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A b s t r a c t - - M e a n  sojourn time is one of the most impor tant  performance measures for queueing 
systems. It  is difficult to obtain the real sojourn time of a customer directly~ so it  is also difficult 
to est imate the  mean  sojourn time. In this paper, we propose a new and relatively simple est imate 
of the mean  sojourn time in a single server queue, using the number  of arrivals and the number  of 
departures.  This method can be used for evaluating the quality and the performance of call processing 
in communicat ion switching systems, for example. We evaluate the accuracy of this est imate for 
an M / M / 1  queue, using some results obtained by Jenkins. This est imate is compared with two 
other s tandard  estimates of the mean  sojourn time obtained from the sequence of actual  arrival and  
departure times. 

1. INTRODUCTION 

Mean sojourn time (waiting time plus service time) in a queueing system is used to analyze the 
performance of the system and the quality of service to the customers. For example, commu- 
nication switching systems are required to maintain a certain quality and performance in call 
processing. Engineers and administrators have to check the mean sojourn time of calls in the 
switching systems. However, we do not have a good method of estimating the mean sojourn 
time so far. In most cases, measuring the sojourn time of each customer is ineffective, since col- 
lecting actual time instants of arrival and departure is cumbersome work and we cannot expect 
good accuracy in the estimate because of the positive correlation between the sojourn times of 
customers. 

Here, we present a new and relatively simple estimate of the mean sojourn time, which should 
be easily applied to real systems. The object of this paper is to evaluate the relative efficiency of 
our estimate and two standard methods for estimating the mean sojourn time. 

First, we briefly look at our estimate. We consider observing, over a certain period of time, 
the number of arrivals and the number of departures only at regular intervals, obtaining a series 
of numbers of customers in the system and their mean. The estimates of the average number 
of customers and arrival rate lead to an estimate of the mean sojourn time by applying Little's 
formula. We call this the Customer Count Estimate (CCE) of the mean sojourn time. 

We investigate two other estimates of the mean sojourn time for comparison with the CCE. 
One is the Direct Estimate (DE), which is to collect the time instants of arrival and departure of 
a customer and use them to obtain the sojourn time of the customer and the mean sojourn time. 
The other is the Test-Customer Estimate (TCE), which is to generate test-customers at regular 
intervals, and put them into the system to measure their sojourn times. 

When we evaluate the efficiency of an estimate of some performance measure of a queueing 
system, we should deal with the correlation of queueing processes such as queue length, waiting 
time and so on. (See Reynolds [1] and Gafarian and Ancker [2].) There have been some studies 
on the estimates of the mean sojourn time and waiting time. Jenkins [3] evaluated the efficiency 
of the DE for an M/M/1 queue, using results of the cross-covariance of the arrival process and 
the queue length process. Blomqvist [4] studied the covariance of successive waiting times of 
an actual customer and evaluated the effect of the positive correlation on the DE in an M/G/1 
queue. Also, the DE for a many-server queue was considered by Olsson [5]. On the other hand, 
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TCE was studied by Matsuda [6] following the results on the covarianee of the virtual waiting 
time process obtained by Ott [7]. To investigate the efficiency of the CCE, we extend Jenkins' 
results, which are for the continuous time measurement of the number of customers in the system, 
to discrete time measurement. 

Throughout this paper, we consider the equilibrium state of an M / M / 1  queue with arrival 
rate A, service rate p and traffic intensity p = A//~ < 1 under the first-come- first-served discipline. 

2. THE C U S T O M E R  C O U N T  ESTIMATE (CCE) AND ITS UNBIASEDNESS 

First, we state the CCE more precisely. To estimate the mean sojourn time W, which includes 
the service time, we have to observe A(t), the number of arrivals during (0,t], and D(~), the num- 
ber of departures during (0,t]. A(t)  and D(t) are observed at the regular intervals (t~)i=1,2 ..... , ,  
where At is the scanning interval and n is the number of observations during the measurement 
period. Hence, we obtain the sequences (A(ti))i=t,2 ..... n and (D(ti))i=l,2,...,n. Let L(t) be the 
number of customers in the system at time t. Since L(t) = A(t) - D(t), we can estimate the 
observed average number of customers in the system as 

L =-- - L(ti) = - A(ti) - D(t,) . 
12 i=1  rt i=1  i=1  

We can estimate the observed arrival rate as 

=- 1 A(t,).  
t ,  

Finally, after applying the well-known Little's formula, we can deduce an estimate of the mean 
sojourn time in the system as 

n Ei=l(A(t i )  - D(ti)) A t  
We - ~ = A( t , )  (1) 

REMARK 1. In order to apply the CCE to real systems, we have to prepare four different counters 
in the system. Two counters, A(t) and D(t), indicate the number of arrivals and the number 
of departures. The other two, ~ A(ti) and ~ D(ti), are the respective cumulations of A(t) 
and D(t). These two counters read A(t) and D(t) at the regular interval At, and add the values 
of A(t)  and D(t) to themselves. 

