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Abstract

Recently, several inequalities of Brunn–Minkowski type have been proved for well-known
functionals in the Calculus of Variations, e.g. the first eigenvalue of the Laplacian, the Newton
capacity, the torsional rigidity and generalizations of these examples. In this paper, we add new
contributions to this topic: in particular, we establish equality conditions in the case of the first
eigenvalue of the Laplacian and of the torsional rigidity, and we prove a Brunn–Minkowski
inequality for another class of variational functionals. Moreover, we describe the links between
Brunn–Minkowski type inequalities and the resolution of Minkowski type problems.
© 2004 Elsevier Inc. All rights reserved.

MSC: 35J25; 39B26; 52A20

Keywords:Convex body; Brunn–Minkowski inequality; Variational functionals; Minkowski problem;
Elliptic partial differential equations

1. Introduction

The Brunn–Minkowski inequality, in its classic formulation, states that ifK0 andK1
are compact, convex sets inRn and t ∈ [0,1], then

V ((1− t)K0 + tK1)
1/n � (1− t)V (K0)

1/n + tV (K1)
1/n , (1)
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where

(1− t)K0 + tK1 = {(1− t)x + ty : x ∈ K0 , y ∈ K1}

andV denotes then-dimensional volume (i.e. the Lebesgue measure); moreover, equality
holds in (1) if and only if K0 andK1 are homothetic, i.e. they coincide up to translation
and dilatation.
The Brunn–Minkowski inequality is among the most important and deepest results

in the theory of convex bodies, for which the reader is referred to[27], and it is
connected with other fundamental inequalities like the isoperimetric inequality, the
Sobolev inequality and the Prékopa–Leindler inequality.
In [14], Gardner provides a very detailed presentation of inequality (1), including

historical remarks, a description of links to other inequalities, various extensions and
so on. Though geometry is the most natural context in which the Brunn–Minkowski
inequality has to be situated, the paper by Gardner provides many evidences of the
fact that its role has to be fully recognized in analysis as well as in other areas of
mathematics.
This paper is concerned with inequalities of the same type as (1), where the volume

is replaced by other functionals, arising in the context of the Calculus of Variations
and of the theory of elliptic partial differential equations. Firstly, let us explain what
do we mean by an inequality of Brunn–Minkowski type.
We will denote byKn the family of n-dimensionalconvex bodies, i.e. compact,

convex subsets ofRn, with non-empty interior. InKn a scalar multiplication for positive
numbers and a sum (the Minkowski addition) are defined:

sK = {sx : x ∈ K} , K ∈ Kn , s � 0 ,

K0 + K1 = {x + y : x ∈ tK0 , y ∈ K1} , K0,K1 ∈ Kn .

Now, inequality (1) can be rephrased as follows: then-dimensional volume raised
to the power 1/n is a concave function onKn. Note that the volume is positively
homogeneous and its order of homogeneity isn:

V (sK) = snV (K) , s � 0 , K ∈ Kn .

Another familiar geometric functional has a similar concavity property connected
with its order of homogeneity. For a givenK ∈ Kn, the (n − 1)-dimensional measure
of �K, denoted byS(K), is positively homogeneous of order(n − 1) and satisfies the
following Brunn–Minkowski type inequality:

S((1− t)K0 + tK1)
1/(n−1) � (1− t)S(K0)

1/(n−1) + tS(K1)
1/(n−1) ,

K0,K1 ∈ Kn , t ∈ [0,1] . (2)
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Inequalities (1) and (2) are, in turn, included in a class of analogous inequalities
regarding thequermassintegralsof convex bodies. The quermassintegrals of a convex
body K can be defined through the Steiner formula, which claims that the volume of
K + �B, where� is a nonnegative number andB is the unit ball, is a polynomial of�,

V (K + �B) =
n∑

i=0

�i
(n

i

)
Wi(K) .

The (nonnegative) coefficientsW0(K), . . . ,Wn(K) are the quermassintegrals ofK (see
Section 4.2 in[27] for a detailed presentation). Notice that

W0(K) = V (K) , W1(K) = 1

n
S(K) .

Each quermassintegralWi(·) is positively homogeneous of order(n − i) and, if i < n,
satisfies the inequality

Wi((1− t)K0 + tK1)
1/(n−i) � (1− t)Wi(K0)

1/(n−i) + tWi(K1)
1/(n−i) ,

K0,K1 ∈ Kn , t ∈ [0,1]
(see[27, Theorem 6.4.3]).
These examples suggest to consider the following more general situation. Assume

that F is a functional defined inKn

F : Kn −→ (0,∞),

which is homogeneous of order� �= 0, moreover, assume thatF is invariant under
rigid motions, i.e. isometries ofRn (this property is not needed for the following
definition but it is shared by all the examples that we treat). We say thatF satisfies a
Brunn–Minkowski inequality ifF1/� is concave inKn:

F((1− t)K0 + tK1)
1/� � (1− t)F(K0)

1/� + tF(K1)
1/� (3)

for all K0 ,K1 ∈ Kn and t ∈ [0,1].
The examples that we have seen are all taken from geometry. In recent times, inequal-

ities of Brunn–Minkowski type have been proved for various well-known variational
functionals. Brascamp and Lieb in[6] established inequality (3) whenF(K) = �(K) is
the first eigenvalue of the Laplace operator ofK, in this case� = −2. Borell proved
the same kind of result forF(K) = Cap(K), the Newton capacity ofK, � = n − 2,
n � 3 (see[2]) and for the torsional rigidityF(K) = �(K), � = n + 2 (see[4]).
These results have been extended in[3] to the logarithmic capacity (or transfinite

diameter) in dimensionn = 2, in [11] to the p-capacity,p > 1, and in [9] to the
n-dimensional counterpart of the logarithmic capacity.
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In this paper, we make an overview of the present situation and we bring some
new contributions to it. We start by describing in some details the Brunn–Minkowski
inequality for the functionals�, Cap and�, in the next section. We establish equality
conditions in the case of the first eigenvalue of the Laplace operator and of the torsional
rigidity, i.e. we prove that equality holds in (3) if and only if K0 andK1 are homothetic;
a similar characterization of equality case was already known for the Newton capacity
(see[7]).
How far can the Brunn–Minkowski inequalities for the three main examples be

extended to other functionals? To answer this question, we start from the following
consideration: for a convex bodyK, the functionals�(K), Cap(K) and �(K) can all
be obtained as energy integrals

