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Abstract

Recently, several inequalities of Brunn—Minkowski type have been proved for well-known
functionals in the Calculus of Variations, e.g. the first eigenvalue of the Laplacian, the Newton
capacity, the torsional rigidity and generalizations of these examples. In this paper, we add new
contributions to this topic: in particular, we establish equality conditions in the case of the first
eigenvalue of the Laplacian and of the torsional rigidity, and we prove a Brunn—Minkowski
inequality for another class of variational functionals. Moreover, we describe the links between
Brunn—Minkowski type inequalities and the resolution of Minkowski type problems.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The Brunn—Minkowski inequality, in its classic formulation, states thatjfand K
are compact, convex sets RI' andz € [0, 1], then

V(A—-0Ko+1K)Y" > 1 - V(K)Y" + 1V (K", (1)
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where
(1-DKo+tKi={(1-t)x+ty : x € Ko, y € K1}

andV denotes the-dimensional volume (i.e. the Lebesgue measure); moreover, equality
holds in @) if and only if Ko and K1 are homothetic, i.e. they coincide up to translation
and dilatation.

The Brunn—Minkowski inequality is among the most important and deepest results
in the theory of convex bodies, for which the reader is referred2ig, and it is
connected with other fundamental inequalities like the isoperimetric inequality, the
Sobolev inequality and the Prékopa—Leindler inequality.

In [14], Gardner provides a very detailed presentation of inequalily ificluding
historical remarks, a description of links to other inequalities, various extensions and
so on. Though geometry is the most natural context in which the Brunn—Minkowski
inequality has to be situated, the paper by Gardner provides many evidences of the
fact that its role has to be fully recognized in analysis as well as in other areas of
mathematics.

This paper is concerned with inequalities of the same typelasmpere the volume
is replaced by other functionals, arising in the context of the Calculus of Variations
and of the theory of elliptic partial differential equations. Firstly, let us explain what
do we mean by an inequality of Brunn—Minkowski type.

We will denote by K" the family of n-dimensionalconvex bodiesi.e. compact,
convex subsets dR”, with non-empty interior. IrfC" a scalar multiplication for positive
numbers and a sum (the Minkowski addition) are defined:

sK={sx : xeK}, KeK's=>0,
Ko+Ki={x+y : xetKo,ye K1}, Ko KieK".

Now, inequality ) can be rephrased as follows: timedimensional volume raised
to the power 1n is a concave function oC". Note that the volume is positively
homogeneous and its order of homogeneityis

V(sK)=s"V(K), s>0, KeK".

Another familiar geometric functional has a similar concavity property connected
with its order of homogeneity. For a giveki € K", the (n — 1)-dimensional measure
of 0K, denoted byS(K), is positively homogeneous of ordét — 1) and satisfies the
following Brunn—Minkowski type inequality:

S(A—0Ko+ KDY ™D > 1 - nS(Ko)Y "D 415k Y D
Ko, K1 € K", te][0,1]. (2)
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Inequalities 1) and @) are, in turn, included in a class of analogous inequalities

regarding thequermassintegral®f convex bodies. The quermassintegrals of a convex

body K can be defined through the Steiner formula, which claims that the volume of
K + ¢B, wheree¢ is a nonnegative number aglis the unit ball, is a polynomial of,

V(K +¢B) = Xn:gi (’:) Wi(K).

i=0

The (nonnegative) coefficien®o(K), ..., W,(K) are the quermassintegrals Kf(see
Section 4.2 in[27] for a detailed presentation). Notice that

1
Wo(K) = V(K),  Wi(K) = - S(K).

Each quermassintegrd¥; (-) is positively homogeneous of ordét — i) and, ifi < n,
satisfies the inequality

Wi(L— 1)Ko+ KDY > (1 - nyWi(Ko)Y =) 4 tw; (K V"=,
Ko, K1 € K", te€]0,1)]

(see[27, Theorem 6.4.3]
These examples suggest to consider the following more general situation. Assume
that F is a functional defined irkC"

F: K" — (0, 00),

which is homogeneous of order £ 0, moreover, assume th&t is invariant under
rigid motions, i.e. isometries oR" (this property is not needed for the following
definition but it is shared by all the examples that we treat). We sayRlsdtisfies a
Brunn—Minkowski inequality ifFY/* is concave ink”:

F(L— DKo +1K)Y* > (1—F(Ko)"* + 1F(Kp) 7> 3)

for all Ko, K1 € K" andr € [0, 1].

The examples that we have seen are all taken from geometry. In recent times, inequal-
ities of Brunn—Minkowski type have been proved for various well-known variational
functionals. Brascamp and Lieb [6] established inequality3f whenF(K) = A(K) is
the first eigenvalue of the Laplace operatorkgfin this casex = —2. Borell proved
the same kind of result foF(K) = Cap(K), the Newton capacity oK, « = n — 2,

n > 3 (see[2]) and for the torsional rigidityF(K) = ©(K), o = n + 2 (see[4]).

These results have been extended3h to the logarithmic capacity (or transfinite
diameter) in dimensiom = 2, in [11] to the p-capacity,p > 1, and in[9] to the
n-dimensional counterpart of the logarithmic capacity.
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In this paper, we make an overview of the present situation and we bring some
new contributions to it. We start by describing in some details the Brunn—Minkowski
inequality for the functionalsl, Cap andr, in the next section. We establish equality
conditions in the case of the first eigenvalue of the Laplace operator and of the torsional
rigidity, i.e. we prove that equality holds i8)if and only if Ko and K1 are homothetic;

a similar characterization of equality case was already known for the Newton capacity
(see[7]).

How far can the Brunn—Minkowski inequalities for the three main examples be
extended to other functionals? To answer this question, we start from the following
consideration: for a convex body, the functionalsi(K), Cap(K) and 7(K) can all
be obtained as energy integrals

F(K) :/ |Vul?dx ,
Q

where Q2 is the interior or the complement set Kfand u solves a Dirichlet boundary-
value problem inQ, involving an equation of the form\u = f(u) for a suitable
function f (see Section 2). Extensions can be obtain&):réplacing the Laplacian
with another elliptic operator, for instance tpeLaplace operator or a fully non-linear
operator; ) choosing other types of functioh In Section 2 we describe the cases
in which extensions of this kind have already been achieved [344,9) and we
establish a new extension, i.e. a new Brunn—Minkowski inequality, for the functional
arising when f(u) = —u”, p € [0, 1), and the operator is the Laplacian. Moreover,
throughout the section, we indicate some other possible extensions which are by now
open problems.

An important topic in the theory of convex bodies, strongly connected to the Brunn—
Minkowski inequality, is the Minkowski problem, which requires to determine (uniquely)
a convex body with a prescribed surface area measure (in case of smooth bodies, know-
ing the surface area measure is equivalent to know the Gauss curvature as a function
of the outer unit normal to the body). The Brunn—Minkowski inequality ¢an be
used to solve the Minkowski problem in a variational way (see, for instajaigd),
moreover, the equality conditions of)(imply uniqueness in the Minkowski problem.

