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Abstract

A priori error estimates are established for the DtN (Dirichlet-to-Neumann) finite element method applied to the exterior Helmholtz
problem. The error estimates include the effect of truncation of the DtN boundary condition as well as that of the finite element
discretization. A property of the Hankel functions which plays an important role in the proof of the error estimates is introduced.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

We consider the exterior Helmholtz problem:⎧⎪⎪⎨
⎪⎪⎩

−�u − k2u = f in �,

u = 0 on �,

lim
r−→+∞ r(d−1)/2

(
�u

�r
− iku

)
= 0 (the outgoing radiation condition),

(1)

where k, called the wave number, is a positive constant, � is an unbounded domain of Rd (d = 2 or 3) with sufficiently
smooth boundary �, f is a given datum, r = |x| for x ∈ Rd , and i = √−1. Assume that O ≡ Rd\� is a bounded open
set and that f has a compact support. Problem (1) arises in models of acoustic scattering by a sound-soft obstacle O
embedded in a homogeneous medium.

To solve numerically problem (1), one often introduces an artificial boundary in order to reduce the computational
domain to a bounded domain and imposes an artificial boundary condition on the artificial boundary. Although a variety
of artificial boundary conditions have been proposed (see, e.g., [7], for a review), we focus on the exact nonlocal boundary
condition based on the Dirichlet-to-Neumann (DtN) operator, which is called the exact DtN boundary condition. The
comparison of the exact DtN boundary condition with local artificial boundary conditions is described in [8,10].
Imposing the exact DtN boundary condition on the artificial boundary, we can reduce problem (1) equivalently to a
problem on the bounded domain between the artificial boundary and the boundary �. We discretize the reduced problem
by using the finite element method. This method is called the DtN finite element method.
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The DtN finite element method for the exterior Helmholtz problem has first been proposed by MacCamy–Marin [23] in
1980, who represented the DtN operator through an integral equation. Feng [4], Masmoudi [24], and Keller–Givoli [18]
have derived the Fourier series representation of the DtN operator. Masmoudi [24] and Keller–Givoli [18] incorporated
such a representation directly into the finite element method.

The DtN finite element method for other kinds of problems concerning the Helmholtz equation has been investigated
by several authors. In 1978, Fix–Marin [6], who are pioneers in the DtN finite element method, studied the under-water
acoustic problem. Goldstein [11] established error estimates for the Helmholtz problem on unbounded waveguides.
Bao [1] also established error estimates for the problem concerning the diffraction of a time harmonic wave incident
on a periodic surface of some inhomogeneous material.

In China, independently of the western world, the DtN finite element method has been suggested and developed first
by Feng and Yu in 1980 and 1982, for example, see [5], where they called it the canonical boundary element method or
the natural boundary element method. Yu has published many papers [31,32,30,35,17] and a monograph [33,34] (see
also its review [9]) in this direction. In Ushijima’s paper [28], we can find these words: “Chinese scholars, Feng Kang,
Han Houde,Yu De-hao and others should be mentioned among founders of the treatment. In western world, J.B. Keller
and D. Givoli are also should be quoted.”

In this paper, we establish a priori error estimates in the H 1- and L2-norms for the exterior Helmholtz problem. The
use of the Fourier series representation of the DtN operator requires truncating the series in practical computations. So
we analyze the series truncation error as well as the finite element discretization error. To the best knowledge of the
author, our error estimates are new, because no error estimate treating both the truncation error and the discretization
error simultaneously has been published yet (cf. [10, p. 32]). MacCamy–Marin [23] and Masmoudi [24] have derived
an error estimate, but their estimate depends only on the mesh size (see also [3,17]). The counterpart of our error
estimates for the Helmholtz problem on unbounded waveguides has been established by Goldstein [11] in 1982. Our
error analysis roughly follows his analysis; however, we need some properties of the Hankel functions, which contain
a new and important result (Lemma 4); we were inspired to prove Lemma 4 by Han–Bao [12, Lemma 3.1]. We here
remark that in the error analysis of ours (and also of Goldstein), the argument of Schatz [27] plays an essential role,
since the Helmholtz equation is indefinite.