F(K) =
∫
�

|∇u|2 dx ,

where� is the interior or the complement set ofK andu solves a Dirichlet boundary-
value problem in�, involving an equation of the form�u = f (u) for a suitable
function f (see Section 2). Extensions can be obtained: (a) replacing the Laplacian
with another elliptic operator, for instance thep-Laplace operator or a fully non-linear
operator; (b) choosing other types of functionf. In Section 2 we describe the cases
in which extensions of this kind have already been achieved (see[3,11,9]) and we
establish a new extension, i.e. a new Brunn–Minkowski inequality, for the functional
arising whenf (u) = −up, p ∈ [0,1), and the operator is the Laplacian. Moreover,
throughout the section, we indicate some other possible extensions which are by now
open problems.
An important topic in the theory of convex bodies, strongly connected to the Brunn–

Minkowski inequality, is the Minkowski problem, which requires to determine (uniquely)
a convex body with a prescribed surface area measure (in case of smooth bodies, know-
ing the surface area measure is equivalent to know the Gauss curvature as a function
of the outer unit normal to the body). The Brunn–Minkowski inequality (1) can be
used to solve the Minkowski problem in a variational way (see, for instance,[21]),
moreover, the equality conditions of (1) imply uniqueness in the Minkowski problem.
Jerison realized that new Minkowski type problems can be posed, replacing the

surface area measure by other measures obtained, roughly speaking, as first variations
of variational functionals (this concept will be made clearer in Section4). Furthermore,
he observed that Brunn–Minkowski type inequality can be used in the resolution of
these Minkowski problems exactly as in the classic case. In[20] he showed existence
and uniqueness of the solution to a Minkowski type problem for the Newton capacity;
subsequently in[21] he posed a similar problem for the transfinite diameter and for
the first eigenvalue of the Laplacian, and he obtained an existence result for both
functionals. Uniqueness in the case of transfinite diameter was proved in[9].
In Section 4, after describing in more details Minkowski type problems for variational

functionals, we deduce from the characterization of equality conditions in the Brunn–
Minkowski inequality for the first eigenvalue of the Laplacian, the uniqueness result
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also in this case; moreover, we make some remarks about the feasibility of a Minkowski
type problem for the torsional rigidity.

2. The main examples

In this section, we focus on the Brunn–Minkowski inequality for the first eigenvalue
of the Laplace operator, the Newtonian capacity and the torsional rigidity. As we shall
see, each functional can be defined either through a variational problem, posed in a
suitable space of functions, or in terms of the solution of a boundary-value problem
for an elliptic operator. The first definition is in the spirit of the Calculus of Variations
while the second reflects the point of view of elliptic PDEs. The equivalence between
the two definitions relies on a well-known principle: under suitable assumptions, the
minimizers of a functional are solutions of a differential equation, called the Euler–
Lagrange equation of the functional itself.

2.1. The first eigenvalue of the Laplace operator

Throughout, forK ∈ Kn we denote by int(K) its interior. The first eigenvalue of
the Laplace operator�(K) can be defined as follows:

�(K) = inf

{∫
K

|∇v|2 dx , v ∈ W
1,2
0 (int(K)) :

∫
K

v2 dx = 1

}
.

Here we adopt the standard notation for Sobolev spaces; if� is an open subset of
Rn, W1,2(�) is the Sobolev space of those functions having weak derivatives up to
the second order inL2(�); W

1,2
0 (�) is the closure inW1,2(�) of the set of smooth

functions with compact support contained in�.
Equivalently,�(K) is the smallest positive number for which the Dirichlet boundary-

value problem {
�u = −�(K) u in int(K) ,

u = 0 on�K ,
(4)

admits a nontrivial solutionu ∈ C2(int(K))∩C(K). The solution of this problem is
unique up to a multiplicative factor, i.e. the first eigenvalue has multiplicity one; in
particular, if we normalizeu so that

∫
K

u2 dx = 1 ,

we obtain (integrating by parts)

�(K) =
∫
K

|∇u|2 dx .
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It can be immediately seen from its definition that�(·) is homogeneous of order−2:

�(tK) = t−2�(K) , K ∈ Kn , t > 0 .

The functional� satisfies a Brunn–Minkowski inequality.

Theorem 1 (Brascamp and Lieb). Let K0 and K1 belong toKn and t ∈ [0,1], then
the following inequality holds:

�((1− t)K0 + tK1)
−1/2 � (1− t)�(K0)

−1/2 + t�(K1)
−1/2 . (5)

This result is proved in[6]; in fact, in this paper it proved that the inequality holds
for all compact, connected domains having sufficiently regular boundary. Another proof
is given by Borell in[5]. In Section 5 of the present paper we provide a new proof of
Theorem1 which can be applied only whenK0 andK1 are convex, but which allows,
in this case, to characterize also the equality conditions of (5).

Theorem 2. Assume thatK0,K1 ∈ Kn and t ∈ [0,1] are such that equality holds in
(5), thenK0 is homothetic toK1.

The latter result answers a question posed by Jerison in[21], regarding uniqueness
of the solution to the Minkowski problem for the functional�; see Section 4 for more
details.

2.2. The Newtonian capacity

The variational definition of the Newtonian capacity is, forn � 3,

Cap(K) = inf

{∫
Rn

|∇u|2 dx , u ∈ C∞
c (Rn) : u � �K

}
, (6)

hereC∞
c (Rn) denotes the sets of those function fromC∞(Rn) having compact support

and �K is the characteristic function ofK. Equivalently, if u is the solution of

{
�u = 0 in Rn \ K

u = 1 on�K , lim |x|→+∞ u(x) = 0 ,
(7)

then the capacity ofK is given by

Cap(K) =
∫
Rd\K

|∇u|2 dx .

Cap(·) is homogeneous of ordern − 2.
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Theorem 3 (Borell). Let K0 and K1 belong toKn, n � 3, and t ∈ [0,1], then the
following inequality holds:

Cap((1− t)K0 + tK1)
1/(n−2) � (1− t)Cap(K0)

1/(n−2) + t Cap(K1)
1/(n−2) . (8)

A proof of this result is given in[2]; subsequently, Caffarelli et al. in[7] characterized
the equality case.

Theorem 4 (Caffarelli et al.). Assume thatK0,K1 ∈ Kn and t ∈ [0,1] are such that
equality holds in(8), thenK0 is homothetic toK1.