Jerison realized that new Minkowski type problems can be posed, replacing the
surface area measure by other measures obtained, roughly speaking, as first variations
of variational functionals (this concept will be made clearer in Secfior-urthermore,
he observed that Brunn—Minkowski type inequality can be used in the resolution of
these Minkowski problems exactly as in the classic cas¢20h he showed existence
and uniqueness of the solution to a Minkowski type problem for the Newton capacity;
subsequently irf21] he posed a similar problem for the transfinite diameter and for
the first eigenvalue of the Laplacian, and he obtained an existence result for both
functionals. Uniqueness in the case of transfinite diameter was provigd. in

In Section 4, after describing in more details Minkowski type problems for variational
functionals, we deduce from the characterization of equality conditions in the Brunn—
Minkowski inequality for the first eigenvalue of the Laplacian, the uniqueness result
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also in this case; moreover, we make some remarks about the feasibility of a Minkowski
type problem for the torsional rigidity.

2. The main examples

In this section, we focus on the Brunn—Minkowski inequality for the first eigenvalue
of the Laplace operator, the Newtonian capacity and the torsional rigidity. As we shall
see, each functional can be defined either through a variational problem, posed in a
suitable space of functions, or in terms of the solution of a boundary-value problem
for an elliptic operator. The first definition is in the spirit of the Calculus of Variations
while the second reflects the point of view of elliptic PDEs. The equivalence between
the two definitions relies on a well-known principle: under suitable assumptions, the
minimizers of a functional are solutions of a differential equation, called the Euler—
Lagrange equation of the functional itself.

2.1. The first eigenvalue of the Laplace operator

Throughout, forK € K" we denote by intk) its interior. The first eigenvalue of
the Laplace operatoi(K) can be defined as follows:

J(K) = inf {/ IVul?dx, ve Wy2(int(K)) : / v2dx = 1} .
K K

Here we adopt the standard notation for Sobolev spaceg, i an open subset of
R", wl2(Q) is the Sobolev space of those functions having weak derivatives up to
the second order ii2(Q); W&'Z(Q) is the closure inW12(Q) of the set of smooth
functions with compact support contained Gh

Equivalently, Z(K) is the smallest positive number for which the Dirichlet boundary-
value problem

Au=—-2(K)u inint(K),
{ u=~0 ondk , )

admits a nontrivial solutiont € C2(int(K)) N C(K). The solution of this problem is
unique up to a multiplicative factor, i.e. the first eigenvalue has multiplicity one; in
particular, if we normalizeu so that

/ uldx = 1,
K

we obtain (integrating by parts)

M(K) =/ |Vul?dx .
K
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It can be immediately seen from its definition that) is homogeneous of order2:
MtK)=1"?)(K), KeKk" t>0.

The functional/ satisfies a Brunn—Minkowski inequality.

Theorem 1 (Brascamp and Lieb Let Ko and K; belong toK" and ¢ € [0, 1], then
the following inequality holds

MA=0Ko+ 1K) Y2 > A —0)A(Ko) Y2+ th(K1) V2. (5)

This result is proved if6]; in fact, in this paper it proved that the inequality holds
for all compact, connected domains having sufficiently regular boundary. Another proof
is given by Borell in[5]. In Section 5 of the present paper we provide a new proof of
Theoreml which can be applied only wheky and K1 are convex, but which allows,
in this case, to characterize also the equality conditionsbpf (

Theorem 2. Assume thatko, K1 € K" and ¢ € [0, 1] are such that equality holds in
(5), then Ko is homothetic toK7i.

The latter result answers a question posed by Jerisd21h regarding uniqueness
of the solution to the Minkowski problem for the functionsl see Section 4 for more
details.

2.2. The Newtonian capacity

The variational definition of the Newtonian capacity is, foe 3,

Cap(K) = inf {/ \VulPdx, ueCOR"Y) : u> XK} , (6)
Rn

hereC2°(R") denotes the sets of those function fra@fi®(R”) having compact support
and y is the characteristic function df. Equivalently, ifu is the solution of

{Au:O inR"\ K @

u=1 ondk, limy—4oeou(x) =0,

then the capacity oK is given by
Cap(K) =f |Vul?dx .
RI\K

Cap(-) is homogeneous of order — 2.
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Theorem 3 (Borell). Let Ko and K1 belong toK”, n > 3, and ¢t € [0, 1], then the
following inequality holds

Cap((1— 1)Ko +1KD)Y""? > (1—1Cap(Ko)¥"=? +1Cap(k))V/"=? . (8)

A proof of this result is given i2]; subsequently, Caffarelli et al. {i7] characterized
the equality case.

Theorem 4 (Caffarelli et al). Assume thakp, K1 € K" and ¢ € [0, 1] are such that
equality holds in(8), then Kg is homothetic toK7.

In dimensionn = 2 the notion of Newtonian capacity is naturally replaced by the
one of logarithmic capacity One way to define the logarithmic capacity Lc¢#&p of
a two-dimensional convex body is the following. The boundary value problem

{AuzomRZ\K ©)

u=0 ondK, u(x)~loglx| as|x|]— 4o,

has a unique solution; the second boundary condition means that there exists a constant
a > 0 such that

E < u(x)
a log|x|

\a5

when |x| is sufficiently large. Moreover, the following limit

p=_lim (u(x)—loglx|)
+o00

|x|—

exists and it is known as thBobin constanbf K. The logarithmic capacity is given
by the formula

Lcap(K) :==e¢"".
Lcap(-) is homogeneous of order 1.
The logarithmic capacity of a set coincides with transfinite diameterwith its
conformal radiusand with its CebiSev constanfor these notions we refer the reader

to [16].

Theorem 5 (Borell). Let Ko and K1 belong tok? and € [0, 1], then the following
inequality holds

Lcap((1 — 1)Ko+ tK1) > (1 —r)Lcap(Ko) + t Lcap(K1) . (10)
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This theorem is contained if8]; the author and Cuoghi if®9], characterized the
corresponding equality conditions.

Theorem 6. Equality occurs in(10) if and only if Ko is homothetic toK.

Remark 7. No extension of the Brunn—Minkowski inequality to classes of nonconvex
domains is known either for the Newton capacity or for the transfinite diameter.

2.3. The torsional rigidity

We start with the variational definition: the torsional rigidityK) of K € K" is
given by

—in Ix |Vu|?dx
W (Ji )

u € WyA(int(K)) : / luldx > o} .
K

As in the previous cases, this functional can be expressed in terms of the solution
of an elliptic boundary-value problem: letbe the unique solution of

(11)

Au= -2 inint(K),
u=~0 ondk ,

then
7(K) =f |Vul?dx .
K

The torsional rigidity is homogeneous of order+ 2).