Analysis of the truncation error in the DtN finite element method is an important topic. For problems of the positive
definite type, Yu [32] and Han–Wu [13] have first derived error estimates including the truncation error for the exterior
Laplace problem in 1985.After that, such error estimates for other problems are established in many papers, for example,
in Han–Wu [14] for the linear elastic problem, and in Givoli–Patlashenko–Keller [10] and Han–Bao [12] for a certain
class of the linear elliptic second order boundary value problem on exterior domains and semi-infinite strips (the error
estimate in [12] is more sophisticated than that in [10]). For problems of other types, we mention Lenoir–Tounsi [21]
(the sea-keeping problem) and Koyama–Tanimoto–Ushijima [20] (the eigenvalue problem of the linear water wave in
a water region with a reentrant corner).

The remainder of this paper is organized as follows. In Section 2, we formulate the reduced problem with the DtN
boundary condition. In Section 3, we introduce some properties of the Hankel functions, which are employed for
establishing the error estimates in Section 4.

2. The DtN formulation

We first introduce a theorem concerning the well-posedness of problem (1).

Theorem 1. For every compactly supported f ∈ L2(�), problem (1) has a unique solution in H 2
loc(�), where

Hm
loc(�) = {u|u ∈ Hm(B) for all bounded open set B ⊂ �} (m ∈ N).

Here L2(�) denotes the usual space of complex-valued square integrable functions on �, and Hm(B) denotes the
usual complex Sobolev space on B (see, e.g., [22]).

Proof. See [25,26]. �
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To seek approximate solutions of problem (1), we introduce an artificial boundary �a = {x ∈ Rd ||x| = a}, where a
is a positive number such that O ∪ supp f ⊂ Ba ≡ {x ∈ Rd ||x| < a}. Then problem (1) is reduced equivalently to the
following problem on the bounded computational domain �a = � ∩ Ba :⎧⎪⎪⎨

⎪⎪⎩
−�u − k2u = f in �a,

u = 0 on �,
�u

�r
= −Su on �a,

(2)

where S is the DtN operator corresponding to the outgoing radiation condition. For its definition, see [24,18].
Now we introduce the circular harmonics Yn defined by

Yn(�) = ein�
√

2�
,

where � denotes the angular variable of an (r, �) polar coordinate system, and the spherical harmonics Ym
n defined by

Ym
n (�, �) =

√
(2n + 1)

4�

(n − |m|)!
(n + |m|)!P

|m|
n (cos �)eim�,

where �, � denote the angular variables of an (r, �, �) spherical coordinate system, and P m
n are the associated Legendre

functions.
We define the Sobolev space Hs(�a) (s > 0) by

Hs(�a) = {� ∈ L2(�a)|‖�‖s,�a
< ∞},

where ‖ · ‖s,�a
is the norm of Hs(�a) defined by

‖�‖2
s,�a

=

⎧⎪⎪⎨
⎪⎪⎩

a
∞∑

n=−∞
(1 + n2s)|�n|2 if d = 2,

a2
∞∑

n=0

n∑
m=−n

(1 + n2s)|�m
n |2 if d = 3,

where �n and �m
n , respectively, are the Fourier coefficients of � defined by

�n =
∫ 2�

0
�(�)Yn(�) d� (3)

and

�m
n =

∫ 2�

0
d�
∫ �

0
�(�, �)Ym

n (�, �) sin � d�. (4)

We here note that the DtN operator S is a bounded linear operator from H 1/2(�a) into H−1/2(�a) (see [24]), where
H−1/2(�a) is the set of all bounded semilinear forms on H 1/2(�a).

To formulate a weak form of problem (2), we introduce the following sesquilinear forms:

a(u, v) =
∫
�a

(∇u · ∇v − k2uv) dx + s(u, v) for u, v ∈ H 1(�a),

s(u, v) = 〈Su, v〉H−1/2(�a)×H 1/2(�a)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞∑
n=−∞

−ka
H

(1)′
n (ka)

H
(1)
n (ka)

un(a)vn(a) if d = 2,

∞∑
n=0

n∑
m=−n

−ka2 h
(1)′
n (ka)

h
(1)
n (ka)

um
n (a)vm

n (a) if d = 3,

(5)
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where H
(1)
n and h

(1)
n are the cylindrical and spherical Hankel functions of the first kind of order n, respectively, and

un(a) and um
n (a) denote the Fourier coefficients of u|�a

defined by (3) and (4), respectively. Then a weak form of (2)
is written as follows: find u ∈ V such that

a(u, v) = (f, v) (6)

for all v ∈ V , where

V = {v ∈ H 1(�a)|v = 0 on �},

(u, v) =
∫
�a

uv dx for u, v ∈ L2(�a).

