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Abstract

Let (X t , t ≥ 0) be a random walk on Zd . Let lT (x) =
∫ T

0 δx (Xs)ds be the local time at the state x and
IT =

∑
x∈Zd lT (x)

q the q-fold self-intersection local time (SILT). In [5] Castell proves a large deviations
principle for the SILT of the simple random walk in the critical case q(d − 2) = d . In the supercritical
case q(d − 2) > d , Chen and Mörters obtain in [10] a large deviations principle for the intersection of q
independent random walks, and Asselah obtains in [1] a large deviations principle for the SILT with q = 2.
We extend these results to an α-stable process (i.e. α ∈]0, 2]) in the case where q(d − α) ≥ d .
c© 2010 Elsevier B.V. All rights reserved.
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1. Introduction

Let (X t , t ≥ 0) be a continuous time random walk on Zd with jump rate 1, whose generator
is denoted by A:

A f (x) =
∑
y∈Zd

µ(y − x)( f (y)− f (x))

where µ is the law of the jump, i.e. the law of X̃1 where (X̃n, n ∈ N) is the embedded discrete
time Markov chain of (X t , t ≥ 0). We assume that µ is in the domain of attraction of a stable
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law of index α and that µ is symmetric. More precisely we assume the following assumption:

Assumption 1. • ∃ c1, c2 > 0 such that ∀x, y ∈ Zd ,
c1

|y−x |d+α
≤ µ(y − x) ≤ c2

|y−x |d+α
.

• µ is symmetric.

In this article we are interested in the q-fold self-intersection local time (SILT), i.e.:

IT =
∑
x∈Zd

lT (x)
q with lT (x) =

∫ T

0
δx (Xs)ds.

The study of self-intersection is naturally arising from both probability and physics. In prob-
ability this quantity naturally arises from study of random walk in random scenery for instance.
In physics we can cite the Polaron problem in quantum mechanics and the study of polymers in
statistical mechanic. For the latter, represent a polymer as a chain of N molecules which is con-
sidered as a random walk (Xn, n ∈ [0, N ]). Physicists study measures of the form exp(−β IN )

where IN is the discrete analogous of IT . When β < 0, the measure favors unfolded polymers
with few intersections, whereas when β > 0, the measure favors the self-intersections of the
polymers.

To give an idea of the behaviour of IT to the reader, we focus on the most studied case with
α = 2 and q = 2, which means that we consider the l2-norm of the local times of a random walk
with finite variance. The first idea is to point out the very important role played by the transience
or the recurrence of the walk. Of course, when the walk is recurrent (dimensions 1 and 2), it will
intersect itself much more than when it is transient (dimension d ≥ 3). Hence the SILT will be
much more large. More precisely for d = 1, IT ∼ T 3/2; for d = 2, IT ∼ T log(T ); and for
d ≥ 3, the walk being transient it spends a time of order 1 at each site and IT ∼ T .

The difference between recurrence and transience reappears in the central limit theorem. In
dimensions 1 and 2, we have a convergence to the local time of a Brownian motion (renormalized
for d = 2), while for d = 3 a convergence to a normal law takes place:

• d = 1: IT
T 3/2

(d)
−→ γ1, where γ1 is the intersection local time of a Brownian motion.

• d = 2: IT−E[IT ]
T

(d)
−→ γ ′1, where γ ′1 is the renormalized intersection local time of a Brownian

motion.

• d ≥ 3: IT−E[IT ]√
Var(IT )

(d)
−→ N (0, 1).

Since the law of large numbers and limit laws have been established, it is natural to be
interested in the large deviations of the SILT.

The large deviations are the study of rare events. In this article we wonder how IT can exceed
its mean, i.e. we compute the probability P(IT ≥ bq

T ) where bq
T � E[IT ]. Heuristically, it is

interesting to ask how the walk can realize this kind of atypical event. We propose here a classical
strategy for the walk to realize large deviations of its SILT.

Let us localize the walk on a ball of radius R up to time τ . As µ is in the domain of attraction
of a stable law, there exists (Ut , t ≥ 0) a non-degenerate stable process such that 1

a(t) X t −→ U1,

where a(t) ∼ t
1
α . On the one hand, the walk arrives at the edge of the ball in Rα units of time

and the probability of this localization is about exp(− τ
Rα ). On the other hand, the walk spends

about τ
Rd units of time on each site of the ball, so IT increases to

(
τ

Rd

)q
Rd
= τ q Rd(1−q). We
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want IT = bq
T , which gives τ = bT R

d(q−1)
q . Thus the probability of this localization is about

exp
(
−bT R

d(q−1)
q −α

)
. Maximizing this quantity in R, we obtain three cases:

•
d(q−1)

q − α > 0 ⇔ q(d − α) > d (supercritical case): in this case the optimal choice for R
is 1. A good strategy to realize the large deviations is to spend a time of order bT in a ball of
radius 1, and then: P(IT ≥ bq

T ) ∼ exp(−bT ).
•

d(q−1)
q − α = 0 ⇔ q(d − α) = d (critical case): here the choice of R does not matter.

Every strategy consisting in spending a time of order bT R
d(q−1)

q in a ball of radius R such that
1 ≤ R � (T/bT )

1/α is a good strategy, so P(IT ≥ bq
T ) ∼ exp(−bT ).

•
d(q−1)

q − α < 0⇔ q(d − α) < d (subcritical case): a good strategy is to stay up to time T in

a ball of maximal radius, i.e.
(

T
bT

) q
d(q−1)

, thus P(IT ≥ bq
T ) ∼ exp

(
−bT

(
bT
T

) αq
d(q−1)−1

)
.

The question of large deviations for the SILT of random walk has very studied in recent years.
The knowledge of the case α = 2 is the most progressed. We make here a brief review of these
results.

• For d = 1, Chen and Li obtain a large deviations principle in [6], as they obtain similar results
for Brownian motion.
• For a large deviations principle in the case d = 2, we refer to the work of Bass et al. [2]. They

express the constant in term of the best possible constant in a Gagliardo–Nirenberg inequality.
• In [7], Chen obtains a large deviations principle for all the scales of deviations for d = 3 and

q = 2. For dimensions 2 and 3, the main idea is to first establish the large deviations of q
independent random walk then to use the dyadic decomposition due to Westwater [15].
• In the critical dimension d = 4, a recent paper of Castell [5] states a large deviations principle,

the constant being given in term of the best possible constant in a Gagliardo–Nirenberg
inequality.
• The case of the supercritical dimension d ≥ 5 is treated in two papers. In [10], Chen and

Mörters give a large deviations principle concerning mutual intersection local times of q in-
dependent random walks in infinite time horizon, and Asselah obtains in [1] a large deviations
principle for the SILT of a symmetric random walk. The method used by Castell in [5] and
by Chen and Mörters in [10] have the same idea at their core. Indeed, Chen and Mörters ex-
plicitly compute large moments of the intersection local time and Castell uses Eisenbaum’s
theorem, whose proof is based on the computation of its large moments.

A recent book of Chen [7] summarizes these results. We refer the interested reader to this
work for a precise development of the subject.