Theorem 8 (Borell). Let Ko and K3 belong toX” and ¢ € [0, 1], then the following
inequality holds

(1= Ko+ tK)Y 2 > (1 - nt(Ko)V "+ 4 ro(K) Y+ (12)

This theorem is proved if4]; another proof, together with a generalization, is
contained in Theorertil of this paper which includes also a characterization of equality
conditions.

Theorem 9. Equality occurs in(12) if and only if Ko is homothetic toK;.

Inequality (L2) can be proved also in the class of compact sets withboundary.
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Theorem 10. Let Cg and C; be compact sets ilR” with boundary of clas<? and
let r € [0, 1], then

(L= 0Co+1C)Y "2 = (1—nr(Cx) V"2 + 1 1(Cp)t 2 (13)

moreover equality holds if and only &y and C; are convex and homothetic

Inequality @3), without equality conditions, is contained [d]; for the proof of
Theorem10 see Remark2 in Section6 of the present paper.

3. Extensions

The Brunn—Minkowski inequalities5}, (8), (10) and (2) have been extended in
various directions ir11,26,9] a new extension is contained in this paper and further
results are contained if10]. In this section, we shall describe some of these results.

Our first step is to identify some common features of the problems which give rise to
the functionals that we have seen in the previous section; they will serve as guidelines
for more general results. We recall that we restrict our attention to functionals which
are positively homogeneous and invariant under rigid motions.

(1) In the boundary value problemd)( (7), (9) and (1), the differential operator is
the Laplacian, which in particular isotropic (invariant under rigid motions) and
linear; the resulting equation is ekemi-lineartype. Moreover, the space variabte
does not appear explicitly neither in the equation, nor in the boundary conditions.
These facts make the relevant functional invariant under rigid motions.

(2) The problems ardhomogeneousn the following sense: ifu is the solution inK
ands is a positive number, the solutian in the rescaled domainkK is given by

v(y)=s’1u(z>, yesKk,
S

for a suitableq; this makes the corresponding functional positively homogeneous.
(3) In all problems the functiondF coincides with thesnergy integralof the solution,
i.e.

F(K) =f |Vul?dx ,
Q

where Q is the interior or the complement d.

We shall see three types of extensions of Brunn—Minkowski inequalities for variational
functionals. The distinction is made accordingly to the second-order differential operator
which appears in the boundary-value problem.
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3.1. The linear case

If we restrict ourselves to the case of functionals coming from problems where the
second-order differential operator is linear, then invariance under rigid motions implies
that the operator must be the Laplacian.

We consider the following situation: fok € K", p > 0 andc € R, we pose the
boundary-value problem

Au=cuP, u>0 Iinint(K),
{u:O ondk . (14)
The question is whether the energy integral of the solution satisfies a Brunn—
Minkowski inequality. Forc > 0 the above problem admits only the trivial solution
u = 0, this is a simple consequence of the maximum principle; then we daké.
Except for the case = 1, that we will consider later, we may always reduce to the
casec = —1 by multiplying the solution for a suitable constant. So we are dealing
with

u=0 ondkK. (15)

{Au =—uP, u>0 inint(K),
For p = 0 we have the problem that gives rise to the torsional rigidity. f-ar(0, 1)
problem (5) is well posed, i.e. we have existence and uniqueness of the solution in
C4(int(K)) N C(K); this fact will be proved in Sectio®. The energy integral of the
solution

F(K) =/ |Vul?dx ,
K

is homogeneous of order, =n + %. In Section 6 we prove the following

Theorem 11. The functionalF satisfies a Brunn—Minkowski inequality
F(1—1)Ko+tK)Y* > (1 — nHF(Ko)Y* + tF(K)Y* (16)

for all Ko, K1 € K" and t € [0, 1]. Moreover equality holds if and only ifKg is
homothetic toK7j.

The same remark as for the functiondl) applies: the inequality can be proved in
the class of compact sets with boundary of clé$sand equality holds only foconvex
homothetic sets.

For p = 1 we have existence of at least one nontrivial solution of probléd) (
providedc = — 4 (K) for somek € N, where/x(K), k =1, 2, ..., are the eigenvalues
of —A in K; in this case, ifk > 2, we have to drop the requirement> 0 in int(K).
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For k = 1 the energy integral id1(K) = A(K) and it satisfies the Brunn—Minkowski
inequality 6). For k > 1, if u is any solution, normalized so that

/ uldx = 1,
K

its energy integral coincides witky (K ), so that the question is whether the functionals
(), k = 2,3,..., satisfy a Brunn—Minkowski inequality (note that the order of
homogeneity of all these functionals is2). This is an open problem; the available
proofs of inequality %) (see[6,5] and Section5 of this paper) do not seem to be
adaptable to the other eigenvalues.

For 1 < p < % (and ¢ < 0), existence of at least one solution to problem
(14) continues to hold while uniqueness is not guaranteed; nevertheless a variational
definition of F could still be given, coherently with the cage< 1 (see the proof of
Proposition19 in Section6). Anyway our proof of the Brunn—Minkowski inequality for
F does not extend to this case. Finally fpr> Z—j% problem (4) admits no positive
solution (see, for instancé23,24).

3.2. Quasi-linear operators

In [11] Salani and the author proved that theapacity of convex bodies satisfies a
Brunn—Minkowski inequality. For an arbitrary compact gein R” and for p € [1, n),
the p-capacity is defined in a similar way as fpr= 2:

Cap, (A) = inf {/ [Vul? dx, ue CR") : M?XA} a7
Rn

(wherey, is the characteristic function &). WhenA = K is a convex body (but also
under much less restrictive assumptions K an equivalent definition can be given,
based as usual on a boundary value problem; indeed

Cap, (K) = / |[Vul? dx, (18)
R\ K

whereu is the unique solution of
div(|VulP~2Vu) =0 inR"\ K, (19)
u=1 ondK, Ilimy-ieu(x)=0.

The second-order differential operator involved in the above problem is calleg-the
Laplacian and the corresponding equation is quasi-linear. Clearlypfer2, n > 2,
we get the Newtonian capacity. Gap) is homogeneous of orden — p).
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Theorem 12. The p-capacity satisfies the following Brunn—Minkowski inequality

Cap, (1— 1)Ko +tK)Y =P > (1—nCap, (Ko)V "7 + 1 Cap, (K)Y/"~P
VKo, K1€ K", t€[0,1]; (20)

moreovey equality holds if and only Ko and K1 are homothetic

For the proof sedl1].

The limit casep = n, which has been treated [8], is similar to the casep =n =2
that we have described in Section 2.2. Firstly, the notiom-dfimensional logarithmic
capacity is defined for a convex body i"; the definition is completely analogous
to the one valid in the two-dimensional case. This quantity turns out to be positively
homogeneous of order one, it satisfies a Brunn—Minkowski inequality and the equality
case is characterized as usual.

The author together with Cuoghi and Salani (§26]) studied Brunn—Minkowski
type inequalities for the functionals analogous to the first eigenvalue of the Laplacian
and the torsional rigidity, when the Laplace operator is replaced by-ihaplacian.

