
Science of Computer Programming 18 (1992) 67-106

Elsevier

67

Heuristics for constructing
while loops

Fatma Mili
School of Engineering and Computer Science, Oakland University, Rochester, MI 48309-4401,
USA

Ali Mili
Dipartement d’lnformatique, Faculth des Sciences de Tunis, UniversitC de Tunis II,
1002 Bel&dd)re. Tunisia

Received April 1990

Revised February 1991

Abstract

Mili, F. and A. Mili, Heuristics for constructing while loops, Science of Computer Programming

18 (1992) 67-106.

We discuss the stepwise construction of iterative programs from specifications, represented by

relations. We make an effort to isolate, in the construction of an iterative program, those decisions

that are dictated by correctness preservation concerns, from decisions that the programmer is free

to make at will.

1. Introduction: the problem and its context

Despite several decades of research, the construction of programs from

specifications remains an activity where creativity plays an important role. To be

sure, the mathematics of program correctness, as we know them today

[19, 18, 11,23, lo], do give some insight into how programs can be constructed from

specifications; but there is more to program construction than understanding pro-

gram correctness. While techniques of program correctness are capable of recogniz-

ing that a generated program is correct, they are unable to generate a correct program

from a specification. So that despite our understanding of program correctness,

much of the burden of decision making in the program construction process still

rests on the shoulders of the programmer.

To address this shortcoming, we propose to investigate the intimate mechanisms

that define each decision in the stepwise derivation of a program from a specification.

For each decision, we wish to identify what aspects can be automated (or at least

0167.6423/92/$05.00 0 1992-Elsevier Science Publishers B.V. All rights reserved

68 E Mili, A. Mili

made constructive) and what aspects are left to the programmer’s discretion. Also,

for the latter aspects, we are interested in determining the bounds within which the

programmer may make her decisions.

The mathematical tool that we have selected to carry out our study is the algebra

of relations. Rather than elaborate on the merits of this tool, we will present two

simple arguments in support of our choice:

l We represent program specifications by homogeneous relations, i.e. relations

from some set S to itself. At least in principle, the hypothesis of homogeneity

causes no loss of generality: a relation from S to T can always be considered

as a homogeneous relation on SU T.

l A number of concepts (operations, properties, . . .) that we have encountered

in our study, and that we will discuss in this paper, can be formulated quite

naturally and crisply in the algebra of relations. Yet we do not know how to

represent them, let alone discover them, had we used another notation.

In Section 2 we present the background of our study, by giving some elements

of mathematics, then presenting our view of program specification, program correct-

ness, and program construction; also, we show at the end of that section why

program construction cannot be carried out systematically, and motivate the need

for a heuristic approach. Because of its complexity, and its interest, we concentrate

on the construction of while loops; this is the subject of Section 3. After introducing

some additional mathematical background, we discuss in this section how to derive

a while loop from a deterministic specification (i.e. a function), then from a

non-deterministic specification.

Just as it is common, in problem-solving, to generalize a problem before solving

it, we may have to generalize a specification before applying the iteration rule to

it. Section 4 presents a set of generalization heuristics, for this very purpose. Section

5 discusses the completeness of the network of heuristics, and establishes in fact

that it is complete, i.e. whenever a specification has a correct program under the

form of a while loop, this network can deliver it. In Section 6 we show the application

of the heuristics proposed on a non-trivial (although not too complex) example. In

particular, the example we present uses non trivial data structures (such as trees,

stacks,. . .); the main thesis that we submit in this section is that the heuristics that

we present can be used at an arbitrary level of detail, provided the appropriate

abstractions are defined. In Section 7 we summarize our results and impressions,

and discuss the relationship of our work to others.

2. Program construction by relational manipulation

2.1. Elements of discrete mathematics

Some mathematical background is required for the purposes of this paper. For

the sake of readability, we introduce this background little by little, as it is needed;

Heuristics for constructing while loops 69

hence in this subsection we content ourselves with presenting the notions that are

needed for Section 2.

A relation on set S is a subset of S x S. Constant relations on set S include: the

universal relation, L = S x S, the identity relation I = {(s, s) 1 s E S} and the empty

relation @ = { }. If A is a subset of S, we let Z(A) be the relation defined by:

Z(A)={(~,.S)[SEA}.

The domain of a relation R is denoted by dam(R), and the range of relation R

is denoted by rng(R). A relation whose domain is S is said to be total. A relation

whose range is S is said to be surjective. The image set of element s by relation R is:

s.R={s’I(s, S’)E R}.

The product of relations R and Q is denoted by R 0 Q, or for the sake of compactness,

RQ. The transitive closure of relation R is denoted by R+, and the reflexive transitive

closure by R*. If T is the transitive closure of R, we say that R is a transitive root

of T. Given a relation R and a subset A of S, we define the prerestriction of R to

A to be the relation denoted by A1R and defined by Z(A)0 R. The postrestriction is

defined similarly.

A relation R is said to be more-defined than relation Q if and only if

dam(Q) E dam(R),

Vs~dom(Q),s.Rrs.Q.

Intuitively speaking, a relation R is more-defined than a relation Q if and only if

it carries more input output information: R knows about more inputs than Q, since

it has a larger domain; for inputs about which both know, R is more accurate in

its assignment of outputs to inputs.

A relation R is said to be range identical if and only if:

Vs E rng(R), s.R = {s}.

In other words, a relation R is range identical if and only if for all s in rng(R),

the pair (s, s) is in R, and no other pair (s, s’) for s # s’ is in R. This can also be

expressed by the equality

Z(rng(R))oR = Z(rng(R)).

For example, the relation

((6, O), (5, I), (4, O), (3, I), (2, O), (I, I), (O,O)l

is range identical, whereas the relations

((6, O), (5, l), (4, f’), (3, I), (2, O), (1, I), (1, O), (0, O)),

((6, O), (5, I), (4, O), (3, I), (2, O), (1,1)1

are not, because Z(rng(R))o R is larger than Z(rng(R)) in the first case, smaller in
the second case.

70 F. Mili. A. Mili

2.2. Program specijication, program correctness

We consider the following Pascal-like variable declarations:

x: integer;

y: real;

given such a declaration, we define a state to be a pair (x, y) such that x is of type

integer and y is of type real; for a given state, say s, we let x(s) and y(s) denote

the x-component and y-component of state s. The set of all the states, for all possible

values of x(s) and y(s) is called a space.

We have defined a specification when we have given: a space S; and a relation

R on S.

A program P on space S defines a function on S, made up of the set of (initial

state, final state) pairs that it defines [18,23]. This function we denote by [PI. A

program P on space S is said to be correct with respect to specification R on S if

and only if [P] is more-defined than R. This definition is identical to traditional

definitions of total correctness [191.

2.3. Program construction by relational decomposition

A specification is a relation; hence the construction of a program from a

specification proceeds by a stepwise transformation of complex relations into more

tractable relations. We articulate this process as follows:

construct(R): If R is simple then

find an assignment statement correct with respect to R

else

transform R into R,, RZ, . . . , R,

apply procedure construct to R,, R2,. . . , R,.

2.4. Construction rules

The question that the procedure given above raises immediately is: How do we

transform a given specification R into specifications R, , RZ, . . . , R,, and indeed

what relationship must there be between the original specification and the derived

specifications. We have identified two kinds of transformations.

l Decomposition transformations, which map a given specification into one or

more simpler (in some sense) specifications; these transformations rewrite

specification R as a relational expression (using relational operations) involving

Rl,Rz,..., R,. The link between the original expression and the derived

relational expression is one of equality.

l The generalization, which maps a given specification into a more-defined (intui-

tively: more general) specification.

We discuss below the types of rules that govern these transformations.

Heuristics for constructing while loops 71

Decomposition rules

We have identified three such rules, which correspond to three relational operators,

and (not incidentally) to three Pascal constructs.

Sequence Rule. Given a relation R, find R, and R2 such that

R = R,o R2 A rng(R,) G dom(R2).

Proposition. Zf p, is correct with respect to R, and p2 is correct with respect to R2 then

begin p, ; p2 end

is correct with respect to R.

Alternation Rule. Given a relation R, find relations R, and R2 such that

R=RluR2 A dom(Rl)ndom(R2)=Q.

Proposition. Let t be dejned by t(s) = s E dom(R,). Zf p, is correct with respect to R,

and p2 is correct with respect to R, then

if t then p, else pz

is correct with respect to R.

Iteration Rule (original version due to Mills et al. [23]). Given a relation R which

is total and range identical, find a relation B such that Bi is a well-founded ordering,

and such that

R=B*oZ(rng(R)) A dom(B)=dom(R)-rng(R).

Proposition. Let t be defined by t(s) = s E dom(B). Zf b is correct with respect to B then

while t do b

is correct with respect to R. Zf R is not total or is not range identical, then there exists

no relation B which is a transitive root of a well-founded ordering and such that

R=B*oZ(rng(R)) A dom(B)=dom(R)-rng(R).

The generalization rule

This rule is the programmer’s version of the well-known problem solving pattern

of generalization [171.

