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EVALUATING MEAN SOJOURN TIME ESTIMATES
FOR THE M/M/1 QUEUE

HirosHI ToyoI1zuMI
NTT Telecommunication Networks Laboratories
Musashino-shi, Midori-cho, 3-9-11, Japan

Abstract—Mean sojourn time is one of the most important performance measures for queueing
systems. It is difficult to obtain the real sojourn time of a customer directly, so it is also difficult
to estimate the mean sojourn time. In this paper, we propose a new and relatively simple estimate
of the mean sojourn time in a single server queue, using the number of arrivals and the number of
departures. This method can be used for evaluating the quality and the performance of call processing
in communication switching systems, for example. We evaluate the accuracy of this estimate for
an M/M/1 queue, using some results obtained by Jenkins. This estimate is compared with two
other standard estimates of the mean sojourn time obtained from the sequence of actual arrival and
departure times.

1. INTRODUCTION

Mean sojourn time (waiting time plus service time) in a queueing system is used to analyze the
performance of the system and the quality of service to the customers. For example, commu-
nication switching systems are required to maintain a certain quality and performance in call
processing. Engineers and administrators have to check the mean sojourn time of calls in the
switching systems. However, we do not have a good method of estimating the mean sojourn
time so far. In most cases, measuring the sojourn time of each customer is ineffective, since col-
lecting actual time instants of arrival and departure is cumbersome work and we cannot expect
good accuracy in the estimate because of the positive correlation between the sojourn times of
customers.

Here, we present a new and relatively simple estimate of the mean sojourn time, which should
be easily applied to real systems. The object of this paper is to evaluate the relative efficiency of
our estimate and two standard methods for estimating the mean sojourn time.

First, we briefly look at our estimate. We consider observing, over a certain period of time,
the number of arrivals and the number of departures only at regular intervals, obtaining a series
of numbers of customers in the system and their mean. The estimates of the average number
of customers and arrival rate lead to an estimate of the mean sojourn time by applying Little’s
formula. We call this the Customer Count Estimate (CCE) of the mean sojourn time.

We investigate two other estimates of the mean sojourn time for comparison with the CCE.
One is the Direct Estimate (DE), which is to collect the time instants of arrival and departure of
a customer and use them to obtain the sojourn time of the customer and the mean sojourn time.
The other is the Test-Customer Estimate (TCE), which is to generate test-customers at regular
intervals, and put them into the system to measure their sojourn times.

When we evaluate the efficiency of an estimate of some performance measure of a queueing
system, we should deal with the correlation of queueing processes such as queue length, waiting
time and so on. (See Reynolds [1] and Gafarian and Ancker [2].) There have been some studies
on the estimates of the mean sojourn time and waiting time. Jenkins [3] evaluated the efficiency
of the DE for an M/M/1 queue, using results of the cross-covariance of the arrival process and
the queue length process. Blomgqvist [4] studied the covariance of successive waiting times of
an actual customer and evaluated the effect of the positive correlation on the DE in an M/G/1
queue. Also, the DE for a many-server queue was considered by Olsson [5). On the other hand,
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8 H. Toyoizumi

TCE was studied by Matsuda [6] following the results on the covariance of the virtual waiting
time process obtained by Ott [7]. To investigate the efficiency of the CCE, we extend Jenkins’
results, which are for the continuous time measurement of the number of customers in the system,
to discrete time measurement.

Throughout this paper, we consider the equilibrium state of an M/M/1 queue with arrival
rate A, service rate p and traffic intensity p = X/u < 1 under the first-come- first-served discipline.

2. THE CUSTOMER COUNT ESTIMATE (CCE) AND ITS UNBIASEDNESS

First, we state the CCE more precisely. To estimate the mean sojourn time W, which includes
the service time, we have to observe A(t), the number of arrivals during (0,¢], and D(t), the num-
ber of departures during (0,t]. A(t) and D(t) are observed at the regular intervals (¢;)i=1,3,....n,
where At is the scanning interval and » is the number of observations during the measurement
period. Hence, we obtain the sequences (A(%:))i=1,2,...n and (D(#i))i=1,2,..n. Let L(2) be the
number of customers in the system at time ¢. Since L(f) = A(t) ~ D(t), we can estimate the
observed average number of customers in the system as

r=1% 1 (ZA(t)—-ZD(t,).