3.3. Fully non-linear operators

Recently, Salani (seR6]) proved a Brunn—Minkowski type inequality for the eigen-
value of the Monge—Ampére operator. This quantity, that we shall denoté(dy like
all the ones that we have seen until now, admits either a variational definition or a
definition based on a boundary value problem. A difference with respect to the previous
examples is that1(K) can be defined only for those convex bodies having boundary
of classC?, with strictly positive Gauss curvature at each point of the boundary; we
will denote this class of sets bi”.

We have, forkK € K7,

2
AK) = inf {_ Jx udet(D u)dx}

Jx lul"+1dx

where the infimum is taken over the functionse C2(int(K))NC(K), convex and
such thatu = 0 on oK.
Equivalently, 4(K) is the unique (positive) number such that the problem

{ detD%u) = A(K) (—uw)", u<0 ink, 21)

u=0 ondK

admits a (convex) solution. The existence of a numl&kK) such that 21) can
be solved, was proved by Lions if22]. The equivalence between the two defini-
tions is due to Tso, sef28]. The Monge-Ampere operator belongs to the class of
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fully non-linear elliptic operators; it is, of course, invariant under translations and rota-
tions. The eigenvaluel is homogeneous of order2n. The following result is proved
in [26].

Theorem 13 (Salan). The functionalA satisfies the inequality

AL =0)Ko+ 1K) Y2 > (1 —0)A(Ko) V2" + 1 A(Ky) Y2,
Ko, K1 e K", t €][0,1].

7o

Moreover equality holds if and only Ko is homothetic toK7;.

It would be interesting to see whether the same kind of result holds for another
class of fully non-linear elliptic operators, i.e. the so-called Hessian operators. For
k € {1,2,...n}, the kth Hessian operato$,(D2u) applied to ac? function u is the
kth elementary symmetric function of the eigenvalues of the Hessian mattix rofte
that this class includes the Laplace operator (corresponditg=td) and the Monge—
Ampere operatork(= n). Wang (se€29]) proved that fork > 1, like in the case of
the Monge—-Ampére operatof; admits exactly one positive eigenvalue in a convex
domain with smooth boundary (in fact, the result by Wang is true for a larger class of
domains); does this eigenvalue satisfy a Brunn—Minkowski type inequality?

4. Minkowski type problems
4.1. The Minkowski problem for the volume

The area measurex of a convex bodyK in R" is a nonnegative Borel measurg
defined on the unit spher§*~1, characterized by the following property: for a Borel
setw C $"1, gk (w) is the (n — 1)-dimensional measure of the set

{x € 0K : v(x) C w},

where v(x) is the set of outer unit normal vectors &K at x (see[27, Chapter 4]
Minkowski problem. Given a nonnegative Borel measureon $"~1, find a convex
body K whose area measure ds
What properties must have so that this problem can be solved? A consequence
of the invariance of the volume under translations is the following property of area
measures:

/S  Xdog(X)=0, VK ek (22)

Moreover, as a convex body has non-empty interior, from the definition of area measure
it is clear that its support cannot be contained in a great sub-sphesé—éf These
two properties are sufficient to characterize area measures.
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Theorem 14. Let ¢ be a nonnegative Borel measure §f~1, such that its support is
not contained in any great sub-sphere and

/ Xdo(X)=0.
sn—1

Then there existX € K" such thatox = ¢. Moreover K is uniquely determined up
to a translation

For a proof, see for instancR7, Chapter 7] We want to describe a connection
between the Minkowski problem and the Brunn—Minkowski inequality. We begin with
the following simple formula relating the volume &f to its area measure:

1
V(K) = —/ hg(X)dog (X), (23)
n Jen-1

wherehg : $"~1 — R, is the support function oK:

hg(X) = sup(X,x), XeS 1
xekK

The validity of @3) is rather intuitive (especially for polyhedra); for a proof, see
Chapter 4 in[27]. There is another formula which, roughly speaking, expresses the
first variation of the volume oK, whenK is perturbed by another convex body

d
EV(K +tL)|t=0 =/ hp(X)dog(X), VL eK" (24)
sn—1

(note that 23) follows from (24), and the homogeneity of the volume, when we choose

K = L). Formula @4) follows immediately from the well-known expansion ¥f(K +

tL) as a polynomial oft whose coefficients are thmixed volumef K andL; we

refer again to[27] for the details. A consequence d?4) is equality @2), which is

obtained lettingL be the set formed by a single poixtand then lettingk vary in R”.
From the Brunn—Minkowski inequality we have that, f&r, L € K",

V(K +tL)Y" > vK)Y" + vy,

The two terms of this inequality, as functions of 0, coincide wherr = 0, then

d d
VK + L)Y o = E[V(K)l/" + V(L)Y —0 = V(L)Y
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Using 24), we obtain
/ hp(X)dog(X) = nVL)Y"VK)"D/" v e K",
Sn—l

which becomes an equality wheki = L and more generally whe® = sL for any
s > 0. This fact can be rephrased in the following way:
Let K be fixed inK" and letL € K" be such thatV (L) > 1; then the quantity

[ hodoxco

attains its minimum when

1
L=——K
V(K)/n

This fact suggests an argument to solve the Minkowski problem (the existence part):
given a nonnegative Borel measureon $" 1, satisfying the assumptions of Theorem
14, consider the variational problem

inf {/ hp(X)do(X), Le K", V(L) > 1} .
sn—1

By the previous considerations, any solution is a good candidate to solve the Minkowski
problem fora. Indeed, this approach can be successfully applied. The original proof
of Minkowski uses this argument in the special case of polyhedra (in this cdse

the sum of point masses o1, see for instance1]), but the same can be done in
the general case, as shown[R1] (see also the historical note at the end of Section
7.1 in [27]).

Regarding the uniqueness part of Theorbfnonce again this depends on the Brunn—
Minkowski inequality and in particular on the characterization of the equality conditions.
The argument is quite standard, we describe it here since it will be used in the proof
of another uniqueness result presented in the sequel of this section. Assume that there
exist two convex bodieX andL such that

0O=0K =0, .
Consider the function

m(s) =[VK +A—s)D)]Y", sel0,1].
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By the Brunn—Minkowski inequalityp(s) is concave in[0, 1]; its derivative ats = 0
is given by

1 =1 d
o == VL)~ SVGK + (L= 9Dl

n—1
n

1
- v / (i (&) — hi (&) do(@)
n Snfl

[V(L)]™"" [V(K) - V(L)]

= [mO)1*" (m(D)" — m(0)") .

Sincem(s) is concave
m’(0) = m(1) — m(0).

This fact, together with the above inequality, gives(1)" 1> m(0)"1, i.e.
V(K) > V(L). Interchanging the roles o and L we conclude thatV (L) = V(K).
This implies at oncen(0) = m(1) andm’(0) = 0, so thatm must be constant if0, 1]
and consequentlK and L render the Brunn—Minkowski inequality an equality. Then
K coincides withL up to a translation (sincex = g, no dilatation can occur).