12 E Mili, A. M/i

Generalization Rule. Given a relation R, find a relation R’ that is more-defined

than R.

Proposition. If p is correct with respect to R’ then p is correct with respect to R.

2.5. Program construction heuristics

Program construction is a creative activity; hence giving the rules that govern its

steps is hardly of any value to the programmer in taking correct steps; rather it is

only useful in checking steps after they have been taken. Hence, we need to propose

heuristics, in the form of constructive procedures, that help the programmer make

her design decisions in a systematic fashion.

Naturally, we have focused our attention on the iteration rule, and have derived

heuristics that are instances of this rule. Now we have found it common that a given

specification admits a solution under the form of a while loop, yet cannot be

processed by the given heuristics; recognizing that for such specifications the

generalization rule must be applied before the iteration heuristics, we have derived

several heuristics which are instances of the generalization rule.

For the sake of readability, we define some notational conventions that we use

uniformly throughout this paper: The iteration heuristics will be denoted by capital

T, with indices; the generalization heuristics will be denoted by capital G, with

indices. Specifications of loop bodies will be denoted by capital B, possibly indexed;

specifications of while statements will be denoted by capital W, possibly indexed.

3. Heuristics for iteration

We consider the iteration rule again:

Given a relation W which is total and range identical, find a relation B such

that B+ is a well-founded ordering, and that

W = B*ol(rng(W)) A dam(B) = dom(W) - rng(W).

The question that we wish to address in this section is: how do we derive B from

W? We will discuss this matter in the case when specification W is deterministic,

then the case when it is not. First, we give some elements of mathematics.

3.1. Nuclei and kernels

The nucleus of relation R is the relation denoted by v(R) and defined by:

v(R) = Rd. The nucleus of relation R contains all the pairs (s, s’) such that s and

s’ share a common image by R.

Heuristics for constructing while loops 73

The kernel of relation R is the relation denoted by K(R) and defined by K(R) =

{(s, s’) 10 f s’.R s s.R}. A possible interpretation we could give of this operation is

that K(R) is the least defined solution (in X), when it exists, of the system of

equations:

XR=R,

Hence K(R) is the weakest prespeczjication of R by itself, in the sense of Hoare and

He [13].

A relation R is said to be regular if and only if R = Rl?R. This notion is known

to Riguet [26] under the name difonctionelle and to Berghammer [7] under the

derived name difunktional. Its pertinence to programming is highlighted in [15],

where a number of sufficient conditions for regularity are given. For the purposes

of this paper, it suffices to note two details: all specifications we will be using in

this paper are regular; when a specification is regular, its kernel is identical to its

nucleus.

3.2. A heuristic for deterministic speci$cations

Given a relation W which is total, deterministic and range identical, we seek a

systematic way to decompose it by the iteration rule. The heuristic given below

proposes a solution, i.e., heuristic Tl extracts a loop body specification from the

loop specification.

Heuristic Tl. Given a relation W which is total, deterministic and range identical,

choose a well-founded ordering GT such that

I(S-rng(W))o WZ GT,

then pose

B=(I(S-rng(W))ov(W))nGT

Three comments are in order about this heuristic:

l First, it is rather restrictive, since it only applies to specifications that are total,

deterministic, and range identical.

l Second, perhaps consequently, it is very imperative in determining the proposed

solution; except for the choice of GT, the solution proposed for B is explicitly

constructed in terms of W. As the example below illustrates, the choice of the

well-founded ordering GT can hardly be considered arbitrary; rather it is itself

very restricted by the condition

I(S-rng(W))o Ws GT,

hence adding to the imperative, constructive nature of this heuristic.

74 h Mili, A. Mili

l Third, there always exists a well-founded relation GT that satisfies the require-

ments of this heuristic: GT, = I(S - rng(W))o W. It suffices to observe that the

product of this relation by itself is the empty relation, hence: this relation is

vacuously transitive, and has no infinite decreasing sequences (its longest chain

is of length one). We may, in practice, want to choose larger (with respect to

inclusion) solutions for GT, so as to get smaller steps for the loop body.

Example. Let S be the space defined by the following declarations:

Q: array [l..n] of real;

i: l..n + 1;

x: real

and let W be the specification defined as:

W= (s,s’) u(s’)=a(s)~i(s’)=n+1~x(s’)=X(s)+ i
1 I

a(s)[k] .
k=i(s) I

W is total (no restriction on s), deterministic (all of a(~‘), i(d) and x(s’) are

specified), and range identical. We briefly check the latter condition.

mg(W) = {s 1 i(s) = n + l}.

I(w(W))o w

= (s,s’) i(s)=n+lAu(s’)=a(s)Ai(s’)=n+l
1 I

A x(d) = x(s)+ i a(s)[k]
k=i(y) I

={(~,s’))i(s)=n+l A u(s’) = u(s) A i(S’) = i(s) A x(s’) =x(s)}

= I(rng(W)).

Application of Tl yields:

I(S-rng(W))o W

= i(s) # n f 1 A a(s’) = u(s) A i(s’) = n + 1

A X(S’) =x(s)+ ,=?,, a(s)[kl 1
= (s,s’) i(s)<n+lAu(s’)=u(s)~i(s’)=n+l

(I

AX(S’)=X(S)+ i a(s)[k]
k=i(s) I

AX(S’)=X(S)+ c U(S)[k]
k=i(c) 1.

Heuristics for constructing while loops 75

We must select a well-founded ordering GT that is a superset of the above relation.

To take a superset, it suffices to select a subset of the conjuncts defining this relation.

Among the four conjuncts, the only one that defines a well-founded ordering is:

i(s) < i(s’). Hence, we must include it in GT. We choose

GT = {(s, s’) 1 i(s) < i(d)}.

Whence

B= (s,s’) i(s)<n+l~a(s)=a(s’)~x(s)+ i a(s)[k]
1 I k=i(5)

=x(s))+ i a(s’)[k] A i(s) < i(s’) .
k=i(s’) I

The work of heuristic Tl is finished here, when B is delivered. For the sake of

illustration, we analyse the loop body specification that it proposes. The loop body

is only applicable if i(s) < n + 1; when such is the case, the loop body must

l preserve array a,

l increase index i,

l preserve the expression x(s)+C~,~(~) u(s)[k].

If it is decided that index i increases by I at each iteration, then:

l we do not modify a (to preserve a),

l we perform i := i + 1 (to increase i),

l we perform x := x + a[i] (to preserve x(s)+CL,,, a(s)[kl).

This yields the following while statement

while i < n + 1 do

begin
i := i-t 1 {increase i by 1);

x := x + a[i] preserves x(s) +

end.

This program is correct with respect to W. q

Remark. Notice that in this heuristic, we can replace the clause deterministic by the

clause regular, without affecting the validity of the results. Indeed we have found

that all the results we have used in [21] to get this heuristic hold for regular relations.

Unfortunately, we have found that any regular relation that is range identical is

deterministic. Hence replacing the clause deterministic by the clause regular would

not make our heuristic any more general. I7

16 F. Mili, A. Mili

3.3. A heuristic for non-deterministic specifications

Heuristic Tl is only applicable to deterministic specifications; because one is

often faced with non-deterministic specifications (where e.g. not all final values of

variables are specified), we must find means to handle non-deterministic

specifications. We present heuristic T2, for this purpose. First, we give some results

that help establish the validity of this heuristic.

A relation W is said to be range inclusive if and only if for all s in rng(W),

(s, s) E W We admit without proof that a relation W is range inclusive if and only

if Wo(Wn I) = W.

Lemma (Heuristic T2). Let W be a total relation which is range inclusive. Then

K(W)oZ(rng(W))_c W.

Proof. The definition of the range inclusive property provides that if W is range

inclusive then Z(rng(W)) E W. We compute K(W)oI(rng(W)), making use of this

identity.

K(W)~Z(rng(W))={(s,s’)~0#s’.W~s.W~(s’,s’)EI(rng(W))}

by definition of K(), and of Z(rng(W))

={(s,s’)(0#s’.wcs.wA(s’,s’)E W}

by hypothesis, and definition of range inclusive

={(S,S’))0#s’.WES.WAS’ES’.W}

by definition of image sets

~{(S,S’)~S’ES.W}

logical consequence of: s’. W C s. W A s’ E s’. W.

=w by definition. cl

Using this lemma, we establish the following theorem.

Theorem (Heuristic T2). Let W be a relation on S, which is total and range inclusive,

and such that K(W)o Z(rng(W)) is total and let GTbe a well-founded ordering relation

such that

Z(S-rng(W))o WE GT

Then

v=(Z(S-rng(W))~K(W)nGT)~Z(rng(W))uZ(rng(W))

is more-dejned than W.

Heuristics for consfructing while loops 77

Proof. In order to show that V is more-defined than W, and because W is total,

we must show:

(i) dam (V) = S

(ii) Vs W.

Proof of (i).

by the formula of V

by the identity (R n R’)oZ(A) = RoZ(A) n R’oZ(A).

