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This paper initiates the study of quantum computing within the constraints
of using a polylogarithmic (O(log¥n), k>1) number of qubits and a
polylogarithmic number of computation steps. The current research in the
literature has focussed on using a polynomial number of qubits. A new
mathematical model of computation called Quantum Neural Networks
(QNNs) is defined, building on Deutsch’s model of quantum computational
network. The model introduces a nonlinear and irreversible gate, similar to
the speculative operator defined by Abrams and Lloyd. The precise dynamics
of this operator are defined and while giving examples in which nonlinear
Schrodinger’s equations are applied, we speculate on its possible implemen-
tation. The many practical problems associated with the current model of
quantum computing are alleviated in the new model. It is shown that QNNs
of logarithmic size and constant depth have the same computational power as
threshold circuits, which are used for modeling neural networks. QNNs of
polylogarithmic size and polylogarithmic depth can solve the problems in
NC, the class of problems with theoretically fast parallel solutions. Thus, the
new model may indeed provide an approach for building scalable parallel
computers.  © 2001 Elsevier Science (USA)

Key Words: theoretical computer science; parallel computation; quantum
computing; Church-Turing thesis; threshold circuits.

1. INTRODUCTION

The concept of quantum computing, based on the quantum mechanical nature of
physical reality, is first stated by Benioff [ 5] and Feynman [15], and formalized by
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Deutsch [13], Bernstein and Vazirani [8], and Yao [42]. For background
material, the reader is referred to the papers mentioned above, survey papers [2, 9,
33, 38], books [18, 41], and courses available on the web [29, 40].

Considerable interest has been generated in quantum computing since Shor [37]
showed that numbers can be factored in polynomial time on a quantum computer.
From a practical viewpoint, Shor’s result shows that a working quantum computer
can violate the security of transactions that use the RSA protocol, a standard for
secure transactions on the Internet. From a theoretical viewpoint, the result see-
mingly violates the polynomial version of the Church-Turing thesis; it is generally
believed that factoring cannot be done in polynomial time on a deterministic or
probabilistic Turing machine. What makes Shor’s breakthrough result possible on
a quantum Turing machine is that exponentially many computations can be
performed in parallel in one step and certain quantum steps enable one to extract
the desired information.

Even though simple quantum computers have been built, enormous practical
issues remain for larger scale machines. The problems seem to be exacerbated with
more qubits and more computation steps. In this paper, we initiate the study of
quantum computing within the constraints of using a polylogarithmic (O(log* n),
k = 1) number of qubits and a polylogarithmic number of computation steps. The
current research in the literature has focussed on using a polynomial number of
qubits. (Recently, researchers have initiated the study of quantum computing using
a polynomial number of qubits and a polylogarithmic number of steps [12, 17, 27,
281). We define a new mathematical model of computation called Quantum Neural
Networks (QNNs), building on Deutsch’s model of quantum computational
network [14]. The new model introduces a nonlinear, irreversible, and dissipative
operator, called D gate, similar to the speculative operator introduced by Abrams
and Lloyd [1]. We also define the precise dynamics of this operator and while
giving examples in which nonlinear Schrodinger’s equations are applied, we
speculate on the possible implementation of the D gate.

Within a general framework of size, depth, and precision complexity, we study
the computational power of QNNs. We show that QNNs of logarithmic size and
constant depth have the same computational power as threshold circuits, which are
used for modeling neural networks. QNNs of polylogarithmic size and poly-
logarithmic depth can solve the problems in NC, the class of problems that have
theoretically fast parallel solutions. Thus, the new model subsumes the computation
power of various theoretical models of parallel computation.

We believe that the true advantage of quantum computation lies in overcoming
the communication bottleneck that has plagued the implementation of various
theoretical models of parallel computation. For example, NC circuits elegantly
capture the class of problems that can be theoretically solved fast in parallel using
simple gates. While fast implementations of individual gates have been achieved
with semiconductors and millions of gates have been put on a single chip, we do not
have the implementation of full NC circuits because of the communication and
synchronization costs involved in wiring a polynomial number of gates. We believe
that this hurdle can be overcome using the nonlocal interactions present in
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quantum systems—there is no need to explicitly wire the entangled units and the
synchronization is instantaneous. This advantage is manifest in the standard
unitary operator, where operations on one qubit can affect probability amplitudes
on all the qubits, without requiring explicit physical connections and a global clock.
Thus, the new model has the potential to overcome the practical problems asso-
ciated with both quantum computing as well as classical parallel computing.

The paper addresses three categories of researchers: complexity theory, neural
networks, and quantum computing. For complexity theorists, the paper shows that
the 2°¢””" bounds on threshold circuits obtained in various results such as [3] is
not necessarily infeasible. (Polynomial time and space is generally accepted as
defining feasible bounds.) For neural network researchers, the paper mathemati-
cally proves that threshold circuits used for modeling neural networks have the
same computation power as the equality threshold circuits, introduced in this
paper. The new class has certain algebraic advantages and it may indeed be benefi-
cial to redo the theory of neural networks under this model. Finally, for quantum
computing researchers, the paper shows that with quantum computing we can build
scalable parallel computers, beyond the current digital technology, under very tight
constraints. Of course, this depends on the physical realization of the inherently
nonlinear gate introduced in the paper and thus it is worthwhile exploring its
implementation. Furthermore, we do not need to limit ourselves to the fundamental
linear models of systems to obtain useful devices; we should explore systems at a
different level of abstractions that may not be defined by linear equations.

This paper is organized as follows: Section 2 summarizes the current model of
quantum computing, together with the associated problems, including some new
issues not discussed in the literature. Section 3 first defines a framework for new
quantum computing models, based on the problems discussed in Section 2. The D
gate is introduced within this framework. (This is the only speculative part of the
paper; that is, we do not know how to implement the D gate.) QNN are defined to
be Deutsch’s quantum computational network [ 14] together with the D gate.

Section 4 quantifies the computational power of the new model. We prove that
equality threshold circuits have essentially the same computational power as the
standard class of threshold circuits used for modeling neural networks. Then QNN
are shown to have the same computational power as equality threshold gates.
Section 5 defines the precise dynamics of the D gate. Section 6 identifies some of
the many nonlinearities in quantum systems. Finally, Section 7 delineates many
interesting research directions suggested by this paper.

2. CURRENT MODEL OF QUANTUM COMPUTING

There are two equivalent models for quantum computing, quantum Turing
machines [8, 13] based on reversible Turing machines [6, 7] and quantum compu-
tational network [ 14]. Our model builds on the latter, so we briefly review it here.
The basic unit in quantum computation is a qubit, a superposition of two indepen-
dent states |0) and |1), denoted o, |0+, |1), where «,, @, are complex numbers
such that |a,|?+ o, |>= 1. A system with n qubits is described using 2" independent
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states |i>, 0<i<2"—1, each associated with probability amplitude o;, a complex
number, as follows: 32! «, |i> where 32! |o,|>= 1. The direction of a, on the
complex plane is called the phase of state |i) and the absolute value |a;| is called the
amplitude of state |i).

The computation unit in Deutsch’s model consists of quantum gates whose inputs
and outputs are qubits. A gate can perform any local unitary operation on the
inputs. It has been shown that one-qubit gates together with two-qubit controlled
NOT gates are universal [4].

The quantum gates are interconnected by wires. A quantum computational
network is a computing machine consisting of quantum gates with synchronized
steps. By convention, the computation proceeds from left to right. The outputs of
some of the gates are connected to the inputs of others. Some of the inputs are used
as the input to the network. Other inputs are connected to source gates for 0 and 1
qubits. Some of the outputs are connected to sink gates, where the arriving qubits
are discarded. The essential ingredients of the model are summarized in Fig. 1. An
output qubit can be measured along state |0> or |1) and is observed based on the
probability amplitudes associated with the qubit.