We might conclude that formulag3) and @4) (together with the Brunn—Minkowski
inequality) are the starting point for a variational solution of existence part of the
Minkowski problem, while the uniqueness part can be deduced from characterization
of equality cases in the Brunn—Minkowski inequality.

Jerison observed (s€20,21) that if we replace the volume by either the Newton
capacity or the first eigenvalue of the Laplace operator, we find ourselves in a similar
situation.

4.2. The Minkowski problem for the Newton capacity

In the papef20], a Minkowski type problem for the Newton capacity is solved. The
starting point is a formula similar t028). Let K € K" (n > 2), and letux be the
solution of problem 7), then|Vu|? is defined almost everywhere @K, with respect
to the (n — 1)-dimensional Hausdorff measure so that one can define the mea%ad’re
through the formula

o3P () = / IVu(x)|2dH ™ (x)

8x (W)
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for every Borel subset» of $*~1. Here #"*~1 is the (n — 1)-dimensional Hausdorff
measure anc¢g : 0K — $" 1 is the Gauss map of i.e., for x € 0K, gg(x) is the
set of outer unit normal vectors K at x. In particular, when the boundary & is
of classC? with positive Gaussian curvature at every point, we can write

A0S (X) = |Vu(g gt (X)) R dog (X),

where gk is the area measure &f introduced in the previous section. The relevant
formula is

1
Cap(K) = —— /S k(X AP (X). (25)

In the case of convex bodies with sufficiently smooth boundary, this formula comes
from a clever use of the divergence theorem and the conditions containét). iA (
further step is to prove that for an arbitrary convex bady

Cap

d
ECap(zr<+tL)|t=o=f (X0 dot (X0, (26)

n—

in this case the proof is much more delicate. Compar2l &nd 6) with (23) and

(24), it becomes clear that when we replace the volume with the capacity, correspond-
ingly the measureriap have to play the role of area measure. The following result is
the counterpart of Theorerhd.

Theorem 15 (Minkowski problem for capacijy Let ¢ be a nonnegative Borel measure
on §”~1 such that its support is not contained in any great sub-sphere and

/ Xdo(X)=0.
sn—1

Then there exist¥ € K" such thata%ap = ¢. Moreover K is uniquely determined up
to a translation

The existence part of this theorem is proved20]; in [21] another proof is given,
which makes use of the variational method that we described before in the case of the
volume. The unigueness part follows from the characterization of equality cases in the
Brunn—Minkowski inequality for capacity proved ], i.e. Theoren¥ in Section 2.2
of the present paper.
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4.3. The Minkowski problem fot

In [21], the same problem has been studied for the first eigenvalue of the Laplacian.
For a convex body, let ux be the solution of problemdf normalized so that

f lug|?dx =1
K

and define the measurg, on "~ through the formula
o} (w) = /_1 IVu(x) |2 dH" 2 (x)
gx ()
for every Borel subsety of $"~1. Then we have (sef21))

) 1 1
MK) = > /S’lil hix(X)dok(X) (27)

and

d
dt

MK +tL)|;—0 = —/ hp(X)dol(X), VL eK" (28)
sn—1

(note that the order of homogeneity éfis negative). Using these formulas and the
variational approach, the following result can be shown (see Theorem TA]n

Theorem 16 (Jerisor). Let ¢ be a nonnegative Borel measure 6A~1, such that its
support is not contained in any great sub-sphere and

/ Xdo(X)=0.
sn—1

Then there exist® € K" such thate}, = o.
A consequence of Theoregis the following uniqueness result.

Theorem 17. Let K, L € K" be such that
) J
ok =07,

then K and L coincide up to a translation
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Proof. The argument is exactly the same as in the uniqueness proof for the Minkowski
problem for the volume, Section 4.1, with

m(s) = [AsK +L—9D)] 7?, se[0,1].

Clearly, Theoremsdl and 2 have to be used, instead of the classic Brunn—Minkowski
inequality and corresponding equality conditions.

4.4. The case of torsional rigidity
The aim of this section is to present a couple of formulas regarding the torsional

rigidity of convex bodiesvith smooth boundarycorresponding to23) and @4), which
indicates the feasibility of a Minkowski type problem for the functional

Proposition 18. Let K and L be convex bodies with boundary of cl&gs such that
the Gauss curvature is positive at every point of their boundity ¢ be the solution
of problem(11) in K. The following formulas hotd

1
(K= /S e OIVa(gg (0)P dog (X)), (29)

d
TK +1L) 0 = fs L OOIVa(gg (0)P dok (X)) (30)

Proof. We start proving 29). By the divergence theorem

7(K) =/ |Vu(x)|2dx =/[div(u(x)Vu(x))—u(x)Au(x)]dx
K K

= 2/ u(x)dx . (31)
K

As the boundary oK is C2, u € C?(K), this follows from standard regularity results
for solutions of elliptic equations (see for instance Theorem 6.1451). Moreover by
the Hopf Lemma,Vu does not vanish oK. As u > 0 in int(K) (by the maximum
principle), for everyx € 0K we have

Vu(x) .
Vuco) -~ "W
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wherev is the outer unit normal té K. Hence the support function &f can be written
in the following way:

hi(X) = (ex* 0. Vulgghx). X e st

IVulg X))
(we recall thatg,}1 is the inverse of the Gauss map I§f. We define
wx) = (x,Vukx)), xek.
We have
/S R OVu(g (X)) Pdog (X) = /ﬁ I OG)IVUE)P dH )
= —/ w ()| Vu(x)| dH 1 (x)
0K
:/ w(x)(Vu(x), v(x)) dH" 1 (x)
K
= / div(w(x)Vu(x)) dx
K
= / [(Vw(x), Vu(x)) + w(x)Au(x)]dx
K

= —/ [u(x)Aw(x) + 2w(x)] dx ,
K

where we have used the divergence theorem, the equation and the boundary condition
of problem (1). Now

Aw(x) = 2Au(x) + (x, V(Au(x))) = -4

and

/ w(x)dx:f(x,Vu(x))dx =—n/ u(x)dx
K K K

again by the divergence theorem. Consequently,

/ 1h/<(X)IVM(gI}l(X))IZdUK(X) =2(n +2)/ u(x)dx = (n+2)1(K),
sn= K
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where we have used@Y). Thus @9) is proved. Formula30) can be proved with the
help of 29), applying the same argument used in the proof of formula (a) in Proposition
2.10 in[20]; for brevity we omit the proof. [

Starting from the last proposition, the strategy to solve a Minkowski type problem
for t should be the same described in the previous sections:

(1) Extend formulasZ9) and @0) to all convex bodies;

(2) apply the variational method proposed[#1] to prove the existence of a solution;

(3) establish uniqueness of the solution using the characterization of equality conditions
in the Brunn—Minkowski inequality for, i.e. Theorem9 in this paper.

