 0

)p
, d

(
2kx, 0

)(1+p)/2}
� 2−k(1−p)/2 2(3−p)/2

2(1−p)/2 − 1
C max

{
d(x, 0)p, d(x, 0)(1+p)/2}

→ 0 ask → ∞.

This implies the uniqueness ofI for the case 0< p < 1. ✷
It would be interesting to compare the previous theorem with Theorem 1

of [21] because the mappingf involved in the former theorem is a kind of
asymptotic isometry. The following corollary may be proven by use of Theorem 1
or in a straight forward manner. Indeed, it is an immediate consequence of
Proposition 4 in [21].

Corollary 1. Let G be a real normed space and letF be a real Hilbert space.
Assume that a mappingf : G → F satisfiesf (0) = 0 andf (2kx) = 2kf (x) for
all x ∈ G andk ∈ N. The mappingf is a linear isometry if and only if there exists
a 0 < p < 1 such that∣∣∥∥f (x) − f (y)

∥∥ − ‖x − y‖∣∣ = O
(‖x − y‖p

)
as‖x‖ → ∞ and‖y‖ → ∞.

According to a theorem of Baker [1],F may be assumed to be real normed
space which is strictly convex.

3. Local stability of isometries on bounded domains

Let (G,+) be the abelian metric group with the metricd(· , ·) which satisfies
all the conditions given in the previous section.

Theorem 2. Let E be a subset ofG with the property that
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0∈ E and 2−kx ∈ E ( for x ∈ E andk ∈ N)

and letF be a real Hilbert space with the associated inner product〈· , ·〉. If a
mappingf : E → F satisfies the inequality∣∣∥∥f (x) − f (y)

∥∥ − d(x, y)
∣∣ � εd(x, y)p

for someε � 0, p > 1 and for all x, y ∈ E, then there exists a unique isometry
I : E → F such that∥∥f (x) − I (x) − f (0)

∥∥
� 2(p−1)/2

2(p−1)/2 − 1
max

{
2
√

ε, 2ε
}

max
{
d(x, 0)p, d(x, 0)(1+p)/2} (12)

for anyx ∈ E.

Proof. Let us define a mappingg : E → F by g(x) = f (x) − f (0). Then, the
inequality (3) holds forp > 1 and for allx, y ∈ E. Puty = 0 andy = 2−1x in (3)
separately and consider the conditions in (1) to get{∣∣∥∥g(x)

∥∥ − d(x, 0)
∣∣ � εd(x, 0)p,∣∣∥∥g(x) − g

(
2−1x

)∥∥ − 2−1d(x, 0)
∣∣ � 2−pεd(x, 0)p.

(13)

By (13), we have

A(x)2 �
∥∥g(x)

∥∥2 �
[
d(x, 0) + εd(x, 0)p

]2
(14)

and ∥∥∥∥g(x) − g

(
x

2

)∥∥∥∥
2

= ∥∥g(x)
∥∥2 +

∥∥∥∥g

(
x

2

)∥∥∥∥
2

− 2

〈
g(x), g

(
x

2

)〉

�
[

1

2
d(x, 0) + ε

2p
d(x, 0)p

]2

, (15)

where we define

A(x) =
{

0 for d(x, 0) � ε−1/(p−1),

d(x, 0) − εd(x, 0)p for d(x, 0) < ε−1/(p−1).

If d(x, 0) < ε−1/(p−1), then it follows from (1), (14) and (15) that

1

2

∥∥∥∥g(x) − 2g

(
x

2

)∥∥∥∥
2

= 1

2

∥∥g(x)
∥∥2 + 2

∥∥∥∥g

(
x

2

)∥∥∥∥
2

− 2

〈
g(x), g

(
x

2

)〉

= −1

2

∥∥g(x)
∥∥2 +

∥∥∥∥g

(
x

2

)∥∥∥∥
2

+ ∥∥g(x)
∥∥2 +

∥∥∥∥g

(
x

2

)∥∥∥∥
2

− 2

〈
g(x), g

(
x

2

)〉
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� −1

2

[
d(x, 0) − εd(x, 0)p

]2 + 2

[
1

2
d(x, 0) + ε

2p
d(x, 0)p

]2

=
(

2

2p
+ 1

)
εd(x, 0)1+p + 1

2

(
4

22p
− 1

)
ε2d(x, 0)2p

�
(

2

2p
+ 2

22p
+ 1

2

)
εd(x, 0)1+p � 2εd(x, 0)1+p.