In dimensionn = 2 the notion of Newtonian capacity is naturally replaced by the
one of logarithmic capacity. One way to define the logarithmic capacity Lcap(K) of
a two-dimensional convex bodyK is the following. The boundary value problem

{
�u = 0 in R2 \ K

u = 0 on�K , u(x) ∼ log |x| as|x| → +∞ ,
(9)

has a unique solution; the second boundary condition means that there exists a constant
a > 0 such that

1

a
� u(x)

log |x| � a ,

when |x| is sufficiently large. Moreover, the following limit

� = lim|x|→+∞ (u(x) − log |x|)

exists and it is known as theRobin constantof K. The logarithmic capacity is given
by the formula

Lcap(K) := e−� .

Lcap(·) is homogeneous of order 1.
The logarithmic capacity of a set coincides with itstransfinite diameter, with its

conformal radiusand with its Čebišev constant; for these notions we refer the reader
to [16].

Theorem 5 (Borell). Let K0 and K1 belong toK2 and t ∈ [0,1], then the following
inequality holds:

Lcap((1− t)K0 + tK1) � (1− t)Lcap(K0) + t Lcap(K1) . (10)
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This theorem is contained in[3]; the author and Cuoghi in[9], characterized the
corresponding equality conditions.

Theorem 6. Equality occurs in(10) if and only ifK0 is homothetic toK1.

Remark 7. No extension of the Brunn–Minkowski inequality to classes of nonconvex
domains is known either for the Newton capacity or for the transfinite diameter.

2.3. The torsional rigidity

We start with the variational definition: the torsional rigidity�(K) of K ∈ Kn is
given by

1

�(K)
= inf

{∫
K

|∇u|2 dx(∫
K

|u| dx)2 , u ∈ W
1,2
0 (int(K)) :

∫
K

|u| dx > 0

}
.

As in the previous cases, this functional can be expressed in terms of the solution
of an elliptic boundary-value problem: letu be the unique solution of

{
�u = −2 in int(K) ,

u = 0 on�K ,
(11)

then

�(K) =
∫
K

|∇u|2 dx .

The torsional rigidity is homogeneous of order(n + 2).

Theorem 8 (Borell). Let K0 and K1 belong toKn and t ∈ [0,1], then the following
inequality holds

�((1− t)K0 + tK1)
1/(n+2) � (1− t)�(K0)

1/(n+2) + t�(K1)
1/(n+2) . (12)

This theorem is proved in[4]; another proof, together with a generalization, is
contained in Theorem11 of this paper which includes also a characterization of equality
conditions.

Theorem 9. Equality occurs in(12) if and only ifK0 is homothetic toK1.

Inequality (12) can be proved also in the class of compact sets withC2 boundary.
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Theorem 10. Let C0 and C1 be compact sets inRn with boundary of classC2 and
let t ∈ [0,1], then

�((1− t)C0 + tC1)
1/(n+2) � (1− t)�(C0)

1/(n+2) + t �(C1)
1/(n+2) , (13)

moreover equality holds if and only ifC0 and C1 are convex and homothetic.

Inequality (13), without equality conditions, is contained in[4]; for the proof of
Theorem10 see Remark22 in Section6 of the present paper.

3. Extensions

The Brunn–Minkowski inequalities (5), (8), (10) and (12) have been extended in
various directions in[11,26,9], a new extension is contained in this paper and further
results are contained in[10]. In this section, we shall describe some of these results.
Our first step is to identify some common features of the problems which give rise to

the functionals that we have seen in the previous section; they will serve as guidelines
for more general results. We recall that we restrict our attention to functionals which
are positively homogeneous and invariant under rigid motions.

(1) In the boundary value problems (4), (7), (9) and (11), the differential operator is
the Laplacian, which in particular isisotropic (invariant under rigid motions) and
linear; the resulting equation is ofsemi-linear type. Moreover, the space variablex
does not appear explicitly neither in the equation, nor in the boundary conditions.
These facts make the relevant functional invariant under rigid motions.

(2) The problems arehomogeneousin the following sense: ifu is the solution inK
and s is a positive number, the solutionv in the rescaled domainsK is given by

v(y) = sq u
(y

s

)
, y ∈ s K ,

for a suitableq; this makes the corresponding functional positively homogeneous.
(3) In all problems the functionalF coincides with theenergy integralof the solution,

i.e.

F(K) =
∫
�

|∇u|2 dx ,

where� is the interior or the complement ofK.

We shall see three types of extensions of Brunn–Minkowski inequalities for variational
functionals. The distinction is made accordingly to the second-order differential operator
which appears in the boundary-value problem.
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3.1. The linear case

If we restrict ourselves to the case of functionals coming from problems where the
second-order differential operator is linear, then invariance under rigid motions implies
that the operator must be the Laplacian.
We consider the following situation: forK ∈ Kn, p � 0 and c ∈ R, we pose the

boundary-value problem

{
�u = c up, u � 0 in int(K) ,

u = 0 on�K .
(14)

The question is whether the energy integral of the solution satisfies a Brunn–
Minkowski inequality. Forc � 0 the above problem admits only the trivial solution
u ≡ 0, this is a simple consequence of the maximum principle; then we takec < 0.
Except for the casep = 1, that we will consider later, we may always reduce to the
casec = −1 by multiplying the solution for a suitable constant. So we are dealing
with

{
�u = −up, u > 0 in int(K) ,

u = 0 on�K .
(15)

For p = 0 we have the problem that gives rise to the torsional rigidity. Forp ∈ (0,1)
problem (15) is well posed, i.e. we have existence and uniqueness of the solution in
C2(int(K))∩C(K); this fact will be proved in Section6. The energy integral of the
solution

F(K) =
∫
K

|∇u|2 dx ,

is homogeneous of order�p = n + 2+p
1−p

. In Section 6 we prove the following

Theorem 11. The functionalF satisfies a Brunn–Minkowski inequality:

F((1− t)K0 + tK1)
1/�p � (1− t)F(K0)

1/�p + tF(K1)
1/�p (16)

for all K0,K1 ∈ Kn and t ∈ [0,1]. Moreover, equality holds if and only ifK0 is
homothetic toK1.

The same remark as for the functional�(·) applies: the inequality can be proved in
the class of compact sets with boundary of classC2 and equality holds only forconvex
homothetic sets.
For p = 1 we have existence of at least one nontrivial solution of problem (14)

providedc = −�k(K) for somek ∈ N, where�k(K), k = 1,2, . . ., are the eigenvalues
of −� in K; in this case, ifk � 2, we have to drop the requirementu � 0 in int(K).
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For k = 1 the energy integral is�1(K) = �(K) and it satisfies the Brunn–Minkowski
inequality (5). For k > 1, if u is any solution, normalized so that

∫
K

u2 dx = 1 ,

its energy integral coincides with�k(K), so that the question is whether the functionals
�k(·), k = 2,3, . . ., satisfy a Brunn–Minkowski inequality (note that the order of
homogeneity of all these functionals is−2). This is an open problem; the available
proofs of inequality (5) (see [6,5] and Section5 of this paper) do not seem to be
adaptable to the other eigenvalues.
For 1 < p < n+2

n−2 (and c < 0), existence of at least one solution to problem
(14) continues to hold while uniqueness is not guaranteed; nevertheless a variational
definition of F could still be given, coherently with the casep < 1 (see the proof of
Proposition19 in Section6). Anyway our proof of the Brunn–Minkowski inequality for
F does not extend to this case. Finally forp � n+2

n−2, problem (14) admits no positive
solution (see, for instance,[23,24]).