5. Proof of Theorems1 and 2
In this section, we give a new proof of the Brunn—Minkowski inequality for the

first eigenvalue of the Laplace operator, in the class of convex bodies, which allows to
determine equality conditions. L&, K1 € K" andt € [0,1]. Fori =0, 1, letu; be
a solution of

Au; = —A(K)u;, u; >0 inint(K;),

u; =0 on 5Kl‘
and consider the function

vi(x) = —logu;(x), x eint(K;),

v; solves

{ Av; = A(Kp) + [Vyi|? inint(K;), 32)

lim, _, ox, vi(x) = +o00.

The functionsvg and v1 are convex (equivalently;o anduq are log-concave); this fact
is proved in[6] and a different proof can be found [B]. Moreover, it follows from
(32 and Remark 1 in Section 5 ¢19], that the rank of the Hessian matri3v; is
maximum, i.e. equal tam, all over in{K), so that

det(D%v;(x)) > 0, Vx €int(K;). (33)

In particular, this implies that; is strictly convex. Note that, by the boundary condition
verified by v;, we have that the gradient ef mapskK; onto R":

Vo, (int(K;)) = R". (34)
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We will need to consider the conjugate functioh of v;:
v (p) = SURk, [(x, p) —vi(X)], peR".

We refer to[25] for the basic properties of this functiom; is defined on the image
of K; through the gradient map af;, which is, by 84), the wholeR”"; moreoverv;
is convex. Asy; is strictly convex,v; € C1(R"), and Vu} is the inverse map oVv;:

x = Vv (Vui(x)), VxeKk;.
In particular this identity and3@) imply that v} € C2(R™) and
D?v;(x) = [D%v} (Vo (x)]™L, VxeKk;. (35)
We construct a new function defined Kj:
w(z) = inf{(1 —t)vg(x) + tvi(y) : x € Ko, y € K1, A —t)x +ty =z}, z € K;. (36)

The functionw is called theinfimal convolutionof vg andv; (see[25]). It is a convex
function and, from the boundary conditions in proble82)(it can be deduced that

lim w(z) =+o00. (37)

70K,
Moreover,w verifies the following identity (see Theorem 16.4 [Rb])
w* =1 —-nvi+rvy inR". (38)
Now, (33), (35) and @8) implies thatw* is C2(R"), is strictly convex and
D?*w* >0 inR".

Consequentlyw € C2(int(K,)). Let us fix z € K,. By the definition ofw and since,
for i = 0,1, v; tends to+oo at the boundary ofK;, there existx € int(Kg) and
y € int(K1) such thatz = (1 —¢)x + ¢ty and

w(z) = (1= t)vo(x) + 1va(y) . (39)
By the Lagrange multipliers Theorem one deduces immediately that

Vug(x) = Vui(y) = p: (40)
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but then
Vw*(p) = (L= 1)Vuo(p) +1Vvi(p) = L= t)x + 1ty = z = Vw*(Vw(z)) (41)
and by the injectivity ofVw we have
Vw(z) =p.
Therefore,

D?w(z) = [D?w*(p)]™ = [(1 — 1) D% (p) + 1 D%} (p)]*
= [ — 1) (D?vo(x) L+ 1(D%v1(y) 17t (42)
Now we use the convexity of the application

M —> trace(M 1)

in the family of positive definite matricel (see, for instance, Lemma 4.2 |ihl]), to
infer

Aw(z) < (1= 1)Avo(x) + tAvi(y) (43)
and consequently
Aw(z) < (L= DA(Ko) + tA(K1) + [Vw(2)|?, Vz eint(K,). (44)
The function
i(z):=e "9, zek,,
has the following properties:
Au> —[(L—0)A(Ko) +tAK)]u, u >0 inint(K,),
u=0 ondk;.

We multiply both sides of the differential inequality By and we integrate by parts,
taking the boundary condition into account; in this way we get

(1—1A(Ko) + tA(K7) > > MKy), (45)



128 A. Colesanti/Advances in Mathematics 194 (2005) 105-140

where the last inequality follows from the definition of first eigenvalue of the Laplacian.
We have proved that(-) is convex ink" and as a further consequence of this property
we obtain

ML —-1)Ko+1tK1) < maxi(Kop), A(K1)}, VKo, K1€K", re]0,1]. (46)

In order to deduce the Brunn—Minkowski inequality from6), we use a standard
argument: for arbitraryKg and K; in K" andt € [0, 1], let

Ko = [MKo)1"?Ko, Ki=[AKDI"?K1,

v 1K)~ 2
— A= DIAK)]Y2 4 1[A(K1)]7Y/2
and apply 46) to K, K; and’. The proof of Theoreni is complete.

Assume now thako, K1 andt are such that there is equality iB){ let K, K] and
t' be as in 47) and

(47)

Ky=1—-1t)Ky+1'K].
Then clearly
MKy) = MKp) = MKy =1.

Hence we may reduce ourselves to the case in which the bé@ieX1 and K; have
the same eigenvalue and this is equal to 1. Repeating the construction made in the first
part of the proof, we obtain from4p)

Sk, IVul?dx

> MK =1,

so that all the inequalities have to be equalities. In particular this impliesutimatist
be an eigenfunction corresponding 10K;). Then

Ai=-u inK,= Aw=1+|Vw|?> inKk,

i.e. equality holds in 44), but the latter is a consequence of the previous inequality
(43), hence

trace[(l — 1) (D%vp(x)) "L+ t(DZvl(y))*l]_1

= (1 — 1) tracg D?vp(x)) + 1 trac D%v1(y)) .
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In this situation we can apply again Lemma 4.714] (the equality case) and conclude
that

D?vo(x) = D?vi(y) = D?vg(p) = D*vi(p) Vp e R".
A further consequence is that
Vug(p) = Vui(p) +p VpeR"
for some fixed vectop. Finally
Ko=Vuyy(R") =Vui(R)+p=K1+p.

6. Proof of Theorem 11

Let K € K"; throughout this sectionp € [0, 1) is fixed. We consider the boundary
value problem

Au=—u?, u>0 inin(K),
(48)
u=0 ondK

and we denote the energy integral of its solution by
F(K) =/ |Vul?dx .
K

Our final goal is to prove th&t satisfies a Brunn—Minkowski inequality. Our first issue
is an existence an uniqueness result for problds). (

Proposition 19. There exists a unique solutiom € C2(int(K))NC(K) of problem
(48).

Proof. For simplicity, throughout the proo will denote the interior ofK. Consider
the functional

1 1
F) = Efgwuﬁdx - p—+1/9|v|1’+1dx, veWyAQ). (49)
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We shall find our solutioru as a minimizer of. By the Sobolev inequality (see for
instance (7.26) irf15]),

1 1
1 a 1
</ |U|p+1dx>p < C(n, p) (/ [Vvl4 dx)q , g = M
Q Q n+p+1

Note that, asp < 1 we haveqg < 2 so that, by the Holder inequality,

HTP
/ Pt dx < Cn, p, Q) (/ |Vv|2dx)
Q Q

Hence
t
§) > >+ Cct*, (50)

wheret = [, |Vv|?dx anda = ”T*l € [0,1), so thatF is bounded from below. We
set

m =inf(F) : ve WriQ).

