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a b s t r a c t

In this paper, we develop the theory of fractional hybrid differential equations involv-
ing Riemann–Liouville differential operators of order 0 < q < 1. An existence the-
orem for fractional hybrid differential equations is proved under mixed Lipschitz and
Carathéodory conditions. Some fundamental fractional differential inequalities are also es-
tablished which are utilized to prove the existence of extremal solutions. Necessary tools
are considered and the comparison principle is proved which will be useful for further
study of qualitative behavior of solutions.
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1. Introduction

Fractional differential equations have been of great interest recently. It is caused both by the intensive development
of the theory of fractional calculus itself and by the applications; see [1–20]. Although the tools of fractional calculus
have been available and applicable to various fields of study, there are a few papers on the investigation of the theory of
fractional differential equations; see [21–25]. The differential equations involving Riemann–Liouville differential operators
of fractional order 0 < q < 1 are very important in modeling several physical phenomena [26–28] and therefore seem to
deserve an independent study of their theory parallel to the well-known theory of ordinary differential equations.

In recent years, quadratic perturbations of nonlinear differential equations have attracted much attention. We call such
differential equations hybrid differential equations. There have been many works on the theory of hybrid differential
equations, and we refer the readers to the articles [29–32]. Dhage and Lakshmikantham [30] discussed the following first
order hybrid differential equation

d
dt

[
x(t)

f (t, x(t))

]
= g(t, x(t)), a.e. t ∈ J,

x(t0) = x0 ∈ R,

where f ∈ C(J×R, R\{0}) and g ∈ C(J×R, R). They established the existence anduniqueness results and some fundamental
differential inequalities for hybrid differential equations initiating the study of theory of such systems and proved utilizing
the theory of inequalities, its existence of extremal solutions and a comparison result.

From the above works, we develop the theory of fractional hybrid differential equations involving Riemann–Liouville
differential operators of order 0 < q < 1. An existence theorem for fractional hybrid differential equations is proved under

✩ This research is supported by the Natural Science Foundation of China (11071143, 60904024 and 11026112), China Postdoctoral Science Foundation
funded project (200902564) and supported by Shandong Provincial Natural Science Foundation (ZR2010AL002, ZR2009AL003 and Y2008A28), also
supported by University of Jinan Research Funds for Doctors (XBS0843) and Innovation Funds for Graduate Students of University of Jinan (YCX09014).
∗ Corresponding author at: School of Science, University of Jinan, Jinan, Shandong 250022, PR China.

E-mail addresses: zhaoeager@126.com (Y. Zhao), sshrong@163.com (S. Sun), hanzhenlai@163.com (Z. Han), li_qp88@163.com (Q. Li).

0898-1221/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2011.03.041

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81213237?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.camwa.2011.03.041
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
mailto:zhaoeager@126.com
mailto:sshrong@163.com
mailto:hanzhenlai@163.com
mailto:li_qp88@163.com
http://dx.doi.org/10.1016/j.camwa.2011.03.041


Y. Zhao et al. / Computers and Mathematics with Applications 62 (2011) 1312–1324 1313

mixed Lipschitz and Carathéodory conditions. Some fundamental fractional differential inequalities are also established
which are utilized to prove the existence of extremal solutions. Necessary tools are considered and the comparison principle
is proved which will be useful for further study of qualitative behavior of solutions.

2. Fractional hybrid differential equation

Let R be the real line and J = [0, T ) be a bounded interval in R for some T ∈ R. Let C(J × R, R) denote the class of
continuous functions f : J × R → R and let C(J × R, R) denote the class of functions g : J × R → R such that

(i) the map t → g(t, x) is measurable for each x ∈ R, and
(ii) the map x → g(t, x) is continuous for each t ∈ J .

The classC(J ×R, R) is called the Carathéodory class of functions on J ×R which are Lebesgue integrable when bounded
by a Lebesgue integrable function on J .

Definition 2.1 ([25]). The Riemann–Liouville fractional derivative of orderα > 0 of a continuous function f : (0, +∞) → R
is given by

Dα f (t) =
1

Γ (n − α)


d
dt

(n) ∫ t

0

f (s)
(t − s)α−n+1

ds,

where n = [α]+ 1, [α] denotes the integer part of number α, provided that the right side is pointwise defined on (0, +∞).

Definition 2.2 ([25]). The Riemann–Liouville fractional integral of order α > 0 of a function f : (0, +∞) → R is given by

Iα f (t) =
1

Γ (α)

∫ t

0
(t − s)α−1f (s)ds,

provided that the right side is pointwise defined on (0, +∞).

