

Available online at www.sciencedirect.com



*Journal of* MATHEMATICAL ANALYSIS AND APPLICATIONS

J. Math. Anal. Appl. 276 (2002) 642-653

www.elsevier.com/locate/jmaa

# Asymptotic properties of isometries

Soon-Mo Jung<sup>1</sup>

Mathematics Section, College of Science and Technology, Hong-Ik University, 339-701 Chochiwon, South Korea

Received 18 December 2001

Submitted by Th.M. Rassias

#### Abstract

In this paper, we prove two theorems on the local stability of isometries in connection with  $(\varepsilon, p)$ -isometries. These theorems reveal that a large class of  $(\varepsilon, p)$ -isometries, defined on various restricted domains, are stable.

© 2002 Elsevier Science (USA). All rights reserved.

Keywords: Hyers-Ulam stability; Isometry; Restricted domain; Asymptotic property

## 1. Introduction

Let  $(E, d_E)$  and  $(F, d_F)$  be metric spaces. A mapping  $I: E \to F$  is called an isometry if *I* satisfies the equation

$$d_F(I(x), I(y)) = d_E(x, y)$$

for all  $x, y \in E$ .

Extending the definition by Hyers and Ulam [11], we may call a mapping  $f: E \to F$  an  $\varepsilon$ -isometry if f satisfies the inequality

$$\left| d_F(f(x), f(y)) - d_E(x, y) \right| \leq \varepsilon \tag{(*)}$$

E-mail address: smjung@wow.hongik.ac.kr.

<sup>&</sup>lt;sup>1</sup> This work was supported by Korea Research Foundation Grant (KRF-DP0031).

<sup>0022-247</sup>X/02/\$ – see front matter © 2002 Elsevier Science (USA). All rights reserved. PII: S0022-247X(02)00399-2

for all  $x, y \in E$ . If in this case there exist an isometry  $I: E \to F$  and a constant  $k \ge 0$  such that  $d_F(f(x), I(x)) \le k\varepsilon$  for all  $x \in E$ , then we may say that the isometry from *E* to *F* is stable (in the sense of Hyers and Ulam).

Hyers and Ulam proved in the same paper [11] the stability of isometries between real Hilbert spaces. In fact, they proved that if a surjective mapping  $f: E \to E$ , where *E* is a real Hilbert space, satisfies f(0) = 0 as well as the inequality (\*) for some  $\varepsilon \ge 0$  and for all  $x, y \in E$ , then there exists a surjective isometry  $I: E \to E$  such that  $||f(x) - I(x)|| \le 10\varepsilon$  for all  $x \in E$ .

This result of Hyers and Ulam was the first one concerning the stability of isometries and was further generalized by Bourgin [4]. Indeed, Bourgin proved the following theorem: Assume that *E* is a Banach space and that *F* belongs to a class of uniformly convex spaces. If a mapping  $f: E \to F$  satisfies f(0) = 0 as well as the inequality (\*) for some  $\varepsilon \ge 0$  and for all  $x, y \in E$ , then there exists a linear isometry  $I: E \to F$  such that  $||f(x) - I(x)|| \le 12\varepsilon$  for each  $x \in E$ .

Subsequently, Hyers and Ulam [12] studied a stability problem for spaces of continuous mappings: Let  $S_1$  and  $S_2$  be compact metric spaces and  $C(S_i)$ denote the space of real-valued continuous mappings on  $S_i$  equipped with the metric topology with  $\|\cdot\|_{\infty}$ . If a homeomorphism  $T: C(S_1) \to C(S_2)$  satisfies the inequality

$$\left| \left\| T(f) - T(g) \right\|_{\infty} - \left\| f - g \right\|_{\infty} \right| \leq \varepsilon \tag{**}$$

for some  $\varepsilon \ge 0$  and for all  $f, g \in C(S_1)$ , then there exists an isometry  $U: C(S_1) \to C(S_2)$  such that  $||T(f) - U(f)||_{\infty} \le 21\varepsilon$  for every  $f \in C(S_1)$ .