Note thatm < 0; indeed, an easy computation shows that wkem a ballm is strictly
negative. On the other hand, for an arbitréty

m < inf{Fw) : ve WyZ(@)) <0,

where Q' is any open ball contained if.
Letv; € W(}' (), j € N, be a minimizing sequence fg§:

Aim - Fw;) =m.
J—>+00
From (60) we deduce that the sequence

/ |Vv;|? dx
Q

is bounded and from Poincaré inequality (§&8, (7.44)):

/v]?dxgcm,p,g)/ \Vu;|2dx,
Q Q
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consequently, the sequencgis bounded inWOI*Z(Q) and then, up to a subsequence, it
converges weakly to a functian e W&'Z(Q). Now we apply a standard semi-continuity
result in the Calculus of Variations (see Theorem 4.1, Chapter BL2]) to infer that

& is lower semi-continuous, this implies

Fw) =m,

i.e. uis a minimizer of; note that, sincgy(v) = &(Jv|) for everyv, we may assume
that u is nonnegative. By Theorem 4.4, Chapter 3[12], u is a weak solution of the
equation

Au=—u’ inQ.

Now prove the regularity ofi. As u € L?(Q) and p < 1, the above equation implies
that Au € L?(Q); by the regularity theory for solutions of elliptic partial differential
equations, this property improves the regularity wfwhich turns out to belong to
Wg’z(Q) (see, for instance, Theorem 8.8 j@5]). Applying the Sobolev inequality
we obtainu € L” (Q) for somep’ > 2 and consequently, using the equation again,

u € ngp/(g). This regularizing procedure can be iterated until it is proved that
Hélder continuous and then, again by regularity results, C2(Q) N C(K).

Note thatu cannot be identically equal to zero (singe< 0); more precisely is
strictly positive inQ by the strong maximum principle.

Regarding uniqueness, if is a solution of problem4g8) then the function

VW) = Ui, g=r—,

solves the problem

1 .
Av=—"[A|Vv]2+B]=0, v>0 inQ,
v (51)

v=0 ondR,

where

1 2
A=tP po 2

As A andB are positive, the left-hand side of the differential equation is an increasing
function of v, so that the comparison principle holds; for this reason, problgih (
admits only one positive solution, and the same conclusion holds for progm (
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The functionalF is positively homogeneous of order

242
a(p) =n+ p.
1-p

For brevity, in the sequel we will write: instead ofa(p). The homogeneity can be
proved as follows. Ifu is the solution of problem4@) in K ands > 0, then the
function

2 (Y
v(y)=slru (—) , yesK
N
is the unique solution of problen#®) in sK. Hence

242 2
/ |W(y)|2dyzsr;’/ v (2)|" ay
sQ sQ N

s“/ |Vu(x)?dx = s*F(K).
Q

F(sK)

The proof of Theorenil is based on the following comparison result for solutions
of problem @8).

Theorem 20. Let Ko, K1 € K", t € [0,1] and K, = (1 — 1)Ko + tK1. Let u; be the
solution of problem(48) in K;, i =0, 1,¢. Then

(L= Dx + 1)1 2 = (A= Dluo()] 2 + tlus()] 2 Vx € Ko,y € K1.

Proof. The argument is an adaptation of the technique introduced by Korev§a8]in
and developed by many other authors, which was used to prove quasi-concavity of
solutions of elliptic equations. Here we follow an improved version of such technique
presented by Kennington if17].

Firstly, we prove the theorem under the additional assumption that the boundary of
Ko and K1 are of classC2. Forr = 0 andt = 1 the theorem is trivial; in the sequel
we assume € (0, 1). For simplicity letqg = ﬁ. Fori =0, 1, we define the function

vi(x) = ul.l/ 7(x). As we already saw in the proof of Propositid8, we have

1 .
Av; + =[A|Vvi|2+B]1=0, v >0 inint(K;),
Vi (52)

v; =0 ondk;,
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with

1 2
A="P p_ 2

For x € Ko and y € K7 define
c(x,y) = v ((L—=0x +ty) — [(L = t)vo(x) + tva(y)]

(for Ko = K1 = K this is the Korevaarconcavity function The assert of the theorem
is equivalent to the inequality

min ,y) > 0. 53
Jin c(x, ) (53)

The functionc(x, y) is continuous inKg x K1 and hence attains its minimum at
some point(x, y). We consider separately the cas@sy) < int(Kg) x int(K1) and
(x,y) € 0(Ko x K1).

Casel: (x,y) €int(Kpg) x int(Ky). Letz =tx + (1 —1)y. We have

Vie(x, y) =1V (2) — tVo(x) =0,
Vyex,y) =1A-1)Vy () — (A -1)Vvi(y) =0.

Consequently,
Vui(z) = Vuop(x) = Vua(y) .
The Hessian matrix o€ has the following form:

D?c(%, ¥)

(1= £)2D%,(2) — (1 — £)D%0o(7)|  #(1 — £)D%v,(2)

= (54)

t(1 — t)D%vy(%) t2D?vy(z) — tD%v1 (7))
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Let

a’I, abl,

ab I, v I,

where I, is the identityn x n matrix anda, b € R. D?¢(%, y) is positive semidefinite,

as (x,y) is a minimum point, and the same holds ft (this is straightforward).
Now, the trace of the product of positive semidefinite matrices is nonnegative (see
[17, Appendix), so that we have

tracdch(_f’ )_;) M) = a2[(1 — t)zAv[(Z) - (1 - I)Avo(-f)]
+2ab[t (1 — 1) Av;(2)]

+b2[12Av, () — tAv1(3)] =0, Va,beR.
It follows

(1= 0Av () = Avo(x), 1AV (2) = Ava(y) (55)
and
[(1 = %A, (2) — (1 = DAvDPAv @) — tAvi()] = [1(L - DAv @)1
After some computations, the last inequality yields
Av (D) [t Avo(X) + (1 — 1)Av1(3)] < Avo(X)Ava () . (56)

In view of the differential equations satisfied by and v1 (problem §2)) we must
have

tAvg(x) + (1 — t)Av1(y) < 0. (57)
Let f = |Vug(2)| = |Vvo(x)| = |Vvi(y)|. From 66) and 67) we have

Av,(2) = Avo(X)Avi(F)[(L — 1) Avo(E) + tAvi(7)] 7,
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which (using the differential equations) is equivalent to

Aﬁ2+B<(A/32+B)2 tAﬁ2+B tA,B2+B -
(@) vo(E)vi(d) vo(X) v1(y)
and then
1 < 1
u(Z) (1= 1voE) + tva(y)

= (&) >0.