In this article, we are interested in the case where α < 2, i.e. the α-stable random walk. Up
to now only subcritical case q(d − α) < d is solved in three papers, [3,8] and [9]. In these three
articles the authors obtain some large deviations principle, and give the constant in terms of the
best possible constant in a Gagliardo–Nirenberg inequality. We briefly present these results.

• The case α > d (note that imply d = 1) is solved by Chen et al. in [8]. They obtain a large
deviations principle for the SILT.
• The case α ≤ d is studied in two articles. Bass, Chen and Rosen explore the specific case

p = 2 and α ∈] 2d
3 , d] in [3]. They show a large deviation principle for the SILT. The idea of

the proof is to first study the intersection of two independent random processes, then to use
the dyadic decomposition due to Westwater.
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• To complete the picture in the case q(d−α) < d, Chen and Rosen [9] obtain a large deviations
principle for intersection of q independent stable processes using Feynman–Kac type large
deviations.

This article contributes to the question of large deviations for the self-intersection local times.
We get a large deviations principle in the critical and supercritical case (i.e. q(d − α) ≥ d). In
this situation the local times of the α-stable process do not exist and we have to consider the SILT
of the random walk itself. We point out that our method allows us to consider the q-fold self-
intersection local times even if q is a real number instead of q is an integer. Moreover, denote by
QT the mutual intersection of q independent random walks (X (i)t , t ≥ 0, 1 ≤ i ≤ q) defined by

QT =
∑
x∈Zd

q∏
i=1

l(i)T (x) =
∫ T

0
· · ·

∫ T

0
I

X (1)s1 =···=X (q)sq
ds1 · · · dsq .

The upper bound of the large deviations principle for the SILT leads to an upper bound of large
deviations for QT by the following inequality:

Q1/q
T =

(∑
x∈Zd

q∏
i=1

l(i)T (x)

)1/q

≤

(
q∏

i=1

∥∥∥l(i)T

∥∥∥
q

)1/q

≤
1
q

q∑
i=1

∥∥∥l(i)T

∥∥∥
q
.

As q(d − α) ≥ d we have α < d, which implies that the walk is transient. So lT (x) ∼ 1
and IT ∼ T but of course IT ≤ T q . Therefore we focus on the probability P(IT ≥ bq

T ) for

T � bT � T
1
q .

Main results

Let G be the Green function of the random walk (X t , t ≥ 0) defined by:

G(x, y) = Ex

[∫
+∞

0
IX t=y dt

]
,∀x, y ∈ Zd .

Remark that as we have α < d, the walk is transient, which gives that the Green function does
exist. We use the following notations:

ρ(q) = sup
g

{
〈g,Gg〉, supp(g) compact, ‖g‖(2q)′ = 1

}
,

κ(q) = inf
f

{
〈 f,−A f 〉

‖ f ‖22q

, ‖ f ‖2 = 1

}
where 〈·, ·〉 is the classical scalar product on l2(Zd) and Gg(x) =

∑
y∈Zd G(x − y)g(y).

Proposition 1. Under Assumption 1, if q(d − α) ≥ d, then κ(q) is a non-degenerate constant
and κ(q) = 1

ρ(q) .

Theorem 2 (Large Deviations). Assume that q(d − α) ≥ d and T � bT � T
1
q . Under

Assumption 1, we have:

lim
T→∞

1
bT

log P
[
IT ≥ bq

T

]
= −

1
ρ(q)

. (1)
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Sketch of the proof

The proof of the lower bound of large deviations (Theorem 10) is classical. Let F be the set of
the probability measures on Zd endowed by the weak topology of probability measures. Donsker
and Varadhan have proved a restricted large deviation principle for lT

T in F with rate function
J (ν) = 〈

√
ν,−A

√
ν〉. Then the lower bound of the large deviations with constant κ(q) follows

from the lower semicontinuity of the function

ν ∈ F 7→ ‖ν‖q = sup
f ;‖ f ‖q′=1

{∑
x∈Zd

ν(x) f (x)

}
.

However the large deviations principle for lT
T being restricted, that is the upper bound is

only true on compact sets, we cannot use it for the upper bound. The method used here for the
upper bound has been recently developed by Castell in [5]. The main idea is to use Eisenbaum’s
theorem to shift the problem from a symmetric Markov process to a Gaussian process, which
is considerably more convenient. Indeed, this theorem relates the law of the local times of a
symmetric Markov process stopped at an exponential time with the square of a Gaussian process,
whose covariance is given by the Green kernel of the stopped Markov process.

First we compare the SILT of the random walk with the SILT of the random walk projected
on the torus, and stopped at an exponential time of parameter λ independent of the walk
(Lemma 6). Then we apply Eisenbaum’s theorem (Theorem 7) to arrive at the Gaussian process

(Zx , x ∈ TR) whose covariance is given by G R,λ(x, y) = Ex

[∫ τ
0 δy(X

(R)
s ) ds

]
(Lemmas 8 and

9). In Lemmas 8 and 9 we work on the Gaussian process (Zx , x ∈ TR) using concentration
inequalities for norms of Gaussian processes. We let space and time going together to infinity to
obtain a first upper bound with a constant −1/ρ1.

We finish the proof of the upper bound by proving in Proposition 11 that ρ1 ≤ ρ(q). The
estimates of the transition probability of an α-stable random walk obtained by Bass and Levin
in [4] are a key of its proof. We assume Assumption 1 because Bass and Levin need it to obtain
these estimates. The upper bound in this assumption is not surprising since the increments of
the walk have moments of order α. However, the lower bound is less natural since it imposes
the walk to jump of arbitrary distance in Zd . Current results concerning estimates of transition
probabilities for α-stable processes require this kind of assumption. We think that this assumption
is not necessary to obtain large deviations of the SILT, and it would be interesting to do without it.

Letting R and T go to infinity together ask the question of scale between λ, R and T . As
we stop the random walk at an exponential time τ of parameter λ, we must control the quantity
1

bT
log P(τ ≥ T ) = λT

bT
. That is why we define λ as a bT

T . Additionally, the Eisenbaum’s theorem
shift the problem from the lq -norm of the local time lT to the l2q,R-norm of the Gaussian process
(Zx , x ∈ TR). Since ‖Z‖22q,R ∼ Rd/q we have the extra constraint bT ≥ Rd/q . Those two

precedent conditions, combined with the condition λRd/q ′
� 1 coming from Proposition 11,

imply that bq
T � T . That is why the proof does not work at the scale of the mean bT ∼ T 1/q .

Next, we have to equalize the lower and upper bound, which is equivalent to prove κ(q) =
1/ρ(q). This is done in Proposition 13 where we use some techniques of Chen and Mörters
from [10].

Finally it remains to prove that our constants κ(q) and ρ(q) are not degenerate, which is
done in Proposition 12. We want to point out that in the supercritical case it is not difficult to
prove that ρ(q) is finite. Indeed, from the results of Le Gall and Rosen [12], we know that
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G(0, x) = O(|x |α−d), which implies that ‖G‖q is finite in the supercritical case q(d − α) > d .
These estimates cannot answer the question when q(d − α) = d. So we had to work on κ(q)
and the underlying Sobolev’s inequalities. The solution comes on the one hand, from a work of
Varopoulos [14] which relates Sobolev’s inequalities and estimates of the probability transition,
and on the other hand, from estimates of the probability transition obtained thanks to the work of
Bass and Levin [4].