Even though simple quantum computers have been built, enormous practical
issues remain for larger scale machines. Landauer [23] exposes three main
problems: decoherence, localization, and manufacturing defects. Decoherence is the
process by which a quantum system decays to a classical state through interaction
with the environment. In the best case, coherence is maintained for some 10* s, and,
in the worst case, for about 107'° s for single qubits. Some decoherence models
show the coherence time declining exponentially as the number of qubits increases
[39]. Furthermore, the physical media that allow fast operations are also the ones
with short coherence times.

The computation may also suffer from localization, that is, from reflection of the
computational trajectory, causing the computation to turn around. Landauer [23]
points out that this problem is largely ignored by the research community. The com-
bination of decoherence and localization makes the physical realization of quantum
computation particularly difficult. On the one hand, we need to isolate a quantum
computing system from the environment to avoid decoherence, and on the other hand,
we need to control it externally to compel it to run forward to avoid reflection.
Finally, minor manufacturing defects can engender major errors in the computations.

Introduction of the techniques of error-correcting codes and fault-tolerant
computation to quantum computation has generated considerable optimism for

D_
D___

Local unitary operator Source gates Sink gate

FIG. 1. Components of Deutsch’s quantum computational network model.
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building quantum computers, because these techniques can alleviate the problems of
decoherence and manufacturing defects. Though this line of research is elegant and
exciting, the codes correct only local errors. For example, one qubit can be encoded
into the nonlocal interactions among three qubits to correct one qubit errors.
However, in principle, any (nonlocal) unitary operator can be applied to all the
qubits. These nonlocal errors easily subvert the error-correcting codes. Also,
nonlocal interactions provide the exponential speed-ups in quantum computing.
The hope that nature might allow computational speed-ups via nonlocal interac-
tions, while errors are constrained to occur only locally, seems unavailing. For an
excellent exposition on error-correcting codes and fault-tolerant quantum comput-
ing, the reader is referred to [30].

It has been shown that one-qubit gates together with two-qubit controlled NOT
gates are universal [4]; that is, any 2" x 2" unitary operator can be decomposed into
a polynomial number of one and two qubit operators. However, in general, any
error operator can be applied in one step that cannot even be detected without
observing all the involved qubits. Having the ability to operate on many qubits does
not solve the problem, for error-correcting codes for k& qubit errors can be sub-
verted by a (k+1)-qubit error operator. Eventually, construction of a 2"x2"
operator will itself be more time consuming than the actual computation.

There are some additional difficulties with computing using a polynomial number
of qubits for a polynomial number of steps that are not discussed in the literature.
For example, if n=1000 and an O(n*) quantum algorithm is used, we need one
million uniquely identifiable but identical carriers of quantum information. Clearly,
the carriers need to be uniquely identifiable because we are not using their statistical
properties, but encoding 2°"” computations in their interactions. However, the
carriers need to be absolutely identical for the following reason. In describing the
Hamiltonian for the whole system, there is a phase oscillation associated with each
carrier. If all carriers have the same frequency, it does not affect the computation,
which essentially changes the state relative to the global oscillation. But each qubit
is likely to be encoded in carriers with a much larger state space, and even slight
frequency differences can result in substantial errors over a polynomial number of
steps. The task of preparing one million absolutely identical carriers, while exploit-
ing the 210° interactions, most of which are nonlocal, for speeding-up computation
appears insurmountable.

In conclusion, controlling a polynomial number of entangled qubits for a poly-
nomial number of steps, while compelling the computation forward, seems hard
even with the help of error-correcting codes. To address the above problems, we
initiate the study of quantum computation under the constraints of a poly-
logarithmic number of qubits and a polylogarithmic number of steps.

3. QUANTUM NEURAL NETWORKS (QNNs)

In the previous section we saw that the problems with the current model get
worse as the number of qubits and computation steps increase. Therefore, we make
the following premises for a new model.
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» The computation should be achieved within a few (O(log” n), k > 1) steps.
¢ (Optional) The computation should use only a few (O(log* n), k > 1) qubits.

e There should be irreversible synchronization points in the computation to
avoid the problem of localization.

The second point is optional because a single particle, in principle, can encode an
infinite amount of discrete information, for example, in spins —s/2, —(s—1)/2,
..., 5/2 for any number s. Thus, many qubits can be encoded within a single
particle, and hence, it may be worthwhile exploring models that use many qubits
encoded on a few carriers. However, in this paper we observe all the above
premises. Note that within the framework of our premises, quantum computation
does not seem to violate the polynomial version of the Church-Turing thesis.

The next question is what operations should we have besides the standard unitary
operator. In particular, what irreversible, and hence, nonlinear operators can be
exploited for computation. In its present formulation, quantum mechanics for an
isolated system, or one interacting with classical external potentials, is linear in the
state vector. However, if full interactions with an environment are taken into
account, then their effects can be found by projecting the larger state vector of the
combined system into the subspace of our system alone. As a result, the evolution
equation for the latter state vector is not necessarily linear. The behavior of a
system can also be nonlinear because of the interactions between the degrees of
freedom, as discussed in Section 6.

In general, these nonlinear operations can be on the phases as well as amplitudes
(or both) associated with a quantum system. The phases in a quantum system have
the following properties.

* Phases cannot be directly observed.
* They have an oscillation associated with them.

* Quantum mechanics can be defined using a density matrix formulation,
which is typically used when incorporating phase information is not feasible.

Therefore, it seems natural to have nonlinearities on amplitudes only. Specifi-
cally, we introduce a new nonlinear operator D gate (for dissipative) in Deutsch’s
quantum computational network model [ 14]. The operator D(m, ¢), abbreviated D
with threshold ¢ (Fig. 2), when applied to the m qubits in a system with n>m
qubits behaves as follows. Let the states of m qubits be represented by binary
numbers 0 through 2™—1 or, equivalently, binary strings 0™ through 1™. Let
(|j>) and Z'(|j)) respectively denote the probability amplitudes before and after
the application of the D operator. Then,

|/ (|0™))] <6 = '(|0™)) =0,
and

| (10"))] > 6 = '(|07)) = c.
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The value ¢ for probability amplitude denotes some constant used for encoding 1.

For example, if a system consists of # qubits, then «/'(|0”)) =1/ ,/2" is sufficient
for the case |#/(|0™))| > . In this case, threshold ¢ is chosen so that 0 <d <
1/ \/? . (From now on, we’ll simply use 1 instead of ¢.) Note that the behavior of
the D gate is undefined on all the states except |0™). In this paper, it is irrelevant
what happens to these states as the corresponding qubits go to a sink gate after the
application of the D operator. Also, the behavior of the D gate at |</(|0">)| =0 is
irrelevant in this paper.

If the m qubits passed through the D gate are part of a larger quantum system
with n>m qubits, then the D operator behaves as above for all amplitudes
(|j; 0™)), where j, 0 <j<2"™. Thus, amplitudes of different states |j; 0™) con-
verge to 0 or 1 depending on the initial value of /(|j; 0™)), independently of each
other.

In practice, only an approximate behavior of D may be realizable within finite
convergence time (Fig. 2). This can be sufficient, depending on the circuit which
uses the gate. We will see that J,, d, and J, are defined by the types of problems we
are trying to solve.