Casell: (x,y) € (Ko x K1). Notice that ifx € 0Kg andy € 0K, we have trivially
¢(x,y) > 0. So we have to deal with the casee int(Kg) andy € 0K (the symmetric
case can be treated exactly in the same way).\Lbé the outer unit normal t6K1
at y; the function

o) =c(x +rv,y+rv) =v,Z+rv) —[(A—t)vo(x + rv) + tve(y +rv)],

is defined inr € [—9,0] for some positived; moreover, if ¢ attains its absolute
minimum at(x, y), then ¢ attains its absolute minimum at 0. We compute the left-side
derivative of ¢ at O:

Ovy Ovo _ vy ,_
PO)=—@ - [(1— D2 (@) + t—l(y)} .
v v ov
By the Hopf Lemma, which can be applied 8&; is of classC?,

%(y) <0 whence %(y) = —00.

ov v

Consequently)’(0~) = oo which contradicts the fact that 0 is @ minimum point far
Next, we consider the general case, i.e. without assumptions on the reguladikp of

and 0K1. For a convex body, let u be the solution of problen4g) in Q = int(K).

There exists a sequence of convex open §tg;, j € N, with boundary of clas€?,

such that

- +OO
QcQn o =0
j=1

For everyj € N, let u; be the unique solution of4g) in Q;; by Proposition19, we
know thatx; minimizes @9) in Q;. Setting

uj(x) =0 inN\Q;,
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we getu; e Wol’z(Q), so that, for the minimizing properties of in Q,
Swj) = Fw), VjeN.

From @8), the Gauss—Green formula and the definitiondoft follows that

N 12
&) = 2+ 1) /QjWM/' dx,

so that, asp < 1,

/ Vi % dx < / [Vul?dx . (58)
Q Q

J

The Poincaré inequality together withg) imply that the sequenca; is bounded
in Wg2(Q), therefore we can find a subsequence and a functioni € Wy%(Q)

satisfyingu;; — i in Wo (Q) as j' — +oo. In particulariz must be a solution of
(48) in Q and theni = u; this implies that the whole sequeneg converges tou.
From (68) and the lower semi-continuity of

w—>/ IVwPdx, we W33Q),
Q

it follows that

lim /|Vuj|2dx=f |Vul?dx .
j~>+00 Q Q

Using this fact and the weak convergence we obtain thyatends tou in W&’Z(Q)
and, up to a subsequence, we may assume that the convergence is almost everywhere.
Given Kg and K1 in IC,, let Qg ; and Q1 ; be two sequences of open sets approxi-
mating the interior ofKg and K1, respectively, constructed as above, and let
-Qt,j = (1—[)90,/' +IQ1’j.

With obvious extension of notation, far= 0, 1, ¢, let u; ; be the solution of problem
(48) in Q; ;, andv; ; = 1; D/P For the previous part of the proof,

v j(A—=0Dx +1y) = (L=t j(x) +tvyj(y), xeloj, yely;. (59)
As j tends to+oo (up to subsequences), for=0, 1, ¢,

v (L—=0Dx +1ty) = (1—t)vo(x) + tvi(y)
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for almost everyx € Qp and almost every € Q1; as all the involved functions are
continuous, we obtain the claim of the theorem.

Another result that we shall use is the following theorem, containingPitédopa—
Leindler inequality and including anecessaryequality condition.

Theorem 21 (Prékopa—Leindler inequali}y Let f, g and h be measurable, nonnegative
functions defined irR"” and letr € [0, 1]. Assume that

(A —0x+1y) = 08" (v), Vx,y e R™. (60)

Then

1—r t
/ o) dz > (/ f(x)dx) (/ g(y)dy) . (61)
Rn Rn Rn

Moreover if

0<f f(x)dx,/ g dy,
Rr Ry

and equality holds in(61), then f coincides almost everywhere with a log-concave
function and there exist Gz > 0, and a vectorx € R" such that

f(x)=Cglax +x), VxeR". (62)

For the proof of inequality§1) we refer, for instance, tfil4]; the equality condition
follows from Theorem 12 irf13].

Proof of Theorem 11. Firstly, we consider themultiplicative formof the inequality
contained in Theorem1:

F((1—1)Ko+1K1) > F(Ko)} '"F(K1)', VKo, K1e€K", t€[0,1]. (63)
We remark that, for arbitrario, K1 € K" andr € [0, 1], (16) follows from (63) applied to

Ko = (F(Ko) """ Ko. Kj=(F(KD) K1,

v t(F(K)Y*
T (- (F(Ko)Y* + 1 (F(K)Y* '

Moreover, if Ko, K1 € K" and ¢ € [0,1] render (6) an equality, thenk|, K;
and ¢’ defined as above give equality i63). Hence, it suffices to proves®) and to
characterize the corresponding equality conditions.
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Fori =0,1,¢, let u; be the solutionu of problem @8) for K = K;; we have, by
the divergence theorem:

F(K;) = / |Vu; % dx = / (div(u; Vu;) — ulu;) dx = / uPtdx .
K[' K,‘ Ki
Let x € Ko, y € K1 andz = (1 —t)x +ty € K;; from Theorem20 we know that

—p

117 > (= Dluo(0)] 7 + s (1] 2

Let us extendy; as zero outsid&;, i =0, 1, s, and define
F=uftt g=dt h=afth

We have, forx € Kg and y € K1,

1-p
—_ — r r 1/}” [ —
hMA-—tx+ty) > [A—0)f(x) +tg(»)']7", wherer = ( D >0

By the arithmetic—geometric mean inequality
WML —Dx+1y) > f() g, VxeKo, yeKy,

in fact, this inequality holds for alk, y € R": indeed, if eitherx ¢ Ko or y ¢ Kj,
then the right-hand side vanishes. Hence we can apply the Prékopa—Leindler inequality
(Theorem21) to obtain

1—¢ t
f h(x)dx>( f(x)dx) ( / g(x)dx) : (64)
n Rl‘l Rﬂ

i.e. (63). Moreover, if equality holds ing3), then 64) becomes an equality and in
particularf and g render the Prékopa—Leindler inequality an equality. By Theo2dm
and the fact thatf (x) is positive if and only ifx € Ko, and g(y) is positive if and
only if y € K1, we conclude thako and K1 coincide up to a translation.[J

Remark 22. Theoreml10 can be proved along the lines of the proof of TheorkElrand
taking the following considerations into account. Firstly, neither the proof of Proposi-
tion 19, nor the ones of Theoren®) and 11 require the convexity of the involved sets,
once that they are assumed to have boundary of @Zssndeed, the only assumption

on the boundary that is necessary is to have the interior sphere property in order to
apply the Hopf Lemma. Moreover, concerning equality conditions, in Thedk@rt

has to be used the fact that functions giving equality in the Prékopa—Leindler inequality
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are necessarily log-concave, this implies thaCif and C1 give equality in {3), then
they are convex.
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