3.2. Quasi-linear operators

In [11] Salani and the author proved that thep-capacity of convex bodies satisfies a
Brunn–Minkowski inequality. For an arbitrary compact setA in Rn and forp ∈ [1, n),
the p-capacity is defined in a similar way as forp = 2:

Capp (A) = inf

{∫
Rn

|∇u|p dx , u ∈ C∞
c (Rn) : u � �A

}
(17)

(where�A is the characteristic function ofA). WhenA = K is a convex body (but also
under much less restrictive assumptions onK), an equivalent definition can be given,
based as usual on a boundary value problem; indeed

Capp (K) =
∫
Rn\K

|∇u|p dx, (18)

whereu is the unique solution of

{
div

(|∇u|p−2∇u
) = 0 in Rn \ K ,

u = 1 on�K , lim |x|→+∞ u(x) = 0 .
(19)

The second-order differential operator involved in the above problem is called thep-
Laplacian and the corresponding equation is quasi-linear. Clearly, forp = 2, n > 2,
we get the Newtonian capacity. Capp (·) is homogeneous of order(n − p).
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Theorem 12. The p-capacity satisfies the following Brunn–Minkowski inequality:

Capp ((1− t)K0 + tK1)
1/(n−p) � (1− t)Capp (K0)

1/(n−p) + t Capp (K1)
1/(n−p)

∀K0, K1 ∈ Kn , t ∈ [0,1] ; (20)

moreover, equality holds if and only ifK0 andK1 are homothetic.

For the proof see[11].
The limit casep = n, which has been treated in[9], is similar to the casep = n = 2

that we have described in Section 2.2. Firstly, the notion ofn-dimensional logarithmic
capacity is defined for a convex body inKn; the definition is completely analogous
to the one valid in the two-dimensional case. This quantity turns out to be positively
homogeneous of order one, it satisfies a Brunn–Minkowski inequality and the equality
case is characterized as usual.
The author together with Cuoghi and Salani (see[10]) studied Brunn–Minkowski

type inequalities for the functionals analogous to the first eigenvalue of the Laplacian
and the torsional rigidity, when the Laplace operator is replaced by thep-Laplacian.

3.3. Fully non-linear operators

Recently, Salani (see[26]) proved a Brunn–Minkowski type inequality for the eigen-
value of the Monge–Ampère operator. This quantity, that we shall denote by�(·), like
all the ones that we have seen until now, admits either a variational definition or a
definition based on a boundary value problem. A difference with respect to the previous
examples is that�(K) can be defined only for those convex bodies having boundary
of classC2, with strictly positive Gauss curvature at each point of the boundary; we
will denote this class of sets byKn

r .
We have, forK ∈ Kn

r ,

�(K) = inf

{
−

∫
K

udet(D2u) dx∫
K

|u|n+1 dx

}

where the infimum is taken over the functionsu ∈ C2(int(K))∩C(K), convex and
such thatu = 0 on �K.
Equivalently,�(K) is the unique (positive) number such that the problem

{
det(D2u) = �(K) (−u)n, u < 0 inK ,

u = 0 on�K (21)

admits a (convex) solution. The existence of a number�(K) such that (21) can
be solved, was proved by Lions in[22]. The equivalence between the two defini-
tions is due to Tso, see[28]. The Monge–Ampère operator belongs to the class of
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fully non-linear elliptic operators; it is, of course, invariant under translations and rota-
tions. The eigenvalue� is homogeneous of order−2n. The following result is proved
in [26].

Theorem 13 (Salani). The functional� satisfies the inequality:

�((1− t)K0 + tK1)
−1/2n � (1− t)�(K0)

−1/2n + t�(K1)
−1/2n ,

K0 , K1 ∈ Kn
r , t ∈ [0,1] .

Moreover equality holds if and only ifK0 is homothetic toK1.

It would be interesting to see whether the same kind of result holds for another
class of fully non-linear elliptic operators, i.e. the so-called Hessian operators. For
k ∈ {1,2, . . . n}, the kth Hessian operatorSk(D

2u) applied to aC2 function u is the
kth elementary symmetric function of the eigenvalues of the Hessian matrix ofu; note
that this class includes the Laplace operator (corresponding tok = 1) and the Monge–
Ampère operator (k = n). Wang (see[29]) proved that fork > 1, like in the case of
the Monge–Ampère operator,Sk admits exactly one positive eigenvalue in a convex
domain with smooth boundary (in fact, the result by Wang is true for a larger class of
domains); does this eigenvalue satisfy a Brunn–Minkowski type inequality?

4. Minkowski type problems

4.1. The Minkowski problem for the volume

The area measure	K of a convex bodyK in Rn is a nonnegative Borel measure	K

defined on the unit sphereSn−1, characterized by the following property: for a Borel
set
 ⊂ Sn−1, 	K(
) is the (n − 1)-dimensional measure of the set

{x ∈ �K : �(x) ⊂ 
} ,

where�(x) is the set of outer unit normal vectors to�K at x (see[27, Chapter 4]).
Minkowski problem. Given a nonnegative Borel measure	 on Sn−1, find a convex

body K whose area measure is	.
What properties must	 have so that this problem can be solved? A consequence

of the invariance of the volume under translations is the following property of area
measures: ∫

Sn−1
X d	K(X) = 0, ∀K ∈ Kn . (22)

Moreover, as a convex body has non-empty interior, from the definition of area measure
it is clear that its support cannot be contained in a great sub-sphere ofSn−1. These
two properties are sufficient to characterize area measures.
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Theorem 14. Let 	 be a nonnegative Borel measure onSn−1, such that its support is
not contained in any great sub-sphere and

∫
Sn−1

X d	(X) = 0 .

Then there existsK ∈ Kn such that	K = 	. Moreover K is uniquely determined up
to a translation.