2(Z(S-rmg(W))°K(W)oZ(r?lg(W)))

n (Z(S- mg(W))o WoZ(rng(W))) u Z(mg(W))

by construction of GT

= Z(S-rng(W))“K(W)OZ(rng(w))U I(??& w)).

To justify this last step, we observe that

K(W)“z(r&W))G w= w”z(rng(w)),

therefore, by prerestriction,

hence the intersection of these two terms equals the former. We focus now on the

domain of V.

dam(V) 2 dom(Z(S- rng(W))OK(W)oZ(mg(W))) u mg(W)

domain of a union on the equation above,

and because dom(Z(A)) = A

= (S - mg(W)) u mg(W)

dom(Z(A)0 R) = A n dam(R), and due to the hypothesis,

dom(K(W)oZ(mg(W)) = S

=s by set-theoretic identity.

78 F. Mili, A. Mili

Proofof (ii).

V=(Z(S-rng(W))~~(W)nGT)~Z(rng(W))uZ(rng(W))

by definition

c (Z(S- mg(W))Ofc(W))oZ(mg(W))u Z(mg(W))

by the identity R n R’ c R, and the monotony of 0 and u

= Z(S-rng(W))ofc(W)oZ(rng(W)u Z(rng(W))

by associativity

cZ(S-rng(W))~WuZ(rng(W))

by the lemma above

CW

since both terms are subsets of W: the first by its very

construction; the second by hypothesis

(W is range inclusive). 0

The interest of this theorem is the following: because V is more-defined than W,
we can substitute the resolution of W by the resolution of V; on the other hand,

because V can be written as

(Z(S-rng(W))~K(W)nGT)~Z(rng(W))uZ(rng(W))

then

B=Z(S-rng(W))oK(W)nGT

is a possible solution of the equation

V=B+~Z(mg(W))uZ(rng(W))

Indeed, we have, by substitution,

V = BoZ(rng(W)) u Z(rng(W)).

Also, because B is transitive (intersection of two transitive relations), it equals its

own transitive closure. Hence B can be obtained from V by the iteration rule, while

V can be obtained from W by the generalization rule.

Remark. Strictly speaking, the derivation of B from V cannot be considered an

instance of the iteration rule, unless we prove that V verifies the conditions of this

rule, namely:

(i) dam (V) = S,
(ii) Z(rng(V))~V=Z(mg(V)).

The first property is established in the proof of the theorem above; the second

condition can be checked by proving rng(V) = rng(W), then, Z(rng(W))o V =

Z(rng(W)). 0

Heuristics for constructing while loops 79

We now give heuristic T2, which handles non-deterministic specifications.

Heuristic T2. Given a relation W on S, which is total, range inclusive, and such

that K(W)o Z(mg(W)) is total, choose a well-founded ordering GT such that

Z(S-mg(W))o WC GT,

then pose

B=Z(S-mg(W))oK(W)nGT.

This heuristic, like Tl, is quite imperative; it gives the solution B as an explicit

expression of specification W and the well-founded ordering GT. Also, specification

GT is itself subject to such a restrictive condition that in practice there is little

latitude in making this choice. Not surprisingly, heuristic T2 is a generalization of

heuristic Tl: if we apply T2 to a deterministic, total relation W which is range

identical, we find the same result as if we applied Tl. We give here a brief argument

to this effect: Because W is range identical, it is range inclusive. Because W is

deterministic, K (W) = v(W). Because W is range identical, W = u(W)o Z(mg(W)).

Because W is total, so is V(W)o Z(mg(W)). Hence W satisfies all the conditions

of T2. Because K (W) = v(W), the proposed solution B is identical in both heuristics.

Before we illustrate this heuristic with an example, we mention an important detail

about it.

Remark. The solution B proposed in this heuristic is not a decomposition of W by

the iteration rule; rather it is a decomposition of V, where V is more-defined than

W. Hence strictly speaking, heuristic T2 is not an instance of the iteration rule, but

a combined instance of the generalization followed by the iteration rule. Hence it

is by abuse of convention that we consider T2 to be an instance of the iteration rule.

Example. We let S be the space defined by the following variable declarations,

a: array [l..n] of real;

i: l..n+l;

x: real;

f: boolean,

and we let W be the following specification of a search routine,

W={(.s,.s’)/i(s’)=n+l ~f(s’)=(f(s)v(X(S)Ea(s)[i(s)..n]))}.

Clearly, W is total. Note that it is not deterministic (x(s’) and a(s’) are not specified)

hence we have no temptation to apply Tl. We check whether it is range inclusive.

80 E Mili, A. Mili

To do so, we compute

Wo(Wn I)

= {(s, s’)\ i(d) = n+1 Af(s’)=(f() (() svxsEas Is..n ()[‘() 1)))

o{(s, s’)j i(s) = n + 1 Af(s) = (f(s) v (x(s) E a(s)[i(s)..n])) A s’= s)

by definition

={(S,S’)Ii(S’)=n+lAf(S’)=(f(S)v(x(S)Ea(s)[i(s)..n]))}

~{(~,~‘)~i(~)=n+l~s’=s}

if i(s) = n + 1 then a(s)[i(s)..n] is empty,

and (x(s) E a(s)[i(s)..n]) = false,

hence (f(s)=(f(s)v(x(s)~a(s)[i(s)..n])))=true

={(~,~‘)Ii(~‘)=n+lr\f(s’)=(f(s)v(x(s)Ea(s)[i(s)..n]))

A i(d) = n + 1)

by definition of product (in this case, post-restriction)

={(.s,s’)Ii(s’)=n+l Af(s’)=(f(s)v(x(s)Ea(s)[i(s)..n]))}

by logical identity

=w by definition of W.

Hence W is indeed range inclusive. We must check whether K(W)ol(rng(W)) is

total. Relation W is regular, because it can be written as the product of relation

{(S,S’)~~(S’)=~(S)AX(S’)=X(S)A i(S’)=n+l

of = (f(s) v (x(s) E a(s)[i(s)..nl))I,

which is a function, by relation

{(s, s’) I i(s’) = i(s) Af(s’) =f(s)l,

which is an equivalence relation, hence a regular relation.’ Because W is regular,

its kernel is identical to its nucleus. Hence

K(W)OZ(rng(W))

= v(W)oZ(mg(W))

= {(s, s’) I (f(s) v (x(s) E 4s)[i(s)..nl))

= (f(d) v (x(s)) E a(s’)[i(s’)..n])) A i(d) = n+ 1)

={(~,s’)Jf(~‘)=(f(~)v(x(~)Ea(s)[i(s)..n]))h i(s’)=n+l}.

’ We have shown in [15] that the product of a function by a regular relation yields a regular relation,
and that an equivalence relation is regular.

Heuristics for constructing while loops 81

This is clearly a total relation: for any given s, one can always take

As’) = (f(s) v (x(s) E 4s)[i(s)..nl)),

a(d) = a(s), x(d) =x(s), and i(s’) = n + 1.

We now compute I(S - mg(W))o W, then take a superset of it as GT:

Z(S-mg(W))o w

={(S,S’)Ii(S)#n+lAi(s’)=n+lhf(S’)=(f() (() ()[‘().A]))} svxsEas IS

by definition of restriction

={(s,s’)Ii(s)<n+l A i(s’)=n+l ~f(s’)=(f(s)v(x(s)Ea(s)[i(s)..n]))}

because i is declared of type: l..n + 1

={(S,S’))i(S)<i(S’)Ai(S’)=Tl+lAf(S’)=(f() (() ()[‘()..n]))} svxsEas is

because i(s’) = n + 1.

To take a well-founded ordering that is a superset of this relation, we select a

subset of the conjuncts that defines a well-founded ordering. The first conjunct is

adequate.

GT={(s,s’)/i(s)<i(s’)}.

The loop body specification that stems from this choice of GT is:

B=Z(S-rng(W))o~(W)nGT

by heuristic T2

=Z(S-rng(W))oY(W)nGT

by regularity of W

= {(s, s’) (i(s) # n + 1 A (f(s) v (x(s) E a(s)[i(s)..n]))

=(f(s’) v (x(s)) E a(s’)[i(s’)..n])) A i(s) < i(s’)}.

The job of heuristic T2 is finished here, with the delivery of specification B. For

the sake of further illustration, however, we show an example of subsequent develop-

ment of the loop body specification B. This specification prescribes that the loop

body is invoked only if i(s) # n + 1 (i.e. i(s) < n + 1, due to the type of i). When it

is invoked, the loop body must increase index i, while preserving the expression

f(s) v (x(s) E a(s)[i(s)..nl).

Hence, for example, if i is increased by 1, the variable f must be updated by the

statement:

f:=f or (x=a[i]).

82 F. Mili, A. Mili

This yields the following while statement:

while i # n + 1 do

begin
i:= i+1;

f:=f or x=a[i]

end,

which is correct with respect to W. 0

4. Heuristics for generalization

It is common to find a specification that is known to have a solution under the form

while t do b,

and yet does not meet the applicability conditions of heuristics Tl and T2 (which

are rather stringent). An example of such a specification is the relation W defined

on space S = (0, 1,2,3,4,5,6} by,

W= ((6, O), (5, I), (4,0), (3, I), (2,0), (1, I)].