This article is organized as follows. Section 2 is devoted to the proofs of two preliminary lem-
mas, giving some information on the Green function. We prove a first upper bound in Section 3
and give in Section 4 the demonstration of the lower bound. Finally in Section 5 we end the proof
of the upper bound by proving that the constant is not degenerate and equalizing the bounds.

2. Around the Green function

In this section we prove some preliminary results about the Green function which will be used
throughout this article.

Set G R,λ the Green function of the walk (X t , t ≥ 0) projected on the torus TR and stopped at
an exponential time τ of parameter λ independent of the random walk. We use the same notation
x for x ∈ TR and for its representant in [0, R[d .

Lemma 3. Under Assumption 1, there exists a constant C such that ∀λ, R > 0,∀x, y ∈ [0, R]d :

G R,λ(x, y) ≤ G(x, y)+
C

λRd . (2)

Proof. Let pR
t (x, y) be the transition probability of X (R)t the random walk X t projected on the

torus TR , hence

G R,λ(x, y) = Ex

[∫ τ

0
IX R

s =yds

]
=

∫
+∞

0
exp(−λt)pR

t (x, y)dt.

By Theorem 1.1 in [4], there exists a constant C such that

∀t ≥ 0,∀x, y ∈ Zd , pt (x, y) ≤ C

(
t−d/α

∧
t

|x − y|d+α

)
.

Using the change of variable z = ξ − x−y
R we have, ∀x, y ∈ [0, R]d :

pR
t (x, y) =

∑
ξ∈Zd

pt (x, y + Rξ)

≤ pt (x, y)+ C
∑
z 6=0

|z|≤ t1/α
R

1
td/α + C

∑
|z|> t1/α

R

t

(R|z|)d+α

≤ pt (x, y)+
C

Rd + C
∑
|z|> t1/α

R

t

(R|z|)d+α
.
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Consequently for L > 1 we have:

G R,λ(x, y) ≤
∫
+∞

0
exp(−λt)pt (x, y)dt

+

∫
+∞

0
exp(−λt)

 C

Rd + C
∑
|z|> t1/α

R

t

(R|z|)d+α

 dt

≤ G(x, y)+
C

λRd + C
∫
+∞

0

t exp(−λt)

Rd+α

∑
|z|> t1/α

R

1
|z|d+α

dt

= G(x, y)+
C

λRd + C
∫ L Rα

0

t exp(−λt)

Rd+α

∑
|z|> t1/α

R

1
|z|d+α

dt

+C
∫
+∞

L Rα

t exp(−λt)

Rd+α

∑
|z|> t1/α

R

1
|z|d+α

dt. (3)

Let us find an upper bound for the first integral in (3). Using the fact that the function x →
1−exp(−x)

x is bounded on R+ we obtain:∫ L Rα

0

t exp(−λt)

Rd+α

∑
|z|> t1/α

R

1
|z|d+α

dt ≤
∑
|z|>0

1
|z|d+α

∫ L Rα

0

t exp(−λt)

Rd+α dt

≤ C
1− exp(−λL Rα)

λ2 Rd+α
≤

C

λRd . (4)

We work now on the second integral in (3):∫
+∞

L Rα

t exp(−λt)

Rd+α

∑
|z|> t1/α

R

1
|z|d+α

dt ≤ C
∫
+∞

L Rα

t exp(−λt)

Rd+α

∑
k> t1/α

R

1

k1+α dt

≤ C
∫
+∞

L Rα

t exp(−λt)

Rd+α

1(
t1/α

R − 1
)α dt

= C
∫
+∞

L Rα

t exp(−λt)

Rd

1(
t1/α − R

)α dt.

Since t ≥ L Rα , we have t1/α
− R ≥ t1/α(1− L−1/α), then:∫

+∞

L Rα

t exp(−λt)

Rd+α

∑
|z|> t1/α

R

1
|z|d+α

dt ≤ C
∫
+∞

L Rα

exp(−λt)

Rd(1− L−1/α)α
dt

≤ C
exp(−LλRα)

λRd(1− L−1/α)α
≤

C

λRd . (5)

Gathering (3)–(5) we obtain:

G R,λ(x, y) ≤ G(x, y)+
C

λRd . �
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Lemma 4. Assume that λ and R depend on T in such a way that λ � 1 and λRd
� 1. Under

Assumption 1, we have:

lim
T→+∞

G R,λ(0, 0) = G(0, 0). (6)

Proof. On the one hand, by Lemma 3 there exists a constant C such that ∀λ, R > 0,
G R,λ(0, 0) ≤ G(0, 0)+ C

λRd . Hence with λRd
� 1 we have:

lim sup
T→+∞

G R,λ(0, 0) ≤ G(0, 0).

On the other hand let S > 0. Using the fact that 1 ≥ pR
t (0, 0) ≥ pt (0, 0) and exp(−λt) ≤ 1 for

t ≥ 0, we deduce:∫ S

0
exp(−λt)pR

t (0, 0) dt =
∫ S

0
pR

t (0, 0)+ (exp(−λt)− 1)pR
t (0, 0)dt

≥

∫ S

0
pt (0, 0) dt −

∫ S

0
(1− exp(−λt)) dt

=

∫ S

0
pt (0, 0) dt +

exp(−λS)− 1+ λS

λ
.

If S is chosen so that S � 1 and 1
λ
(exp(−λS)− 1+ λS)� 1, then we have:

lim inf
T→∞

G R,λ(0, 0) ≥ lim inf
T→∞

∫ S

0
exp(−λt)pR

t (0, 0) dt ≥
∫
∞

0
pt (0, 0) dt := G(0, 0). (7)

Using Taylor series conditions, S � 1 and λS2
� 1 are sufficient. These conditions are

compatible because λ→ 0. So, for a such choice of S, we have:

lim inf
T→∞

G R,λ(0, 0) ≥ G(0, 0). �

3. Upper bound

In this section we obtain a first upper bound for the large deviations of IT which is given in
Theorem 5.

Theorem 5. Assume that q(d − α) ≥ d and that we are under Assumption 1. For all a > 0 we
define the parameter λ of the exponential time τ by λ = a bT

T . Moreover, assume that λ, R and
bT depend on T in such a way that λRd

� 1, bT � Rd/q and log(T ) � bT � T . Then we
define

ρ1(a) = lim sup
T→∞

ρ1(a, R, T ) and ρ1 = lim sup
a→0

ρ1(a),

where ρ1(a, R, T ) := sup
{∑

x,y∈TR
f (x)G R,λ(x, y) f (y) ; f such that ‖ f ‖(2q)′,R = 1

}
, and

we have:

lim sup
T→+∞

1
bT

log P
[
IT ≥ bq

T

]
≤ −

1
ρ1
.