For a proof, see for instance[27, Chapter 7]. We want to describe a connection
between the Minkowski problem and the Brunn–Minkowski inequality. We begin with
the following simple formula relating the volume ofK to its area measure:

V (K) = 1

n

∫
Sn−1

hK(X) d	K(X) , (23)

wherehK : Sn−1 → R, is the support function ofK:

hK(X) = sup
x∈K

(X, x), X ∈ Sn−1 .

The validity of (23) is rather intuitive (especially for polyhedra); for a proof, see
Chapter 4 in[27]. There is another formula which, roughly speaking, expresses the
first variation of the volume ofK, whenK is perturbed by another convex bodyL:

d

dt
V (K + tL)|t=0 =

∫
Sn−1

hL(X) d	K(X), ∀L ∈ Kn (24)

(note that (23) follows from (24), and the homogeneity of the volume, when we choose
K = L). Formula (24) follows immediately from the well-known expansion ofV (K +
tL) as a polynomial oft whose coefficients are themixed volumesof K and L; we
refer again to[27] for the details. A consequence of (24) is equality (22), which is
obtained lettingL be the set formed by a single pointx and then lettingx vary in Rn.
From the Brunn–Minkowski inequality we have that, forK,L ∈ Kn,

V (K + tL)1/n � V (K)1/n + tV (L)1/n .

The two terms of this inequality, as functions oft > 0, coincide whent = 0, then

d

dt
V (K + tL)1/n|t=0 � d

dt
[V (K)1/n + tV (L)1/n]|t=0 = V (L)1/n .
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Using (24), we obtain

∫
Sn−1

hL(X) d	K(X) � nV (L)1/nV (K)(n−1)/n , ∀L ∈ Kn,

which becomes an equality whenK = L and more generally whenK = sL for any
s > 0. This fact can be rephrased in the following way:
Let K be fixed inKn and letL ∈ Kn be such thatV (L) � 1; then the quantity

∫
Sn−1

hL(X) d	K(X)

attains its minimum when

L = 1

V (K)1/n
K .

This fact suggests an argument to solve the Minkowski problem (the existence part):
given a nonnegative Borel measure	 on Sn−1, satisfying the assumptions of Theorem
14, consider the variational problem

inf

{∫
Sn−1

hL(X) d	(X), L ∈ Kn , V (L) � 1

}
.

By the previous considerations, any solution is a good candidate to solve the Minkowski
problem for	. Indeed, this approach can be successfully applied. The original proof
of Minkowski uses this argument in the special case of polyhedra (in this case	 is
the sum of point masses onSn−1, see for instance,[1]), but the same can be done in
the general case, as shown in[21] (see also the historical note at the end of Section
7.1 in [27]).
Regarding the uniqueness part of Theorem14, once again this depends on the Brunn–

Minkowski inequality and in particular on the characterization of the equality conditions.
The argument is quite standard, we describe it here since it will be used in the proof
of another uniqueness result presented in the sequel of this section. Assume that there
exist two convex bodiesK and L such that

	 = 	K = 	L .

Consider the function

m(s) = [V (sK + (1− s)L)]1/n , s ∈ [0,1] .
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By the Brunn–Minkowski inequality,m(s) is concave in[0,1]; its derivative ats = 0
is given by

m′(0) = 1

n
[V (L)]−

n−1
n

d

ds
V (sK + (1− s)L)|s=0

= 1

n
[V (L)]−

n−1
n

∫
Sn−1

(hK(�) − hL(�)) d	(�)

= [V (L)]−
n−1
n [V (K) − V (L)]

= [m(0)]1−n
(
m(1)n − m(0)n

)
.

Sincem(s) is concave

m′(0) � m(1) − m(0) .

This fact, together with the above inequality, givesm(1)n−1 � m(0)n−1, i.e.
V (K) � V (L). Interchanging the roles ofK and L we conclude thatV (L) = V (K).
This implies at oncem(0) = m(1) andm′(0) = 0, so thatm must be constant in[0,1]
and consequentlyK and L render the Brunn–Minkowski inequality an equality. Then
K coincides withL up to a translation (since	K = 	L, no dilatation can occur).
We might conclude that formulas (23) and (24) (together with the Brunn–Minkowski

inequality) are the starting point for a variational solution of existence part of the
Minkowski problem, while the uniqueness part can be deduced from characterization
of equality cases in the Brunn–Minkowski inequality.
Jerison observed (see[20,21]) that if we replace the volume by either the Newton

capacity or the first eigenvalue of the Laplace operator, we find ourselves in a similar
situation.

4.2. The Minkowski problem for the Newton capacity

In the paper[20], a Minkowski type problem for the Newton capacity is solved. The
starting point is a formula similar to (23). Let K ∈ Kn (n > 2), and letuK be the
solution of problem (7), then |∇u|2 is defined almost everywhere on�K, with respect
to the (n−1)-dimensional Hausdorff measure so that one can define the measure	CapK

through the formula

	CapK (
) :=
∫
g−1
K (
)

|∇u(x)|2 dHn−1(x)
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for every Borel subset
 of Sn−1. HereHn−1 is the (n − 1)-dimensional Hausdorff
measure andgK : �K → Sn−1 is the Gauss map ofK i.e., for x ∈ �K, gK(x) is the
set of outer unit normal vectors to�K at x. In particular, when the boundary ofK is
of classC2 with positive Gaussian curvature at every point, we can write

d	CapK (X) := |∇u(g−1
K (X))|2 d	K(X),

where 	K is the area measure ofK introduced in the previous section. The relevant
formula is

Cap(K) = 1

n − 2

∫
Sn−1

hK(X) d	CapK (X). (25)

In the case of convex bodies with sufficiently smooth boundary, this formula comes
from a clever use of the divergence theorem and the conditions contained in (7). A
further step is to prove that for an arbitrary convex bodyL

d

dt
Cap(K + tL)|t=0 =

∫
Sn−1

hL(X) d	CapK (X), (26)

in this case the proof is much more delicate. Comparing (25) and (26) with (23) and
(24), it becomes clear that when we replace the volume with the capacity, correspond-
ingly the measure	CapK have to play the role of area measure. The following result is
the counterpart of Theorem14.

Theorem 15 (Minkowski problem for capacity). Let 	 be a nonnegative Borel measure
on Sn−1, such that its support is not contained in any great sub-sphere and

∫
Sn−1

X d	(X) = 0 .

Then there existsK ∈ Kn such that	CapK = 	. Moreover K is uniquely determined up
to a translation.