REMARK 2. Instead of We, we can use another estimate of W, such as 

W~ =- E'n=l(A(t') - D(ti)) At 
D(t.) 

In fact, due to the nature of Little's formula, it is more appropriate to use W~ rather than We, 
since the denominator of estimate (1) is the throughput of the system. However, assuming that we 
observe the system over a long period, i.e., a sufficiently large t , ,  D( t , )  will he well approximated 
by A(t~). Hence, it is sufficient to consider W, instead of W~. 

Now, we proceed to show that our CCE is unbiased. An approximation is obtained by ex- 
panding We - I / A  into a two-dimensional Taylor Series about the point (a0, io) -" (E(A) ,  E(I) ) ,  
where I = ~n=l  L(ti) At  and A =--- A(t). Taking the expectation and retaining only the terms up 
to second order, we have an approximation of E(Wc): 

E(X) E(X) 1 E(Wo) + W (A) Coy (I,A). (2) 

(See Kendall-Stuart [8].) Thus, we have to calculate Coy (I, A) to show the unbiasedness of our 
estimate. 
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LEMMA 1. For the M/M/1 queue, 

Coy (I, A) _ 
tn 

lim P 
n - o  (1 - p)2' 

for any At > 0 in I. 

PROOF. From the definitions of I and A, we have 

11 

Cov (z, A)=  ~ ~L(t,)At, 
i--1 

where 7Ar.(t) is the covariance function of A(t) and L(t), i.e., 

7At.(t) = Coy (A(t),L(t)) 
= E({A(t) - E(A(t))) {L(t) - E(L(t)))). 

By the use of the Canehy-Schwartz inequality, we obtain for any non-negative t 

Iwz( t ) l  _< { v ~  (L(t)) Vat (A(t))} 112 = Ct 112, 

where C = (AVar (L)) 1/2 is a positive constant that is independent of t. 
For the M/M/1 queue, Jenkins [3] proved that 

lira "/At(t) = P 
, - ~  (I - p)2" 

Hence, for each e > 0, there exists To = ioAt > 0 with i0 E N such that 

] '1 7AL(t) (1 -: p)2 < e for all t > To. 

Applying To instead oft to (4), we have the upper bound of 7Ar.(t) for t _< To as 

I'~Az(t)l ___ CT~ I~. 

I E~=io+1 "/AL(i) p < E~°_0 ~,(t,) " t 
- t .  + t .  ( I  - p)2 

< ioAt CT~/~ ~ }TAL(t,) -- pl(1 -- p)~l a t  
- -  t n  ~" i=/o+1 t n  

< C~ la + ( n -  io)eat 4- lop 
- t .  t .  nO-p )2"  

Using (5) and (6), we have 

I ~-~4n=OTAz(ti) At P l 
t .  (1 _'-p)1/2 

(3) 

(4) 

(5) 

(6) 

iop 
4 

. ( 1  - p)2 

CN4~ 24:1/2-B 

The right-most of the above inequalities tends to e as n --* oo. Since e can be taken arbitrarily, 
the proof is completed. II 

PROPOSITION 1. Let Wc he the CCE of W in the M/M~1 queue. Then, Wc is asymptotically 
unbiased, i.e., 

Um E(Wo) = W. 
n " ~  O 0  
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PROOF. From the fact that E(L(ti)) = p/(1 - p) for the M / M / 1  queue and from Lemma 1, we 
have 

E(A) = Atn, 

Var (A) = Atn, 
n 

E(I) = E E(L( t i ) )At  = ptn (f-~), 
i--1 

and 
lim Coy (I, A) = p 

. - o ~  t,, (t  - p)2. 

Substituting the above equalities into (2) gives 

1 L 2irn E(W¢) -- 2 i m  + A2t,.,(1 _ p) St- ~ j - _ = W. | 

REMARK 3. In this proof, we use the covariance of the arrival and queue length processes, which 
was calculated through the Laplace transform of their joint distribution by Jenkins. However, it 
might be impossible to obtain the same results for an M/G/1  queue by the same method. 

3. A C C U R A C Y  OF THE C U S T O M E R  C O U N T  ESTIMATE (CCE) 

In much the same way as in (2), we can calculate the variance of Wc through the approximation 

E(I) ~ {Var ( I )  
Var (We) ~ I. E(A) J E2(I ) 4 

Var (A) 2Cov (I, A) 
E2(A) -~(/) E - -~  J"  (7) 

(See [8].) In order to estimate the variance, we begin with the following lemma. 