We consider fractional hybrid differential equations (FHDEs) involving Riemann–Liouville differential operators of order
0 < q < 1,Dq

[
x(t)

f (t, x(t))

]
= g(t, x(t)), a.e. t ∈ J,

x(0) = 0,
(2.1)

where f ∈ C(J × R, R \ {0}) and g ∈ C(J × R, R).
By a solution of the FHDE (2.1) we mean a function x ∈ C(J, R) such that

(i) the function t →
x

f (t,x) is continuous for each x ∈ R, and
(ii) x satisfies the equations in (2.1).

The theory of strict and nonstrict differential inequalities related to theODEs and hybrid differential equations is available
in the literature (see [30,33]). It is known that differential inequalities are useful for proving the existence of extremal
solutions of the ODEs and hybrid differential equations defined on J .

3. Existence result

In this section, we prove the existence results for the FHDE (2.1) on the closed and bounded interval J = [0, T ] under
mixed Lipschitz and Carathéodory conditions on the nonlinearities involved in it. We place the FHDE (2.1) in the space
C(J, R) of continuous real-valued functions defined on J . Define a supremum norm ‖ · ‖ in C(J, R) by

‖x‖ = sup
t∈J

|x(t)|

and a multiplication in C(J, R) by

(xy)(t) = x(t)y(t)

for x, y ∈ C(J, R). Clearly C(J, R) is a Banach algebra with respect to above norm and multiplication in it. By L1(J, R) denote
the space of Lebesgue integrable real-valued functions on J equipped with the norm ‖ · ‖L1 defined by

‖x‖L1 =

∫ T

0
|x(s)|ds.

We prove the existence of solution for the FHDE (2.1) by a fixed point theorem in Banach algebra due to Dhage [34].
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Lemma 3.1 ([34]). Let S be a non-empty, closed convex and bounded subset of the Banach algebra X and let A : X → X and
B : S → X be two operators such that

(a) A is Lipschitzian with a Lipschitz constant α,
(b) B is completely continuous,
(c) x = AxBy ⇒ x ∈ S for all y ∈ S, and
(d) αM < 1, where M = ‖B(S)‖ = sup{‖B(x)‖ : x ∈ S}.

Then the operator equation AxBx = x has a solution in S.

We consider the following hypotheses in what follows.

(A0) The function x →
x

f (t,x) is increasing in R almost everywhere for t ∈ J .
(A1) There exists a constant L > 0 such that

|f (t, x) − f (t, y)| ≤ L|x − y|

for all t ∈ J and x, y ∈ R.

(A2) There exists a function h ∈ L1(J, R) such that

|g(t, x)| ≤ h(t) a.e. t ∈ J

for all x ∈ R.

Lemma 3.2 ([25]). Let 0 < q < 1 and u ∈ L1(0, T ).

(H1) The equality DqIqu(x) = u(x) holds.
(H2) The equality

IqDqu(x) = u(x) −
I1−qu(0)

Γ (q)
xq−1

holds almost everywhere on J.

The following lemma is useful in what follows.

Lemma 3.3. Assume that hypothesis (A0) holds. Then for any h ∈ L1(J, R) and 0 < q < 1, the function x ∈ C(J, R) is a solution
of the FHDE

Dq
[

x(t)
f (t, x(t))

]
= h(t), a.e. t ∈ J, (3.1)

and

x(0) = 0, (3.2)

if and only if x satisfies the hybrid integral equation (HIE)

x(t) =
f (t, x(t))

Γ (q)

∫ t

0
(t − s)q−1h(s)ds, t ∈ J. (3.3)

Proof. Let x be a solution of the Cauchy problem (3.1) and (3.2). Since the Riemann–Liouville fractional integral Iq is a
monotone operator, thus, we apply fractional integral Iq on both sides of (3.1), by Lemma 3.2, we have

IqDq
[

x(t)
f (t, x(t))

]
=

x(t)
f (t, x(t))

−

I1−q x(t)
f (t,x(t))


t=0

Γ (q)
tq−1

= Iqh(t),

then by (3.2), we get

x(t)
f (t, x(t))

= Iqh(t) +

I1−q x(t)
f (t,x(t))


t=0

Γ (q)
tq−1

= Iqh(t),

i.e.,

x(t) = f (t, x(t)) · Iqh(t) =
f (t, x(t))

Γ (q)

∫ t

0
(t − s)q−1h(s)ds, t ∈ J.

Thus, (3.3) holds.
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Conversely, assume that x satisfies HIE (3.3). Then dividing by f (t, x(t)) and applying Dq on both sides of (3.3), so (3.1) is
satisfied. Again, substituting t = 0 in (3.3) yields

x(0)
f (0, x(0))

= 0 =
0

f (0, 0)
.