The method of the proof is similar to the one developed by Castell in [5]. We give it for the
sake of completeness.
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3.1. Step 1: comparison with the SILT of the random walk on the torus stopped at an exponential
time

Lemma 6. Let τ be the exponential time defined in Theorem 5. Let l(R)τ (x) =
∫ τ

0 δx (X
(R)
s ) ds

and IR,τ =
∑

x∈TR
(l(R)τ (x))q . Then ∀a, R, T > 0:

P
[
IT ≥ bq

T

]
≤ eabT P

[
IR,τ ≥ bq

T

]
.

Proof. We deduce by convexity that

IT =
∑
x∈Zd

lq
T (x) =

∑
x∈TR

∑
k∈Zd

lq
T (x + k R)

≤

∑
x∈TR

(∑
k∈Zd

lT (x + k R)

)q

=

∑
x∈TR

lq
R,T (x) = IR,T .

Then using the fact that τ ∼ ε(λ) independent of (Xs, s ≥ 0) with λ = a bT
T , we get:

P
[
IT ≥ bq

T

]
exp (−abT ) ≤ P

[
IR,T ≥ bq

T

]
P(τ ≥ T )

≤ P
[
IR,T ≥ bq

T , τ ≥ T
]

≤ P
[
IR,τ ≥ bq

T

]
.

Finally, P
[
IT ≥ bq

T

]
≤ eabT P

[
IR,τ ≥ bq

T

]
. �

3.2. Step 2: Eisenbaum’s isomorphism theorem

We use here the following theorem due to Eisenbaum given by Corollary 8.1.2, page 364
in [13].

Theorem 7 (Eisenbaum). Let τ be as in Theorem 5 and let (Zx , x ∈ TR) be a centered Gaussian
process with covariance matrix G R,λ independent of τ and of the random walk (Xs, s ≥ 0). For
s 6= 0, consider the process Sx := lR,τ (x)+ 1

2 (Zx + s)2. Then for all measurable and bounded
function F : RTR 7→ R:

E [F((Sx ; x ∈ TR))] = E

[
F

((
1
2
(Zx + s)2; x ∈ TR

))(
1+

Z0

s

)]
.

3.3. Step 3: Comparison between IR,τ and ‖Z‖2q,R

Lemma 8. Let τ and (Zx , x ∈ TR) be defined as in Theorem 7. ∀ε > 0, there exists a constant
C(ε) ∈]0;∞[ depending only on ε such that ∀a, γ, R, T > 0:

P
[
IR,τ ≥ bq

T

]
≤ C(ε) exp (−γ bT (1+ ◦(ε)))

1+
R

d
2q
√

T

εbT
√

2aε

 E
[
exp

(
γ
2 ‖Z‖

2
2q,R

)] 1
1+ε

P
[
‖Z‖2q,R ≥ 2

√
2bT ε

]
where ‖·‖2q,R is the l2q -norm of functions on TR .
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Proof.

Sx := lR,τ (x)+
1
2
(Zx + s)2 ⇒ Sq

x ≥ lq
R,τ (x)+

(
1
2
(Zx + s)2

)q

⇒

∑
x∈TR

Sq
x ≥ IR,τ +

∑
x∈TR

1
2q (Zx + s)2q .

By independence of (Zx , x ∈ TR) with the random walk (Xs, s ≥ 0) and the exponential time
τ , we have ∀ε > 0,

P
(
IR,τ ≥ bq

T

)
P

(∑
x∈TR

1
2q (Zx + s)2q

≥ bq
T ε

q

)

= P

(
IR,τ ≥ bq

T ,
∑

x∈TR

1
2q (Zx + s)2q

≥ bq
T ε

q

)

≤ P

(
IR,τ +

∑
x∈TR

1
2q (Zx + s)2q

≥ bq
T (1+ ε

q)

)

= P

(∑
x∈TR

lR,τ (x)
q
+

1
2q (Zx + s)2q

≥ bq
T (1+ ε

q)

)

≤ P

(∑
x∈TR

Sq
x ≥ bq

T (1+ ε
q)

)

= E

[(
1+

Z0

s

)
I ∑

x∈TR

1
2q (Zx+s)2q≥bq

T (1+ε
q )

]
, (8)

where the last equality comes from Theorem 7. Moreover by Markov inequality, ∀γ > 0,

E

[(
1+

Z0

s

)
I ∑

x∈TR

1
2q (Zx+s)2q≥bq

T (1+ε
q )

]

≤ exp(−γ bT (1+ εq)
1
q )E

(1+
Z0

s

)
exp

γ (∑
x∈TR

1
2q (Zx + s)2q

) 1
q
 . (9)

Combining (8) and (9), we obtain that ∀a, γ, ε > 0,

P
(
IR,τ ≥ bq

T

)
≤ exp(−γ bT (1+ εq)

1
q )

E
[(

1+ Z0
s

)
exp

(
γ
2 ‖Z + s‖22q,R

)]
P(‖Z + s‖2q,R ≥

√
2bT ε)

. (10)

Let us bound P(‖Z+s‖2q,R ≥
√

2bT ε) from below. Since ‖Z+s‖2q,R ≥ ‖Z‖2q,R−‖s‖2q,R

and ‖s‖2q,R = s R
d
2q , we have

P(‖Z + s‖2q,R ≥
√

2bT ε) ≥ P(‖Z‖2q,R ≥
√

2bT ε + s R
d
2q ). (11)
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Then we look for an upper bound of the expectation in (10). Using the fact that ∀ε >

0, (a + b)2 ≤ (1+ ε)a2
+ (1+ 1

ε
)b2 and Hölder’s inequality, we obtain that ∀ε > 0,

E

[(
1+

Z0

s

)
exp

(γ
2
‖Z + s‖22q,R

)]
≤ E

[(
1+

Z0

s

)
exp

(
γ

2

(
(1+ ε)‖Z‖22q,R +

(
1+

1
ε

)
s2 R

d
q

))]

≤ E

[∣∣∣∣1+ Z0

s

∣∣∣∣ 1+ε
ε

] ε
1+ε

E
[
exp

(γ
2
(1+ ε)2 ‖Z‖22q,R

)] 1
1+ε

exp
(
γ

2
1+ ε
ε

s2 Rd/q
)

≤ C(ε)

(
1+

1

s
√
λ

)
E
[
exp

(γ
2
(1+ ε)2 ‖Z‖22q,R

)] 1
1+ε

exp
(
γ

2
1+ ε
ε

s2 Rd/q
)
, (12)

where the last inequality comes from the fact that V ar(Z0) = G R,λ(0, 0) ≤ E[τ ] = 1
λ

.
We deduce from (10)–(12) that ∀ε, a, θ > 0,

P
(
IR,τ ≥ bq

T

)
≤ C(ε) exp

(
−γ bT (1+ εq)

1
q

)(
1+

1

s
√
λ

)

×

E
[
exp

(
γ
2 (1+ ε)

2 ‖Z‖22q,R

)] 1
1+ε

P(‖Z‖2q,R ≥
√

2bT ε + s R
d
2q )

exp
(
γ

2
1+ ε
ε

s2 Rd/q
)
.