For every f ∈ L2(�a), problem (6) has a unique solution which is the restriction to �a of the solution of problem (1)
(see [24,15,16]).

3. Some properties of the Hankel functions

In this section, we state three lemmas concerning properties of the Hankel functions. These lemmas will be used to
establish error estimates in the next section.

Lemma 2. For each x > 0, there exists a positive constant C such that∣∣∣∣∣ 1

1 + |n|
H

(1)′
n (x)

H
(1)
n (x)

∣∣∣∣∣ �C for all n ∈ Z, (7)

∣∣∣∣∣ 1

1 + n

h
(1)′
n (x)

h
(1)
n (x)

∣∣∣∣∣ �C for all n ∈ N ∪ {0}, (8)

where C depends on x, but is independent of n.

Proof. For proofs of (7) and (8), see [24] and [16], respectively. �

Lemma 3. For all x > 0, we have

Re

{
H

(1)′
� (x)

H
(1)
� (x)

}
< 0 for all � ∈ R,

Re

{
h

(1)′
n (x)

h
(1)
n (x)

}
< 0 for all n ∈ N ∪ {0}.

Proof. See [19]. �

Lemma 4. For any r1 > r2 > 0, |H(1)
� (r1)/H

(1)
� (r2)| is a decreasing function of �on [0, ∞), and further |h(1)

n (r1)/h
(1)
n (r2)|

is a decreasing sequence of n ∈ N ∪ {0}.

Proof. We first prove the former assertion. We write

F(�; r) = |H(1)
� (r)|2.

From Nicholson’s formula (see [29, p. 444])

F(�; r) = 8

�2

∫ ∞

0
K0(2r sinh t) cosh(2�t) dt (� ∈ R, r > 0), (9)
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where K0 is the modified Bessel function of the second kind of order zero, we see that, for each r > 0, F(· ; r) ∈ C∞(R)

and F(· ; r) > 0. Thus, it is sufficient to show that

d

d�

(
F(�; r1)

F (�; r2)

)
< 0

for all � ∈ (0, ∞). This inequality holds, if and only if

dF

d�
(�; r1)F (�; r2) − F(�; r1)

dF

d�
(�; r2) < 0. (10)

Hence, let us prove (10) in the following. Differentiating (9) with � leads to

dF

d�
(�; r) = 16

�2

∫ ∞

0
K0(2r sinh t)t sinh(2�t) dt . (11)

From (9) and (11), we have

dF

d�
(�; r1)F (�; r2) − F(�; r1)

dF

d�
(�; r2)

= 128

�4

∫ ∞

0

∫ ∞

0
[K0(2r1 sinh t1)K0(2r2 sinh t2)t1 sinh(2�t1) cosh(2�t2)

− K0(2r2 sinh t1)K0(2r1 sinh t2)t1 sinh(2�t1) cosh(2�t2)] dt1 dt2

= 128

�4

∫ ∞

0
dt1

∫ t1

0
[K0(2r1 sinh t1)K0(2r2 sinh t2) − K0(2r1 sinh t2)K0(2r2 sinh t1)]

× [t1 sinh(2�t1) cosh(2�t2) − t2 sinh(2�t2) cosh(2�t1)] dt2. (12)

Here, using Macdnold’s formula (see [29, p. 439])