The D gate can be intuitively thought of as a contractive operator that evolves
general states towards a single (stable) state |0™). Clearly, it cannot be realized in an
isolated system where the only permissible operators are unitary. However, as dis-
cussed before, a truly isolated system is, in any case, a theoretical ideal which is
difficult to realize in practice. In Section 5, we see that the D gate needs inherently
nonlinear behavior as well as dissipative behavior. It is similar to the speculative
operator defined by Abrams and Lloyd [ 1]; however, the nonlinearity depends only
on the amplitude and not on phases.

To meet the requirement of having at most a polylogarithmic number of qubits,
we use a dense encoding of n classical bits, labelled x, ..., x,_;, in only O(log n)
qubits. There are several alternatives. The following simple one suffices. Assume »
is a power of 2. Interpret the states of log n qubits as addresses and if the jth clas-
sical bit is 1, then /(]j)>) =1, else Z(]j>) =0. As before, the value 1 represents

some appropriate constant c; if the system has log n qubits, c =1/ ﬁ is sufficient.

Output Output
A'(10™)) A'(107))
11 —_ 1

Input

|A(I0™)]

Input

o 6 o0 LA(0™)

FIG. 2. Behavior of D(m,d) gate: (left) ideal gate, (right) approximate gate.
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We include a special sink state z so that the probabilities add to 1. Thus,
|L(z2))*P=1- ;‘;(1) |Z(|j>)|>. The sink state may be composed of several states.
For example, if we think of the sink state as an additional qubit, then 27(|j; 0)) can
be used for encoding 0 and 1, and 37Z¢ |/ (|j; 1)) =1-X726 (] j; 0D)|

As in Deutsch’s quantum computational network model [14], our model has
quantum gates interconnected by wires. In particular, we preserve source and sink
gates.! Our model also has the standard reversible unitary operator U. Since we
are working within the constraints of polylogarithmic qubits, we allow arbitrary uni-
tary operators.> Of course, a unitary operator of dimension 21°gk”, k>1, can be
approximated by decomposition into log*n, k> 1, local operators using standard
techniques [4]. However, in principle, any unitary matrix is allowed in quantum
mechanics. We say that a U gate has precision p if all the values in the matrix can be
approximated to within 1/27*! by binary rational numbers.

The unitary operator implicitly contains the important properties that overcome
the main problems with classical parallel computing: communication bottleneck
and synchronization overhead. Because of entanglement, operations on even one
qubit can affect all the qubits instantaneously, without the need for explicitly wiring
them together. While the research in literature has focussed on exploiting the
exponential properties of quantum systems to perform computations infeasible with
the current digital systems, our model is using only the entanglement and inter-
ference present in quantum systems to overcome the communication bottleneck and
synchronization problems that have plagued the implementation of parallel com-
puters. We believe that scalable parallel computers can be built using quantum
systems.

A quantum neural network QNN(s(n), d(n)) of precision p(n) is a circuit of size
s(n) and depth d(n), constructed from the gates D and U of precision p(n). Size
denotes the number of qubits in the circuit and depth denotes the longest sequence
of gates from input to output. In general, the reversible U gate is followed by the
irreversible D gate to eliminate the problem of localization. Usually, the precision
of the circuits will be O(s(n)).

Size, depth, and precision are important complexity-theoretic measures that
quantify various aspects of computations. Depth corresponds to the number of
steps needed to solve a given problem. Size usually corresponds to the size of appa-
ratus; precision also characterizes the apparatus needed for solving the problem.

3.1. Examples of QNNs

We give examples of QNNs for some simple circuits with the universal NAND
gates. Define a unitary matrix U,,,, that operates on two qubits as follows.

!'When a qubit goes to a sink gate, it is measured to remove the entanglements with the remaining
qubits.

2 With polynomial number of qubits, if we allow arbitrary unitary operators (of size 27" x 2"k), then the
cost of constructing the apparatus can defeat the gains in computational speed.
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In the input vector X, 0 is encoded as 0 and 1 is encoded as 1/2. The amplitude

of the state |00) in the

state vector U,
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«X 1is 0 if and only if NAND(x,, x,) =0.

Thus, when we pass the qubits through a D(2,0) gate with 0 <d <1/ 2\/8 , the
amplitude of state |00) has the correct answer (Fig. 3). We have not included the
sink state in the above description.

T

)

T3

Ty

g2
qQ1

90

| e
:>o_

>_

Un(md D(27 6)

Uz

Dl(la 51)

—X

FIG. 4. QNN for a circuit with NAND gates.
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Next we show how a circuit with three NAND gates can be simulated by a QNN
(see Fig. 4). Define U, to be the following unitary matrix.

The operator U, operates on X7 =1/ \/§ [x1, 1, x5, 1, x5, 1, x4, 1]. When the result

is passed through the D, (1, d,) gate, 0 <, <1/ \/678 , we simulate the two NAND
gates simultaneously. The resulting vector is [NAND(x,, x,), 1, NAND(x;, x,), 1],
which is used to simulate the last NAND gate as before. As an aside, the construc-
tion of QNNs for arbitrary circuits of NAND gates, given in Section 4, is different
from the construction given in Fig. 4 and has worse bounds.

4. COMPUTATIONAL POWER OF QNNs

In this section, we characterize the computational power of QNNs using the
known results from the complexity theory of parallel computations and threshold
circuits (used for modeling neural networks [25, 26]). First, we define a class of
circuits called EC and show that with polynomial size they have the same compu-
tational power as threshold circuits. EC circuits can be converted into QNNs using
a proper encoding of classical bits into qubits.

4.1. Circuits

Let G be a set of gates (functions) that map several bits to one bit. For each
n>=0, a circuit C, over the set G is a directed, acyclic graph with a list of input
nodes (with no incoming edges), a list of output nodes (with no outgoing edges),
and a gate in G labeling each noninput node. Given a binary input string
(xq, ..., x,), we label each input node x; or X; (NOT x;). For every other node v with
m predecessors y, ..., ¥,,, We recursively assign a value g(y,, ..., V,,), Where g is the
gate that labels node v. C, outputs the value given by the list of output nodes.

Unless otherwise stated, in this paper, we shall allow the circuits to have arbitrary
fan-in and fan-out. Circuits with fan-out 1 will be called “opened circuits,” where
the corresponding graph is a tree. The size of a circuit C, is the number of nodes in
C,, and the depth of C, is the length of the longest path from any input node to an
output node.

A circuit family is an infinite list of circuits C = (C,, C,, ..., C,, ...), where C, has
n binary inputs. C computes a family of boolean functions ( f1, f5, ..., f,, ...), Where
£, is the boolean function computed by circuit C,. We say that C has size complex-
ity s(n) and depth complexity d(n) if for all n = 0 circuit C, has size at most s(n) and
depth at most d(n). Size and depth are important complexity descriptions of circuits
that respectively characterize the size of apparatus and the number of steps needed
to compute a family of boolean functions.
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A circuit family is polytime-uniform if there exists a Turing machine with time
bound #*, k > 1, that constructs circuit C, on input 1”. A circuit family is logspace-
uniform if there exists a Turing machine with space bound logn that constructs
circuit C,, on input 1”. Uniformity conditions capture the complexity of constructing
the circuit to compute boolean functions with inputs of a given size.

4.2. Threshold Circuits

A threshold function with threshold A is a boolean function denoted Th™“:
{0, 1}" > {0, 1} such that

1 if x =4
Thn’A(xlﬂ AR xn)= igl

0 otherwise

for xi,...,x,€{0,1}, where 0< A< n. A weighted threshold function of weight
bound w and threshold 4 is a boolean function denoted Thj;* |, :{0,1}"— {0, 1}
such that

n
if Y wx, >4
Th'j;lf'm,wﬂ(xl, ey X)) = =

0 otherwise,

for wy, ..., w,, 4 € Z (set of integers), |w;| <w for all i, and x,, ..., x, € {0, 1}.