The existence part of this theorem is proved in[20]; in [21] another proof is given,
which makes use of the variational method that we described before in the case of the
volume. The uniqueness part follows from the characterization of equality cases in the
Brunn–Minkowski inequality for capacity proved in[7], i.e. Theorem4 in Section 2.2
of the present paper.
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4.3. The Minkowski problem for�

In [21], the same problem has been studied for the first eigenvalue of the Laplacian.
For a convex bodyK, let uK be the solution of problem (4) normalized so that

∫
K

|uK |2 dx = 1

and define the measure	�
K on Sn−1 through the formula

	�
K(
) :=

∫
g−1
K (
)

|∇u(x)|2 dHn−1(x)

for every Borel subset
 of Sn−1. Then we have (see[21])

�(K) = 1

2

∫
Sn−1

hK(X) d	�
K(X) (27)

and

d

dt
�(K + tL)|t=0 = −

∫
Sn−1

hL(X) d	�
K(X) , ∀L ∈ Kn (28)

(note that the order of homogeneity of� is negative). Using these formulas and the
variational approach, the following result can be shown (see Theorem 7.5 in[21])

Theorem 16 (Jerison). Let 	 be a nonnegative Borel measure onSn−1, such that its
support is not contained in any great sub-sphere and

∫
Sn−1

X d	(X) = 0 .

Then there existsK ∈ Kn such that	�
K = 	.

A consequence of Theorem2 is the following uniqueness result.

Theorem 17. Let K,L ∈ Kn be such that

	�
K = 	�

L ,

then K and L coincide up to a translation.
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Proof. The argument is exactly the same as in the uniqueness proof for the Minkowski
problem for the volume, Section 4.1, with

m(s) = [
�(sK + (1− s)L)

]−1/2
, s ∈ [0,1] .

Clearly, Theorems1 and 2 have to be used, instead of the classic Brunn–Minkowski
inequality and corresponding equality conditions.

4.4. The case of torsional rigidity

The aim of this section is to present a couple of formulas regarding the torsional
rigidity of convex bodieswith smooth boundary, corresponding to (23) and (24), which
indicates the feasibility of a Minkowski type problem for the functional�.

Proposition 18. Let K and L be convex bodies with boundary of classC2 such that
the Gauss curvature is positive at every point of their boundary; let uK be the solution
of problem(11) in K. The following formulas hold:

�(K) = 1

n + 2

∫
Sn−1

hK(X)|∇u(g−1
K (X))|2 d	K(X) , (29)

d

dt
�(K + tL)|t=0 =

∫
Sn−1

hL(X)|∇u(g−1
K (X))|2 d	K(X) . (30)

Proof. We start proving (29). By the divergence theorem

�(K) =
∫
K

|∇u(x)|2 dx =
∫
K

[div(u(x)∇u(x)) − u(x)�u(x)]dx

= 2
∫
K

u(x) dx . (31)

As the boundary ofK is C2, u ∈ C2(K), this follows from standard regularity results
for solutions of elliptic equations (see for instance Theorem 6.14 in[15]). Moreover by
the Hopf Lemma,∇u does not vanish on�K. As u > 0 in int(K) (by the maximum
principle), for everyx ∈ �K we have

∇u(x)

|∇u(x)| = −�(x) ,
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where� is the outer unit normal to�K. Hence the support function ofK can be written
in the following way:

hK(X) = − 1

|∇u(g−1
K (X))|

(
g−1
K (X)),∇u(g−1

K (X))
)
, X ∈ Sn−1

(we recall thatg−1
K is the inverse of the Gauss map ofK). We define

w(x) = (x,∇u(x)) , x ∈ K .

We have

∫
Sn−1

hK(X)|∇u(g−1
K (X))|2 d	K(X) =

∫
�K

hk(�(x))|∇u(x)|2 dHn−1(x)

= −
∫
�K

w(x)|∇u(x)| dHn−1(x)

=
∫
�K

w(x)(∇u(x), �(x)) dHn−1(x)

=
∫
K

div(w(x)∇u(x)) dx

=
∫
K

[(∇w(x),∇u(x)) + w(x)�u(x)] dx

= −
∫
K

[u(x)�w(x) + 2w(x)] dx ,

where we have used the divergence theorem, the equation and the boundary condition
of problem (11). Now

�w(x) = 2�u(x) + (x,∇(�u(x))) = −4

and

∫
K

w(x) dx =
∫
K

(x,∇u(x)) dx = −n

∫
K

u(x) dx

again by the divergence theorem. Consequently,

∫
Sn−1

hK(X)|∇u(g−1
K (X))|2 d	K(X) = 2(n + 2)

∫
K

u(x) dx = (n + 2)�(K) ,
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where we have used (31). Thus (29) is proved. Formula (30) can be proved with the
help of (29), applying the same argument used in the proof of formula (a) in Proposition
2.10 in [20]; for brevity we omit the proof. �

Starting from the last proposition, the strategy to solve a Minkowski type problem
for � should be the same described in the previous sections:

(1) Extend formulas (29) and (30) to all convex bodies;
(2) apply the variational method proposed in[21] to prove the existence of a solution;
(3) establish uniqueness of the solution using the characterization of equality conditions

in the Brunn–Minkowski inequality for�, i.e. Theorem9 in this paper.

5. Proof of Theorems1 and 2

In this section, we give a new proof of the Brunn–Minkowski inequality for the
first eigenvalue of the Laplace operator, in the class of convex bodies, which allows to
determine equality conditions. LetK0,K1 ∈ Kn and t ∈ [0,1]. For i = 0,1, let ui be
a solution of




�ui = −�(Ki)ui , ui > 0 in int(Ki) ,

ui = 0 on�Ki

and consider the function

vi(x) = − log ui(x) , x ∈ int(Ki) ,

vi solves

{
�vi = �(Ki) + |∇vi |2 in int(Ki) ,

limx→�Ki
vi(x) = +∞ .

(32)

The functionsv0 andv1 are convex (equivalently,u0 andu1 are log-concave); this fact
is proved in[6] and a different proof can be found in[8]. Moreover, it follows from
(32) and Remark 1 in Section 5 of[19], that the rank of the Hessian matrixD2vi is
maximum, i.e. equal ton, all over int(K), so that

det(D2vi(x)) > 0, ∀x ∈ int(Ki) . (33)

In particular, this implies thatvi is strictly convex. Note that, by the boundary condition
verified by vi , we have that the gradient ofvi mapsKi onto Rn:

∇vi(int(Ki)) = Rn . (34)
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We will need to consider the conjugate functionv∗
i of vi :

v∗
i (�) = supx∈Ki

[(x,�) − vi(x)], � ∈ Rn .