K0(X)K0(x) = 1

2

∫ ∞

0
exp

[
− t

2
− X2 + x2

2t

]
K0

(
Xx

t

)
dt

t
(X, x > 0)

and the fact that

(r2
1 sinh2 t1 + r2

2 sinh2 t2) − (r2
1 sinh2 t2 + r2

2 sinh2 t1) = (r2
1 − r2

2 )(sinh2 t1 − sinh2 t2) > 0

for t1 > t2 > 0, we can conclude that

K0(2r1 sinh t1)K0(2r2 sinh t2) − K0(2r1 sinh t2)K0(2r2 sinh t1) < 0 (13)

for t1 > t2 > 0. Further, we have

t1 sinh(2�t1) cosh(2�t2) − t2 sinh(2�t2) cosh(2�t1)

= 1
2 {(t1 − t2) sinh[2�(t1 + t2)] + (t1 + t2) sinh[2�(t1 − t2)]} > 0 (14)

for t1 > t2 > 0. From (12)–(14), we deduce (10).
We next prove the latter assertion. Since

h(1)
n (r) =

√
�

2r
H

(1)
n+1/2(r),

we have∣∣∣∣∣h
(1)
n (r1)

h
(1)
n (r2)

∣∣∣∣∣=
√

r2

r1

∣∣∣∣∣
H

(1)
n+1/2(r1)

H
(1)
n+1/2(r2)

∣∣∣∣∣ .

Hence, it follows from the above result that |h(1)
n (r1)/h

(1)
n (r2)| is a decreasing sequence of n ∈ N ∪ {0}. �
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4. The DtN finite element method and its error estimates

We discretize problem (6) by using the finite element method to obtain approximate solutions to problem (6) (or
(1)). We introduce a family {Vh|h ∈ (0, h̄]} of finite dimensional subspaces of V , and assume that this family satisfies
the following condition: there exist an integer p�2 and a constant C > 0 such that for all 0 < h� h̄ and for every
u ∈ V ∩ Hp′

(�a) (2�p′ �p),

inf
vh∈Vh

‖u − vh‖1,�a
�Chp′−1‖u‖p′,�a

, (15)

where C is independent of h and u, and ‖ · ‖p,�a
is the standard norm of Hp(�a) defined by

‖v‖2
p,� =

∑
|	|�p

∫
�

|D	v|2 dx (p ∈ N).

For examples of such a family, see [2,36].
Now since the sesquilinear form s involves the infinite series, we have to truncate it in practice. So we practically

solve the following problem: find uN
h ∈ Vh such that

aN(uN
h , vh) = (f, vh) for all vh ∈ Vh, (16)

where, for N ∈ N,

aN(u, v) =
∫
�a

(∇u · ∇v − k2uv) dx + sN(u, v) for u, v ∈ H 1(�a),

sN(u, v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
|n|<N

−ka
H

(1)′
n (ka)

H
(1)
n (ka)

un(a)vn(a) if d = 2,

N−1∑
n=0

n∑
m=−n

−ka2 h
(1)′
n (ka)

h
(1)
n (ka)

um
n (a)vm

n (a) if d = 3.

Theorem 5. Let k be an arbitrary positive number and f an arbitrary function of L2(�) with compact support. Assume
that O∪ supp f ⊂ Ba0 (a0 < a). Let u be the solution of problem (1). Assume that there exists an integer l�2 such that
u ∈ Hl(�a). Then there exist a �0 > 0 such that for every (h, N) ∈ (0, h̄] × N satisfying h + N−1 ��0, problem (16)
has a unique solution uN

h , and moreover, if d = 2, then we have

‖u − uN
h ‖1,�a

�C

(
hm−1‖u‖m,�a

+ N−s+1/2

∣∣∣∣∣ H
(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣RN(u; s, a0)

)
, (17)

‖u − uN
h ‖0,�a

�C(h + N−1)

(
hm−1‖u‖m,�a

+ N−s+1/2

∣∣∣∣∣ H
(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣RN(u; s, a0)

)
, (18)

where ‖ · ‖0,�a
is the usual norm of L2(�a), m = min{p, l}, s is an arbitrary real number � 1

2 ,

RN(u; s, a0) =
⎛
⎝a0

∑
|n|�N

n2s |un(a0)|2
⎞
⎠

2

, (19)

and positive constants �0 and C depend on k, a0, and �a , but are independent of h, N, s, f, u, and uN
h . If d = 3, then