A threshold circuit is a circuit over the set of threshold gates. Let TC(s(n), d(n))
denote the collection of threshold circuits of size s(») and depth d(n). We overload
the notation TC to also denote the class of functions computable by these circuits.
Weighted TC(s(n), d(n)) of weight bound w denotes the collection of threshold
circuits using weighted threshold gates of weight bound w of size s(n) and depth
d(n).

THEOREM 4.1. [32] Suppose an analytic function f(x) has a convergent Taylor
series expansion f(x) =Y v_, c,(x—x,)" over an interval |x —x,| < & where 0 <eg <1,
and the coefficients are rationals ¢, = a, /b, where a,, b,, are integers of magnitude at
most 2" Then polytime-uniform threshold circuits of polynomial size and simulta-
neous constant depth can compute f(x) over this interval within accuracy 2™ for any
constant ¢ = 1.

The above theorem implies that TC(n°®Y, O(1)) can approximate elemen-

tary functions such as sine, cosine, exponential, logarithm, and square root.
TC(n°Y, 0(1)) can also exactly compute integer and polynomial quotient and
remainder, interpolation of rational polynomials, banded matrix inverse, and
triangular Toeplitz matrix inverse [32].

4.3. Equality (Threshold) Circuits

A (weighted) equality threshold function of weight bound w >0 is a boolean
function denoted Et;, _, :{0,1}"— {0, 1} such that
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0 if x; =0
Et, (xla cees xn) = igl Wi

Wiy s Wp

1 otherwise,

for wy,..,w,eZ, |w|<w for all i, and x,,...,x, € {0,1}. Note that Er gates
possess an elegant algebraic structure as they can be naturally generalized to any
domain, such as complex numbers.

An equality threshold circuit of weight bound w is a circuit over the set of equality
threshold gates such that all the weights are absolutely bounded by w. Let
EC(s(n), d(n)) denote the collection of equality circuits of size s(n) and depth d(n).
EC will also be used to denote the class of functions computable by these circuits.

We will see that the weights of a EC circuit can be encoded appropriately in
unitary matrices, and quantum entanglement and interference can be used to
compute > 7_, w;x; in one step. Thus, EC provides a good model to help combine
ideas from quantum computing and threshold circuits.

4.4. AND-OR Circuits

NC is the collection of logspace-uniform circuits of size n°® and depth (log n)°®
over the set {AND, OR} of gates with fan-in bounded by 2. It is the class of
problems that can theoretically be solved efficiently in parallel and contains
numerous natural problems. We write NC to denote both the class of circuits and
functions computable by the circuits. NC’, i > 1, denotes the subclass of NC where
the depth is limited to O(log’ n). Though NC circuits use remarkably fast AND,
OR gates, the implementations of circuits have not been successful because of the
communication bottleneck and synchronization cost involved in wiring a polyno-
mial number of processors. The algorithms that show that problems are in NC are
typically not used to solve problems in parallel; new algorithms are designed
depending on the parallel architecture model that takes communication cost into
account.

NC! is known to have several natural problems such as integer arithmetic and
matrix multiplication. NC? includes matrix inverses and matrix rank computation
as well. Please see any standard text such as [22] and [31] for more details.

4.5. Computational Power of TC and EC Circuits

We now show that TC and EC circuits have essentially the same computational
power if we consider circuits of polynomial size. In all our constructions, if the
original circuits are polytime-uniform and logspace-uniform, the constructed
circuits are also polytime-uniform and logspace-uniform, respectively.

Lemma 4.2. 1. Th*“(x,,...,x,) can be simulated by EC(O(n),2) of weight
bound O(n).
2. TC(s(n), d(n)) < EC(O(s*(n)), d(n)+1) of weight bound O(s*(n)), and
TC(s(n), d(n)) = EC(O(s%(n)), 2d(n)) of weight bound O(s(n)).
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FIG. 5. Simulation of Threshold gate Th™“ by EC of weight bound O(n).

Proof. 1. Figure 5 shows the EC circuit that simulates the threshold gate
Th™*(x;, x,, ..., x,). Note that the gates at level 2 check whether }'7_, x, is one of
the values 0, 1, ..., 4—1, respectively.

Case (37_, x; <A4). Exactly one gate at level 2 outputs 0 and all others output
1 giving the cumulative output of 4—1, which when combined with the input
—A4+1 at level 1 gives the output of 0.

Case (37_;x;=4). All the gates at level 2 output 1 giving the cumulative
output of 4, which when added to the — 4+ 1 input at level 1 gives the final output
of 1.

Thus, the cumulative output of gates at level 2 is 4 and 4—1 if the threshold gate
outputs 1 and 0, respectively. The level 1 gate is used to add the outputs of gates at
level 2 and subtract 4—1 from this sum.

The weight bound of the constructed circuit is | — 4+ 1| = O(n).

2. An obvious replacement of each threshold gate by the circuit of Fig. 5
gives a depth of 2d(n) and size O(s*(n)). We can reduce this bound to d(n)+1.
Consider a threshold gate Th™:“% connected to another threshold gate Th™: 4.
Figure 6 shows how the threshold gate at level 2 can be replaced by the equality
threshold gates at level 2 described in Fig 5. Since the cumulative output of these
equality threshold gates is 4, and 4, —1 instead of 1 and 0, we simply increase the
threshold of the level 1 gate of Fig. 6 by 4, —1. It is easy to see that this replace-
ment does not affect the function computed by the circuit.

The construction is as follows. Starting at the input level of TC circuit, replace
each threshold gate as described above and adjust the threshold at the next level
appropriately. Repeat the process for all levels. At the output level, use both level 1
and 2 gates of Fig. 5 so that the final gate is also a Er gate. As shown in Fig. 6,
connect the new gates to all the gates connected by the replaced threshold gate.

Since the maximum threshold for all the threshold gates is bounded by s%(n) and
each threshold gate is replaced by 4 Et gates, the final circuit has O(s*(n)) Et gates.

The weight bound for the circuit is O(s*(n)) because at the output level, the
thresholds of all the s(n) threshold gates are added together. ||
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FIG. 6. Simulation of TC with EC.

Lemma 4.3. 1. Et, ., (x,...,x,) can be simulated by weighted TC(3,2) of
weight bound max(|w|, ..., |w,|).

2. EC(s(n), d(n)) of weight bound w < Weighted TC(2s(n)+o0,d(n)+1) of
weight bound w, where o is the number of output nodes in the EC(s(n), d(n)) circuit.

Proof. 1. Figure 7 shows the TC(3,2) circuit that simulates the gate
Et;, ., (X1, ..., x,). The leftmost gate at level 2 outputs 1 if 3'7_, w;x; > 1 and the
rightmost gate outputs 1 if >7_, w,x; < —1. The gate at level 1 adds the two
outputs from level 1 gates and outputs O if and only if >.7_, w,x; =0.

2. An obvious replacement using Fig. 7 gives a circuit of depth 2d(n). We can
reduce this bound to d(n)+ 1. Consider an equality threshold gate Et™ connected
to another equality threshold gate Et™. Figure 8 shows how the equality threshold
gate at level 2 can be replaced by the equality threshold gates at level 2 described in
Fig. 7.

The construction is as follows. Starting at the input level of EC circuit, replace
each Et gate with the level 2 threshold gates given in Fig. 7. Repeat the process
until the output level. At the output level, use both level 1 and 2 gates of Fig. 7 so
that the final gate is also a Th gate. As shown in Fig. 8, connect the new gates to all
the gates connected by the replaced threshold gate.

Level 1 Th®!