This result of Hyers and Ulam was significantly generalized by Bourgin again (see [5]): Let  $S_1$  and  $S_2$  be completely regular Hausdorff spaces and let  $T: C(S_1) \to C(S_2)$  be a surjective mapping satisfying the inequality (\*\*) for some  $\varepsilon \ge 0$  and for all  $f, g \in C(S_1)$ . Then there exists a linear isometry  $U: C(S_1) \to C(S_2)$  such that  $||T(f) - U(f)||_{\infty} \le 10\varepsilon$  for any  $f \in C(S_1)$ .

The study of stability problems for isometries on finite-dimensional Banach spaces was continued by Bourgin [6].

In 1978, Gruber [10] obtained an elegant result as follows: Let *E* and *F* be real normed spaces. Suppose that  $f: E \to F$  is a surjective mapping and it satisfies the inequality (\*) for some  $\varepsilon \ge 0$  and for all  $x, y \in E$ . Furthermore, assume that  $I: E \to F$  is an isometry with f(p) = I(p) for some  $p \in E$ . If ||f(x) - I(x)|| = o(||x||) as  $||x|| \to \infty$  uniformly, then *I* is a surjective linear isometry and  $||f(x) - I(x)|| \le 5\varepsilon$  for all  $x \in E$ . If in addition *f* is continuous, then  $||f(x) - I(x)|| \le 3\varepsilon$  for all  $x \in E$ .

Gevirtz [9] established the stability of isometries between arbitrary Banach spaces: Given real Banach spaces *E* and *F*, let  $f: E \to F$  be a surjective mapping satisfying the inequality (\*) for some  $\varepsilon \ge 0$  and for all  $x, y \in E$ . Then there exists a surjective isometry  $I: E \to F$  such that  $||f(x) - I(x)|| \le 5\varepsilon$  for each  $x \in E$ . Later, the upper bound  $5\varepsilon$  could be improved to the sharp one,  $2\varepsilon$ , by Omladič and Šemrl [15].

It is surprising that Dolinar [7] recently proved the superstability of isometries. Indeed, he proved that for p > 1 every surjective  $(\varepsilon, p)$ -isometry  $f: E \to F$  between finite-dimensional real Banach spaces is an isometry, where a mapping  $f: E \to F$  is called an  $(\varepsilon, p)$ -isometry if f satisfies the inequality

$$\left| \left\| f(x) - f(y) \right\| - \left\| x - y \right\| \right| \leq \varepsilon \|x - y\|^{p}$$

for some  $\varepsilon \ge 0$  and for all  $x, y \in E$ . (One can further refer to [7,19] for more exact definition of  $(\varepsilon, p)$ -isometry.)

On the other hand, Swain [22] considered the stability of isometries on bounded metric spaces and proved the following result: Let M be a subset of a compact metric space (E, d) and let  $\delta > 0$  be given. Then there exists an  $\varepsilon > 0$  such that if  $f: M \to E$  satisfies the inequality (\*) for all  $x, y \in M$ , then there exists an isometry  $I: M \to E$  with  $d(f(x), I(x)) \leq \delta$  for any  $x \in M$ .

The stability problem of isometries on bounded subsets of  $\mathbb{R}^n$  was studied by Fickett [8]: For  $t \ge 0$ , let us define  $K_0(t) = K_1(t) = t$ ,  $K_2(t) = 3\sqrt{3t}$ ,  $K_i(t) = 27t^{m(i)}$ , where  $m(i) = 2^{1-i}$  for  $i \ge 3$ . Let *S* be a bounded subset of  $\mathbb{R}^n$  with diameter d(S), and suppose that  $3K_n(\varepsilon/d(S)) \le 1$  for some  $\varepsilon \ge 0$ . If a mapping  $f: S \to \mathbb{R}^n$  satisfies the inequality (\*) for all  $x, y \in S$ , then there exists an isometry  $I: S \to \mathbb{R}^n$  such that  $|f(x) - I(x)| \le d(S)K_{n+1}(\varepsilon/d(S))$  for each  $x \in S$ .

Recently, the author and Kim [13] investigated the stability of isometries on restricted domains. For more general information on the stability of isometries and related topics, one can refer to [17,18] (see also [1,3,7,14,16,20,21]).

In this paper, we will prove the local stability of a class of asymptotic isometries. We refer the reader to the paper [21] of Skof for the exact definition of asymptotic isometries. Indeed, Skof [21] has investigated many interesting properties of a large class of asymptotic isometries. It may be interesting to compare our main results with those of [21].