While we know well that this specification can be satisfied by a while loop, namely

while S> 1 do s:= s-2,

we find that we cannot apply heuristic Tl, nor heuristic T2, because W is not even

total (not to mention that it is neither range inclusive, nor, consequently, range

identical).

In such cases, (instances of) the generalization rule must be applied before the

iteration heuristics; this problem-solving step is exactly identical to generalizing

a problem definition before carrying out an inductive argument (see [17], for a

general problem-solving presentation; and [3, 11,251 for a programming oriented

presentation).

The purpose of this section is to present heuristics that, given a specification W

which is known to have a while statement as a solution but does not meet the

conditions of applicability of Tl nor those of T2, will map W into a specification

W’ that meets the conditions of Tl or T2 and is more defined (i.e. more general)

than W. As we mentioned above, these heuristics are instances of the generalization

rule. Before we present them, we give some mathematical background.

4.1. Iterative forms

In investigating properties of relations which have a while loop as a solution, we

have identified four classes of these relations, ordered by inclusion. In this section

we define these four classes, and give some intuitive feel for them; in order to

illustrate these classes, we give two running examples. As a reminder, we restate

Heuristics for constructing while loops 83

that a relation W is said to be range identical if and only if Z(mg(W))o W =
Z(mg(W)). Range identical relations behave like the identity relation on their range;

from a programming standpoint, they can be characterized by the fact that they

admit a decomposition by the iteration rule. A relation W is said to be 4-iterative
if and only if it is total and range identical.

Example (4-iterative property). Let S be the space defined by S = (0, 1,2,3,4,5,6}

and let W be the relation defined by:

W= {(6,0), (5, I), (4,0), (3, I), (2, O), (1, I), (090)).

This relation is 4-iterative for it is total and range identical. We leave it to the reader

to check that it can indeed be written as

W = B*o Z(mg(W)),

for B = {(6,4), (5,3), (4,2), (3, l), (2,O)). Note also that B satisfies the other requir-

ments of the iteration rule.

Let S be the space defined by the following declarations,

a, b, c: natural,

and such that a # 0. We let W be the following relation on S:

W={(s, s’)Iu(s’)=a(s)~ b(s’)=O~c(s’)=c(s)+a(s)b(s)}.

This relation is clearly total; on the other hand, its range is {sl b(s) =0} and its

prerestriction to its range is

Z(rng(W))o W={(~,~‘)(b(s)=O~a(s’)=a(s)r\ b(s’)=b(s)~c(s’)=c(s)}

= Z(mg(W)).

Hence it is 4-iterative. q

We restate that a relation W is said to be range inclusive if and only if I(mg(W)) c
W, and we admit without proof that this condition is equivalent to Wo(Wn I) = W
(the latter condition is usually easier to check). Clearly, if a relation is range identical

then it is range inclusive. A relation is said to be 3-iterative if and only if it is total

and range inclusive.

Example (3-iterative property). Let S be the space defined by S = (0, 1,2,3,4,5,6}

and let W be the relation defined by

W= {(6,0), (5, I), (4,0), (3, I), (2,0), (1, I), (l,O), (0, I), (0,O)I.

This relation is total; on the other hand, it is range inclusive for it contains

{(1, l), (0, 0)}, which is Z(mg(W)). Hence it is 3-iterative.

84 F. Mili, A. Mili

Let S be the space defined by the following declarations,

a, b, c: natural,

and such that a # 0. We let W be the following relation on S:

W={(s, s’)(b(s’)=Or\ c(s’)=c(~)+u(s)b(s)}.

Relation W is clearly total; we check that it is range inclusive:

Wo(Wn1)

= Wol(mg(W))= W.

Hence W is 3-iterative. 0

A relation W is said to be range generative if and only if W and Wo(W n I)
have the same domain. Intuitively speaking, a relation is range generative if and

only if we can reduce its range, by generalization, to make it range inclusive. Clearly,

if a relation is range inclusive then it is range generative. A relation is said to be

2-iterative if and only if it is total and range generative.

Example (2-iterative property). Let S be the space defined by S = (0, 1,2,3,4,5,6}

and let W be the following relation on S:

W= {(6,2), (6, O), (5,3), (5, l), (4,4), (4,0), (3,3), (3, I), (2, O), (1, l), (0,O)).

This relation is total; we check that it is also range generative.

Wo(Wn 1) = WoI(4,4), (3,3), (1, l), (0,0)1

= ((6, O), (5,3), (5, l), (4,4), (4,0), (3,3), (3, l), (2, O), (1, l), (O,O)).

This relation has the same domain as W; hence W is range generative. Because it

is also total, it is 2-iterative.

Let S be the space defined by the following declarations,

a, b, c: natural,

and such that a # 0 and let W be the following relation on S:

W={(s, S’)(C(S’)=C(S)+u(s)b(s)}.

Heuristics for constructing while loops 85

This relation is total. We check whether it is range generative. To do so, we compute,

Wo(IVn1)= W~{(s,s’)~c(s)=c(s)+a(s)b(s)AS’=S}

by definition

= Wo{(s,s’)(b(s)=O/\s’=s}

because a f 0

={(~,~‘)(~(~‘)=~(~)+a(s)b(s)~b(s’)=0}

by postrestriction.

Because this relation has the same domain as W (both are total), W is range

generative.2 Because W is also total, it is 2-iterative. Cl

A relation W is said to be iterative (or l-iterative) if and only if it has the same

domain as

Wo((WnI)uI(S--dom(W))).

Clearly, if a relation is range generative then it is iterative. The postrestriction of

W, by multiplication on the right by W n I, can reduce the domain of W if and

only if there exists s in dom(W) such that for all s’ in the image set of s by W, the

pair (s’, s’) is not in W; the iterative property provides that for those s there must

exist at least one s’ in the image set such that s’@ dom(W). If we may give, before

proving it, the interpretation of this property from a programming standpoint, a

relation W is iterative if and only if it admits a while loop as a correct program.

Note that by contrast with all three properties given above, the property of l-iterative

does not require that W be total.

Example (l-iterative property). Let S be the space defined by S = (0, 1,2,3,4,5,6},

and let W be the following relation on S:

W={(6,4), (6,2), (5,3), (4,2), (I, I), (0,O)).

Note that W is not total, nor does it have to be total in order to be l-iterative. We

compute

Wo((Wn I) u I(S- dom(W))) = W”({(I, I), (0, 0))~ {(2,2), (3,3)1)

= Wo{(3,3), (2,2), (I, I), (0,O))

= {(6,2), (5,3), (4,2), (1, I), (0,O)).

This relation has the same domain as W, although it is different from W. Hence W

is l-iterative. The reader may check that W is not range generative, as the domain

of Wo(Wn I) is (1, 0}, much smaller than the domain of W.

’ Note on this example how the range of relation W’= Wo(Wn I) is generated from relation W;
this justifies the name given to this property.

86 F. Mili, A. Mili

Let S be the space defined by the following variable declarations:

a, b, c: natural,

and such that a # 0. We let W be the following relation on S:

W={(~,~‘)~c(~)>lO~c(~‘)=c(~)+a(s)b(s)}.

Note that this relation is not 2-iterative because it is not total. We check whether

it is l-iterative.

Wo(Wnl)u WQI(S-dam(W))

= W~{(s,s’)~c(s)>10~b(s)=O~~‘=~}u WoZ(S-dam(W))

={(S,S’)~C(S)~~OAC(S’)=C(S)+~(~)~(~)A~(~’)~~OA~(~‘)=O}

u WoI(S-dom(W))

={(s,s’)~c(s)>~OAC(S)+~(~)~(~)>~~A~(~’)=O

Ac(s’)=c(S)+u(.V)b(.Y)}u WoT(S-dam(W))

={(s,s’)~c(s)>~OA~(~‘)=OAC(S’)=C(S)+~(~)~(~)}

v Wo I(S - dom(W)).

This relation is the union of two relations, whose first term has a domain equal to

dom(W) (and equal to {s 1 c(s) > 10)) and whose second term has a domain which

is by construction smaller than the domain of W. Hence the domain of this relation

is exactly equal to the domain of W. Therefore relation W is iterative. 0

Given the definitions of this section, we can now express the purpose of the

generalization heuristics in a more articulate fashion: the purpose of these heuristics

is to raise specifications from the first iterative property to the third or fourth.

4.2. Heuristic Gl: making a specification deterministic

First of all, let us review the applicability conditions of heuristics Tl and T2:

l for Tl:

- W is total,

- W is deterministic,

- W is range identical.

l for T2:

- W is total,

- W is range inclusive,

- k(W)oZ(mg(W)) is total.

We look at the conditions of Tl. We propose below a heuristic which provides the

determinucy property, in case the specification at hand is not deterministic.

Heuristics for constructing while loops 87

Heuristic Cl. Given a total relation W which is range inclusive, pose V=

Z(S - mg(W))o W and find a sub-relation of V, say V’, that has the same domain

as V, and is deterministic. Then take W’= V’u I(mg(W)).