1
Level 2 !
Th,"’l Thn,l
wl wn _wl —’U)n
Ty e T, 1 R Tn,

FIG. 7. Simulation of Equality threshold gate Et" by weighted TC(3, 2).
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FIG. 8. Simulation of EC with TC.

Each Et gate is replaced by two Th gates except at the output level where each Et
gate is replaced by 3 Th gates.

Since we do not change the absolute value of the weights, therefore the weight
bound of the new circuit is the same as that of the original circuit. ||

LemMma 4.4. Weighted TC(s(n), d(n)) of weight bound w < TC(O(w - s(n)), d(n)).

Proof. 1. Suppose a threshold gate A4 is connected to another gate B with an
edge with weight w,; > 0. Simply make w,; copies of gate 4 and connect them to
gate B using an edge of weight 1. In general, we need at most w - s(r) copies.

Edges of weight 0 can be removed from the circuit. If a particular edge weight is
negative, we can make it positive using the following standard technique.

Repeat the following steps for all gates at all levels starting from the output level
down to the input level.

(a) If any weight w; <0 is negative, replace the weight with —w; > 0 and the
corresponding input x; with 1 —x; as shown in Fig. 9. Decrease the threshold of the
gate by w;. Thus, >'7 |, w,x; > 4 if and only if —w;(1—x)+X 7, w;x; = A—w;.

With this step, some gates at intermediate levels may have two labels x; and
1—x,. If this is the case, duplicate the gate labelling one x; and the other 1—x;
retaining all the input connections. In the worst case, we double the number of
gates.

(b) To complement the output of a gate from y to 1—y, use the process
shown in Fig. 10. Replace all the weights w; with —w, and change the threshold to

| |

Thm,A Thm,A—uu

—
w < 0 Wyn — W1 \wm

Ty T, 11— T,

FIG. 9. Making weights positive by complementing input.
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FIG. 10. Complementing output by negating weights.

1—A4. Thus, the gate outputs 1—y if and only if >, w;x; <4 if and only if
=" wx; > —Aifand only if X7 (—w;) x; = 1—A4.

When the input level is reached, change x; to X; and vice versa as needed. The
above process does not change the weight bound of the circuit. ||

Lemma 4.5. 1. NAND(x,, x,) can be simulated by Eti 1 —2(x1, x5, 1).
2. Foralli>1, NC' < EC(n°Y, O(log' n)) of weight bound 2.

3. [34]SPACE(s(n)) = AND-OR circuits of size 2°™ and depth s*(n) via
s(n)-uniform space-bounded Turing machines.

Proof. 1. Follows immediately from the definitions.

2. Since NAND gate is a universal gate, it can be used in place of AND and
OR gates for NC circuits. Then, use the Et} | _,(x;, X,, 1) gate to simulate NAND
gates. ||

We are now ready to characterize the computational power of QNNs. Recall that
the precision denotes the number of bits used for characterizing the amplitudes.
Thus, if an amplitude is defined with precision p, then the actual value may differ
by 1/27%!, that is, the errors must be less than 1/27+!,

THEOREM 4.6. EC(s(n), d(n)) of weight bound w = QNN(O(d(n) log s(n)), 2d(n))
of precision O(log w+d(n) log s(n)).

Proof. For the sake of clarity, we write s and d instead of s(n) and d(n), respec-
tively. Assume that all the gates have s = 2™ inputs each; add inputs with weight 0,
if necessary. Without loss of generality, we may assume that the circuits have one
output. (Otherwise, connect all the output gates to another threshold gate and
remove the corresponding layer in the constructed QNN.)

Given an unbounded fan-in, unbounded fan-out EC(s, d) circuit of weight w,
starting from the output gate “open” the circuit by duplicating gates of fan-out
greater than 1 to obtain a new circuit. Add dummy gates to obtain a levelled circuit
EC(0(2™), d).

Given this structured circuit, we will replace all the EC gates at level / by a U
operator of size 2! x 2+1 followed by a D(m+1, ) operator (Fig. 11), where
the threshold § is specified below. Thus, we need a system with md+1 = O (d log s)
qubits qg, G5 ---> Gmas> Gma+1- After each D(m+1, ) operator, m qubits (except ¢,) go
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FIG. 11. QNN for level / of EC circuit.

to a sink gate so that we have only one qubit left after d levels of alternating U and
D gates. Then this qubit is observed along state |0) to obtain the final answer.
For each level / of the EC circuit do the following.

. Normalize the weights wi, 1 <k <s, at each gate j by dividing them by
A /Zk i [wyl? . Since weights are bounded by w, therefore /Y ;_; [wul \/; w
and we require at least O(log s+1logw) precision for the weights. (To aV01d the
accumulation of errors as the computation proceeds through different levels, we
will need slightly higher precision.)

2. Construct a banded matrix U of size 2+! x 2"™*! and band width 2"+,
For each gate j, 1 <j<2"’"", with normalized weights w;;, wp, ..., w;;, we have a
block B; in U.

The first row of B; corresponds to the weights of gate j and the remaining rows are
chosen so that the rows of B; form a set of orthonormal vectors. The U matrix is
the banded matrix with diagonal blocks B, ..., B,c-u». Note that the first row of
block B; computes the weighted sum };_, w;x; for the jth gate if the input is
XT=[x;,0,xp,0,...,xm, 0], 1 <j<27"Y. If we pass the m+1=1logs+1 least
significant qubits through a D(m+1, J) gate, we simulate all the Etr gates at one
level in parallel.

B le 0 sz 0 M sz”' O
B=| "r W2 Wis3 Wha Whamt!-1 Wiyam+!
), =
1 m+l
LWime11 Wimeta Wims13 Wimsia =00 Wimeiamti_g Wipppgmet 2770x2”
B
1
B
2
U =
L Bya-vm Jomi+1xami+l

Once the circuit is constructed as above, the computation is performed as
follows.

Computation. The input at level / is a state vector of size 2™ ! x 1 as follows:

=[x, 0,x5,0,...,x;,m,0],1<j<2™"Y, where x;, 1<k<2" are inputs

to the jth gate. The operatlon UX computes the weighted sum of all the gates at
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level [. Pass the m+ 1 least significant qubits through a D(m+ 1, J) gate followed by
the sink gate for m qubits (except ¢,), where J is chosen to be sufficiently small.
(The exact value is specified below and depends on error bounds.) Note that this
process simulates all the E7 gates at one level in parallel, where U gate computes the
weighted sum and the D gate acts as a zero checker.

Precision of amplitudes in the state vector x. At the lowest level of the circuit we
have 2™ input nodes such that Z,ZZ |x;|> = 1. Thus, we need a precision of at least
O(dm) = O (dlogs) for the state vector. Of course, after every D gate, 1/2™" of
these states disappear. Therefore, if the amplitudes are not lost in the sink state, we
need a precision of O(/ log s) at level /.

Precision of weights in U gates. Let g >0 denote the error bound in weight
values at level /, where the output node corresponds to level 1. As mentioned
before, we need to ensure that g <ﬁ at all levels /. Let wy, w,, ..., w, be the

correct normalized weights corresponding to a row of U. Let w}, wj, ..., w, be the
erroneous weights. Let x; and xj,1<j<s, respectively denote the correct and
the erroneous input values corresponding to the row of U. Then,

5

s
’ ’
a<| Y wixi— X oW,
=1 =1

s s
< Y (wl+er)Uxl+e)— Y wllxl
i=1 j=1
s
<5812+1+31+1 Z (|Wj|+|xj|)
j=1

<S812+1+28,+1\/.;, as Y |w|’=1 and ) |x]°<1
j=1 j=1
<(\/§61+1)2+2\/;£1+1
If ¢ Sﬁ’ then we have ¢ <ﬁ for all /. Thus, the circuit needs O(/ log s

+1log w) precision for the weights in U gate at level /.