Since the map x →
x

f (t,x) is increasing in R almost everywhere for t ∈ J , the map x →
x

f (0,x) is injective in R and x(0) = 0.
Hence (3.2) also holds. The proof is completed. �

Now we are in a position to prove the following existence theorem for FHDE (2.1).

Theorem 3.1. Assume that hypotheses (A0)–(A2) hold. Further, if

LT q
‖h‖L1

Γ (q + 1)
< 1, (3.4)

then the FHDE (2.1) has a solution defined on J.

Proof. Set X = C(J, R) and define a subset S of X defined by

S = {x ∈ X | ‖x‖ ≤ N}, (3.5)

where N =
F0Tq‖h‖L1

Γ (q+1)−LTq‖h‖L1
and F0 = supt∈J |f (t, 0)|.

Clearly S is a closed, convex and bounded subset of the Banach space X . By Lemma 3.3, FHDE (2.1) is equivalent to the
nonlinear HIE

x(t) =
f (t, x(t))

Γ (q)

∫ t

0
(t − s)q−1g(s, x(s))ds, t ∈ J. (3.6)

Define two operators A : X → X and B : S → X by

Ax(t) = f (t, x(t)), t ∈ J, (3.7)

and

Bx(t) =
1

Γ (q)

∫ t

0
(t − s)q−1g(s, x(s))ds, t ∈ J. (3.8)

Then the HIE (3.6) is transformed into the operator equation as

Ax(t)Bx(t) = x(t), t ∈ J. (3.9)

We shall show that the operators A and B satisfy all the conditions of Lemma 3.1.
First, we show that A is a Lipschitz operator on X with the Lipschitz constant L. Let x, y ∈ X . Then by hypothesis (A1),

|Ax(t) − Ay(t)| = |f (t, x(t)) − f (t, y(t))| ≤ L|x(t) − y(t)| ≤ L‖x − y‖,

for all t ∈ J . Taking supremum over t , we obtain

‖Ax − Ay‖ ≤ L‖x − y‖,

for all x, y ∈ X .

Next, we show that B is a compact and continuous operator on S into X . First we show that B is continuous on S. Let {xn}
be a sequence in S converging to a point x ∈ S. Then by the Lebesgue dominated convergence theorem,

lim
n→∞

Bxn(t) = lim
n→∞

1
Γ (q)

∫ t

0
(t − s)q−1g(s, xn(s))ds

=
1

Γ (q)

∫ t

0
(t − s)q−1 lim

n→∞
g(s, xn(s))ds

=
1

Γ (q)

∫ t

0
(t − s)q−1g(s, x(s))ds

= Bx(t),

for all t ∈ J . This shows that B is a continuous operator on S.
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Nextwe show that B is a compact operator on S. It is enough to show that B(S) is a uniformly bounded and equicontinuous
set in X . On the one hand, let x ∈ S be arbitrary. Then by hypothesis (A2),

|Bx(t)| =

 1
Γ (q)

∫ t

0
(t − s)q−1g(s, x(s))ds


≤

1
Γ (q)

∫ t

0
(t − s)q−1

|g(s, x(s))|ds

≤
1

Γ (q)

∫ t

0
(t − s)q−1h(s)ds

≤
T q

Γ (q + 1)
‖h‖L1 ,

for all t ∈ J . Taking supremum over t,

‖Bx‖ ≤
T q

Γ (q + 1)
‖h‖L1

for all x ∈ S. This shows that B is uniformly bounded on S.
On the other hand, let t1, t2 ∈ J , with t1 < t2. Then for any x ∈ S, one has

|Bx(t1) − Bx(t2)| =

 1
Γ (q)

∫ t1

0
(t1 − s)q−1g(s, x(s))ds −

1
Γ (q)

∫ t2

0
(t2 − s)q−1g(s, x(s))ds


≤

 1
Γ (q)

∫ t1

0
(t1 − s)q−1g(s, x(s))ds −

1
Γ (q)

∫ t1

0
(t2 − s)q−1g(s, x(s))ds


+

 1
Γ (q)

∫ t1

0
(t2 − s)q−1g(s, x(s))ds −

1
Γ (q)

∫ t2

0
(t2 − s)q−1g(s, x(s))ds


≤

‖h‖L1

Γ (q + 1)
[|tq2 − tq1 − (t2 − t1)q| + (t2 − t1)q].

Hence, for ε > 0, there exists a δ > 0 such that

|t1 − t2| < δ ⇒ |Bx(t1) − Bx(t2)| < ε,

for all t1, t2 ∈ J and for all x ∈ S. This shows that B(S) is an equicontinuous set in X . Now the set B(S) is uniformly bounded
and equicontinuous set in X , so it is compact by the Arzela–Ascoli Theorem. As a result, B is a complete continuous operator
on S.