# 2. Local stability of isometries on unbounded domains

Let (G, +) be an abelian metric group with a metric  $d(\cdot, \cdot)$  satisfying

$$d(x+z, y+z) = d(x, y)$$
 and  $d(2x, 2y) = 2d(x, y)$  (1)

for all  $x, y, z \in G$ . Furthermore, we assume that for each given  $y \in G$  the equation

$$x + x = y$$

is uniquely solvable. We here promise that  $2^{-1}y$  or y/2 stands for the unique solution of the above equation and we inductively define  $2^{-(n+1)}y = 2^{-1}(2^{-n}y)$  for each given  $y \in G$  and  $n \in \mathbb{N}$ . We may usually write  $x/2^n$  instead of  $2^{-n}x$  for each  $x \in G$  and  $n \in \mathbb{N}$ . The second condition in (1) also implies that

$$d\left(\frac{x}{2},\frac{y}{2}\right) = \frac{1}{2}d(x,y)$$

for  $x, y \in G$ .

**Theorem 1.** Let E be a subset of G with the property that

$$0 \in E$$
 and  $2^k x \in E$  (for  $x \in E$  and  $k \in \mathbf{N}$ )

and let *F* be a real Hilbert space with the associated inner product  $\langle \cdot, \cdot \rangle$ . If a mapping  $f: E \to F$  satisfies the inequality

$$\left|\left\|f(x) - f(y)\right\| - d(x, y)\right| \leq \varepsilon d(x, y)^p$$

for some  $\varepsilon \ge 0$ ,  $0 \le p < 1$  and for all  $x, y \in E$ , then there exists an isometry  $I: E \to F$  that satisfies

$$\|f(x) - I(x) - f(0)\| \leq \frac{2^{(1-p)/2}}{2^{(1-p)/2} - 1} \max\{\sqrt{4.5\varepsilon}, 2\varepsilon\} \max\{d(x, 0)^p, d(x, 0)^{(1+p)/2}\}$$
(2)

for all  $x \in E$ . For 0 , the isometry I is uniquely determined.

**Proof.** If we define a mapping  $g: E \to F$  by g(x) = f(x) - f(0), then we have

$$\left|\left\|g(x) - g(y)\right\| - d(x, y)\right| \leq \varepsilon d(x, y)^{p}$$
(3)

for any  $x, y \in E$ . With y = 0 and y = 2x separately, the inequality (3) together with (1) yields

$$\begin{cases} \left| \|g(x)\| - d(x,0) \right| \leq \varepsilon d(x,0)^p, \\ \left| \|g(x) - g(2x)\| - d(x,0) \right| \leq \varepsilon d(x,0)^p, \end{cases}$$
(4)

respectively.

It follows from (4) that

$$A(x)^{2} \leq \left\|g(x)\right\|^{2} \leq \left[d(x,0) + \varepsilon d(x,0)^{p}\right]^{2}$$
(5)

and

$$\|g(x) - g(2x)\|^{2} = \|g(x)\|^{2} + \|g(2x)\|^{2} - 2\langle g(x), g(2x) \rangle$$
  
$$\leq [d(x, 0) + \varepsilon d(x, 0)^{p}]^{2}, \qquad (6)$$

where we set

$$A(x) = \begin{cases} 0 & \text{for } d(x,0) \leqslant \varepsilon^{1/(1-p)} \\ d(x,0) - \varepsilon d(x,0)^p & \text{for } d(x,0) > \varepsilon^{1/(1-p)} \end{cases}$$