Threshold and precision for the D gate. The smallest integral value that can put
the corresponding Et gate over the threshold is 1. The corresponding weights in

QNN are normalized by dividing by /X5_; wul> < \/; w. Also the normalized
input of 1’s are encoded as /1/2™ =1/ \/; . Therefore, we can choose 0 <d <

1/ \/; \/; w, a good value being 6 =1/ Zﬂ \/L; w. With error bound & we can
ensure that the amplitude values never fall in the range (J,, d,), where J, = ¢ and
0, =20—c¢.

The output of D gate must be within ¢, of the correct value at level /. ||

CoroLLARY 4.7. TC(n°®, 0(1)) = QNN(O(log n), O(1)) of precision O(log n).

Thus, QNN(O(log n), O(1)) can approximate elementary functions such as sine,
cosine, exponential, logarithm, and square root. It can also exactly compute integer
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and polynomial quotient and remainder, interpolation of rational polynomials,
banded matrix inverse, and triangular Toeplitz matrix inverse.

CorOLLARY 4.8. NC'<= QNN(O(log? n), O(log 1)) of precision O(log? n).
CoROLLARY 4.9. NC? = QNN(O(log? n), O(log? n)) of precision O(log* n).

Thus, QNN(0O(log? 1), O(log? n)) can compute various matrix operations such as
inverse and rank.

CoROLLARY 4.10. NC < QNN(log®® n, 1og°® n) of precision 1log®® n.

CorOLLARY 4.11. POLYLOGSPACE = QNN(log?® n, 1og®® n) of precision
log®® n.

Hence, the several natural problems in TC and NC can be solved using only
log®® n qubits and at most log®® n steps.

So far the D gate was not completely defined. However, to delimit the power of
QNNs, we need to define the behavior completely. For the following results, we
assume that only the least significant qubit out of the D gate is not connected to the
sink gate and %/(|j; 1)) =0 for all j. These assumptions ensure that the D gate is
not performing difficult computations on the undefined states. The result holds if
the behavior of the D gate on all the states |i), 1 <i<2"—1, is the same as that on
the state [0™).

THEOREM 4.12. QNN(s,d) of precision p <= EC([d/2]2%[d/2]) of weight
0(2%Mees+rl) ( Read s(n) and d(n) for s and d, respectively.)

Proof. Replace every U gate that has k qubits as input with 2% weighted linear
adders and every D gate with a zero checker. Consecutive linear adders can be
combined into one adder, and an adder followed by the zero checker can be
combined into a Et gate. Thus, the depth of the EC circuit is reduced by at least
half.

Since the original circuit has s qubits and depth d, we need at most 2* equality
threshold gates at each level for a total of at most [d/2] 2° gates. (Multiple U gates
at the same level operating on different qubits need less than 2° gates.)

In general, the weights in the U matrix can be complex numbers while Ez gates
are allowed to have only integer weights. Thus, we need to ensure that both the
real and imaginary parts are zero. This can be done simultaneously by scaling the
imaginary part of weights by 22M°¢5+71 and the real weights by 2M°¢°*?1 and then
adding them to obtain a single integer. Scaling by 22 "°¢*! ensures that the weighted
sums of the real and imaginary parts do not mix. ||

Thus, the computational power of simplified QNN(O(logn), O(1)) of preci-
sion O(logn) is the same as that of EC(n°®, O(1)) of weight bound #°® and
TC(n°Y, 0(1)).

4.6. Encoders and Decoders

In the previous section, we proved that QNNs can process information in parallel
if the information is presented in encoded form. However, in general, the information



374 GUPTA AND ZIA

may be available only in the classical form. In this case, a special apparatus
needs to be built to encode # classical bits into O(log n) qubits. In this section, we
show that such an apparatus is indeed feasible by demonstrating unitary matrices
for encoders. These unitary matrices are highly structured, and hence, in practice
their implementations may look quite different from the way it is presented here.

Encoders. Recall that we need to encode n =2" classical bits ¢;, 0 <i<n—1, in
logn qubits as ¢ X/Zg o, |iy, where o, =a;, a;€{0,1}, and ¢ is an appropriate
constant such as 1/ \/1; .

The unitary operator for the encoders operates on n qubits each in one of the
states [0) or |1), logn qubits to be used for encoding, and an additional qubit
corresponding to the environment or sink. The operator can be described as
Qntlogntly pntlogn+l handed matrix of band size 27 x 2n.

[ b, €1,2 €1,2n |
1—b, €2 €2,2n
B, by =€ b, €35 €3 o
n—1---b1bo
b, €m—1,2 7 Cy_1m
[ 1=b,_1 ey T Cwman oo
By...00
By..o1
Ug =
B, 1o

Bll...ll pntlogntl  ontlogn+l
All the entries ey of B, , , , are chosen so that the rows form a system of
orthonormal vectors. Now suppose we want to encode n classical bits a,, a;,
...,a,_, into logn qubits as described above. Prepare a system in the following
state |ay, ay, ..., a,_;; 08" 0>, where 0'°¢" denotes the state of qubits used for
encoding and the last qubit corresponds to the sink state. After the operator Uy
is applied to this state, we obtain the following superposition of states:
ey lag, ay, ..., a,_y;i; 2y, where o, =a; if z=0, and o, = 1 —a; if z=1. Now
send the first n qubits corresponding to the classical bits to sink gates to obtain the
encoding in the log n qubits as needed.

Decoders. If the output consists of one classical bit, a simple observation of the
corresponding qubit will yield the classical information. Even if there are more than
1 bit in the output, they can be observed after repeated runs of the circuit, or by
having multiple copies of the circuit. Having multiple copies of the circuit has the
advantage of making the computational system robust.

5. DISSIPATION GATE

In this section, we show that the behavior of the D gate can be modeled by cubic
nonlinear differential equation. Similar equations are frequently used in quantum
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systems of interacting particles. Though these equations are not identical to ours,
we believe that they demonstrate the consistency of D gate with the laws of
quantum mechanics and identify some possible approaches for implementing it.
Another significant aspect of the D gate is irreversibility. To achieve this dissipative
property in a quantum system, it is necessary to introduce some kind of controlled
interaction with, say, an environment [ 11]. Designing specific mechanisms, though
possible in principle, will not be facile.

5.1. Amplitude Evolution Equation

We show that the dynamical behavior of the D gate on the amplitude of state
|[0™> can be achieved by cubic nonlinearities using stable points 0 and 1. Since it is
irrelevant what happens to states other than |0™), for simplicity, let us denote
(|0™>) by /. (Indeed, the amplitudes of all the states can evolve as follows
without affecting our results.) The differential equation that describes the required
behavior is

d
5 = R (|| =0)(1 - |/, (D

where R denotes the rate of convergence. It is clear that the phase of .7 remains
invariant under this evolution and only its amplitude is a dynamical variable. So, let
us focus on a = |./|. Note that % is negative in the range (0, §) and positive in the
range (J, 1). Thus, a monotonically decreases in the range (0, ) and monotonically
increases in the range (J, 1). Also, the derivative % is 0 at points 0, J, 1, and there-
fore, a does not change at these points.

Let a, denote the initial value of a. Then the explicit solution to Eq. (1) is

a 16 / q—¢6 \-1/60-6) / 1—q 1/(175)=e_Rt‘ ®
a, a,—0 1—a,

Alternative forms, convenient for analyzing the behavior near the points 0, Jd, 1,
may be obtained by raising both sides to the appropriate power. For example, near

0, we may write
a a—o \-la-9 1—q \9/1-8  _sme
e =e (3)
a, a() - 5 1 - aO

for convenience.