LEMMA 2. For the M / M / 1  queue, 

Vat (I) = p At(1 + ~-~') 
lira 

n,oo tn - ( l - p ) 2  1 -  e - ~ z x t  ' 

for any At  > 0 in I, where ~ -- p(1 -- p)2/(1 + p). 

PROOF. The covariance function of L(t) is approximated by an exponential function such as 

7nL(t) -- Cov (L(s), L(s + t)) ~- Var (L) c -ca, (8) 

for some positive constants ~ and t, s >_ 0, where L - limt-.~ L(t). We have a number of ways 
to determine the constant a, but it will be best to match its integral value, since we have to deal 
with ~'~=1 7LL(ti) At, which will be similar to J ~  7LL(r)dT". We will use the result obtained by 
Jenkins [3] to estimate the integral value of 7Ln(t). Jenkins showed that 

p2(1 + p)2 
fo ~nn(O - ~ = dt 

by using the Laplace transform of 7r.n(t). Hence, we can take 

~ ( 1  - p)2 
~ =  l + p  ' 
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Figure 1. Autocorrelation function of queue length process and its approxlmation. 

since Var (L) - p/(l - p)2. 
Figure l. 

On the other hand, easy computation gives 

We can see how our approximation matches the actual 7LL(t) in 

var (x) = L(ti) At = (~t)  2 ~LL(t~ -- t,) 
i=1 

{( / t = ( a 0 '  n Var (L) + 2 ~  ~LL(t~) - 2 ~ , £ ( t ~ )  
k=l k=l 

(9) 

Using the approximation (8), the second term of (9) is evaluated as 

n--1 n-1 1 
2 ~ -rL~(~) -~ 2var ( L ) / ~ ( . - ~ " ' )  ~ - 1 . (1o) 

k=l  k k=0 

Let n ~ co in (10) to give 
oo 2e_aAt 

2 ~  ~,L(t)-~ Var (L) 1 _ e _ ~  ,.  
k=l  

Next, we deal with the third term of (9). Using the approximation (8), we have 

(11) 

n--1 n--1 

--2(At)2 E kTr~L(tk)--~--2(At)'Var (L) E k(e-a~')~" 
k=l k=O 

(:2) 

Similarly, let n ~ ~ in (12), to give 

~o 2 ( A 0  2 e_~a t 
- 2  ~ k~L(t )  -~ Var (L) (1 - ~ - ~ , ) 2  • 

k=l  

(13) 

In order to get an a priori estimate of the function on the right hand side of (13), we define 

t2e-at 
f(t) -- (i -- e-Ca) 2" 

It is not diflicult to show that f(t) has the following properties: 

f( t)  decreases monotonically, 
1 

f(0) = a-: 
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and 
lira f(t) = 0, 

~-.*co 

from which we obtain 
1 

o <_ f(t) < 

Consequently, we can evaluate (13) as 

--2 kTLL(t ) 
k=l.  

for all t > O. 

2var (L) 
~2 < co, 

which means that the third term of (9) can be ignored. 
Gathering up the results obtained here, we have 

hm Var (I) c~ At Var (L)(1 + 2e -a~')  At(1 + e -aAt) 
. - - c o  t ' -""~ - 1 - e - c ' A t  = V a r  ( L ) 1 - e - a 4 t  II 

RZMARK 4. Although the exact transient solution of L(t) will be used for the evaluation of 
7r.L(t), the approximation we use here has great computational advantage. 

We are now in a position to treat the asymptotic behaviour of the variance of the CCE, which 
is our main result. 

PROPOSITION 2. Let We be the CCE of W in the M/M/1  queue with the service rate p and the 
traffic intensity p. Then, we have 

1 2(1- p) Coy LI, A) 

J 

1 f At(1 _+ e - * A t )  
limcot.var (wo) -~ 12(1- p)2 k p(1 - e - a " )  

where a = p(1 - p)2/(1 + p) and At > 0. 

PROOP. Letting n tend to infinity in (7) gives 

lim tnVar (We) ~ lim 

~2(1 - p)2 { At(1 + e -~ ' t )  1 + p 

4. THE TEST-CUSTOMER ESTIMATE (TCE) 
AND THE DIRECT ESTIMATE (DE) 

We can easily show that the TCE and DE are unbiased estimates, so we proceed to evaluate 
the variance of the estimates. 

First, we study the TCE. Since Ott [7] estimated the covariance function of the virtual waiting 
time process in the M/G/1  queue, we use his result to obtain the accuracy of the TCE. For the 
TCE, the sum of the virtual waiting time and the service time is measured by the test-customers, 
which are generated at regular interval At. Here, the test-customers are assumed to have no effect 
on other customers. This assumption might be valid when the intervals between test-customer 
axe considerably long. If the intervals are short, the TCE no longer gives an unbiased estimate 
of the mean waiting time in the system, since we cannot ignore the effect of the test-customers, 
which increases the waiting time of real customers. 