Next, we show that hypothesis (c) of Lemma 3.1 is satisfied. Let x ∈ X and y ∈ S be arbitrary such that x = AxBy. Then,
by assumption (A1), we have

|x(t)| = |Ax(t)||By(t)|

= |f (t, x(t))|
 1
Γ (q)

∫ t

0
(t − s)q−1g(s, y(s))ds


≤ [|f (t, x(t)) − f (t, 0)| + |f (t, 0)|]


1

Γ (q)

∫ t

0
(t − s)q−1

|g(s, y(s))|ds


≤ [L|x(t)| + F0]


1
Γ (q)

∫ t

0
(t − s)q−1h(s)ds


≤ [L|x(t)| + F0]


T q

Γ (q + 1)
‖h‖L1


.

Thus,

|x(t)| ≤
F0T q

‖h‖L1

Γ (q + 1) − LT q‖h‖L1
.

Taking supremum over t,

‖x‖ ≤
F0T q

‖h‖L1

Γ (q + 1) − LT q‖h‖L1
= N.
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This shows that hypothesis (c) of Lemma 3.1 is satisfied. Finally, we have

M = ‖B(S)‖ = sup{‖Bx‖ : x ∈ S} ≤
T q

Γ (q + 1)
‖h‖L1

and so,

αM ≤ L


T q

Γ (q + 1)
‖h‖L1


< 1.

Thus, all the conditions of Lemma 3.1 are satisfied and hence the operator equation AxBx = x has a solution in S. As a result,
the FHDE (2.1) has a solution defined on J . This completes the proof. �

4. Fractional hybrid differential inequalities

We discuss a fundamental result relative to strict inequalities for the FHDE (2.1).

Lemma 4.1 ([22]). Let m : R+ → R be locally Hölder continuous such that for any t1 ∈ (0, +∞), we have

m(t1) = 0 and m(t) ≤ 0 for 0 ≤ t ≤ t1. (4.1)

Then it follows that

Dqm(t1) ≥ 0. (4.2)

Theorem 4.1. Assume that hypotheses (A0) holds. Suppose that there exist functions y, z : [0, T ] → R that are locally Hölder
continuous such that

Dq
[

y(t)
f (t, y(t))

]
≤ g(t, y(t)), a.e. t ∈ J (4.3)

and

Dq
[

z(t)
f (t, z(t))

]
≥ g(t, z(t)), a.e. t ∈ J, (4.4)

one of the inequalities being strict. Then

y(0) < z(0) (4.5)

implies

y(t) < z(t) (4.6)

for all t ∈ J .

Proof. Suppose that inequality (4.4) is strict. Assume that the claim is false. Then there exists a t1 ∈ J, t1 > 0 such that
y(t1) = z(t1) and y(t) < z(t) for 0 ≤ t < t1.

Define

Y (t) =
y(t)

f (t, y(t))
and Z(t) =

z(t)
f (t, z(t))

.

Then we have Y (t1) = Z(t1) and by virtue of hypothesis (A0), we get Y (t) < Z(t) for all 0 ≤ t < t1. Setting
m(t) = Y (t) − Z(t), 0 ≤ t ≤ t1, we find that m(t) ≤ 0, 0 ≤ t ≤ t1 and m(t1) = 0. Then by Lemma 4.1, we have
Dqm(t1) ≥ 0. By (4.3) and (4.4), we obtain

g(t1, y(t1)) ≥ DqY (t1) ≥ DqZ(t1) > g(t1, z(t1)).

This is a contradiction with y(t1) = z(t1). Hence the conclusion (4.6) is valid and the proof is complete. �

The next result is concernedwith nonstrict fractional differential inequalitieswhich requires a kind of one sided Lipschitz
condition.

Theorem 4.2. Assume that the conditions of Theorem 4.1 hold with inequalities (4.3) and (4.4). Suppose that there exists a real
number M > 0 such that

g(t, x1) − g(t, x2) ≤
M

1 + tq


x1

f (t, x1)
−

x2
f (t, x2)


, a.e. t ∈ J (4.7)
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for all x1, x2 ∈ R with x1 ≥ x2. Then y(0) ≤ z(0) implies, provided MT q
≤

1
Γ (1−q) ,

y(t) ≤ z(t) (4.8)

for all t ∈ J .