We give without proof the two key properties of this heuristic, namely:

l W’ is more-defined than W,

l W’ is total, deterministic, and range identical.

The heuristic owes its validity to the first premise; and owes its usefulness to the

second premise. We will mention an additional interesting (though not essential)

property of this heuristic: Whenever we submit to Cl a specification W which is

already total, deterministic, and range identical, heuristic Cl will preserve it, i.e.

return W’ = W. This is a pleasant sign of minimality.

Example. Let S be the space defined by the following declarations:

a: array [l..n] of real;

i: l..n + 1;

x: real,

where all the cells of array a are positive, and let W be the specification defined as:

i(s’)=n+lAx(s’)=x(s)+ f
k”,(F)

This specification is clearly total. Because it is not deterministic, we are not tempted

to apply 72 to it. But we will attempt to apply Cl. In order to check whether it is

range inclusive, we compute

Wo(Wnl)

i(s’)=n+lAx(s’)=X(S)+ i a(s)[k]
k=:(s)

i(s)=n+lAx(s)=x(s)+ i a(s)[k]r\s’=s
k-r(s)

i(s’)=n+lAX(S’)=X(S)+ i u(s)[k]r,i(s’)=n+l
k=i($)

i(s’)=n+lAx(s’)=x(s)+ i a(s)[k]
h=!(r)

= w.

Hence W is range inclusive. Let V be the relation defined as

I(S- mg(W))o w

= {(S,S+(S)#~+hi(S’)=H+lAX(\l)=X(S)+ i U(S)[k,}.

k=i(s)

88 E Mili, A. Miii

We take V’ as

v’= (s,s’) i(s)fnClna(s’)=a(s)hi(S’)=~+l
I I

Ax(s’)=x(s)+ i
k=iis)

Whence we get

I\x(s’)=x(s)+ i a(s)[k]
k=i(s)

U{fS, S’)Ii(S)= B-t-1 A U(S’) = a(i(d) =i(S)A X(S’)=X(S)}

i(S)fn+lhQ(S’)=a(s)Ai(s’)=ni-1

A X(d) = x(s)+ i a(s)[q}
k-i(s)

i(S)=FZ+lhff(S’}=a(S)Ai(S’)=~+1

AX(S’)=X(S)+ 5 a(s)[k]
k=i(s)

This relation w’ is total, deterministic, and range identical. q

4.3. Heuristic G2: making a re~u~ion rra~sirive

If we place heuristic Gl upstream of heuristic TI, the conditions that we must
now realize are:

* for Gl:
- W is total,
- W is range inclusive.

* for T2:
- W is total,
- W is range inclusive,
- K(W)5~(r~g(W)) is total.

We focus our attention now on the third condition of heuristic T2, namely that
K(W) 0 I(mg(W)) is total. Rather than to realize this condition, we propose to
reaiize a stronger condition, namely, that K(W)~l(mg(W)) equals W. Because the
tatter is total, so is the former.

Hetrrisfics for constructing while loops 89

Lemma 1 (Heuristic G2). Let Wbe a total, transitive relation which is range inclusive.

Then

K(W)ol(rng(W)) = W.

Proof. We have proven in the lemma to heuristic T2 that if W is range inclusive

then K(W)Q I(rng(W)) c W. It suffices to prove here that if W is transitive then

WC K(W)Ol(f%g(w)).

W=((s,s’)Js’ES.WhS’Emg(W))

paraphrase of (s, s’) E W

c{(s,s’)/s’.W~(s.W).Wns’Erng(W))

by monotony of image sets

={(s, s’)/s’. WCS.{ wo W)AS’E mg(W)}

by identity

c{(s,s’)~s’.Wcs.WAs’Emg(w)}

by transitivity of W.

={(s,s’)/0f;s’.W ~s.wns’Erng(W)}

by totality of W.

= K(w)O~(~~g(w))

by definition of K() and I(). cl

This proposition provides that the third condition of heuristic T2 holds whenever

relation W is range inclusive and transitive. We concentrate on ways to ensure the

transitivity of a relation by generalization.

Lemma 2 (Heuristic G2). Let W be a total relation which is range inclusive. Then

W’= I(S-mg(W))o WuI(mg(W))

is transitive and is more-dejined than W.

Proof. Let I’ be I(mg(W)) and I” be i(S- mg(W)). We compute W’o W’, and

show it to be a subset of W’.

W’Q w’=(IRQ Wul’)~(f”Q WV I’)

by the proposed formula

= f”0 WOI”O W” f”0 WOT’” I’oI”O w, 1’01’

by distributivity

= I”0 WO T’u 1’

since Wa I” and 1’0 I” are empty, and 1’0 I’ = I’

= I”0 w u I’ since u/o I’ = W

= W’ by definition.

90 E MS. A. Mili

To prove that w’ is more-defined than W, it is sufficient to note that they both have

the same domain, and that the former is a subset of the latter. q

From these two lemmas, we derive the following heuristic.

Heuristic G2. Given a total relation W which is range inclusive, take

W’= I(S-rng(W))o Wu I(mg(W)).

The two key properties of this heuristic are:

l W’ is more-defined than W,

l W’ verifies the third condition of heuristic T2.

The first premise provides that G2 is valid; the second provides that G2 is useful.

Example. Let S and W be defined as follows.

S = {O,L, 2),

w= ((0, O), (0, I), (1, O), (1, I), (2,O)).

Then

O.W={O, l}, l.W={O, l}, 2. w = (0).

Hence

and

K(W) = {(o, o), (1, I), (2,2), (0, I), (1, o), (0, 2), (L,2)}

K(W)oZ(rM W)) = ((0, O), (1, I), (1, O), (0, 1)).

thus,

dOm(w) f dOWl(K(W)“I(mg(w))).

We apply heuristic G2 to W. First, we check whether W verifies the conditions of

applicability of heuristic G2.

Totality. Clearly, W is total.

Range inclusiveness. W n I = {(O,O), (1,l)). Hence,

Wo(wn 1) = ((0, O), (0, I), (1, O), (1, I), (2,0))~{(0, O), (1,L)I

= ((0, O), (0, I), (1, O), (1, I), (2,O)I = w.

By G2, we get

W’= ((2, O), (1, I), (t&O)}.

Heuristics for constructing while loops 91

For the sake of illustration, we check that W’ does indeed satisfy the desired

condition (namely, that K(W’)oZ(mg(W’)) is total). First, we compute the kernel

of W’.

0. W’ = {O}, 1. W’=(l), 2. W’= (0).

Hence

K(w’) = ((0, 0)~ (1, I), (2,2), (0~2)~ (2~0)).

Whence we deduce

and

K(W’)“l(%(w’)) = ((0, o), (1, l), (2, o)},

s= dOWl(K(W’)“~(?X&‘(w’)). 0

4.4. Heuristic G3: making a relation range inclusive

If we place heuristic G2 upstream of heuristic T2, and consider that Gl is

upstream of Tl, we now have the following conditions to realize:

l for Gl:

- W is total,
_ W is range inclusive.

l for G2:

- W is total,

- W is range inclusive.

Interestingly, Gl and G2 have the same list of applicability conditions. We focus

our attention on the second element of this list. We have the following lemma.

Lemma (Heuristic G3). Let W be a total relation which is range generative. Then

W’ = Wo (W n I) is more-defined than W. Furthermore, it is total, and range inclusive.

Proof. Because W is range generative, W and W’ have the same domain. By

construction, W is a subset of W’ (as Wn I E I). Hence W’ is more-defined than

W. W’ is total because it has the same domain as W, which is total. To conclude

this proof, we show that W’ is range inclusive. Let s be an element of rng(W’);

then s is an element of rng(Wn I); then (s, s) is an element of (Wn I); then (s, s)

is an element of Wo (W n I) = w’. 0

Whence the following heuristic.

Heuristic G3. Given a total relation W which is range generative, take

W’= Wo(Wn I).

92 E Mili, A. Mili

The two main features of this heuristic are the following:

l W’ is more-defined than W,

l w’ is range inclusive.

The first premise ensures the validity of this heuristic, while the second premise

ensures its usefulness. Furthermore, it is worthwhile to notice that whenever W is

3-iterative, i.e. total and range inclusive, heuristic G3 maps it into itself (a pleasant

sign of minimality).

Example. We let W be the following relation on the space S defined by the

declaration

a, b, c: natural,

W={(s,s’)Ia(s’)=a(s)+b(s)}.

Relation W is clearly total; it is easy to see that it is not range inclusive, as

a(s’) = a(s) + b(s) is not a logical consequence of s’ = s. In order to apply heuristic

G3, we check that it is range generative. To this effect, we compute

Wo(WnZ)

={(s,s’)~a(s’)=a(s)+b(s)}~{(s,s’))a(s’)=a(s)+b(s)~s’=s}

={(s,s’)Ia(s’)=a(s)+b(s)~a(s’)=a(s’)+b(s’)}

={(s,s’)(a(s’)=a(s)+b(s)~b(s’)=O}.