The choice of s being free, we choose s = ε
√

2bT ε

R
d
2q

. Remember that λ = abT
T and make the

change of variable γ = γ ′

(1+ε)2
. We have ∀γ ′, a, ε > 0,

P
(
IR,τ ≥ bq

T

)
≤ C(ε) exp

−γ ′bT
(1+ εq)

1
q

(1+ ε)2

1+
R

d
2q
√

T

εbT
√

2aε



×

E
[
exp

(
γ ′

2 ‖Z‖
2
2q,R

)] 1
1+ε

P
[
‖Z‖2q,R ≥ 2

√
2bT ε

] exp
(
ε2γ ′bT

1+ ε

)
. �

3.4. Step 4: Large deviations for ‖Z‖2q,R

Lemma 9. Let τ and (Zx , x ∈ TR) be defined as in Theorem 7. Let ρ1(a, R, T ) be defined as
in Theorem 5.

1. ∀a, R, T > 0, G R,λ(0, 0) ≤ ρ1(a, R, T ) ≤ Rd/q G R,λ(0, 0).

2. ∀a, ε, R, T > 0,

P
[
‖Z‖2q,R ≥

√
bT ε

]
≥

√
ρ1(a, R, T )
√

2πbT ε

(
1−

ρ1(a, R, T )

bT ε

)
exp

(
−

bT ε

2ρ1(a, R, T )

)
.
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3. ∃C(q) such that ∀a, R, T, ε > 0, ∀γ such that γ (1+ ε) < 1
ρ1(a,R,T )

,

E
[
exp

(γ
2
‖Z‖22q,R

)]
≤

2
√

1− γ (1+ ε)ρ1(a, R, T )

× exp
(

C(q)γ
1+ ε
ε

Rd/q G R,λ(0, 0)
)
.

Proof. 1. For the lower bound, let take f = δ0: ρ1(a, R, T ) ≥ G R,λ(0, 0).
For the upper bound,

ρ1(a, R, T ) = sup

 ∑
x,y∈TR

fx G R,λ(x, y) fy; f such that ‖ f ‖(2q)′,R = 1


≤ sup

x,y∈TR

G R,λ(x, y) sup
{
‖ f ‖21,R ; f such that ‖ f ‖(2q)′,R = 1

}
.

On the one hand, ‖ f ‖1,R ≤ ‖ f ‖(2q)′,R ‖1‖2q,R = Rd/2q . On the other hand, denote by Tx the
first time where the walk is at state x . Then,

sup
x,y∈TR

G R,λ(x, y) = sup
x∈TR

G R,λ(0, x) = sup
x∈TR

E0[l
R
τ (x)]

≤ sup
x∈TR

E0[Ex [l
R
τ (x)]ITx≤τ ] = sup

x∈TR

G R,λ(x, x)P0(Tx ≤ τ)

≤ G R,λ(0, 0).

2. By Hölder’s inequality, ∀ f such that ‖ f ‖(2q)′,R = 1

P
[
‖Z‖2q,R ≥

√
bT ε

]
≥ P

[∑
x∈TR

fx Zx ≥
√

bT ε

]
.

Since
∑

x∈TR
fx Zx is a real centered Gaussian variable with variance

σ 2
a,R,T ( f ) =

∑
x,y∈TR

G R,λ(x, y) fx fy,

we have:

P
[
‖Z‖2q,R ≥

√
bT ε

]
≥

σa,R,T ( f )
√

2π
√

bT ε

(
1−

σ 2
a,R,T ( f )

bT ε

)
exp

(
−

bT ε

2σ 2
a,R,T ( f )

)

≥
σa,R,T ( f )
√

2π
√

bT ε

(
1−

ρ1(a, R, T )

bT ε

)
exp

(
−

bT ε

2σ 2
a,R,T ( f )

)
.

Taking the supremum over f we obtain that ∀a, R, T, ε > 0,

P
[
‖Z‖2q,R ≥

√
bT ε

]
≥

√
ρ1(a, R, T )
√

2πbT ε

(
1−

ρ1(a, R, T )

bT ε

)
exp

(
−

bT ε

2ρ1(a, R, T )

)
.

3. Let M be the median of ‖Z‖2q,R . We can easily see that

E
[
exp

(γ
2
‖Z‖22q,R

)]
≤ E

[
exp

(γ
2
(1+ ε)(‖Z‖2q,R − M)2

)]
exp

(
γ

2
1+ ε
ε

M2
)
.

(13)
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Since M = (median(
∑

x Z2q
x ))

1/2q and that for X ≥ 0, median(X) ≤ 2E[X ], we get:

M2
=

(
median

(∑
x

Z2q
x

))1/q

≤

(
2E

[∑
x

Z2q
x

])1/q

≤ C(q)

(∑
x

G R,λ(0, 0)q E[Y 2q
]

)1/q

, where Y ∼ N (0, 1)

≤ C(q)Rd/q G R,λ(0, 0)(E[Y 2q
])1/q

≤ C(q)Rd/q G R,λ(0, 0).

Thus,

exp
(
γ

2
1+ ε
ε

M2
)
≤ exp

(
γ

1+ ε
ε

C(q)Rd/q G R,λ(0, 0)
)
. (14)

We find now an upper bound of the expectation in (13). Using concentration inequalities for
norms of gaussian processes, ∀u > 0,

P
[∣∣‖Z‖2q,R − MR,T

∣∣ ≥ √u
]
≤ 2P(Y ≥

√
u

ρ1(a,R,T )
) where Y ∼ N (0, 1). Then:

E
[
exp

(γ
2
(1+ ε)(‖Z‖2q,R − M)2

)]
= 1+

∫
+∞

1
P
(

exp
(γ

2
(1+ ε)(‖Z‖2q,R − M)2

)
≥ u

)
du

= 1+
∫
+∞

1
P

(∣∣‖Z‖2q,R − M
∣∣ ≥ √ 2 ln(u)

γ (1+ ε)

)
du

≤ 1+ 2
∫
+∞

1
P

(
Y 2
≥

2 ln(u)
γ (1+ ε)ρ1(a, R, T )

)
du

= −1+ 2E

[
exp

(
γ (1+ ε)ρ1(a, R, T )

2
Y 2
)]

= −1+
2

√
1− γ (1+ ε)ρ1(a, R, T )

≤
2

√
1− γ (1+ ε)ρ1(a, R, T )

. (15)

Remark that it is only true for γ, ε such that γ (1+ε) < 1
ρ1(a,R,T )

. We deduce putting together
(13)–(15), that

E
[
exp

(γ
2
‖Z‖22q,R

)]
≤

2
√

1− γ (1+ ε)ρ1(a, R, T )

× exp
(
γ

1+ ε
ε

C(q)Rd/q G R,λ(0, 0)
)
. �
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3.5. Proof of Theorem 5

Proof. First we remark that if ρ1 is infinite, then Theorem 5 is obvious. So we assume now that
ρ1 is finite. Combining Lemmas 6 and 8 we have proved that: ∀ε, γ, a, R, T > 0,

P
[
IT ≥ bq

T

]
≤ C(ε) exp(abT ) exp (−γ bT (1+ ◦(ε)))

1+
R

d
2q
√

T

εbT
√

2aε



×

E
[
exp

(
γ
2 ‖Z‖

2
2q,R

)] 1
1+ε

P
[
‖Z‖2q,R ≥ 2

√
2bT ε

] . (16)

First, Lemma 9 gives that ∀γ such that γ (1+ ε) < 1
ρ1(a,R,T )

,

E
[
exp

(γ
2
‖Z‖22q,R

)] 1
1+ε
≤ exp

(γ
ε

C(q)Rd/q G R,λ(0, 0)
)

×

(
2

√
1− γ (1+ ε)ρ1(a, R, T )

) 1
1+ε

.