Proof. We set

zε(t)
f (t, zε(t))

=
z(t)

f (t, z(t))
+ ε(1 + tq),

for small ε > 0, so that we have

zε(t)
f (t, zε(t))

>
z(t)

f (t, z(t))
⇒ zε(t) > z(t). (4.9)

Let Zε(t) =
zε(t)

f (t,zε(t))
so that Z(t) =

z(t)
f (t,z(t)) for t ∈ J . Since

g(t, zε) − g(t, z) ≤
M

1 + tq


zε

f (t, zε)
−

z
f (t, z)


for all t ∈ J and MT q

≤
1

Γ (1−q) , one has

DqZε(t) = DqZ(t) + εDq(1 + tq)

≥ g(t, z(t)) + ε


1

tqΓ (1 − q)
+ Γ (1 + q)


> g(t, zε(t)) − Mε + ε

1
tqΓ (1 − q)

> g(t, zε(t)).

Also, we have zε(0) > z(0) ≥ y(0). Hence, by an application of Theorem 4.1 with z = zε yields that y(t) < zε(t) for all t ∈ J .
By the arbitrariness of ε > 0, taking the limits as ε → 0, we have y(t) ≤ z(t) for all t ∈ J . This completes the proof. �

Remark 4.1. Let f (t, x) ≡ 1 and g(t, x) = x. We can easily verify that f and g satisfy the condition (4.7).

Remark 4.2. The conclusion of Theorems 4.1 and 4.2 also remains true if we replace the derivatives in the inequalities (4.1)
and (4.2) by the Dini-derivative D±

± of the function x(t)
f (t,x(t)) on the bounded interval J.

5. Existence of maximal and minimal solutions

In this section, we shall prove the existence of maximal and minimal solutions for the FHDE (2.1) on J = [0, T ]. We need
the following definition in what follows.

Definition 5.1. A solution r of the FHDE (2.1) is said to be maximal if for any other solution x to the FHDE (2.1) one has
x(t) ≤ r(t), for all t ∈ J . Similarly, a solution ρ of the FHDE (2.1) is said to be minimal if ρ(t) ≤ x(t), for all t ∈ J , where x is
any solution of the FHDE (2.1) on J .

We discuss the case of maximal solution only, as the case of minimal solution is similar and can be obtained with the
same arguments with appropriate modifications. Given an arbitrary small real number ε > 0, consider the following initial
value problem of FHDE of order 0 < q < 1,Dq

[
x(t)

f (t, x(t))

]
= g(t, x(t)) + ε, a.e. t ∈ J,

x(0) = 0,
(5.1)

where f ∈ C(J × R, R \ {0}) and g ∈ C(J × R, R).
An existence theorem for the FHDE (5.1) can be stated as follows.

Theorem 5.1. Assume that hypotheses (A0)–(A2) hold. Suppose that inequality (3.4) holds. Then for every small number ε > 0,
the FHDE (5.1) has a solution defined on J.
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Proof. By hypothesis, since

LT q
‖h‖L1

Γ (q + 1)
< 1,

there exists an ε0 > 0 such that

LT q(‖h‖L1 + εT )

Γ (q + 1)
< 1,

for all 0 < ε ≤ ε0. Now the rest of the proof is similar to Theorem 3.1. �

Our main existence theorem for maximal solution for the FHDE (2.1) is

Theorem 5.2. Assume that hypotheses (A0)–(A2) hold. Furthermore, if condition (3.4) holds, then the FHDE (2.1) has a maximal
solution defined on J.

Proof. Let {εn}
∞

0 be a decreasing sequence of positive real numbers such that limn→∞ εn = 0, where ε0 is a positive real
number satisfying the inequality

LT q(‖h‖L1 + ε0T )

Γ (q + 1)
< 1, (5.2)

The number ε0 exists in view of inequality (3.4). By Theorem 5.1, then there exists a solution r(t, εn) defined on J of the
FHDE, Dq

[
x(t)

f (t, x(t))

]
= g(t, x(t)) + εn, a.e. t ∈ J,

x(0) = 0.
(5.3)

Then for any solution u of the FHDE (2.1) satisfies

Dq
[

u(t)
f (u, u(t))

]
≤ g(t, u(t)),

and any solution of auxiliary problem (5.3) satisfies

Dq
[

r(t, εn)
f (t, r(t, εn))

]
= g(t, r(t, εn)) + εn > g(t, r(t, εn)),

where u(0) = 0 ≤ εn = r(0, εn). By Theorem 4.2, we infer that

u(t) ≤ r(t, εn) (5.4)

for all t ∈ J and n ∈ N ∪ {0}.
Since ε2 = r(0, ε2) ≤ r(0, ε1) = ε1, then by Theorem 4.2, we infer that r(t, ε2) ≤ r(t, ε1). Therefore, r(t, εn) is a

decreasing sequence of positive real numbers, the limit

r(t) = lim
n→∞

r(t, εn) (5.5)

exists. We show that the convergence in (5.5) is uniform on J . To finish, it is enough to prove that the sequence r(t, εn) is
equicontinuous in C(J, R). Let t1, t2 ∈ J with t1 < t2 be arbitrary. Then,

|r(t1, εn) − r(t2, εn)| =

[f (t1, r(t1, εn))] 
1

Γ (q)