If  $d(x,0) > 2^{-1} \varepsilon^{1/(1-p)}$  then  $A(2x) = d(2x,0) - \varepsilon d(2x,0)^p$  and  $A(2x)^2 \le ||g(2x)||^2$ . Hence, it follows from (1), (5) and (6) that

$$2\left\|g(x) - \frac{1}{2}g(2x)\right\|^{2}$$
  
=  $2\|g(x)\|^{2} + \frac{1}{2}\|g(2x)\|^{2} - 2\langle g(x), g(2x) \rangle$ 

$$\begin{split} &= \left\| g(x) \right\|^2 + \left\{ \left\| g(x) \right\|^2 + \left\| g(2x) \right\|^2 - 2 \langle g(x), g(2x) \rangle \right\} - \frac{1}{2} \left\| g(2x) \right\|^2 \\ &\leq 2 \left[ d(x,0) + \varepsilon d(x,0)^p \right]^2 - \frac{1}{2} \left[ d(2x,0) - \varepsilon d(2x,0)^p \right]^2 \\ &= 4 \varepsilon \left( 1 + \frac{1}{2^{1-p}} \right) d(x,0)^{1+p} + 2 \varepsilon^2 \left( 1 - \frac{1}{2^{2(1-p)}} \right) d(x,0)^{2p} \\ &\leq \left( 4 + 2^p + \frac{4}{2^p} \right) \varepsilon d(x,0)^{1+p} \leqslant 9 \varepsilon d(x,0)^{1+p}. \end{split}$$

On the other hand, for  $d(x, 0) \leq 2^{-1} \varepsilon^{1/(1-p)}$ , it analogously follows from (5) and (6) that

$$2\left\|g(x) - \frac{1}{2}g(2x)\right\|^2 \leq 2\left[d(x,0) + \varepsilon d(x,0)^p\right]^2 \leq 8\varepsilon^2 d(x,0)^{2p}.$$

Hence, we have

$$\left\|g(x) - \frac{1}{2}g(2x)\right\| \leq C \max\left\{d(x, 0)^p, d(x, 0)^{(1+p)/2}\right\}$$
(7)

for all  $x \in E$ , where we set  $C = \max\{\sqrt{4.5\varepsilon}, 2\varepsilon\}$ .

The last inequality implies the validity of the following inequality

$$\left\| g(x) - \frac{1}{2^{n}} g(2^{n} x) \right\|$$
  

$$\leq C \max\{ d(x, 0)^{p}, d(x, 0)^{(1+p)/2} \} \sum_{i=0}^{n-1} 2^{-i(1-p)/2}$$
(8)

for n = 1. Assume now that the inequality (8) is true for some  $n \in \mathbb{N}$ . It then follows from (1), (7) and (8) that

$$\begin{split} \left\| g(x) - \frac{1}{2^{n+1}} g(2^{n+1}x) \right\| \\ &\leqslant \left\| g(x) - \frac{1}{2^n} g(2^n x) \right\| + \left\| \frac{1}{2^n} g(2^n x) - \frac{1}{2^{n+1}} g(2^{n+1}x) \right\| \\ &\leqslant C \max\{ d(x,0)^p, d(x,0)^{(1+p)/2} \} \sum_{i=0}^{n-1} 2^{-i(1-p)/2} \\ &+ \frac{1}{2^n} C \max\{ d(2^n x,0)^p, d(2^n x,0)^{(1+p)/2} \} \\ &\leqslant C \max\{ d(x,0)^p, d(x,0)^{(1+p)/2} \} \sum_{i=0}^n 2^{-i(1-p)/2}, \end{split}$$

which implies the validity of (8) for all  $x \in E$  and  $n \in \mathbf{N}$ .

For given  $m, n \in \mathbb{N}$  with n > m, we use (1) and (8) to verify

$$\left\| \frac{1}{2^m} g(2^m x) - \frac{1}{2^n} g(2^n x) \right\|$$
  
=  $\frac{1}{2^m} \left\| g(2^m x) - \frac{1}{2^{n-m}} g(2^{n-m} \cdot 2^m x) \right\|$   
 $\leq C \max\{ d(x,0)^p, d(x,0)^{(1+p)/2} \} \sum_{i=m}^{n-1} 2^{-i(1-p)/2}$   
 $\rightarrow 0 \quad \text{as } m \rightarrow \infty.$ 

Thus,  $\{2^{-n}g(2^nx)\}$  is a Cauchy sequence for any  $x \in E$ . Let us define a mapping  $I: E \to F$  by

$$I(x) = \lim_{n \to \infty} \frac{1}{2^n} g(2^n x).$$
 (9)

If we substitute  $2^n x$  and  $2^n y$  for x and y in (3) and divide the resulting inequality by  $2^n$ , and if we consider the case that *n* goes to the infinity, then we see that *I* is an isometry. The inequality (8), together with (9), shows that the inequality (2) holds true for any  $x \in E$ .