Ford(x, 0) � ε−1/(p−1), it analogously follows from (14) and (15) that

1

2

∥∥∥∥g(x) − 2g

(
x

2

)∥∥∥∥
2

= 1

2

∥∥g(x)
∥∥2 + 2

∥∥∥∥g

(
x

2

)∥∥∥∥
2

− 2

〈
g(x), g

(
x

2

)〉

�
∥∥∥∥g

(
x

2

)∥∥∥∥
2

+ ∥∥g(x)
∥∥2 +

∥∥∥∥g

(
x

2

)∥∥∥∥
2

− 2

〈
g(x), g

(
x

2

)〉

� 2

[
1

2
d(x, 0) + ε

2p
d(x, 0)p

]2

� 2ε2d(x, 0)2p.

Hence, we have∥∥∥∥g(x) − 2g

(
x

2

)∥∥∥∥ � C max
{
d(x, 0)p, d(x, 0)(1+p)/2} (16)

for anyx ∈ E, where we setC = max{2√
ε, 2ε}.

The last inequality means the validity of the inequality∥∥∥∥g(x) − 2ng

(
x

2n

)∥∥∥∥
� C max

{
d(x, 0)p, d(x, 0)(1+p)/2} n−1∑

i=0

2−i(p−1)/2 (17)

for n = 1. Assume that the inequality (17) holds true for somen ∈ N. Then, by
(1), (16) and (17), we get∥∥∥∥g(x) − 2n+1g

(
x

2n+1

)∥∥∥∥
�

∥∥∥∥g(x) − 2ng

(
x

2n

)∥∥∥∥ +
∥∥∥∥2ng

(
x

2n

)
− 2n+1g

(
x

2n+1

)∥∥∥∥
� C max

{
d(x, 0)p, d(x, 0)(1+p)/2} n−1∑

i=0

2−i(p−1)/2

+ 2nC max

{
d

(
x

2n
, 0

)p

, d

(
x

2n
, 0

)(1+p)/2}
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� C max
{
d(x, 0)p, d(x, 0)(1+p)/2} n∑

i=0

2−i(p−1)/2,

which implies the validity of (17) for allx ∈ E andn ∈ N.
Let m, n ∈ N be given withn > m. By (1) and (17), we obtain∥∥∥∥2mg

(
x

2m

)
− 2ng

(
x

2n

)∥∥∥∥
= 2m

∥∥∥∥g

(
x

2m

)
− 2n−mg

(
1

2n−m

x

2m

)∥∥∥∥
� C max

{
d(x, 0)p, d(x, 0)(1+p)/2} n−1∑

i=m

2−i(p−1)/2

→ 0 asm → ∞,

which means that{2ng(2−nx)} is a Cauchy sequence for everyx ∈ E. SinceF is
complete, we may define a mappingI : E → F by

I (x) = lim
n→∞ 2ng

(
x

2n

)
. (18)

Hence, the inequality (3), together with (18), implies thatI is an isometry. The
inequality (12) is an immediate consequence of (17) and (18).

Now, let J : E → F be an isometry satisfying the inequality (12). It then
follows from (12) thatJ (0) = 0. Similarly as in the proof of Theorem 1, we may
verify

2kJ

(
x

2k

)
= J (x) (19)

for all x ∈ E and allk ∈ N.
Finally, it follows from (12) and (19) that

∥∥I (x) − J (x)
∥∥ = 2k

∥∥∥∥I

(
x

2k

)
− J

(
x

2k

)∥∥∥∥
� 2k 2 · 2(p−1)/2

2(p−1)/2 − 1
C max

{
d

(
x

2k
, 0

)p

, d

(
x

2k
, 0

)(1+p)/2}

� 2−k(p−1)/2 2(p+1)/2

2(p−1)/2 − 1
C max

{
d(x, 0)p, d(x, 0)(1+p)/2}

→ 0 ask → ∞,

for anyx ∈ E, which implies the uniqueness ofI . ✷
The following corollary may be proven by use of Theorem 2. However, the

assumptions are so strong that the corollary can easily be proven in a straight
forward manner. Hence we omit the proof.
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Corollary 2. Let G be a real normed space and letF be a real Hilbert space.
Suppose a mappingf : G → F satisfiesf (0) = 0 and f (2kx) = 2kf (x) for all
x ∈ G andk ∈ N. The mappingf is a linear isometry if and only if there exists a
p > 1 such that∣∣∥∥f (x) − f (y)

∥∥ − ‖x − y‖∣∣ = O
(‖x − y‖p

)
as‖x‖ → 0 and‖y‖ → 0.

In the above corollary, we may assume thatF is a strictly convex real normed
space (see [1]).
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