∫ t1

0
(t1 − s)q−1(g(s, r(s, εn)) + εn)ds


− [f (t2, r(t2, εn))]


1

Γ (q)

∫ t2

0
(t2 − s)q−1(g(s, r(s, εn)) + εn)ds


≤

[f (t1, r(t1, εn))] 
1

Γ (q)

∫ t1

0
(t1 − s)q−1(g(s, r(s, εn)) + εn)ds


− [f (t2, r(t2, εn))]


1

Γ (q)

∫ t1

0
(t1 − s)q−1(g(s, r(s, εn)) + εn)ds


+

[f (t2, r(t2, εn))] 
1

Γ (q)

∫ t1

0
(t1 − s)q−1(g(s, r(s, εn)) + εn)ds


− [f (t2, r(t2, εn))]


1

Γ (q)

∫ t2

0
(t2 − s)q−1(g(s, r(s, εn)) + εn)ds
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≤ |f (t1, r(t1, εn)) − f (t2, r(t2, εn))|
(‖h‖L1 + εn)T q

Γ (q + 1)

+ F
(‖h‖L1 + εn)

Γ (q + 1)
[|tq2 − tq1 − (t2 − t1)q| + (t2 − t1)q],

where F = sup(t,x)∈J×[−N,N] |f (t, x)|.
Since f is continuous on compact set J × [−N,N], it is uniformly continuous there. Hence,

|f (t1, r(t1, εn)) − f (t2, r(t2, εn))| → 0 as t1 → t2

uniformly for all n ∈ N.
Therefore, from the above inequality, it follows that

|r(t1, εn) − r(t2, εn)| → 0 as t1 → t2

uniformly for all n ∈ N. Therefore,

r(t, εn) → r(t) as n → ∞

for all t ∈ J.
Next, we show that the function r(t) is a solution of the FHDE (2.1) defined on J . Now, since r(t, εn) is a solution of the

FHDE (5.3), we have

r(t, εn) = [f (t, r(t, εn))]


1
Γ (q)

∫ t

0
(t − s)q−1(g(s, r(s, εn)) + εn)ds


(5.6)

for all t ∈ J . Taking the limit as n → ∞ in the above Eq. (5.6) yields

r(t) = [f (t, r(t))]


1
Γ (q)

∫ t

0
(t − s)q−1g(s, r(s))ds


for all t ∈ J . Thus, the function r is a solution of the FHDE (2.1) on J . Finally, from inequality (5.3), it follows that u(t) ≤ r(t)
for all t ∈ J . Hence, the FHDE (2.1) has a maximal solution on J. This completes the proof. �

6. Comparison theorems

The main problem of the differential inequalities is to estimate a bound for the solution set for the differential inequality
related to the FHDE (2.1). In this section, we prove that themaximal andminimal solutions serve as bounds for the solutions
of the related differential inequality to FHDE (2.1) on J = [0, T ].

Theorem 6.1. Assume that hypotheses (A0)–(A2) and condition (3.4) hold. Suppose that there exists a real number M > 0 such
that

g(t, x1) − g(t, x2) ≤
M

1 + tq


x1

f (t, x1)
−

x2
f (t, x2)


, a.e. t ∈ J

for all x1, x2 ∈ R with x1 ≥ x2, where MT q
≤

1
Γ (1−q) . Furthermore, if there exists a function u ∈ C(J, R) such thatDq

[
u(t)

f (t, u(t))

]
≤ g(t, u(t)), a.e. t ∈ J,

u(0) ≤ 0.
(6.1)

Then

u(t) ≤ r(t) (6.2)

for all t ∈ J , where r is a maximal solution of the FHDE (2.1) on J.

Proof. Let ε > 0 be arbitrary small. By Theorem 5.2, r(t, ε) is a maximal solution of the FHDE (5.1) and that the limit

r(t) = lim
ε→0

r(t, ε) (6.3)

is uniform on J and the function r is a maximal solution of the FHDE (2.1) on J . Hence, we obtainDq
[

r(t, ε)
f (t, r(t, ε))

]
= g(t, r(t, ε)) + ε, a.e. t ∈ J,

r(0, ε) = 0.
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From the above inequality it follows thatDq
[

r(t, ε)
f (t, r(t, ε))

]
> g(t, r(t, ε)), a.e. t ∈ J,

r(0, ε) = 0.
(6.4)