Hence,

dom(Wo(WnZ))=S=dom(W).

Hence W is in second iterative form. We compute

W’={(s,s’)Ia(s’)=a(s)+b(s)~b(s’)=O}.

We leave it to the reader to check that W’ is range inclusive. cl

4.5. Heuristic G4: making a specijication range generative

If we place heuristic G3 upstream of heuristics Gl and G2, we now get the

following conditions.

l for G3:

- W is total,

- W is range generative.

We focus our attention on the first condition of this heuristic. We have the following

lemma.

Lemma (Heuristic G4). Let W be a relation on S which is iterative. Then

W’= WuZ(S-dom(W))oL

is more-de$ned than W. Furthermore, W’ is total and range generative.

Heuristics for constructing while loops 93

Proof. Relation W’ has a larger domain than relation W; furthermore, on the

domain of W, s. w’= s. W. Hence W’ is more-defined than W. Clearly, W’ is total.

We prove below that it is range generative; because the case dom(W) = S is trivial,

we assume that dom(W) is a proper subset of S. To prove that W’ is range generative,

we compute

W’o(W’n I)

=(WuZ(S-dom(W))oL)o((WuZ(S-dom(W))oL)nZ)

by definition of W’

=(WuZ(S-dom(W))~L)~(WnIu(Z(S-dom(W))oL)nZ)

distributing n over u

=(WuZ(S-dom(W))oL)o(WnZuZ(S-dam(W)))

because Z(S-dom(W))oLnZ=Z(S-dam(W))

= Wo(WnZ)u WoZ(S-dom(W))uMo(WnZ)

u MoZ(S-dom(W))

distributing the union over the relative product, and letting M be

I(S-dom(W))oL.

Now, we compute (algebraically) the domain of this expression, and we distribute

it over the union. This yields

W’o(W’n I)oL

= Wo(WnZ)oLu WoZ(S-dom(W))oLuMo(WnZ)oL

uMoZ(S-dom(W))oL

by the above development

= Wo(WnI)oLu WoI(S-dom(W))~LuM~(WnI)~L

uZ(S-dom(W))oLoZ(S-dom(W))oL

by the formula of M

= Wo(WnZ)oLu WoZ(S-dom(W))oLuMo(WnZ)oL

u Z(S-dom(W))oL

because Lo I(S- dom(W))o L= L, due to the hypothesis

Z(S-dom(W))#0

= Wo(WnZ)oLu WoZ(S-dom(W))~LuM~(WnZ)~LuMoL

by definition of M, and because L = Lo L

= Wo(Wn I)oLu WoI(S-dom(W))oLu MOL

because W n I c Z, hence the third term is a subset of the fourth.

In order to prove that IV’ is range generative, we must prove that this expression

94 F. Mili. A. Mili

equals L (since w’ is total). We proceed by equivalences;

Wo(Wn I)oLu WoI(S-dom(W))oLu MoL= L

a

Wo(WnI)oLu WoI(S-dom(W))oL=L-MoL

becauseMoLn(Wo(WnI)oLu WoI(S-dom(W))oL)=@,andby

the identity that if A n B = P, then Au B = S is equivalent to A = S - B.

a

Wo(WnI)oLu WoI(S-dom(W))oL= WoL,

by definition of M.

Because this last condition is a hypothesis, we establish the desired conclusion: W’

is range generative. 0

Heuristic G4. Given a relation W which is iterative, take

W’= Wu I(S-dom(W))oL.

The two main features of this heuristic are the following:

l W’ is more-defined than W,

l W’ is total and range generative (if W is in first iterative form).

The first premise ensures the validity of this heuristic (as an instance of the

generalization rule) while the second premise ensures its usefulness (in realizing a

stronger condition). We leave it to the reader to convince himself that if W is total

and in first iterative form then heuristic G4 maps it into itself (a desirable minimality

property). Notice also that this heuristic maps W into the least defined relation W’

that is total and more-defined than W.

Example. We let W be the following relation on space S defined by the declaration

a, b, c: integer

We check whether W is iterative.

={(~,~‘)~b(s)~O~u(s’)=a(s)+b(s)n b(s’)=O}.

Heuristics for constructing while loops 95

Because the domain of this term is already equal to dom(W), we need not even

compute the term (Wo Z(S - dom(W))). We can conclude that W is in first iterative

form. Heuristic G4 maps specification W into:

If we place heuristic G4 upstream of heuristic G3, we now have the condition:

l for G4:

- W is iterative.

We have in effect established, constructively, that any specification that meets this

condition can be processed by the network of heuristics, to produce a solution under

the form of a loop body specification. Any specification that meets this condition

is processed by G4, then G3, then, depending on whether we wish to preserve

non-determinacy (to leave future design options open) or to get rid of it (trade

flexibility for simplicity), we apply the sequence G2/ T2 or the sequence Gl/ Tl.

Note that it is likely (and, by experience, common) that upon exiting from a heuristic,

1
I --I ‘2J t

Fig. 1. The network of generalization/iteration heuristics

96 E M/i. A. Mili

a specification has a stronger property than the property that the heuristic is designed

to realize. Hence it may be useful to consider skipping heuristics, even though the

network shows them in strict sequence. The whole generalization/iteration network

is represented in Fig. 1.

5. Completeness of the network

In the previous section we have derived the condition under which a specification

can be processed by the network of generalization/iteration heuristics; this we call

the applicability condition. On the other hand, we define the feasibility condition,

as the condition under which a specification W admits a solution under the form

of a while statement. By construction, the applicability condition logically implies

the feasibility condition. In order to assess the completeness of our network of

heuristics, we must discuss whether the feasibility condition logically implies the

applicability condition. This is the subject of this section. We have the proposition.

Proposition (Completeness of the Network). If specification W has a solution under
the form

(while t do b),

then W is iterative.

Proof. Let W be a relation that has a solution under the form

(while t do b).

By the proposition of the iteration rule (Section 2), there exists a relation W’ which

is total, range identical, and is more-defined than W. We assume that W is not

iterative, and show that this leads us to a contradiction.

Because the formula

dom(W~(WnI))udom(W~I(S-dom(W)))zdom(W)

is a tautology, the applicability condition can be written as:

dom(W)zdom(W~(WnI))udom(W~I(S-dam(W))).

The negation of this condition can be written as:

3s:s~dom(W)~s~(dom(W~(WnI))udom(W~I(S-dam(W)))).

Because W’ is more-defined than W, we deduce from s E dom(W) that s E dom(W’) A
s. W’ G s. W, by which we replace it.

~3s:s~dom(W’)~~.W’~~.W~s~(dom(W~(WnZ))

udom(WoI(S-dam(W)))).

Heuristics for constructing while loops 97

From s E dom(W’), there exists t such that (s, t) E W’.

+3s,t:(s,t)~ W’AS.W’GS.WAS~(~~~(W~(W~Z))

u dom(WoZ(S-dom(W)))).

From (s, t) E W’ A s. W’ G s. W, we deduce (s, t) E W’ A (s, t) E W.

=Els,r:(s,t)~ W’A(S,~)E W~s@(dom(W~(WnZ))

u dom(WoZ(S-dom(W)))).

Because W’ is range identical, (s, t) E W’ implies t. W’= {t}.

=+gs,t:(s,t)~ W~t.W’={t}~sif(dom(W~(WnZ))

udom(WoZ(S-dom(W)))).

From here on, we proceed by case analysis, on whether t is or is not in dom(W).

Case 1: t E dom(W). Because W’ is more-defined than W, we deduce from

t E dom(W) that t E dom(W’) and t. W’ G t. W; because t. W’ = {t}, we get (t, t) E W.

u dom(WoZ(S-dom(W)))).

Because (t, t) is also an element of Z, we get

=33s,t:(s,t)~ Wr,(t,t)~ WnZhs$(dom(Wo(WnZ))

u dom(WoZ(S - dom(W)))).

From (s, t) E WA (t, t) E W n Z, we deduce by the definition of relative product that

(s,t)~ Wo(WnZ), whence sEdom(Wo(WnZ)).

~3s,t:s~dom(W~(WnZ))r,s~(dom(W~(WnZ))

udom(WoZ(S-dom(W)))).

This is clearly a contradiction.

*false.

Case 2: t G dom(W). We consider again the condition as it was before we have

taken the hypothesis of case 1:

u dom(WoZ(S-dom(W)))).

98 E Mili, A. Mili

From (s, t) E WA t@ dom(W) we deduce (s, t) E WoI(S - dom(W)). Hence s E

dom(WoI(S-dom(W))).

udom(WoI(S-dam(W)))).

This is clearly a contradiction.

*false.

We have assumed that W has a while statement as solution but does not verify

the applicability condition of the network of heuristics, and have found that our

assumption leads to a contradiction. Hence whenever a specification has a solution

as a while statement, it meets the applicability condition. 0

By virtue of this proposition we claim that the network of heuristics that we have

constructed is complete, in the sense that it is capable of handling all the

specifications that admit a decomposition of the desired form.