Since ρ1 is finite, for a little enough, 1/ρ1(a) > 0 and we can choose γ such that 0 < γ < 1
ρ1(a)

.

Then it is possible to choose ε > 0 such that γ (1 + 2ε) < 1
ρ1(a)

. Hence for T sufficiently large
1

ρ1(a,R,T )
> γ (1+ 2ε), then it follows that

E
[
exp

(γ
2
‖Z‖22q,R

)] 1
1+ε
≤ exp

(γ
ε

C(q)Rd/q G R,λ(0, 0)
)(

2

√
1+ 2ε
ε

) 1
1+ε

.

We recall that we have assumed that λ and R depend on T in such a way that λRd
� 1 and

λ � 1, which implies that we are in conditions of application of Lemma 4. So we know that

G R,λ(0,0)→ G(0, 0). Moreover we have assumed that bT � R
d
q , therefore we have:

lim sup
T→∞

1
bT

log E
[
exp

(γ
2
‖Z‖22q,R

)] 1
1+ε
= 0. (17)

Then we work on the probability P
[
‖Z‖2q,R ≥

√
8bT ε

]
in (16).

In the same way that previously we use ρ1(a, R, T ) < 1
γ (1+2ε) , ρ1(a, R, T ) ≥ G R,λ(0, 0)

and Lemma 9 to obtain:

P
[
‖Z‖2q,R ≥

√
8bT ε

]
≥

√
ρ1(a, R, T )

4
√
πbT ε

(
1−

ρ1(a, R, T )

8bT ε

)
exp

(
−

4bT ε

ρ1(a, R, T )

)
≥

√
G R,λ(0, 0)

4
√
πbT ε

(
1−

1
8bT εγ (1+ 2ε)

)
exp

(
−

4bT ε

G R,λ(0, 0)

)
.

We conclude from G R,λ(0,0)→ G(0, 0) that

lim sup
T→∞

1
bT

log P
[
‖Z‖2q,R ≥

√
8bT ε

]
≥ −

4ε
G(0, 0)

. (18)
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Putting together (16)–(18), we have for bT � log(T )

lim sup
T→∞

1
bT

log P
[
IT ≥ bq

T

]
≤ a − γ (1+ ◦(ε))+

4ε
G(0, 0)

.

Let send ε to 0 then γ to 1
ρ1(a)

. We obtain that for a little enough

lim sup
T→∞

1
bT

log P
[
IT ≥ bq

T

]
≤ a −

1
ρ1(a)

.

Let (an) be a sequence converging to 0 such that lim supn→∞ ρ1(an) = ρ1:

lim sup
T→∞

1
bT

log P
[
IT ≥ bq

T

]
≤ an −

1
ρ1(an)

.

Then we let n go to infinity. We finish the proof by showing that the conditions λRd
� 1,

bq
T � Rd and log(T ) � bT � T are compatible. Indeed, the first two conditions imply that

bT � T
1

q+1 . In conclusion, we have proved that for T
1

q+1 � bT � T :

lim sup
T→+∞

1
bT

log P
[
IT ≥ bq

T

]
≤ −

1
ρ1
. �

4. Lower bound

This part is devoted to the proof of the large deviations lower bound.

Theorem 10 (Lower Bound for IT ). Assume that q(d − α) ≥ d and bT � T then

lim inf
T→∞

1
bT

log P
[
IT ≥ bq

T

]
≥ −κ(q). (19)

Proof. Fix M > 0. Let T0 be such that for all T ≥ T0, T
bT
> M . For T ≥ T0, we have:

P
[
IT ≥ bq

T

]
≥ P

[
IMbT ≥ bq

T

]
= P

[∥∥∥∥ lMbT

MbT

∥∥∥∥
q
≥

1
M

]
.

The function ν ∈ F 7→ ‖ν‖q = sup f ;‖ f ‖q′=1
{∑

x ν(x) f (x)
}

is lower semicontinuous in

τ -topology hence ∀t > 0,
{
ν ∈ F , ‖ν‖q > t

}
is an open subset of F . Therefore, using the

classical results of Donsker and Varadhan [11] on local time of Markov process, we have that
∀ε > 0,

lim inf
T→∞

1
MbT

log P

[∥∥∥∥ lMbT

MbT

∥∥∥∥
q
≥

1
M

]
≥ lim inf

T→∞

1
MbT

log P

[∥∥∥∥ lMbT

MbT

∥∥∥∥
q
>

1− ε
M

]

≥ − inf
f

{
〈 f,−A f 〉; ‖ f ‖2 = 1, ‖ f ‖22q >

1− ε
M

}
.

We have thus proved that ∀M > 0, ∀ε > 0,

lim inf
T→∞

1
bT

log P
[
IT ≥ bq

T

]
≥ −Mκ1

(
1− ε

M

)
where κ1(y) := inf f

{
〈 f,−A f 〉; ‖ f ‖22q > y, ‖ f ‖2 = 1

}
.
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It remains to prove that for ∀y > 0, infM>0 Mκ1(y/M) = yκ(q).

inf
M>0

Mκ1(y/M) = y inf
M>0

Mκ1(1/M)

= y inf
M>0

inf
f

{
M〈 f,−A f 〉; ‖ f ‖2 = 1 , ‖ f ‖22q >

1
M

}
= y inf

f
inf

M>0

{
M〈 f,−A f 〉;M >

1

‖ f ‖22q

, ‖ f ‖2 = 1

}

= y inf
f

{
〈 f,−A f 〉

‖ f ‖22q

, ‖ f ‖2 = 1

}
;

= yκ(q).

To finish the proof it suffices to let ε → 0. �

5. Proof of Proposition 1 and Theorem 2

Until now we have obtained a lower bound with κ(q) and an upper bound with ρ1. We show
in Proposition 11 another upper bound for large deviations of IT with the constant ρ(q). Then
in Proposition 12 we prove that κ(q) is a non-degenerate constant and we finish the proof of
our large deviations principle with Proposition 13, where we show that the upper bound and the
lower bound are the same.

Proposition 11 (Behaviour of ρ1(a, R, T )). Assume that q(d−α) ≥ d and that λ and R depend
on T in such a way that λRd/q ′

� 1, then under Assumption 1 we have:

ρ1 ≤ ρ(q).

Proof. By definition ρ1(a, R, T ) = sup f

{∑
x,y∈TR

f (x)G R,λ(x − y) f (y) ; ‖ f ‖(2q)′,R = 1
}

.