We refer to[25] for the basic properties of this function;v∗
i is defined on the image

of Ki through the gradient map ofvi , which is, by (34), the wholeRn; moreovervi

is convex. Asvi is strictly convex,vi ∈ C1(Rn), and∇v∗
i is the inverse map of∇vi :

x = ∇v∗
i (∇vi(x)) , ∀x ∈ Ki .

In particular this identity and (33) imply that v∗
i ∈ C2(Rn) and

D2vi(x) = [D2v∗
i (∇vi(x))]−1 , ∀x ∈ Ki . (35)

We construct a new function defined inKt :

w(z) = inf {(1− t)v0(x) + tv1(y) : x ∈ K0, y ∈ K1, (1− t)x + ty = z} , z ∈ Kt . (36)

The functionw is called theinfimal convolutionof v0 andv1 (see[25]). It is a convex
function and, from the boundary conditions in problem (32) it can be deduced that

lim
z→�Kt

w(z) = +∞ . (37)

Moreover,w verifies the following identity (see Theorem 16.4 in[25])

w∗ = (1− t)v∗
0 + tv∗

1 in Rn . (38)

Now, (33), (35) and (38) implies thatw∗ is C2(Rn), is strictly convex and

D2w∗ > 0 in Rn .

Consequently,w ∈ C2(int(Kt )). Let us fix z ∈ Kt . By the definition ofw and since,
for i = 0,1, vi tends to+∞ at the boundary ofKi , there existx ∈ int(K0) and
y ∈ int(K1) such thatz = (1− t)x + ty and

w(z) = (1− t)v0(x) + tv1(y) . (39)

By the Lagrange multipliers Theorem one deduces immediately that

∇v0(x) = ∇v1(y) = � ; (40)
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but then

∇w∗(�) = (1− t)∇v0(�) + t∇v1(�) = (1− t)x + ty = z = ∇w∗(∇w(z)) (41)

and by the injectivity of∇w we have

∇w(z) = � .

Therefore,

D2w(z) = [D2w∗(�)]−1 = [(1− t)D2v∗
0(�) + tD2v∗

1(�)]−1

= [(1− t)(D2v0(x))
−1 + t (D2v1(y))

−1]−1 . (42)

Now we use the convexity of the application

M −→ trace(M−1)

in the family of positive definite matricesM (see, for instance, Lemma 4.2 in[11]), to
infer

�w(z) � (1− t)�v0(x) + t�v1(y) (43)

and consequently

�w(z) � (1− t)�(K0) + t�(K1) + |∇w(z)|2 , ∀z ∈ int(Kt ) . (44)

The function

u(z) := e−w(z), z ∈ Kt ,

has the following properties:




�u � − [(1− t)�(K0) + t�(K1)] u , u > 0 in int(Kt ) ,

u = 0 on�Kt .

We multiply both sides of the differential inequality byu and we integrate by parts,
taking the boundary condition into account; in this way we get

(1− t)�(K0) + t�(K1) �
∫
Kt

|∇u|2 dx∫
Kt

|u|2 dx
� �(Kt ) , (45)
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where the last inequality follows from the definition of first eigenvalue of the Laplacian.
We have proved that�(·) is convex inKn and as a further consequence of this property
we obtain

�((1− t)K0 + tK1) � max{�(K0), �(K1)} , ∀K0,K1 ∈ Kn , t ∈ [0,1] . (46)

In order to deduce the Brunn–Minkowski inequality from (46), we use a standard
argument: for arbitraryK0 andK1 in Kn and t ∈ [0,1], let

K ′
0 = [�(K0)]1/2K0 , K ′

1 = [�(K1)]1/2K1 ,

t ′ = t[�(K1)]−1/2

(1− t)[�(K0)]−1/2 + t[�(K1)]−1/2 (47)

and apply (46) to K ′
0, K ′

1 and t ′. The proof of Theorem1 is complete.
Assume now thatK0, K1 and t are such that there is equality in (5); let K ′

0, K
′
1 and

t ′ be as in (47) and

Kt ′ = (1− t ′)K ′
0 + t ′K ′

1 .

Then clearly

�(Kt ′) = �(K ′
0) = �(K ′

1) = 1 .

Hence we may reduce ourselves to the case in which the bodiesK0, K1 andKt have
the same eigenvalue and this is equal to 1. Repeating the construction made in the first
part of the proof, we obtain from (45)

1= (1− t)�(K0) + t�(K1) �
∫
Kt

|∇u|2 dx∫
Kt

|u|2 dx
� �(Kt ) = 1 ,

so that all the inequalities have to be equalities. In particular this implies thatu must
be an eigenfunction corresponding to�(Kt ). Then

�u = −u in Kt ⇒ �w = 1+ |∇w|2 in Kt

i.e. equality holds in (44), but the latter is a consequence of the previous inequality
(43), hence

trace
[
(1− t)(D2v0(x))

−1 + t (D2v1(y))
−1

]−1

= (1− t) trace(D2v0(x)) + t trace(D2v1(y)) .
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In this situation we can apply again Lemma 4.2 in[11] (the equality case) and conclude
that

D2v0(x) = D2v1(y) ⇒ D2v∗
0(�) = D2v∗

1(�) ∀� ∈ Rn.

A further consequence is that

∇v∗
0(�) = ∇v∗

1(�) + � ∀� ∈ Rn

for some fixed vector�. Finally

K0 = ∇v∗
0(R

n) = ∇v∗
1(R

n) + � = K1 + � .

6. Proof of Theorem 11

Let K ∈ Kn; throughout this section,p ∈ [0,1) is fixed. We consider the boundary
value problem




�u = −up , u > 0 in int(K) ,

u = 0 on�K
(48)

and we denote the energy integral of its solution by

F(K) =
∫
K

|∇u|2 dx .

Our final goal is to prove thatF satisfies a Brunn–Minkowski inequality. Our first issue
is an existence an uniqueness result for problem (48).

Proposition 19. There exists a unique solutionu ∈ C2(int(K))∩C(K) of problem
(48).

Proof. For simplicity, throughout the proof� will denote the interior ofK. Consider
the functional

F(v) = 1

2

∫
�

|∇v|2 dx − 1

p + 1

∫
�

|v|p+1 dx , v ∈ W
1,2
0 (�) . (49)
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We shall find our solutionu as a minimizer ofF. By the Sobolev inequality (see for
instance (7.26) in[15]),

(∫
�

|v|p+1 dx

) 1
p+1

� C(n, p)

(∫
�

|∇v|q dx

) 1
q

, q = n(p + 1)

n + p + 1
.

Note that, asp < 1 we haveq < 2 so that, by the Hölder inequality,

∫
�

|v|p+1 dx � C(n, p,�)

(∫
�

|∇v|2 dx

) 1+p
2

.