Now, assume that  $0 and <math>J: E \to F$  is an isometry satisfying the inequality (2). Because of our assumption p > 0, it then follows from (2) that J(0) = 0. Since

$$||J(x) - J(y)|| = d(x, y)$$

for all  $x, y \in E$ , it follows from (1) that

$$||J(2x) - J(x)|| = d(2x, x) = d(x, 0) = ||J(x)||$$

and

$$||J(2x)|| = d(2x, 0) = 2d(x, 0) = 2||J(x)||.$$

Hence, we have

$$\|J(2x) - J(x)\|^{2} = \|J(2x)\|^{2} - 2\langle J(2x), J(x) \rangle + \|J(x)\|^{2} = \|J(x)\|^{2}.$$

Thus, we get

$$\left\| J(2x) \right\| \left\| J(x) \right\| = \langle J(2x), J(x) \rangle,$$

i.e.,

$$J(2x) = 2J(x) \tag{10}$$

for any  $x \in E$ . Assume that

$$\frac{1}{2^k}J(2^kx) = J(x) \tag{11}$$

for all  $x \in E$  and some  $k \in \mathbb{N}$ . Then, by (10) and (11), we obtain

$$\frac{1}{2^{k+1}}J(2^{k+1}x) = \frac{1}{2^k}J(2^kx) = J(x),$$

which implies that, for  $0 , the equality (11) is true for all <math>x \in E$  and all  $k \in \mathbb{N}$ .

For some  $0 and for an arbitrary <math>x \in E$ , it follows from (2) and (11) that

$$\begin{split} \|I(x) - J(x)\| &= \frac{1}{2^k} \|I(2^k x) - J(2^k x)\| \\ &\leqslant \frac{1}{2^k} \frac{2 \cdot 2^{(1-p)/2}}{2^{(1-p)/2} - 1} C \max\{d(2^k x, 0)^p, d(2^k x, 0)^{(1+p)/2}\} \\ &\leqslant 2^{-k(1-p)/2} \frac{2^{(3-p)/2}}{2^{(1-p)/2} - 1} C \max\{d(x, 0)^p, d(x, 0)^{(1+p)/2}\} \\ &\to 0 \quad \text{as } k \to \infty. \end{split}$$

This implies the uniqueness of *I* for the case  $0 . <math>\Box$ 

It would be interesting to compare the previous theorem with Theorem 1 of [21] because the mapping f involved in the former theorem is a kind of asymptotic isometry. The following corollary may be proven by use of Theorem 1 or in a straight forward manner. Indeed, it is an immediate consequence of Proposition 4 in [21].

**Corollary 1.** Let G be a real normed space and let F be a real Hilbert space. Assume that a mapping  $f: G \to F$  satisfies f(0) = 0 and  $f(2^k x) = 2^k f(x)$  for all  $x \in G$  and  $k \in \mathbb{N}$ . The mapping f is a linear isometry if and only if there exists a 0 such that

$$\left| \left\| f(x) - f(y) \right\| - \left\| x - y \right\| \right| = O\left( \left\| x - y \right\|^{p} \right)$$

as  $||x|| \to \infty$  and  $||y|| \to \infty$ .

According to a theorem of Baker [1], F may be assumed to be real normed space which is strictly convex.

## 3. Local stability of isometries on bounded domains

Let (G, +) be the abelian metric group with the metric  $d(\cdot, \cdot)$  which satisfies all the conditions given in the previous section.

**Theorem 2.** Let E be a subset of G with the property that

648

$$0 \in E$$
 and  $2^{-k}x \in E$  (for  $x \in E$  and  $k \in \mathbb{N}$ )

and let F be a real Hilbert space with the associated inner product  $\langle \cdot, \cdot \rangle$ . If a mapping  $f: E \to F$  satisfies the inequality

$$\left\| f(x) - f(y) \right\| - d(x, y) \le \varepsilon d(x, y)^p$$

for some  $\varepsilon \ge 0$ , p > 1 and for all  $x, y \in E$ , then there exists a unique isometry  $I: E \to F$  such that

$$\left\| f(x) - I(x) - f(0) \right\| \\ \leq \frac{2^{(p-1)/2}}{2^{(p-1)/2} - 1} \max\{2\sqrt{\varepsilon}, 2\varepsilon\} \max\{d(x, 0)^p, d(x, 0)^{(1+p)/2}\}$$
(12)

for any  $x \in E$ .