Let V(t) be the virtual waiting time at time t and Si be the service time of the i th test-customer. 
Then, the estimate of the mean sojourn time obtained by the test-customer is 

1 
w ,  = - ~ ; ,  (vCt , )  + s, ) .  

B /=1 
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PROPOSITION 3. For the M / M / 1  queue, we have 

p3(2 -  p) at(1 + e-an,)  a t  
..-.oolim t .  Vat (Wt) =- ~ -- "~ p(1 - e-an,)  ~- --p= ' 

where fl -- A(2 -- p) (1 -- p)2/p(3 -- p) and At > O. 

PROOF. We use the approximation used by Matsuda [6]. who showed that the covariance function 
of the virtual waiting time is well approximated as 

7vv ( t )  - Coy (v( t ) ,  v(0)) 
-~ Vat (V) e -a ' ,  

(14)  

where V = lim,_.¢o V(t). The constant fl is determined by Ott 's result about the covariance 
function of the virtual waiting time. Applying Ott's result to the M / M / 1  ease, we have 

f0  ~ at p4(3 - p)2 7vv(t)  
Aa(1 _ p)4" 

Hence, we take 
/3= A(2 -- p) (1-- p)2 

p(3-- p) ' 

by matching the integral value of 7vv(t)  as in the proof of Lemma 2. In much the same way as 
in Section 3, we have 

[ {( n l ) n l  } 
lira t .va r  (w,) = d i m  (at)  2 . Vat (V) + 2 ~ Wv( t , )  - 2 ~ kTvv(t,) 

k=l k=l 

+ t,Varn (Si)] 

, . ,  At(1 + e -era)  At 
~-Var (v)  i---e--'~7 + p-T | 

The DE is discussed and analysed by Jenkins [3] in relation to the Maximum Likelihood 
Estimate. Here we state his result without the proof. 

PROPOSITION 4. Let Wd be the DE of W in the M/M~1 queue, i.e., 

1 A(t) 

i = i  

where Wi is the sojourn time of the i t h  real customer. Then, we have the asymptotic variance 
Of Wd aZ 

lim t Vat (Wd) = p2(1 + p)2 
, _ ~  ~3(1 _ p)4" 

We can easily find the relation between the CCE and DE by letting At --. 0 in Proposition 2. 

C O R O L L A R Y .  

lira ( l i m  t ,  "Car (We)~ = lim t'Car (Wd). 
n , - - * 0  \ n  -...* co " / , --* e~ 
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5. R E L A T I V E  E F F I C I E N C Y  OF T H E  E S T I M A T E S  BY N U M E R I C A L  RESULTS 

In this section, we study the relative efficiency of three estimates, the CCE, TCE and DE. We 
have to consider: 

(1) how easily we can measure the original data  (the number of arrivals, the sojourn time of 
customers and so on), 

(2) how easily we can process the data, and 
(3) how much accuracy we can expect. 

Now, we proceed to a more detailed look at (1), (2) and (3) for these estimates. 
(1) Measurement 

For large p, we have to deal with an immense volume of data  for the DE, whereas the 
volume of data  is reasonable for the CCE and TCE with the scanning interval At  selected 
so as to produce the same accuracy as the DE. (See (3) below.) 

(2) Data processing 
We have to prepare clocks and time recorders in systems for the TCE and DE. They are 
more cumbersome than the counters of the CCE. 

(3) Accuracy 
We already know that  these three estimates are unbiased, so we should compare their 
coefficients of variance, calculated from the results obtained in Sections 3 and 4. We set 
the asymptotic coefficient of variance as 

A C ( W ) =  lira {Var (W)t} 1/2 
E(W) 

Hence, the coefficient of variance is well approximated by AC(W) t  -112 for sufficiently 
large t. If  we have an equality AC(W¢) - aAC(Wa), We should be observed for a pe- 
riod a 2 times as long as the measurement period of Wa. Thus, we can consider that  
AC(We)2/AC(Wd) 2 expresses the length of the measurement period, i.e., the efficiency of 
the estimate We. In Figure 2, we compare AC(We)2/AC(Wa) 2 with AC(W,)2/AC(Wa)L 
Figure 2 shows that  there are no significant differences between these estimates for large p. 
It also shows that  we do not have to make the scanning interval At  so small, since the 
positive correlation of the process decreases the accuracy of the estimates. 

On the basis of (1), (2) and (3) above, we can conclude that  the CCE is a convenient method 
for estimating the sojourn time. 

5 / p =0.3 / ..... test-customer csdmate 

/ /  
p :0.7 

/ .................................. 

4b. 66. eb.  o'o. 
scanimerval ~ t  ( × I / ~ )  

Figure 2. Relative efficiency of the ei~n~es (me~u~nent length having the smue 
accuracy as the direct estimate). 
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