(17) and (18) hold by replacing H
(1)
N by h

(1)
N , and (19) by

RN(u; s, a0) =
⎛
⎝a2

0

∑
n�N

n∑
m=−n

n2s |um
n (a0)|2

⎞
⎠

2

.
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Before starting to prove Theorem 5, we introduce the following inequalities associated with the trace theorem:

‖v‖m−1/2,�a
�C‖v‖m,�a

for all v ∈ Hm(�a) (m = 1, 2), (20)

where C is a positive constant depending on �a , but independent of v, and the following sesquilinear form on H 1(�a):

rN(u, v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
|n|�N

−ka
H

(1)′
n (ka)

H
(1)
n (ka)

un(a)vn(a) if d = 2,

∑
n�N

n∑
m=−n

−ka2 h
(1)′
n (ka)

h
(1)
n (ka)

um
n (a)vm

n (a) if d = 3.

Note here that we have

s(u, v) = sN(u, v) + rN(u, v) for u, v ∈ H 1(�a).

Proof. We prove only in the case when d = 2, because the proof of the case when d = 3 is exactly the same.
We first assume that problem (16) has a solution uN

h . We postpone proving the well-posedness of problem (16) until
completion of the derivation of (17) and (18).

Set eN
h = u − uN

h . Then we have

aN(eN
h , vh) + rN(u, vh) = 0 (21)

for all vh ∈ Vh. Note the following identical equation:

‖eN
h ‖2

1,�a
= aN(eN

h , eN
h ) + (k2 + 1)‖eN

h ‖2
0,�a

− sN(eN
h , eN

h ).

Taking the real part of this identity, we can get

‖eN
h ‖2

1,�a
= Re{aN(eN

h , eN
h )} + (k2 + 1)‖eN

h ‖2
0,�a

− Re{sN(eN
h , eN

h )}.
By virtue of Lemma 3, we have

‖eN
h ‖2

1,�a
�Re{aN(eN

h , eN
h )} + (k2 + 1)‖eN

h ‖2
0,�a

. (22)

Step 1. We show that for an arbitrary 
 > 0, there exists a positive constant C3(
) such that

|aN(eN
h , eN

h )|�
‖eN
h ‖2

1,�a
+ C3(
)

⎧⎨
⎩h2m−2‖u‖2

m,�a
+ N−2s+1

∣∣∣∣∣ H
(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣
2

[RN(u; s, a0)]2

⎫⎬
⎭ , (23)

where s is an arbitrary number � 1
2 and C3(
) depends on k, a0, and �a , but is independent of h, N, s, u, and uN

h . By
(21), we have, for all vh ∈ Vh,

aN(eN
h , eN

h ) = aN(eN
h , u − vh) + rN(u, uN

h − vh) = aN(eN
h , u − vh) + rN(u, u − vh) − rN(u, eN

h ).

Thus, by using the trigonometric inequality, the Schwarz inequality, Lemma 2, and the trace inequality (20), we get

|aN(eN
h , eN

h )|� |eN
h |1,�a

|u − vh|1,�a
+ k2‖eN

h ‖0,�a
‖u − vh‖0,�a

+ C(k, a)‖eN
h ‖1/2,�a

‖u − vh‖1/2,�a
+ |rN(u, u − vh)| + |rN(u, eN

h )|
�C(k, �a)‖eN

h ‖1,�a
‖u − vh‖1,�a

+ |rN(u, u − vh)| + |rN(u, eN
h )|. (24)

Let us estimate the second term on the right-hand side of (24). SinceO∪supp f ⊂ Ba0 , the solution u can be analytically
represented as follows

u(r, �) =
∞∑

n=−∞

H
(1)
n (kr)

H
(1)
n (ka0)

un(a0)Yn(�) on R2\Ba0 .
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This implies

un(a) = H
(1)
n (ka)

H
(1)
n (ka0)

un(a0)

for all n ∈ Z. Moreover, we can see from the usual regularity argument that u|�a0
∈ Hs(�a0) for all s > 0. Thus, by

the trigonometric inequality, Lemmas 2 and 4, the Schwarz inequality, and the trace inequality (20), we have, for every
s� 1