i=l i=1

We can estimate the observed arrival rate as
< 1
A = - .A(tn).
iy

Finally, after applying the well-known Little’s formula, we can deduce an estimate of the mean
sojourn time in the system as

=L _ Ti(At) - D)) ot
W = 3= AT 1)

REMARK 1. In order to apply the CCE to real systems, we have to prepare four different counters
in the system. Two counters, A(t) and D(t), indicate the number of arrivals and the number
of departures. The other two, 3 A(t;) and Y D(1;), are the respective cumulations of A(t)
and D(t). These two counters read A(t) and D(%) at the regular interval At, and add the values
of A(t) and D(t) to themselves.

REMARK 2. Instead of W,, we can use another estimate of W, such as

iz (A(h) — D(L:)) At
D(tn)

1

WI

In fact, due to the nature of Little’s formula, it is more appropriate to use W/ rather than W,
since the denominator of estimate (1) is the throughput of the system. However, assuming that we
observe the system over a long period, i.e., a sufficiently large t,,, D(t,) will be well approximated
by A(t,). Hence, it is sufficient to consider W, instead of W/,

Now, we proceed to show that our CCE is unbiased. An approximation is obtained by ex-
panding W, = I /A into a two-dimensional Taylor Series about the point (ag, i) = (£(4), E(I)),
where I = 3_7_, L(t;) At and A = A(?). Taking the expectation and retaining only the terms up
to second order, we have an approximation of E(W.):

E(I)
E(A)

E(I)

(W) = B(4)

+ === Var (A) = —=z7—= Cov (I, 4). (2)

E’(A)

(See Kendall-Stuart {8].) Thus, we have to calculate Cov (I, A) to show the unbiasedness of our
estimate.
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LEMMA 1. For the M/M/1 queue,

. Cov(I,A) _ »p
'l;—.o tn T (1-p)? @)

for any At >0 1in I.
PROOF. From the definitions of I and A, we have

Cov (I, A) = i yaL(ti) At,
i=1

where y4r(t) is the covariance function of A(t) and L(t), i.e.,

7aL(t) = Cov (A(2), L(t))
= E({A(t) - E(A()HL(E) - E(L(1)))-

By the use of the Cauchy-Schwartz inequality, we obtain for any non-negative ¢
raz ()] < {Var (L(t)) Var (A@)}? = C1'72, @)

where C = (AVar (L))!/? is a positive constant that is independent of ¢.
For the M/M/1 queue, Jenkins [3] proved that

i =__F _
t!irgo 7AL(t) = (1 — p)z .
Hence, for each ¢ > 0, there exists Ty = igAt > 0 with #p € N such that

yaL(t) - (‘f—iﬁ <e forallt>Tp. (5)

Applying Ty instead of t to (4), we have the upper bound of y4.(t) for t < Tj as

har(t)| < CTR. (6)
Using (5) and (6), we have
YisovAL(t)At  p
tn (1-pt2
) + Y iciot1 YAL(t) _ P
3
n tn (1-»)
< bALOT, e’ | o3 las)-p/0 - Vit e
t n(1-p)?

i=ig+1 n

S CTgla + (Tl - lo) At + iop .

tn tn n(1 - p)?

The right-most of the above inequalities tends to ¢ as n — co. Since € can be taken arbitrarily,
the proof is completed. [}

PRroOPOSITION 1. Let W, be the CCE of W in the M/M/1 queue. Then, W, is asymptotically
unbiased, i.e.,

lim E(W,) = W.
n—-00
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10 H. Toyoizumi

ProoF. From the fact that E(L(%)) = p/(1 — p) for the M/M/1 queue and from Lemma 1, we
have

E(A) = M,
Var (4) = M,
B =S B(Lt:) At = Ll
0y 21 (L) A= 7=
and Cov (U, 4)
. Cov(l,A) _ _ »
e (il

Substituting the above equalities into (2) gives

I-p Mta(l—p)  (Ma)? | 1-p

REMARK 3. In this proof, we use the covariance of the arrival and queue length processes, which
was calculated through the Laplace transform of their joint distribution by Jenkins. However, it
might be impossible to obtain the same results for an M/G/1 queue by the same method.