**Proof.** Let us define a mapping  $g: E \to F$  by g(x) = f(x) - f(0). Then, the inequality (3) holds for p > 1 and for all  $x, y \in E$ . Put y = 0 and  $y = 2^{-1}x$  in (3) separately and consider the conditions in (1) to get

$$\begin{cases} \left| \left\| g(x) \right\| - d(x,0) \right| \leq \varepsilon d(x,0)^p, \\ \left| \left\| g(x) - g(2^{-1}x) \right\| - 2^{-1} d(x,0) \right| \leq 2^{-p} \varepsilon d(x,0)^p. \end{cases}$$
(13)

By (13), we have

$$A(x)^{2} \leq \left\| g(x) \right\|^{2} \leq \left[ d(x,0) + \varepsilon d(x,0)^{p} \right]^{2}$$
(14)

and

$$\left\| g(x) - g\left(\frac{x}{2}\right) \right\|^{2} = \left\| g(x) \right\|^{2} + \left\| g\left(\frac{x}{2}\right) \right\|^{2} - 2\left(g(x), g\left(\frac{x}{2}\right)\right)$$
$$\leq \left[ \frac{1}{2}d(x, 0) + \frac{\varepsilon}{2^{p}}d(x, 0)^{p} \right]^{2}, \tag{15}$$

where we define

$$A(x) = \begin{cases} 0 & \text{for } d(x,0) \ge \varepsilon^{-1/(p-1)}, \\ d(x,0) - \varepsilon d(x,0)^p & \text{for } d(x,0) < \varepsilon^{-1/(p-1)}. \end{cases}$$

If  $d(x, 0) < \varepsilon^{-1/(p-1)}$ , then it follows from (1), (14) and (15) that

$$\begin{split} &\frac{1}{2} \left\| g(x) - 2g\left(\frac{x}{2}\right) \right\|^2 \\ &= \frac{1}{2} \left\| g(x) \right\|^2 + 2 \left\| g\left(\frac{x}{2}\right) \right\|^2 - 2 \left\langle g(x), g\left(\frac{x}{2}\right) \right\rangle \\ &= -\frac{1}{2} \left\| g(x) \right\|^2 + \left\| g\left(\frac{x}{2}\right) \right\|^2 + \left\| g(x) \right\|^2 + \left\| g\left(\frac{x}{2}\right) \right\|^2 - 2 \left\langle g(x), g\left(\frac{x}{2}\right) \right\rangle \end{split}$$

$$\leq -\frac{1}{2} \Big[ d(x,0) - \varepsilon d(x,0)^p \Big]^2 + 2 \Big[ \frac{1}{2} d(x,0) + \frac{\varepsilon}{2^p} d(x,0)^p \Big]^2$$
  
=  $\Big( \frac{2}{2^p} + 1 \Big) \varepsilon d(x,0)^{1+p} + \frac{1}{2} \Big( \frac{4}{2^{2p}} - 1 \Big) \varepsilon^2 d(x,0)^{2p}$   
 $\leq \Big( \frac{2}{2^p} + \frac{2}{2^{2p}} + \frac{1}{2} \Big) \varepsilon d(x,0)^{1+p} \leq 2\varepsilon d(x,0)^{1+p}.$ 

For  $d(x, 0) \ge \varepsilon^{-1/(p-1)}$ , it analogously follows from (14) and (15) that

$$\begin{split} &\frac{1}{2} \left\| g(x) - 2g\left(\frac{x}{2}\right) \right\|^2 \\ &= \frac{1}{2} \left\| g(x) \right\|^2 + 2 \left\| g\left(\frac{x}{2}\right) \right\|^2 - 2 \left\langle g(x), g\left(\frac{x}{2}\right) \right\rangle \\ &\leq \left\| g\left(\frac{x}{2}\right) \right\|^2 + \left\| g(x) \right\|^2 + \left\| g\left(\frac{x}{2}\right) \right\|^2 - 2 \left\langle g(x), g\left(\frac{x}{2}\right) \right\rangle \\ &\leq 2 \left[ \frac{1}{2} d(x, 0) + \frac{\varepsilon}{2^p} d(x, 0)^p \right]^2 \leqslant 2\varepsilon^2 d(x, 0)^{2p}. \end{split}$$