6. An illustrative example

In this section we illustrate the network of heuristics that we have presented in

this paper on a non trivial example; what is non trivial about the example we have

chosen is its data structures, rather than the complexity of the function it computes.

The point we wish to make in this section is that the mathematics that we have

presented in this paper is applicable, not only to trivial data structures (as the

examples dealt with so far may lead to believe), but also to arbitrarily compound

data structures, provided they are abstracted properly, at a meaningful level.

Before we proceed with the example, we present a mathematical notion that we

need for our developments: the conjugate kernel, an operator that performs a division

of a relation by another.

6.1. Conjugate kernels

The conjugate kernel (see [9] for more detail) of relation R by relation Q is the

relation denoted by K(R, Q) and defined by:

K(& Q)={(~,d)(@fd.Q=s.R}.

It stems from this definition that the kernel of a relation R (see Section 3.1) is

nothing but the conjugate kernel of R by itself.

Heuristics for constructing while loops 99

The weakest prespecifcation problem consists of determining the least defined

relation X that satisfies simultaneously the following two equations:

XQ=R,

The first equation expresses that the pair (X, Q) defines a sequence decomposition

of relation R, and the second equation expresses that the range of X is a subset of

the domain of Q.

We have found in [9] that whenever it is feasible, the conjugate kernel of R and

Q is an optima1 solution to the above problem. Also, we have found that whenever

Q is deterministic and has a range that is larger than the range of R, the conjugate

kernel of R by Q is nothing but Re. We will use conjugate kernels for a stepwise

development of sequential programs: given specification R, we divide it little by

little using the conjugate kernel, until we find a relation which is simple enough to

be implemented without further decomposition; or until we obtain a relation which

is reflexive,3 and which can be implemented by an empty program.

6.2. Counting the nodes of a tree

We consider the specification of a while loop to count the number of nodes in a

binary tree; several proofs of correctness of this problem are studied by [19]. The

space that we define for this specification is,

tree: treetype;

stack: stack-of-tree-type;

number: integer,

where we assume further that the stack does not contain empty trees. We let W be

the following relation

W= (s, s’) number(s’) = number(s)+
1 I

C nodes(t) ,
r~srack(s) I

where nodes(t) is the number of nodes of tree t. One may wonder why the specification

of W is so defined, when the purpose of this program is to compute the number of

nodes in a tree. This has to do with the difference between the function of an

initialized while loop and the function of an uninitialized while loop. An initialized

while loop would place the tree in the stack, then invoke the while loop to compute

the number of nodes in the single tree which is in the stack. But the while loop

would in fact compute the number of nodes of any number of trees one may have

pushed on the stack, because it iterates as long as the stack is not empty.

3 It suffices that the resulting quotient be reflexive on its domain, rather than on all of S

100 F. Mili, A. Mili

First, we check the iterative properties of this relation. Because it is total, we look

for at least the range generative property; because this relation is surjective

(I(mg()) = I) but not reflexive (I P W), we look for at most the range generative

property. We compute,

Wo(Wnl)

= (s, s’) number(s’) = number(s) +
{ I

1 nodes(t)
tGsrock(s) I

0 (s, s’) number(s) = number(s)+
i I

C nodes(t) A s’ = s
rtsrock(s) I

= (s, s’) number(s’) = number(s) +
1 I

C nodes(t)
restack(s) I

o (s’, s’) c

1 I
nodes(t) = 0

r~sfnck(s’) I

by arithmetic

= (s, s’) number(s’) = number(s) +
{ I

1 nodes(t)
rsstack(s)

A empty(stack(s’))
1

because the trees in the stack cannot be empty.

This relation has the same domain as W, they are both total. Hence W is range

generative. Because it is total, it is a-iterative. We apply heuristic G3, yielding:

W’ = (s, s’) number(s’) = number(s) +
1 I

C nodes(t)
restack(s)

A empty(stack(s’))
I

.

This specification is, by construction, total and range inclusive. We may apply

the sequence Cl/ Tl or the sequence G2/ T2; for the purposes of this example, we

favor simplicity over non-determinacy. Hence we select the former course of action.

Application of Cl proceeds as follows:

V=I(S-rng(W’))o W’

= (s, s’) lempty(stack(s))
1 I

A number(s’) = number(s) + 1 nodes(t) A empty(stack(s’)) .
resrack(s) I

We must take a subset of V, say V’, such that V’ is deterministic and has the same

domain as V; to take a subset of V it suffices to add conjuncts to the description

Heuristics for constructing while loops 101

of V, so as to determine tree(s’); for the sake of uniformity with the second component

of W”, which is Z(mg(W)), we take tree(s) = tree(s). This yields,

w”= (s, s’) tree(s’) = tree(s)
1 I

A number(s’) = number(s) + 1 nodes(t) A empty(stack(s’)) .

resrack(s)

Specification W” is, by construction, deterministic, total, and range identical. We

apply heuristic Tl, yielding the following development. First, we need to chose a

well-founded ordering that contains Z(S - mg(W”)) 0 w”. We compute,

Z(S- mg(Wn)). W”

= lempty(stack(s)) A tree(s’) = tree(s)

A number(s’) = number(s) + 1 nodes(t) A empty(stack(s’))
rtsrack(s)

lempty(stack(s)) A 1 nodes(t) > 0 A tree(d) = tree(s)
resrack(s)

A number(s’) = number(s) + C nodes(t) A empty(stack(s’))
ttsmck(s)

A 1 nodes(t) = 0
rtsrock(s’)

c nodes(t)>O~ C nodes(s’) = 0
rtsrock(s) rtsrock(c’)

c nodes(t) > C
rtstock(s) rtsrork(s’)

This relation, which is well-founded, is a superset of Z(S- mg(W”))o w”; we take

it to be our relation GT. Whence application of heuristic Tl yields the following

loop body specification:

B =

A number(d) + 1 nodes(1) = number(s) + 1 nodes(t)
ttsrack(c’) rssrack(s)

A tree(s’) = tree(s) A C nodes(t) < 1 nodes(t) .

tsstack(s') tisrock(s) >

102 F. Mili, A. Mili

Now we can implement B by a sequence of statements, using the conjugate kernel

operation. First, we rewrite B as follows:

B =
1 I

(s, s’) lempty(stack(s))

A number(s’) + 1 nodes(t) = number(s) + C nodes(t)
rESrack(s’) ft .smck(s)

A tree(s’) = tree(s) A number(d)> number(s)
1

.

In order to satisfy the last conjunct of this relation, we may decide to increase the

variable number by 1; according to [9], the specification that must be satisfied before

number is incremented is K(B, Q), where

Q = {(s, s’) (tree(d) = free s A number(d) = number(s) + 1 ()

A stack(s’) = stack(s)}.

The developments given in [9] provide that, because Q is deterministic, K(B, Q) =

Be. We find,

B’= Be

= (s, s’) tree(d) = tree(s)
1 I

A number(s’) + 1-t C nodes(t) = number(s) + 1 nodes(t)
rtsrock(s’) rfstack(.s)

A number(s’) 3 number(s)
I

.

One way to satisfy this specification is to decrease the number of nodes in the trees

stored in stack by 1. To do so, we “divide” relation B’ by relation Q’, which is

defined as follows:

Q’ = (s, s’) tree(s’) = tree(s) A

i I ris,gk(.) nodes(f) = c
nodes(t) - 1

ttrack(s)

A number(s’) = number(s) .
1

The division yields,

B”= K(B’, Q’)

= (s, s’) Wee(s’) = tree(s)
1 I

A number(s’) + 1 nodes(t) = number(s) + 1 nodes(t)
rirrack(s’) rtsruck(s)

A number(s’) 2 number(s) .
I

Heuristics for constructing while loops 103

This relation is reflexive, hence the division stops here. We can decompose relation

Q’ by the union rule: we rewrite Q’ as the union of Q; u Q;, with

Qi = (s, s’) leaf(top(stack(s))) A tree(s’) = tree(s)
{ I

A c nodes(t) = C nodes(t) - 1 A number(s’) = number(s)
rcsrark(s’) It crack(s) I

and

Q:={WI ileaf(top(slack(t))) A tree(s) = tree(s’)

A c nodes(t) = C nodes(t) - 1 A number(s’) = number(s)
Ii mck(0) rctrackt,,

Relation Q; can be satisfied by poping the top of the stack, while relation Qi can

be satisfied by poping the top of the stack then pushing its non-empty sons. 0

7. Conclusion

7.1. Summary

In this paper we have attempted to analyze the mathematical mechanisms that

underly the construction of iterative algorithms from relational specifications. We

have assumed the data structures to be predefined, and properly axiomatized, and

have concentrated our attention on the stepwise development of the iterative

algorithms that manipulate these data structures.

We have recognized that the development of an (non initialized) iterative program

from a relational specifications proceeds in two steps: a generalization step, during

which the specification is made sufficiently general to undergo the iterative decompo-

sition; a decomposition step, during which a loop body specification is derived from

the specification of the whole while 10op.~ Also, we have proposed systematic

heuristics for carrying out these two steps: each heuristic recognizes specific proper-

ties of the specification at hand, then proposes a solution in the form of a transformed

(generalized or decomposed) specification.