Since the space of { f/ ‖ f ‖(2q)′,R = 1} is compact there exists f0 ∈ l(2q)′(TR) realizing the
supremum. Of course f0 ≥ 0 since the supremum is obtained with non-negative function.

Let 0 < r < R and define

Cr,R = ∪
d
i=1

{
x ∈ Zd

; 0 ≤ xi ≤ r or R − r ≤ xi ≤ R
}
.

We can assume that
∑

x∈Cr,R
f0(x)(2q)′

≤
2dr
R . Indeed on one side we have∑

a∈[0,R]d

∑
x∈Cr,R

f0(x − a)(2q)′
=

∑
x∈Cr,R

∑
a∈[0,R]d

f0(x − a)(2q)′

=

∑
x∈Cr,R

∑
x∈TR

f0(x)
(2q)′
= card(Cr,R) ‖ f0‖

(2q)′

(2q)′ ≤ 2dr Rd−1,

and on the opposite side we have∑
a∈[0,R]d

∑
x∈Cr,R

f0(x − a)(2q)′
≥ Rd inf

a∈[0;R]d

∑
x∈Cr,R

f0(x − a)(2q)′ .
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Thus

inf
a∈[0;R]d

 ∑
x∈Cr,R

f0(x − a)(2q)′

 ≤ 2dr

R
.

Moreover f0,a(x) := f0(x − a) is a periodic function of period R. Note that
∥∥ f0,a

∥∥
(2q)′,R =

‖ f0‖(2q)′,R and
∑

x,y∈TR
f0,a(x)G R,λ(x − y) f0,a(y) =

∑
x,y∈TR

f0(x)G R,λ(x − y) f0(y).
Finally, we can assume that

∑
x∈Cr,R

f0(x)
(2q)′
≤

2dr

R
. (20)

Let ψ : Zd
7→ [0, 1] be a truncature function satisfying{

ψ(x) = 0 if x 6∈ [0; R]d ,
ψ(x) = 1 if x ∈ [0; R]d \ Cr,R .

Let g0 =
ψ f0

‖ψ f0‖(2q)′
be our candidate to realize the supremum in the definition of ρ(q). Fix

ε ∈]0, 1[ and take r = εR
2d . First we can remark that ‖ψ f0‖(2q)′ > 0. Indeed:

‖ψ f0‖
(2q)′

(2q)′ ≥
∑

x∈[0;R]d
f (2q)′

0 (x)−
∑

x∈Cr,R

f (2q)′

0 (x) ≥ 1−
2dr

R
= 1− ε > 0.

By Lemma 3, there exists a constant C such that ∀λ, R > 0,∀x ∈ [0, R]d , G(x) ≥
G R,λ(x)− C

λRd , hence:

∑
x,y∈Zd

g0(x)G(x − y)g0(y) =
1

‖ψ f0‖
2
(2q)′

∑
x,y∈Zd

ψ(x) f0(x)G(x − y)ψ(y) f0(y)

≥

∑
x,y∈Zd

ψ(x) f0(x)G(x − y)ψ(y) f0(y)

≥

∑
x,y∈[0,R]d

f0(x)G(x − y) f0(y)− 2
∑

x∈[0,R]d ,y∈Cr,R

f0(x)G(x − y) f0(y)

= ρ1(a, R, T )−
C

λRd

 ∑
x∈[0,R]d

f0(x)

2

− 2
∑

x∈[0,R]d ,y∈Cr,R

f0(x)G(x − y) f0(y). (21)

Let us work on (21). We first show that
∑

x∈[0,R]d f0(x) ≤ R
d
2q :

∑
x∈[0,R]d

f0(x) ≤

 ∑
x∈[0,R]d

f (2q)′

0 (x)

 1
(2q)′

(Rd)
1

2q = R
d
2q . (22)
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We control now
∑

x∈[0,R]d ,y∈Cr,R
f0(x)G(x − y) f0(y). Using (20) and the fact that

‖ f0‖(2q)′,R = 1 we have:

∑
x∈[0,R]d ,y∈Cr,R

f0(x)G(x − y) f0(y)

=

∑
x∈[0,R]d ,y∈Cr,R

f 1/(2q−1)
0 (x) f 1/(2q−1)

0 (y)G(x − y) f
2(q−1)
2q−1

0 (x) f
2(q−1)
2q−1

0 (y)

≤

 ∑
x∈[0,R]d ,y∈Cr,R

f q/(2q−1)
0 (x) f q/(2q−1)

0 (y)Gq(x − y)

1/q

×

 ∑
x∈[0,R]d ,y∈Cr,R

f
2q

2q−1
0 (x) f

2q
2q−1

0 (y)

(q−1)/q

≤

 ∑
z∈[−R,R]d

Gq(z)
∑

y∈Cr,R

f q/(2q−1)
0 (z + y) f q/(2q−1)

0 (y)

1/q

×

 ∑
x∈[0,R]d

f
2q

2q−1
0 (x)


q−1

q
 ∑

x∈Cr,R

f
2q

2q−1
0 (x)


q−1

q

≤ ε
q−1

q

 ∑
z∈[−R,R]d

Gq(z)

 ∑
y∈Cr,R

f
2q

2q−1
0 (y)

1/2 ∑
y∈Cr,R

f
2q

2q−1
0 (z + y)

1/2


1/q

≤ ε
2q−1

2q

 ∑
z∈[−R,R]d

Gq(z)

1/q

. (23)

Finally, putting together (21)–(23), we deduce that:

∑
x,y∈Zd

g0(x)G(x − y)g0(y) ≥ ρ1(a, R, T )− R
d
q

C

λRd − 2ε
2q−1

2q

 ∑
z∈[−R,R]d

Gq(z)

1/q

.

Let ε → 0:
∑

x,y∈Zd g0(x)G(x − y)g0(y) ≥ ρ1(a, R, T )− C
λRd/q′ .

Hence,

sup
g

 ∑
x,y∈Zd

g(x)G(x − y)g(y), ‖g‖(2q)′ = 1, supp(g) ⊂ [0, R]d


≥ ρ1(a, R, T )−

C

λRd/q ′
.
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Therefore,

sup
g

 ∑
x,y∈Zd

g(x)G(x − y)g(y), ‖g‖(2q)′ = 1, supp(g) compact


≥ ρ1(a, R, T )−

C

λRd/q ′
.

Then we take a sequence Tn →+∞ such that ρ1(a, R, Tn)→ ρ1(a). Hence by definition of
ρ(q) we obtain:

ρ(q) ≥ ρ1(a).