Hence, we have

$$\left\| g(x) - 2g\left(\frac{x}{2}\right) \right\| \le C \max\left\{ d(x,0)^p, d(x,0)^{(1+p)/2} \right\}$$
(16)

for any  $x \in E$ , where we set  $C = \max\{2\sqrt{\varepsilon}, 2\varepsilon\}$ .

The last inequality means the validity of the inequality

$$\left\| g(x) - 2^{n} g\left(\frac{x}{2^{n}}\right) \right\|$$
  

$$\leq C \max\left\{ d(x,0)^{p}, d(x,0)^{(1+p)/2} \right\} \sum_{i=0}^{n-1} 2^{-i(p-1)/2}$$
(17)

for n = 1. Assume that the inequality (17) holds true for some  $n \in \mathbb{N}$ . Then, by (1), (16) and (17), we get

$$\begin{aligned} \left| g(x) - 2^{n+1} g\left(\frac{x}{2^{n+1}}\right) \right| \\ &\leq \left\| g(x) - 2^n g\left(\frac{x}{2^n}\right) \right\| + \left\| 2^n g\left(\frac{x}{2^n}\right) - 2^{n+1} g\left(\frac{x}{2^{n+1}}\right) \right\| \\ &\leq C \max\left\{ d(x,0)^p, d(x,0)^{(1+p)/2} \right\} \sum_{i=0}^{n-1} 2^{-i(p-1)/2} \\ &+ 2^n C \max\left\{ d\left(\frac{x}{2^n}, 0\right)^p, d\left(\frac{x}{2^n}, 0\right)^{(1+p)/2} \right\} \end{aligned}$$

$$\leq C \max\{d(x,0)^p, d(x,0)^{(1+p)/2}\} \sum_{i=0}^n 2^{-i(p-1)/2},$$

which implies the validity of (17) for all  $x \in E$  and  $n \in \mathbb{N}$ .

Let  $m, n \in \mathbb{N}$  be given with n > m. By (1) and (17), we obtain

$$\begin{aligned} \left\| 2^m g\left(\frac{x}{2^m}\right) - 2^n g\left(\frac{x}{2^n}\right) \right\| \\ &= 2^m \left\| g\left(\frac{x}{2^m}\right) - 2^{n-m} g\left(\frac{1}{2^{n-m}} \frac{x}{2^m}\right) \right\| \\ &\leq C \max\left\{ d(x,0)^p, d(x,0)^{(1+p)/2} \right\} \sum_{i=m}^{n-1} 2^{-i(p-1)/2} \\ &\to 0 \quad \text{as } m \to \infty, \end{aligned}$$

which means that  $\{2^n g(2^{-n} x)\}$  is a Cauchy sequence for every  $x \in E$ . Since *F* is complete, we may define a mapping  $I : E \to F$  by

$$I(x) = \lim_{n \to \infty} 2^n g\left(\frac{x}{2^n}\right).$$
(18)

Hence, the inequality (3), together with (18), implies that I is an isometry. The inequality (12) is an immediate consequence of (17) and (18).

Now, let  $J: E \to F$  be an isometry satisfying the inequality (12). It then follows from (12) that J(0) = 0. Similarly as in the proof of Theorem 1, we may verify

$$2^{k}J\left(\frac{x}{2^{k}}\right) = J(x) \tag{19}$$

for all  $x \in E$  and all  $k \in \mathbf{N}$ .