2 ,

|rN(u, u − vh)|�
∑

|n|�N

∣∣∣∣∣ka
H

(1)′
n (ka)

H
(1)
n (ka)

∣∣∣∣∣ |un(a)||(u − vh)n(a)|

=
∑

|n|�N

|n|−s+1/2

∣∣∣∣∣ka

n

H
(1)′
n (ka)

H
(1)
n (ka)

∣∣∣∣∣
∣∣∣∣∣ H

(1)
n (ka)

H
(1)
n (ka0)

∣∣∣∣∣ |n|s |un(a0)||n|1/2|(u − vh)n(a)|

�C(k, a, a0)N
−s+1/2

∣∣∣∣∣ H
(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣RN(u; s, a0)‖u − vh‖1/2,�a

�C(k, a0, �a)N
−s+1/2

∣∣∣∣∣ H
(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣RN(u; s, a0)‖u − vh‖1,�a
, (25)

where (u − vh)n(a) are the Fourier coefficients of u − vh. In exactly the same way, we can estimate the third term on
the right-hand side of (24) as follows:

|rN(u, eN
h )|�C(k, a0, �a)N

−s+1/2

∣∣∣∣∣ H
(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣RN(u; s, a0)‖eN
h ‖1,�a

. (26)

Combining (24)–(26) and (15) leads to

|aN(eN
h , eN

h )|�C(k, a0, �a)

[
hm−1‖eN

h ‖1,�a
‖u‖m,�a

+ hm−1N−s+1/2

∣∣∣∣∣ H
(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣RN(u; s, a0)‖u‖m,�a

+N−s+1/2

∣∣∣∣∣ H
(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣ ‖eN
h ‖1,�a

RN(u; s, a0)

]
.

Applying the arithmetic–geometric mean inequality to each term on the right-hand side of the above inequality, we
obtain (23).

Step 2. We show that there exists a positive constant C4 such that

‖eN
h ‖0,�a

�C4

[
(h + N−1)‖eN

h ‖1,�a
+ (hN−s+1/2 + N−s−1/2)

∣∣∣∣∣ H
(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣RN(u; s, a0)

]
, (27)

where s is an arbitrary number � 1
2 and C4 depends on k, a0, and �a , but is independent of h, N, s, u, and uN

h . Suppose
that w ∈ V satisfies

a(v, w) = (v, eN
h ) (28)

for all v ∈ V . Then w is the incoming solution, that is, w is the restriction to �a of the solution of problem (1) where
the outgoing radiation condition is replaced by the incoming radiation condition:

lim
r−→+∞ r(d−1)/2

(
�u

�r
+ iku

)
= 0
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and f = eN
h . Note here that the sesquilinear form s corresponding to the incoming radiation condition is represented by

replacing H
(1)
n by H

(2)
n (the Hankel function of the second kind) in (5). Since Theorem 1 also holds for the incoming

problem, we have w ∈ H 2(�a) and the following a priori estimate:

‖w‖2,�a
�C‖eN

h ‖0,�a
, (29)

where C is a positive constant independent of eN
h . Taking v = eN

h in (28), we obtain

‖eN
h ‖2

0,�a
= a(eN

h , w) = aN(eN
h , w) + rN(eN

h , w). (30)

Subtracting (21) from (30) gives

‖eN
h ‖2

0,�a
= aN(eN

h , w − vh) + rN(eN
h , w) − rN(u, vh)

= aN(eN
h , w − vh) + rN(eN

h , w) + rN(u, w − vh) − rN(u, w).

Employing the argument leading to (24), we can get

‖eN
h ‖2

0,�a
�C(k, �a)‖w − vh‖1,�a

‖eN
h ‖1,�a

+ |rN(eN
h , w)| + |rN(u, w − vh)| + |rN(u, w)|. (31)

Employing an argument similar to the one used in (25), we can estimate the last three terms on the right-hand side of
(31) as follows:

|rN(eN
h , w)|�C(k, a)N−1‖eN

h ‖1/2,�a
‖w‖3/2,�a

�C(k, �a)N
−1‖eN

h ‖1,�a
‖w‖2,�a

, (32)

|rN(u, w − vh)|�C(k, a0, �a)N
−s+1/2

∣∣∣∣∣ H
(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣RN(u; s, a0)‖w − vh‖1,�a
, (33)

|rN(u, w)|�C(k, a, a0)N
−s−1/2

∣∣∣∣∣ H
(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣RN(u; s, a0)‖w‖3/2,�a