Then we take a sequence an → 0 such that ρ1(an)→ ρ1. Hence,

ρ(q) ≥ ρ1. �

Proposition 12. Under Assumption 1,

1. If q(d − α) > d then 0 < ρ(q) < +∞.
2. If q(d − α) = d then 0 < κ(q) < +∞.

Proof. 1. It is easy to see that ρ(q) > 0. Indeed, taking f = δ0 gives ρ(q) ≥ Gd(0, 0). Now
we show that ρ(q) is finite. We proceed in the same way that in Proposition 11, for all f with
compact support such that ‖ f ‖(2q)′ = 1,∑

x∈Zd

f (x)G(x − y) f (y)

=

∑
x,y∈Zd

f 1/(2q−1)(x) f 1/(2q−1)(y)G(y − x) f
2(q−1)
2q−1 (x) f

2(q−1)
2q−1 (y)

≤

∑
x,yZd

f q/(2q−1)(x) f q/(2q−1)(y)Gq(y − x)

1/q

×

 ∑
x,y∈Zd

f
2q

2q−1 (x) f
2q

2q−1 (y)

(q−1)/q

≤

∑
x∈Zd

Gq(x)
∑
y∈Zd

f q/(2q−1)(x + y) f q/(2q−1)(y)

1/q (∑
x∈Zd

f
2q

2q−1 (x)

) 2(q−1)
q

≤

∑
x∈Zd

Gq(x)

∑
y∈Zd

f
2q

2q−1 (y)

1/2∑
y∈Zd

f
2q

2q−1 (x + y)

1/2


1/q

=

 ∑
x∈[0,R]d

Gq(x)

1/q

= ‖G‖q . (24)

Then we take the supremum over f . Moreover, thanks to the work of Le Gall and Rosen [12],
we know that G(0, x) = O(|x |α−d). Then ‖G‖q is finite since q(d − α) > d.
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2. To prove κ(q) <∞ it suffices to take f = δ0. Indeed κ(q) ≤ 〈−Aδ0, δ0〉 = 1−µ(0) < +∞.
Let us now prove that κ(q) > 0. The solution comes from the following result due to
Varopoulos in [14]:

Let ν > 2. If pt is the transition probability of a symmetric Markov process (Yt , t ≥ 0)
defined on a measure space X , with V is the domain of the generator of (Yt , t ≥ 0) and E its
Dirichlet form. Then the following assertions are equivalent:

(a) ∃C > 0 such that ∀x, y ∈ Zd , pt (x, y) ≤ C
tν/2
.

(b) ∃C ′ > 0 such that ∀ f ∈ K ∩ V ,‖ f ‖22ν
ν−2

≤ C ′E( f, f ), where K =

{ f ∈ L∞(X), supp( f ) compact}.

By Proposition 4.2 in [4] due to Bass and Levin, we know that

∃C > 0 such that ∀x, y ∈ Zd , pt (x, y) ≤ Ct−
d
α .

Since q(d − α) = d, ν = 2d
α
> 2. So, there exists C ′ > 0 such that ∀ f ∈ K ∩ V ,

‖ f ‖22q = ‖ f ‖22d
d−α
≤ C ′E( f, f ). Let f with compact support such that ‖ f ‖2 = 1. Of course

f ∈ K. If f ∈ V then ‖ f ‖22d
d−α
≤ C ′E( f, f ). If f 6∈ V then E( f, f ) = +∞ and the inequality

is also true. Thus,

∀ f with compact support such that ‖ f ‖2 = 1, ‖ f ‖22q ≤ C ′E( f, f ).

Therefore, taking the infimum over all function f such that ‖ f ‖2 = 1 we have:

inf
f

{
E( f, f )

‖ f ‖22q

, ‖ f ‖2 = 1

}
= inf

f

{
E( f, f )

‖ f ‖22q

, ‖ f ‖2 = 1, supp( f ) compact

}
≥

1
C ′
. �

Proposition 13. Under Assumption 1, if q(d − α) ≥ d then κ(q) = 1
ρ(q) .

Proof. By Theorem 5, Theorem 10 and Proposition 11 we know that 1
ρ(q) ≤ κ(q). So we just

have to prove that κ(q) ≤ 1
ρ(q) .

By definition ρ(q) = supg
{
〈g,Gg〉, supp(g) compact, ‖g‖(2q)′ = 1

}
. Note that

ρ(q) = sup
g

{
〈g,Gg〉, supp(g) compact, ‖g‖(2q)′ = 1, ‖Gg‖2 < +∞

}
. (25)

Indeed if g has compact support and ‖g‖(2q)′ = 1 then ‖Gg‖2 < +∞.

We have seen in Proposition 12 that ρ(q) > 0 when q(d − α) > d but the proof is also true
when q(d − α) = d. Furthermore Proposition 12 gives us that if q(d − α) > d then ρ(q) is
finite. We proceed by contradiction to see that it is also true when q(d − α) = d using the same
method that Chen and Mörters in [10].

Assume that ρ(q) = +∞. Then by (25), ∀B > 0 there exists g with compact support,
‖g‖(2q)′ = 1 and ‖Gg‖2 < +∞ such that 〈g,Gg〉 ≥ B.

Note that 〈g,Gg〉 ≤ ‖g‖(2q)′ ‖Gg‖2q = ‖Gg‖2q . So ‖Gg‖2q ≥ B.
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Then we set f = Gg
‖Gg‖2q

. We note that ‖ f ‖2q = 1 and ‖ f ‖2 < +∞, hence:

〈g,Gg〉 = 〈−AGg,Gg〉

= ‖Gg‖22q

〈
−

AGg
‖Gg‖2q

,
Gg
‖Gg‖2q

〉
≥ ‖Gg‖22q inf

f

{
〈−A f, f 〉, ‖ f ‖2q = 1, ‖ f ‖2 < +∞

}
= ‖Gg‖22q inf

f

{
〈−A f, f 〉

‖ f ‖22
‖ f ‖22 , ‖ f ‖2q = 1, ‖ f ‖2 < +∞

}

= ‖Gg‖22q inf
g

{
〈−Ag, g〉

‖g‖22q

, ‖g‖2 = 1

}
= ‖Gg‖22q κ(q) (26)

with g = f
‖ f ‖2

. Therefore,

κ(q) ≤
〈g,Gg〉

‖Gg‖22q

≤
1

‖Gg‖2q
≤

1
B

then letting B → +∞ we have κ(q) = 0, which is in contradiction with Proposition 12.
Therefore ρ(q) is finite.

Now we proceed in the same way that previously. Let ε ∈]0, ρ(q)[, by (25) there exists g
with compact support, ‖g‖(2q)′ = 1 and ‖Gg‖2 < +∞ such that ρ(q) ≥ 〈g,Gg〉 ≥ ρ(q) − ε.

Moreover we have ‖Gg‖2q ≥ ρ(q)− ε, then we set f = Gg
ρ(q)−ε and obtain

ρ(q) ≥ 〈g,Gg〉 ≥ (ρ(q)− ε)2 inf
f

{
〈−A f, f 〉, ‖ f ‖2q ≥ 1, ‖ f ‖2 < +∞

}
= (ρ(q)− ε)2 inf

f

{
〈−A f, f 〉, ‖ f ‖2q = 1, ‖ f ‖2 < +∞

}
.

Let ε → 0: 1
ρ(q) ≥ inf f

{
〈−A f, f 〉, ‖ f ‖2q = 1, ‖ f ‖2 < +∞

}
.

Moreover we have seen in (26) that inf f
{
〈−A f, f 〉, ‖ f ‖2q ≥ 1, ‖ f ‖2 < +∞

}
= κ(q),

therefore κ(q) ≤ 1
ρ(q) . �
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