Finally, it follows from (12) and (19) that

$$\begin{split} \|I(x) - J(x)\| &= 2^k \left\| I\left(\frac{x}{2^k}\right) - J\left(\frac{x}{2^k}\right) \right\| \\ &\leqslant 2^k \frac{2 \cdot 2^{(p-1)/2}}{2^{(p-1)/2} - 1} C \max\left\{ d\left(\frac{x}{2^k}, 0\right)^p, d\left(\frac{x}{2^k}, 0\right)^{(1+p)/2} \right\} \\ &\leqslant 2^{-k(p-1)/2} \frac{2^{(p+1)/2}}{2^{(p-1)/2} - 1} C \max\left\{ d(x, 0)^p, d(x, 0)^{(1+p)/2} \right\} \\ &\to 0 \quad \text{as } k \to \infty, \end{split}$$

for any  $x \in E$ , which implies the uniqueness of I.  $\Box$ 

The following corollary may be proven by use of Theorem 2. However, the assumptions are so strong that the corollary can easily be proven in a straight forward manner. Hence we omit the proof.

**Corollary 2.** Let G be a real normed space and let F be a real Hilbert space. Suppose a mapping  $f: G \to F$  satisfies f(0) = 0 and  $f(2^k x) = 2^k f(x)$  for all  $x \in G$  and  $k \in \mathbb{N}$ . The mapping f is a linear isometry if and only if there exists a p > 1 such that

$$\left| \left\| f(x) - f(y) \right\| - \left\| x - y \right\| \right| = O\left( \|x - y\|^p \right)$$

as  $||x|| \rightarrow 0$  and  $||y|| \rightarrow 0$ .

In the above corollary, we may assume that F is a strictly convex real normed space (see [1]).

#### Acknowledgment

The author expresses his thanks to the referee for many valuable suggestions.

## References

- [1] J.A. Baker, Isometries in normed spaces, Amer. Math. Monthly 78 (1971) 655-658.
- [2] W. Benz, H. Berens, A contribution to a theorem of Ulam and Mazur, Aequationes Math. 34 (1987) 61–63.
- [3] R. Bhatia, P. Šemrl, Approximate isometries on Euclidean spaces, Amer. Math. Monthly 104 (1997) 497–504.
- [4] D.G. Bourgin, Approximate isometries, Bull. Amer. Math. Soc. 52 (1946) 704-714.
- [5] D.G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, Duke Math. J. 16 (1949) 385–397.
- [6] R.D. Bourgin, Approximate isometries on finite dimensional Banach spaces, Trans. Amer. Math. Soc. 207 (1975) 309–328.
- [7] G. Dolinar, Generalized stability of isometries, J. Math. Anal. Appl. 242 (2000) 39-56.
- [8] J.W. Fickett, Approximate isometries on bounded sets with an application to measure theory, Studia Math. 72 (1981) 37–46.
- [9] J. Gevirtz, Stability of isometries on Banach spaces, Proc. Amer. Math. Soc. 89 (1983) 633-636.
- [10] P.M. Gruber, Stability of isometries, Trans. Amer. Math. Soc. 245 (1978) 263-277.
- [11] D.H. Hyers, S.M. Ulam, On approximate isometries, Bull. Amer. Math. Soc. 51 (1945) 288–292.
- [12] D.H. Hyers, S.M. Ulam, Approximate isometries of the space of continuous functions, Ann. Math. 48 (1947) 285–289.
- [13] S.-M. Jung, B. Kim, Stability of isometries on restricted domains, J. Korean Math. Soc. 37 (2000) 125–137.
- [14] J. Lindenstrauss, A. Szankowski, Nonlinear perturbations of isometries, Astérisque 131 (1985) 357–371.
- [15] M. Omladič, P. Šemrl, On nonlinear perturbations of isometries, Math. Ann. 303 (1995) 617-628.
- [16] Th.M. Rassias, Properties of isometric mappings, J. Math. Anal. Appl. 235 (1999) 108–121.
- [17] Th.M. Rassias, Isometries and approximate isometries, to appear.
- [18] Th.M. Rassias, C.S. Sharma, Properties of isometries, J. Natural Geom. 3 (1993) 1-38.
- [19] P. Šemrl, Hyers–Ulam stability of isometries on Banach spaces, Aequationes Math. 58 (1999) 157–162.
- [20] F. Skof, Sulle δ-isometrie negli spazi normati, Rend. Mat. Appl. (7) 10 (1990) 853-866.

- [21] F. Skof, On asymptotically isometric operators in normed spaces, Istit. Lombardo Sci. Lett. A 131 (1997) 117–129.
- [22] R.L. Swain, Approximate isometries in bounded spaces, Proc. Amer. Math. Soc. 2 (1951) 727–729.