If ay # 0 and t — oo, the right side of the equation tends to 0. Since ¢ monotoni-
cally decreases in the range (0, 0) and monotonically increases in the range (J, 1), it
converges to 0 or 1 as ¢ —» oo, depending on whether it started below or above J
respectively.
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5.2. Convergence Time

Suppose the system is set up so that amplitudes never fall in the range (J,, J,),
where 0 < J, < d < d; < 1. The specific values d, and J; depend on the properties of
quantum neural network (QNN) which, in turn, depends on the problems we are
trying to solve.

The next question is what should be the rate of convergence, R, so that the fixed
points 0 and 1 are reached with tolerance ¢ within some finite time 7. Demanding
both

a(T)<e if a(0) <, 4)
1—a(T)<e¢ if a(0) >4, (5)

we obtain two equations by substituting a =¢, s =9, and a = 1—¢, s =, in Eq. (2).
The two equations provide two rates R, and R;, for a < J, and a > §,, respectively.
For our purposes, it is sufficient to choose R = max(R,, R;) so that both inequali-
ties (4, 5) are satisfied. Thus, given J,, J,, J, &€ and time 7', we obtain the parameters
of the system needed to implement the D gate.

The evolution described so far converges |/(|0™))| to 0 or 1 without changing
the phase of the state. In the next step we collapse .«7(]J0™)) to 0 or 1.

5.3. Dissipation

Once the amplitude |<7(]0™))| converges close to 0 or 1, the quantum system is
measured along state |0”). The measurement collapses the system to state |0™) with
a high probability if |.oZ(]0™))|* is close to 1. Note that this part of the D operator is
also dissipative and irreversible. We envisage interactions of our quantum system
with an environment, in a controlled fashion, can produce both the nonlinearities
and the collapse needed to construct the D gate.

What happens if the system is observed along state |0™) and |.Z(|0™))|* = 0? This
situation occurs when say a photon in state |- ) is observed using an orthogonal
filter |f)—mnothing is observed. This difficulty is easily addressed while solving
another problem described below.

In general, the m qubits passed through the D gate are part of a larger computing
system of m <n qubits. In this case, we demand the above nonlinear behavior
of the D gate on all |j;0™) states, for 0 <j<2"""—1. This general behavior
presents the following difficulty. It is possible that X2_ ;' |eZ(]j; 0™)|* <
Zj:: “152" 1(|j; kD)%, and hence, when the system is measured along state
|0™, it does not collapse to state |0™) as needed.

To solve the above problem, we introduce an ancilla qubit z in state |0) so that
A(|j;k;1))=0 for 0<j<2"™—-1 and 0<k<2"—1. Once the amplitudes
<Z(|j; 0™, 0>) have converged close to 0 or 1, transfer the amplitude of state
|7; 0™~11; 0> to state |j;0™; 1) for all 0 <j<2"""—1. This operation on the last
of the m qubits and the qubit z is performed using the following 4 x4 unitary
operator.



QUANTUM NEURAL NETWORKS 377

1 00 07 (00
y_|0 0 1 ol jor
010 0] |10
000 1] |11

The operator U changes the state for the last qubit and the ancilla qubit from
[by, 0, by, 0] to [by, b,, 0,0] so that when the last qubit is measured along [0}, it
collapses to state [0) as o/(]j; 0" '1;z))=0forall 0<j<2"™—1and 0<z< 1.
Of course, the above unitary behavior and interaction with an environment can be
built in the D gate without requiring a separate operator.

If we need to collapse all the m qubits to the state |0™), the above process can be
executed for all the m qubits. However, to solve the many problems described in
this paper, we do not need to do so. All except the last of the m qubits are discarded
to solve these problems. Thus, it is irrelevant what happens to the other m—1
qubits when we observe them.

Next we describe some simple quantum systems that can be modeled using cubic
nonlinearities. While the equations for these systems are different from Eq. (1), they
demonstrate that cubic nonlinearities are common in modeling quantum systems
and indicate some possible approaches for implementing the D gate. Furthermore,
these models clearly demonstrate that we have not tapped the full power of
quantum systems available to us.

6. NONLINEARITIES IN QUANTUM MECHANICAL SYSTEMS

In this section, we address the question of nonlinearities in quantum mechanics.
While it is generally believed that, at the fundamental level, the evolution of the
entire universe is governed by a linear Schrodinger’s equation for ‘“‘the wavefunc-
tion of the universe,” this view is not particularly helpful in practice. For limited
physical systems, such as those found in our laboratories, the linear Schrodinger’s
equation is only an approximation where certain degrees of freedom can be ignored
or controlled. Thus, in the most celebrated example, an electron in a hydrogen
atom, we find [36]

(%, 1) _

ih Fr

[ g€ ]w(x, 0, ®)

2m r

where 277 is the Planck’s constant, Y(x, ¢) is the wave function (probability ampli-
tude) associated with the electron at space—time point (X, ¢), m is the electron mass,
e the elementary charge, and r is the magnitude |x|. Here, the nucleus (proton) has
been placed at the origin of the coordinate system, providing only an “‘external,”
Coulomb potential (e?/r) in which the electron moves. All the degrees of freedom
associated with the proton are ignored in this equation. In fact, it is treated as a
classical particle. Had we taken into account its quantum mechanical properties, or
the fact that it is composed of three quarks, we would have to consider wave func-
tions for these and to deal with the associated equations. The resultant would be far
more complex than Eq. (6). Similarly, the Coulomb potential is known to be one
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aspect of a photon, so that its degree of freedom has also been ignored in this simple
equation. If the quantum mechanics of the photon is also taken into account, we
are necessarily faced with the full theory of relativistic quantum fields [21]. The
most venerable example of such kind of system is quantum electrodynamics [16,
2117, in which interactions between the electrons and photons are fully incorporated.
Nevertheless, by ignoring all degrees of freedom except that associated with the
electronic position, a simple linear equation such as (6) has been used to predict
many properties of the hydrogen atom, to a high degree of accuracy. Parentheti-
cally, notice that the spin degree of freedom, a favorite in quantum computing
community, is also ignored in Eq. (6). When this is included into a more complex
version of Eq. (6), the effects of “spin—orbit” coupling can be discussed and a better
approximation of the properties of hydrogen emerges.

Between the simplest levels of approximation, such as Eq. (6), and the most
complete /complex theories lies a vast set of approaches. Instead of simply ignoring
some of the other degrees of freedom, these “intermediate” theories incorporate
some of their effects into “‘effective interactions.” The results involve, typically,
nonlinear equations. We give two examples here.

An early example, predating quantum electrodynamics, takes into account the
“self interaction” of the electron in, say, the hydrogen atom. The idea is that, since
quantum mechanical description of the electron is in terms of a probability distri-
bution, P(x) = |i(x)|? (where we have dropped the # dependence for simplicity), we are
faced with a charge distribution associated with this electron: p(x) = —eP(x), i.e.,

p(x) = —e Y (x)|* @)

By the known laws of electrodynamics [20], this charged cloud would generate an
electric potential, at every point in space, X, of the form
p(x ’)

=i ®)

But then this potential should affect the electron in a way no different than the
potential due to the proton (that is, the e?/r term in Eq. (6)). Inserting this extra
potential into (6), we have

o 5 ’
o 4,(; 0 _ [ Ly, (X)]w(x, 0. ©)

Combining Egs. (7), (8) and (9), we arrive at a Schrodinger’s equation with cubic
nonlinearity:

(10)

H(x, 1) h e’ Yx, ) W', O
.h t — _ 2 t 2 YA PJIVAR, P
M Vi [P0+ x| X
Notice that the last term describes the electron’s interaction with itself, as the source
of the potential is the electronic cloud. We should emphasize that this equation was
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eventually abandoned for a number of reasons. One of them is that, as an approx-
imation which keeps only the electronic degree of freedom (y) while ignoring the
photonic degree of freedom, it is too crude to describe self interaction adequately.
As mentioned above, quantum electrodynamics was developed and the final picture
is not simply embodied in Eq. (10).