3. ACCURACY OF THE CUSTOMER COUNT ESTIMATE (CCE)

In much the same way as in (2), we can calculate the variance of W, through the approximation

~ [EW)® (Var (I)  Var(4) 2Cov (I, A)
ve 2 { g} (B B B0 @

(See [8].) In order to estimate the variance, we begin with the following lemma.

LEMMA 2. For the M/M/1 queue,

~aAt
lim Var (I) ~_P At(l+e )’
n—oo  t, (1 — p)2 1 — e—adt

for any At >0 in I, where a = u(1 — p)2/(1+ p).

PROOF. The covariance function of L(t) is approximated by an exponential function such as
vrL(t) = Cov (L(s), L(s +1)) = Var (L) e~*, (8)

for some positive constants « and t, s > 0, where L = lim;_ o, L(t). We have a number of ways
to determine the constant a, but it will be best to match its integral value, since we have to deal
with Y7, vLL () At, which will be similar to f;* vz () dr. We will use the result obtained by
Jenkins [3] to estimate the integral value of 7. (t). Jenkins showed that

* _ P+’
[y et = S

by using the Laplace transform of y;r(t). Hence, we can take

_ps(-p)

a T+p

?
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autocorrelation function
0.8 ™ approximation .

200. 400. 600. 800. 1000.
time (X 1/ )

Figure 1. Antocorrelation function of queue length process and its approximation.

since Var (L) = p/(1 — p)2. We can see how our approximation matches the actual yLr(t) in
Figure 1.
On the other hand, easy computation gives

Var (I) = (2": L(t:) At) = (At)? i vty — ti)

i=1 i=1
y=1
n-1 n-l
= (At)? {n (Va.r Ly+2) -,L,,(t,,)) -2y k-yLL(t,,)} : 9
k=1 k=1
Using the approximation (8), the second term of (9) is evaluated as
2 Z vLL(te) = 2Var (L) {Z(e"”m)'c } (10)
k=0
Let n — oo in (10) to give
—aAt
22 vLr(t) = Var (L) per (11)

Next, we deal with the third term of (9). Using the approximation (8), we have

n— n-1
—9(At)? 21 kyro(ts) = —2(A1)? Var (L) 3 k(e= 2", (12)
k=1 k=0

Similarly, let n — oo in (12), to give

_2§: k'YLL(t) = Var (L) %' )
k=t (1 — e-aAt)

In order to get an a priort estimate of the function on the right hand side of (13), we define
12¢-at
It is not difficult to show that f(2) has the following properties:

f@t)=

f(t) decreases monotonically,
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and
Jlim (1) =0,
from which we obtain 1
ng(t)szf for all ¢ > 0.

Consequently, we can evaluate (13) as

2Var (L)

-2 Z k'yLL(t)

which means that the third term of (9) can be ignored.
Gathering up the results obtained here, we have

-alt
im Var (I) ., At Var (L)(1+ 2e )

n—00 i - ] — e—adt

At(l + e~ @At)
e—aAf * .

= Var (L)

REMARK 4. Although the exact transient solution of L(t) will be used for the evaluation of
yrL(t), the approximation we use here has great computational advantage.

We are now in a position to treat the asymptotic behaviour of the variance of the CCE, which
is our main result.

PRroPOSITION 2. Let W, be the CCE of W in the M /M /1 queue with the service rate s and the
traffic intensity p. Then, we have

p(1—e-2at) ~ X(1-p)

where o = p(1 — p)2/(1 + p) and At > 0.
PROOF. Letting n tend to infinity in (7) gives

Jim tVar (W)= lim (@)2 {(1;,,)2 Var(I) 1 _2(1-p) Cov (I,A)}

A tn A AP tﬂ

1 {At(1+e‘°’-“)_ 1+p}
T (1 -p2 | p(1-em28Y)  M1-p)

4. THE TEST-CUSTOMER ESTIMATE (TCE)
AND THE DIRECT ESTIMATE (DE)

We can easily show that the TCE and DE are unbiased estimates, so we proceed to evaluate
the variance of the estimates.

First, we study the TCE. Since Ott [7] estimated the covariance function of the virtual waiting
time process in the M/G/1 queue, we use his result to obtain the accuracy of the TCE. For the
TCE, the sum of the virtual waiting time and the service time is measured by the test-customers,
which are generated at regular interval At. Here, the test-customers are assumed to have no effect
on other customers. This assumption might be valid when the intervals between test-customer
are considerably long. If the intervals are short, the TCE no longer gives an unbiased estimate
of the mean waiting time in the system, since we cannot ignore the effect of the test-customers,
which increases the waiting time of real customers.