Now we apply Theorem 4.2 to the inequalities (6.1) and (6.4) and conclude that u(t) < r(t, ε) for all t ∈ J . This further in
view of limit (6.3) implies that inequality (6.2) holds on J . This completes the proof. �

Theorem 6.2. Assume that hypotheses (A0)–(A2) and condition (3.4) hold. Suppose that there exists a real number M > 0 such
that

g(t, x1) − g(t, x2) ≤
M

1 + tq


x1

f (t, x1)
−

x2
f (t, x2)


, a.e. t ∈ J

for all x1, x2 ∈ R with x1 ≥ x2, where MT q
≤

1
Γ (1−q) . Furthermore, if there exists a function u ∈ C(J, R) such thatDq

[
v(t)

f (t, v(t))

]
≥ g(t, v(t)), a.e. t ∈ J,

v(0) > 0.

Then

ρ(t) ≤ v(t)

for all t ∈ J , where ρ is a minimal solution of the FHDE (2.1) on J.

Note that Theorem 6.1 is useful to prove the boundedness and uniqueness of the solutions for the FHDE (2.1) on J . A result
in this direction is

Theorem 6.3. Assume that hypotheses (A0)–(A2) and condition (3.4) hold. Suppose that there exists a real number M > 0 such
that

g(t, x1) − g(t, x2) ≤
M

1 + tq


x1

f (t, x1)
−

x2
f (t, x2)


, a.e. t ∈ J

for all x1, x2 ∈ R with x1 ≥ x2, where MT q
≤

1
Γ (1−q) . If identically zero function is the only solution of the differential equation

Dqm(t) =
M

1 + tq
m(t) a.e. t ∈ J, m(0) = 0, (6.5)

then the FHDE (2.1) has a unique solution on J.

Proof. By Theorem 3.1, the FHDE (2.1) has a solution defined on J . Suppose that there are two solutions u1 and u2 of the
FHDE (2.1) existing on J with u1 > u2. Define a functionm : J → R by

m(t) =
u1(t)

f (t, u1(t))
−

u2(t)
f (t, u2(t))

.

In view of hypothesis (A0), we conclude thatm(t) > 0. Then we have

Dqm(t) = Dq
[

u1(t)
f (t, u1(t))

]
− Dq

[
u2(t)

f (t, u2(t))

]
= g(t, u1) − g(t, u2)

≤
M

1 + tq


u1

f (t, u1)
−

u2

f (t, u2)


=

M
1 + tq

m(t)

for almost everywhere t ∈ J , and thatm(0) = 0.
Now, we apply Theorem 6.1 with f (t, x) ≡ 1 to get that m(t) ≤ 0 for all t ∈ J , where identically zero function is the

only solution of the differential equation (6.5). m(t) ≤ 0 is a contradiction with m(t) > 0. Then we can get u1 = u2. This
completes the proof. �
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7. Existence of extremal solutions in vector segment

Sometimes it is desirable to have knowledge of the existence of extremal positive solutions for the FHDE (2.1) on J . In
this section, we shall prove the existence of maximal and minimal positive solutions for the FHDE (2.1) between the given
upper and lower solutions on J = [0, T ]. We use a hybrid fixed point theorem of Dhage [31] in ordered Banach spaces for
establishing our results. We need the following preliminaries in what follows.

A non-empty closed set K in a Banach algebra X is called a cone with vertex 0, if

(i) K + K ⊆ K ,
(ii) λK ⊆ K for λ ∈ R, λ ≥ 0,
(iii) (−K)


K = 0, where 0 is the zero element of X,

(iv) a cone K is called to be positive if K ◦ K ⊆ K , where ◦ is a multiplication composition in X .

We introduce an order relation ≤ in X as follows. Let x, y ∈ X . Then x ≤ y if and only if y − x ∈ K . A cone K is said to be
normal if the norm ‖ · ‖ is semi-monotone increasing on K , that is, there is a constant N > 0 such that ‖x‖ ≤ N‖y‖ for all
x, y ∈ K with x ≤ y. It is known that if the cone K is normal in X , then every order-bounded set in X is norm-bounded. The
details of cones and their properties appear in Heikkilä and Lakshmikantham [35].

Lemma 7.1 ([31]). Let K be a positive cone in a real Banach algebra X and let u1, u2, v1, v2 ∈ K be such that u1 ≤ v1 and
u2 ≤ v2. Then u1u2 ≤ v1v2.

For any a, b ∈ X , the order interval [a, b] is a set in X given by

[a, b] = {x ∈ X : a ≤ x ≤ b}.

Definition 7.1. Amapping Q : [a, b] → X is said to be nondecreasing or monotone increasing if x ≤ y implies Qx ≤ Qy for
all x, y ∈ [a, b].