�C(k, a0, �a)N
−s−1/2

∣∣∣∣∣ H
(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣RN(u; s, a0)‖w‖2,�a
. (34)

Collecting (31)–(34) yields

‖eN
h ‖2

0,�a
�C(k, a0, �a)

{[
‖eN

h ‖1,�a
+ N−s+1/2

∣∣∣∣∣ H
(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣RN(u; s, a0)

]
‖w − vh‖1,�a

+
[
N−1‖eN

h ‖1,�a
+ N−s−1/2

∣∣∣∣∣ H
(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣RN(u; s, a0)

]
‖w‖2,�a

}
.

Using (15) and (29), we get

‖eN
h ‖2

0,�a
�C(k, a0, �a)

{[
‖eN

h ‖1,�a
+ N−s+1/2

∣∣∣∣∣ H
(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣RN(u; s, a0)

]
h‖eN

h ‖0,�a

+
[
N−1‖eN

h ‖1,�a
+ N−s−1/2

∣∣∣∣∣ H
(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣RN(u; s, a0)

]
‖eN

h ‖0,�a

}
,

and further dividing by ‖eN
h ‖0,�a

, we obtain (27).
Step 3. Let us collect the results above to get (17) and (18).
Squaring both sides of (27) and using arithmetic-geometric mean inequality, we have

‖eN
h ‖2

0,�a
�2C2

4

⎧⎨
⎩(h + N−1)2‖eN

h ‖2
1,�a

+ (hN−s+1/2 + N−s−1/2)2

∣∣∣∣∣ H
(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣
2

[RN(u; s, a0)]2

⎫⎬
⎭ . (35)
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Combining (22), (23), and (35), we get

‖eN
h ‖2

1,�a
�
‖eN

h ‖2
1,�a

+ C3(
)

⎧⎨
⎩h2m−2‖u‖2

m,�a
+ N−2s+1

∣∣∣∣∣ H
(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣
2

[RN(u; s, a0)]2

⎫⎬
⎭

+ C5

⎧⎨
⎩(h + N−1)2‖eN

h ‖2
1,�a

+ (hN−s+1/2 + N−s−1/2)2

∣∣∣∣∣ H
(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣
2

[RN(u; s, a0)]2

⎫⎬
⎭ ,

where C5 = 2(k2 + 1)C2
4 . This implies

{1 − 
 − C5(h + N−1)2}‖eN
h ‖2

1,�a
�C6(
)

⎛
⎝h2m−2‖u‖2

m,�a
+ N−2s+1

∣∣∣∣∣ H
(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣
2

[RN(u; s, a0)]2

⎞
⎠ ,

where C6(
) = C3(
) + (h̄ + 1)2, and further, by taking 
 = 1
2 ,

{
1

2
− C5(h + N−1)2

}
‖eN

h ‖2
1,�a

�C7

⎛
⎝h2m−2‖u‖2

m,�a
+ N−2s+1

∣∣∣∣∣ H
(1)
N (ka)

H
(1)
N (ka0)

∣∣∣∣∣
2

[RN(u; s, a0)]2

⎞
⎠ ,

where C7 = C6(
1
2 ). For every {h, N} ∈ (0, h̄] × N satisfying

1
2 − C5(h + N−1)2 � 1

4 ,

which is equivalent to

h + N−1 � 1√
4C5

≡ �0,

we have (17). Further, from (27) and (17), we can derive (18).
Step 4. We finally show the well-posedness of problem (16). For this purpose, it is sufficient to prove uniqueness of

the solution of problem (16) since Vh is finite dimensional. Thus, assume now that uN
h ∈ Vh is a solution of problem

(16) with f = 0. Since the solution u of problem (6) with f = 0 is identically zero, it follows from (17) (or (18)) that
uN

h = 0. Therefore we can conclude that problem (16) is well-posed when h + N−1 ��0. �
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