Let V(t) be the virtual waiting time at time ¢ and S; be the service time of the i*® test-customer.
Then, the estimate of the mean sojourn time obtained by the test-customer is

1 n
Wi=— g(vui) +5)).
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ProPoOSITION 3. For the M/M/1 queue, we have

PP(2-p) At(1+e7PAY) At
A2 (1=-p) p(1—e-PA¥) © p2’

lim t, Var (W;) =
Nn=—0

where 8 = A(2 — p) (1 — p)?/p(3 — p) and At > 0.

PRroOF. We use the approximation used by Matsuda [6], who showed that the covariance function
of the virtual waiting time is well approximated as

vy (t) = Cov (V (1), V(0))

& Var (V)e™?', (14)

where V = lim; o V(t). The constant 8 is determined by Ott’s result about the covariance
function of the virtual waiting time. Applying Ott’s result to the M/M/1 case, we have

oo 4 g - 2

Hence, we take
g M2-p)(A=p)
pB-p)

by matching the integral value of 4y v (¢) as in the proof of Lemma 2. In much the same way as
in Section 3, we have

n-1

nl_l.l"lgo t, Var (Wt) ="li.n§° [(At)2 {n (Var (V) + 2"2_:1 ‘yvv(tk)) - 22 k'YVV(tb)}

k=1 k=1
+ t,,Var (S,)]
n

At(1 +e~PAY) At

= Var (V)—-l—:e—_ﬁ;— 7‘? 1

The DE is discussed and analysed by Jenkins [3] in relation to the Maximum Likelihood
Estimate. Here we state his result without the proof.

PROPOSITION 4. Let Wy be the DE of W in the M/M/1 queue, i.e.,

where W; is the sojourn time of the itP real customer. Then, we have the asymptotic variance
of Wy as

2 2
- _ P(1+p)
gyt Var (Wa) = S5 = gy

We can easily find the relation between the CCE and DE by letting At — 0 in Proposition 2.
COROLLARY.

lim ( lim t, Var (Wc)) = ‘lir‘l,lotVar (Wa).

At—0 \n—o00
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5. RELATIVE EFFICIENCY OF THE ESTIMATES BY NUMERICAL RESULTS

In this section, we study the relative efficiency of three estimates, the CCE, TCE and DE. We
have to consider:

(1) how easily we can measure the original data (the number of arrivals, the sojourn time of
customers and so on),

(2) how easily we can process the data, and
(3) how much accuracy we can expect.
Now, we proceed to a more detailed look at (1), (2) and (3) for these estimates.

(1) Measurement
For large p, we have to deal with an immense volume of data for the DE, whereas the
volume of data is reasonable for the CCE and TCE with the scanning interval At selected
so as to produce the same accuracy as the DE. (See (3) below.)

(2) Data processing
We have to prepare clocks and time recorders in systems for the TCE and DE. They are
more cumbersome than the counters of the CCE.

(3) Accuracy
We already know that these three estimates are unbiased, so we should compare their
coefficients of variance, calculated from the results obtained in Sections 3 and 4. We set
the asymptotic coefficient of variance as

{Var (W)2}1/2
EWwW)

Hence, the coefficient of variance is well approximated by AC(W)t=/2 for sufficiently
large t. If we have an equality AC(W,.) = aAC(W;), W. should be observed for a pe-
riod o? times as long as the measurement period of Wy. Thus, we can consider that
AC(W.)? /AC(W,)? expresses the length of the measurement period, i.e., the efficiency of
the estimate W,. In Figure 2, we compare AC(W,)2/AC(W,)? with AC(W;)?/AC(W4)2.
Figure 2 shows that there are no significant differences between these estimates for large p.
It also shows that we do not have to make the scanning interval At so small, since the
positive correlation of the process decreases the accuracy of the estimates.

On the basis of (1), (2) and (3) above, we can conclude that the CCE is a convenient method
for estimating the sojourn time.

AC(W) = lim

test-customer estimate
customer count estimate

measurement length

20. 20. 60. 80.  100.
scan interval At (X 1/u)
Figure 2. Relative efficiency of the estimates (measurement length having the same
accuracy as the direct estimate).
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