Another example, which is similar in form, comes from the study of structure of
atoms with more than one electron. Instead of self interactions, the interest here is
the mutual interactions between the electrons. Known as the Hartree approxima-
tion, with the photonic degrees of freedom still ignored, a system of nonlinear
Schrodinger equations are used, even today (see Schiff [35], Section 47):

d Ji
ihi = V(X t)=[—ﬁVk | k|+2 f|zp (x; )|2 x,-]n//k(xk, n. A

Here, Y, (x;, t) is the wave function of the kth electron in an atom with Z electrons
(and Z protons in the nucleus) and r; = |x; —x,| is the distance between it and the
jth electron. Notice that this is a system of Z nonlinear integrodifferential equations
for the Z unknowns ¥/, (x;, 7).

Both of these examples illustrate the use of nonlinear Schrodinger equations (up
to cubic terms) in the context of quantum mechanical systems. Very similar equa-
tions are also used in the context of nonlinear optics. In fact, many of these are
even closer in form to the ones we proposed, for example,

0
5 ?O=ad+a | |? o, (12)

where ¢; and c¢; are constants ([10], p. 280). Similarly, nonlinear Schrodinger
equations of this type appear frequently in the study of solitons [19]. Finally,
known as the time-dependent Landau—Ginzburg equation, nonlinear systems of the
form of (12) are ubiquitous in many areas of condensed matter physics.

In elementary quantum mechanics, the equations of evolution tend to be linear in
the wave function, describing various degrees of freedom (such as spins) subjected
to external potentials. However, as soon as internal interactions between the degrees of
freedom we wish to describe are incorporated, nonlinearities are inevitable. This section
serves to illustrate that evolution of many physical systems are governed by nonlinear
equations. Since the equations governing the D gate are sufficiently similar to many
of those in physical systems, we believe that its implementation should be possible.

7. RESEARCH DIRECTIONS

This paper initiates research into what problems can be solved using only
polylogarithmic (log®® r) entangled qubits and at most polylogarithmic steps. All
the efforts so far have concentrated on what can be achieved using a polynomial
number of qubits. We have shown that constant depth QNNs of logarithmic size
have the same computational power as threshold circuits of polynomial size and
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constant depth, which are used for modeling neural networks. QNNs possess
several advantages over threshold circuits. First, we need only O(logn) qubits.
Second, there is no communication bottleneck and synchronization problems asso-
ciated with computing the weighted sum in a threshold gate; there is no need to
explicitly wire the entangled qubits together and the synchronization is instanta-
neous for the computation of the weighted sum. Finally, quantum systems have the
ability to compute on probability distributions rather than just discrete values,
giving them the ability to handle fuzzy sets [43].
The research suggests several interesting directions.

1. Define a continuous version of QNNs using probability amplitude distri-
butions. Quantum mechanics uses infinite-dimensional Hilbert spaces to model
reality. (Even a simple system such as an electron around a nucleus in a hydrogen
atom is modeled using infinite-dimensional Hilbert space.) How can this be used to
generalize the discrete model discussed in this paper? What kind of gates/operators
are allowed? Just as we used discrete values to encode boolean values, we can use
the continuous distribution to encode membership in fuzzy sets [43].

2. How can error-correcting codes and fault-tolerant computing be adapted
to the new model, both for the discrete and continuous versions?

3. Following the road map provided by the theory of neural networks, define
a theory of QNN(log®® n, log®® n). What is the equivalent of back-propagation
and various other supervised and unsupervised learning algorithms? What is the
equivalent of the Hopfield model and recurrent neural networks? How can we
define the formal statistical mechanics of QNNs?

4. Matrix operations provide the ‘“killer application” for the new model.
Improve the bounds on our results: TC’< QNN(O(logn), O(1)) and NC<
QNN(log?® n,10g°" n). In particular, minimizing the depth of the circuits can
provide real-time solutions to several important matrix problems. Reducing the
depth of the circuits to a constant, even at the expense of increasing the size, can
provide real-time solutions to problems in POLYLOGSPACE. The results in this
paper do not take advantage of either complex probability amplitudes as weights,
or arbitrary unitary operators. (This paper uses banded unitary matrices with real
weights to perform simulations.) Also, can we get better bounds under various
uniformity constraints?

Of course, with polylogarithmic size and precision, the quantum system has more
than a polynomial number of states, and hence, it may be infeasible to set up the
required apparatus in reasonable time. Thus, such computational systems may be
more appropriate in the context of learning systems, where the parameters are
incrementally modified based on how the actual output of the system differs from
the required output.

5. Understand the physics behind the implementation of the new operators.
What other operators are allowed for the discrete as well as the continuous model
of QNNs? How can they be physically realized? For example, we can define
“generalized D gates” that behave on all the states |i), 1 <i<2"—1, as the D gate
behaves on the state |0™) using similar evolutionary equation.
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6. Develop a theory of EC circuits. While threshold circuits have been studied
extensively and the computational power of EC circuits is essentially same as the
power of threshold circuits (with polynomial size), it is not at all clear that the
learning strategies are essentially the same. First, EC circuits can be naturally
defined over the domain of complex numbers. We need to explore how this larger
domain helps. Second when translated to QNNs, EC circuits must have normalized
weights, which means that the learning algorithms such as back-propagation that
make local changes to weights, cannot be directly translated without some form of
global strategy. Third, for every gate in an EC circuit, QNNs have weight vectors
orthogonal to the original one. In this paper, these vectors simply dissipate after the
D operator and sink gates. However, they may indeed be helpful in obtaining better
learning algorithms. Thus, investigating EC circuits with normalized complex
weights and orthogonal weight vectors is important, independent of their connec-
tion to quantum computing.

7. Compare QNNs with the existing data in neuroscience to improve our
understanding of biological neurons and, if necessary, to refine our model. It is well-
known that all creatures with nervous systems have essentially the same basic pro-
cessing unit, the biological neuron, though different types of neurons have been
identified possessing the same general structure. The dendrites on the cell body
receive inputs from several neurons, the signal is processed in the cell body and a
long axon, and is output on the other side. Reaction time of the lower brain for
many nontrivial tasks is less than 100s, while the synapse response time of most
neurons is at least Ss. Thus, biological evidence suggests that the depth of these
circuits cannot exceed 20.

It is well known that the synaptic connections change as the brain learns. However,
there is almost no experimental evidence of a neuron changing from an excitatory
to inhibitory or vice versa as the learning occurs. In fact, this is one of the factors
cited against artificial neural networks (threshold circuits) and the associated learn-
ing algorithms where the weights associated with synaptic connections can change
from positive to negative.

Thus, it is possible that the unitary operator U is associated with the synapses
while the dissipation operator D is associated with the cell and the axon. Hence, the
synapses are not computing on classical bits associated with the input but the
quantum interactions between the neurotransmitters received at the input. Note
that the reality is more complicated than this simplistic model. It has been observed
that the neurons fire a series of spikes and information may be encoded in the rate
and timing of firing as well [24]. Of course, if we allow feedback in QNNs, the
timing issues must be considered. The possibility of the information being encoded
in the interactions of these carriers needs to be investigated.
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