For each one of these heuristics, we have endeavored to analyze the mathematical

processes that come into play in deriving the constructed specification from the

given specification. Specifically, we are interested in analyzing what parameters

appear in the formulation of the constructed specification, and in determining,

among these parameters, which are derived constructively from the given

specification, and which are left to the discretion of the programmer. Also, among

the latter, we are interested in investigating the limits within which these parameters

4 Not incidentally, this two phase process has similarities with the process of generalizing an assertion,
then proving it by induction.

104 F. Mili, A. Mili

can be determined. We have found that the decomposition heuristics, Tl and T2,

derive the loop body specification B from the given specification Win a constructive,

formula based manner, leaving a single parameter to the discretion of the program-

mer. This parameter, a well founded ordering, must be chosen to be a superset of

some relation; our experience shows that this relation typically contains a fairly

visible well founded ordering, whose identification is made all the more easier. As

for the generalization heuristics, we have found three of them to be totally construc-

tive, namely G2, G3 and G4. As for Gl, it leaves some latitude to the programmer;

as the example in Section 6 shows, this latitude can be used to simplify the expression

of the constructed specification.

7.2. Relationship to other works

Our work shares its general objective with a number of other works, including

(among recent references): Gries’ 7’he Science of Programming [ll], Backhouse’s

Program Construction and Verification [I], Hehner’s The Logic of Programming [12],

Jones’ Systematic Software Development [16], Dijkstra and Feijen’s A Method of

Programming [lo], and Morgan’s Constructing Programs from Specifications [24].

Our work can be identified with the following premises:

l Its Focus. This work focuses on algorithmic refinement, rather than data

refinement. The spaces that we consider are not changed throughout the

construction process, and are assumed to be properly axiomatized, at a meaning-

ful level of abstraction.

l Its level of Abstraction. We deal with software components at the program level

of abstraction; hence we only handle traditional programming language con-

structs, and do not deal with such matters as intermodule control.

l Its Mathematical Tool. Specifications are represented by relations and program

construction is performed by stepwise transformation of specifications. A

Tarski-like algebra of relations proves effective in capturing these problems

and solving them.

Our work can be distinguished from works such as Gries’ [1 l] and Dijkstra’s [lo]

on the basis of two features: first, its tool (relations, versus precondition/postcondi-

tion pairs); second, its emphasis (understanding more of the mechanics of program

construction, versus putting our current understanding to work on ever more complex

examples). The second distinguishing feature is more significant than the first.

Because of its emphasis on deriving programs by computation rather than by inspection

the work of Billington et al. [3] is closer to our work, although it differs by its tool

(relational algebra, versus logic); this is a fairly minor difference, we believe. The

work on weakest prespecifications of Hoare and He [13] uses the same kind of

relational algebra as we do, but with different hypotheses (totality of specifications,

hence the use of the inclusion relationship rather than the more-defined relationship).

The work of Backhouse et al. [2] also uses relational algebra, but concentrates on

data refinement rather than algorithmic refinement. The influence of the work of

Heuristics for constructing while loops 105

Mills et al. [l&23] on our work is visible; we consider our work to be based on

several of Mill’s basic premises.

7.3. Perspectives

While it has a number of theoretical properties (such as correctness preservation,

minimality of some heuristics, completeness, . . .) the network of heuristics that we

have presented in this paper poses some difficulties in practice. Most of these

difficulties come from a single feature: All the formulae given in the heuristics are

representation blind, i.e. do not take into account how easy or how difficult it is to

represent the specifications at hand. Improvements of the network in light of this

remark are currently under investigation. Also under investigation is the capability

to add variable and data structures on the fly, as the algorithm is being developed.

In theory, variable introduction poses no difficulty, since it is merely a Cartesian

product operation; integrating it in the construction process, among the heuristics,

and making it as imperative as our current heuristics are, may be more of a challenge.

On a more practical side, many of the computations that are involved in these

heuristics can be automated - and should be, if these results are to be useful to the

practicing programmer. This is currently being investigated. We consider that the

aggregate of heuristics we have presented here, as well as others we have developed,

can conceivably be used as the blueprint for a genuine automatic programmer. This

programmer would be genuinely automatic, in the sense that it generates original

algorithms, rather than to index a library of existing algorithms or algorithm patterns.

Acknowledgements

This research results from research and teaching we have carried out recently at

various institutions, including: Lava1 University, the University of Tunis, Oakland

University, University of Klagenfurt, University of Queensland. We are grateful to

these institutions for the opportunity. We are also grateful to Dr Jules Desharnais,

from Lava1 University, for his continuous feedback and insights.

References

[I] R.C. Backhouse, Program Construction and Verijication (Prentice-Hall, Englewood Cliffs, NJ, 1986).

[2] R. Backhouse, P. De Bruin, G. Malcolm, E. Voermans and J. Van der Woude, A relational theory

of datatype, Workshop on Constructive Algorithms: the Role of Relations in Program Development,

Hollum-Ameland, Netherlands, September 1990.

[3] D. Billington, D.E. Abel, T.A. Chorvat, R.G. Dromey, D.D. Grant and F. Suraweera. Program
Derivation: A Clar$cation of Some Issues, Programming Methodology Research Group, Griffith

University, Brisbane, Australia, 1989.

[4] J.W. de Bakker and D. Scott, A theory of programs, in: J. W. de Bakker, 25 Jaar Semantiek, Liber

Amicorum (CWI, Amsterdam, 1989) l-30.

106

[51

161

[71

[81

[91

[I41
[I51

[I61

[I71
[I81

[I91
1201

[211

[221

[231

A. Mili, J. Desharnais and F. Mili, Programming heuristics for the design of deterministic programs,

Acfa Inform. 24 (1987) 239-276.

F. Mili, J. Desharnais and A. Mili, On Program Consrrucfion: A Heurisric Relafional Approach,

Lava1 University, Quebec, Canada, August 1990.

H.D. Mills, V.R. Basili, J.D. Cannon and R.G. Hamlet, Principles of Compufer Programming: A

Mafhematical Approach (Allyn and Bacon, Boston, MA, 1986).

[24] C. Morgan, Construcfing Programsfiom Specificarions, (Prentice-Hall Intl., London, 1989).

[25] R. Morris and B. Wegbreit, Program verification by Subgoal induction, in: R.T. Yeh, ed., Current

Trends in Programming Methodology, Vol. 2 (Prentice-Hall, New York, 1977).

[26] J. Riguet, Relations binaires, fermetures et correspondances de Galois, Bull. Sot. Math. France 76

(1948) 114-15s.

[27] A. Tarski, On the calculus of relations. J. Symbolic Logic 6(3) (1941) 73-89.

E Mili, A. Mili

J.W. de Bakker and W.P. de Roever, A calculus for recursive program schemes, Automata, Languages

and Programming, Proceedings of a symposium organized by IRIA, Rocquencourt, France, July 1972

(North-Holland, Amsterdam, 1973) 167-196.

R. Berghammer, G. Schmidt and H. Zierer, Symmefric Quotients, Technical Report, TUM-18620,

Technische Universitat Miinchen, 1986.

R. Berghammer, G. Schmidt and H. Zierer, Symmetric quotients and domain constructions, Inform.

Proc. Lert. 33 (1989) 163-168.

J. Desharnais, Abstract Relafional Semantics, PhD dissertation, Dept. of Computer Science, McGill

University, Montreal, Canada, 1989.
J. Desharnais, A. Jaoua, F. Mili, N. Boudriga and A. Mili, The conjugate kernel: an operator for

program construction, Workshop on Consfrucfiue Algorithms: fhe Role of Relations in Program

Development. Hollum-Ameland, Netherlands, September 1990.

E.W. Dijkstra and W.H.J. Feijen, A MefhodofProgramming (Addison-Wesley, Reading, MA, 1988).

D. Cries, The Science qf Programming (Springer, New York, 1981).

E.C.R. Hehner, The Logic of Programming (Prentice-Hall Intl., London, 1986).

C.A.R. Hoare and J. He, The weakest prespecification, Fundam. Inform. 9 (1986), Part I: 51-84,

Part II: 217-252.

C.A.R. Hoare and J. He, The weakest prespecification, Inform. Process. Left. 24 (1987) 127-132.
A. Jaoua, N. Boudriga, J-L. Durieux and A. Mili, Pseudo-invertibility, a measure of regularity of

relations, Theoret. Compuf. Sci. 79(2) (1991) 323-339.

C.B. Jones, Systemafic Software Deue/opmenf Using VDM (Prentice-Hall, Englewood Cliffs, NJ,

1986).

L.C. Larson, Problem Solving Through Problems (Springer, New York, 1983).

R.C. Linger, H.D. Mills and B.I. Witt, Sfrucfured Programming: 7’heory and Practice (Addison-

Wesley, Reading, MA, 1979).

Z. Manna, Marhemafical Theory of Computation (McGraw-Hill, New York, 1974).

A. Mili, A relational approach to the design of deterministic programs, Acfa Inform. 20 (1983)
315-329.