We use the following fixed point theorems of Dhage [32] for proving the existence of extremal solutions for the IVP (2.1)
under certain monotonicity conditions.

Lemma 7.2 ([32]). Let K be a cone in a Banach algebra X and let a, b ∈ X be such that a ≤ b. Suppose that A, B : [a, b] → K
are two nondecreasing operators such that

(a) A is Lipschitzian with a Lipschitz constant α,
(b) B is complete,
(c) AxBx ∈ [a, b] for each x ∈ [a, b].

Further, if the cone K is positive and normal, then the operator equation AxBx = x has a least and a greatest positive solution in
[a, b], whenever αM < 1, where M = ‖B([a, b])‖ = sup{‖Bx‖ : x ∈ [a, b]}.

We equip the space C(J, R) with the order relation ≤ with the help of cone K defined by

K = {x ∈ C(J, R) : x(t) ≥ 0, ∀ t ∈ J}. (7.1)

It is well known that the cone K is positive and normal in C(J, R). We need the following definitions in what follows.

Definition 7.2. A function a ∈ C(J, R) is called a lower solution of the FHDE (2.1) defined on J if it satisfies (4.3). Similarly,
a function a ∈ C(J, R) is called an upper solution of the FHDE (2.1) defined on J if it satisfies (4.4). A solution to the FHDE
(2.1) is a lower as well as an upper solution for the FHDE (2.1) defined on J and vice versa.

We consider the following set of assumptions:

(B0) f : J × R → R+
− {0}, g : J × R → R+.

(B1) The FHDE (2.1) has a lower solution a and an upper solution b defined on J with a ≤ b.
(B2) The function x →

x
f (t,x) is increasing in the interval [mint∈J a(t),maxt∈J b(t)] almost everywhere for t ∈ J .

(B3) The functions f (t, x) and g(t, x) are nondecreasing in x almost everywhere for t ∈ J .
(B4) There exists a function k ∈ L1(J, R) such that g(t, b(t)) ≤ k(t).

We remark that hypothesis (B4) holds in particular if f is continuous and g is L1-Carathéodory on J × R.

Theorem 7.1. Suppose that assumptions (A1) and (B0)–(B4) hold. Furthermore, if

LT q

Γ (q + 1)
‖k‖L1 < 1, (7.2)

then the FHDE (2.1) has a minimal and a maximal positive solution defined on J.
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Proof. Now, the FHDE (2.1) is equivalent to integral equation (3.6) defined on J . Let X = C(J, R). Define two operators
A and B on X by (3.7) and (3.8) respectively. Then the integral equation (3.6) is transformed into an operator equation
Ax(t)Bx(t) = x(t) in the Banach algebra X . Notice that hypothesis (B0) implies A, B : [a, b] → K . Since the cone K in X
is normal, [a, b] is a norm-bounded set in X . Now it is shown, as in the proof of Theorem 3.1, that A is a Lipschitzian with
the Lipschitz constant L and B is completely continuous operator on [a, b]. Again, hypothesis (B3) implies that A and B are
nondecreasing on [a, b]. To see this, let x, y ∈ [a, b] be such that x ≤ y. Then, by hypothesis (B3),

Ax(t) = f (t, x(t)) ≤ f (t, y(t)) = Ay(t)

for all t ∈ J . Similarly, we have

Bx(t) =
1

Γ (q)

∫ t

0
(t − s)q−1g(s, x(s))ds

≤
1

Γ (q)

∫ t

0
(t − s)q−1g(s, y(s))ds

= By(t)

for all t ∈ J . So A and B are nondecreasing operators on [a, b]. By Lemma 7.1 and hypothesis (B3) together imply that

a(t) ≤
f (t, a(t))

Γ (q)

∫ t

0
(t − s)q−1g(s, x(s))ds

≤
f (t, x(t))

Γ (q)

∫ t

0
(t − s)q−1g(s, x(s))ds

≤
f (t, b(t))

Γ (q)

∫ t

0
(t − s)q−1g(s, x(s))ds

≤ b(t)

for all t ∈ J and x ∈ [a, b]. As a result a(t) ≤ Ax(t)Bx(t) ≤ b(t), for all t ∈ J and x ∈ [a, b]. Hence, AxBx ∈ [a, b] for all
x ∈ [a, b]. Again,

M = ‖B([a, b])‖ = sup{‖Bx‖ : x ∈ [a, b]} ≤
T q

Γ (q + 1)
‖k‖L1

and so,

αM ≤
LT q

Γ (q + 1)
‖k‖L1 < 1.

Now, we apply Lemma 7.2 to the operator equation AxBx = x to yield that the FHDE (2.1) has a minimal and a maximal
positive solution in [a, b] defined on J . This completes the proof. �
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