Hence

F(v) � t

2
+ Cta , (50)

where t = ∫
� |∇v|2 dx and a = p+1

2 ∈ [0,1), so thatF is bounded from below. We
set

m = inf {F(v) : v ∈ W
1,2
0 (�)} .

Note thatm < 0; indeed, an easy computation shows that whenK is a ballm is strictly
negative. On the other hand, for an arbitraryK,

m � inf {F(v) : v ∈ W
1,2
0 (�′)} < 0,

where�′ is any open ball contained in�.
Let vj ∈ W

1,2
0 (�), j ∈ N, be a minimizing sequence forF:

lim
j→+∞ F(vj ) = m .

From (50) we deduce that the sequence

∫
�

|∇vj |2 dx

is bounded and from Poincaré inequality (see[15, (7.44)]):

∫
�

v2j dx � C(n, p,�)

∫
�

|∇vj |2 dx ,
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consequently, the sequencevj is bounded inW1,2
0 (�) and then, up to a subsequence, it

converges weakly to a functionu ∈ W
1,2
0 (�). Now we apply a standard semi-continuity

result in the Calculus of Variations (see Theorem 4.1, Chapter 3, in[12]) to infer that
F is lower semi-continuous, this implies

F(u) = m,

i.e. u is a minimizer ofF; note that, sinceF(v) = F(|v|) for everyv, we may assume
that u is nonnegative. By Theorem 4.4, Chapter 3, in[12], u is a weak solution of the
equation

�u = −up in � .

Now prove the regularity ofu. As u ∈ L2(�) and p < 1, the above equation implies
that �u ∈ L2(�); by the regularity theory for solutions of elliptic partial differential
equations, this property improves the regularity ofu which turns out to belong to
W

2,2
0 (�) (see, for instance, Theorem 8.8 in[15]). Applying the Sobolev inequality

we obtainu ∈ Lp′
(�) for somep′ > 2 and consequently, using the equation again,

u ∈ W
2,p′
0 (�). This regularizing procedure can be iterated until it is proved thatu is

Hölder continuous and then, again by regularity results,u ∈ C2(�)∩C(K).
Note thatu cannot be identically equal to zero (sincem < 0); more preciselyu is

strictly positive in� by the strong maximum principle.
Regarding uniqueness, ifu is a solution of problem (48) then the function

v(x) = u
1
q (x) , q = 2

1− p
,

solves the problem




�v = −1

v
[A|∇v|2 + B] = 0 , v > 0 in� ,

v = 0 on�� ,

(51)

where

A = 1+ p

1− p
, B = 2

1+ p
.

As A andB are positive, the left-hand side of the differential equation is an increasing
function of v, so that the comparison principle holds; for this reason, problem (51)
admits only one positive solution, and the same conclusion holds for problem (48).
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The functionalF is positively homogeneous of order

�(p) = n + 2+ 2p

1− p
.

For brevity, in the sequel we will write� instead of�(p). The homogeneity can be
proved as follows. Ifu is the solution of problem (48) in K and s > 0, then the
function

v(y) = s
2

1−p u
(y

s

)
, y ∈ sK

is the unique solution of problem (48) in sK. Hence

F(sK) =
∫
s�

|∇v(y)|2 dy = s
2+2p
1−p

∫
s�

∣∣∣∇u
(y

s

)∣∣∣2 dy

= s�
∫
�

|∇u(x)|2 dx = s�F(K) .

The proof of Theorem11 is based on the following comparison result for solutions
of problem (48).

Theorem 20. Let K0, K1 ∈ Kn, t ∈ [0,1] and Kt = (1− t)K0 + tK1. Let ui be the
solution of problem(48) in Ki , i = 0,1, t . Then

[ut ((1− t)x + ty)] 1−p
2 � (1− t)[u0(x)] 1−p

2 + t[u1(y)] 1−p
2 ∀x ∈ K0 , y ∈ K1 .

Proof. The argument is an adaptation of the technique introduced by Korevaar in[18],
and developed by many other authors, which was used to prove quasi-concavity of
solutions of elliptic equations. Here we follow an improved version of such technique
presented by Kennington in[17].
Firstly, we prove the theorem under the additional assumption that the boundary of

K0 andK1 are of classC2. For t = 0 and t = 1 the theorem is trivial; in the sequel
we assumet ∈ (0,1). For simplicity letq = 2

1−p
. For i = 0,1, we define the function

vi(x) = u
1/q
i (x). As we already saw in the proof of Proposition19, we have




�vi + 1

vi

[A|∇vi |2 + B] = 0 , vi > 0 in int(Ki) ,

vi = 0 on�Ki ,

(52)
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with

A = 1+ p

1− p
, B = 2

1+ p
.

For x ∈ K0 and y ∈ K1 define

c(x, y) = vt ((1− t)x + ty) − [(1− t)v0(x) + tv1(y)]

(for K0 = K1 = K this is the Korevaarconcavity function). The assert of the theorem
is equivalent to the inequality

min
K0×K1

c(x, y) � 0 . (53)

The function c(x, y) is continuous inK0 × K1 and hence attains its minimum at
some point(x̄, ȳ). We consider separately the cases(x̄, ȳ) ∈ int(K0) × int(K1) and
(x̄, ȳ) ∈ �(K0 × K1).
CaseI: (x̄, ȳ) ∈ int(K0) × int(K1). Let z̄ = t x̄ + (1− t)ȳ. We have

∇x c(x̄, ȳ) = t∇vt (z̄) − t∇v0(x̄) = 0 ,

∇y c(x̄, ȳ) = (1− t)∇vt (z̄) − (1− t)∇v1(ȳ) = 0 .

Consequently,

∇vt (z̄) = ∇v0(x̄) = ∇v1(ȳ) .

The Hessian matrix ofc has the following form:

D2c(x̄, ȳ)

= (54)
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Let

whereIn is the identityn × n matrix anda, b ∈ R. D2c(x̄, ȳ) is positive semidefinite,
as (x̄, ȳ) is a minimum point, and the same holds forM (this is straightforward).
Now, the trace of the product of positive semidefinite matrices is nonnegative (see
[17, Appendix]), so that we have

trace(D2c(x̄, ȳ)M) = a2[(1− t)2�vt (z̄) − (1− t)�v0(x̄)]
+2ab[t (1− t)�vt (z̄)]
+b2[t2�vt (z̄) − t�v1(ȳ)] � 0 , ∀a, b ∈ R .

It follows

(1− t)�vt (z̄) � �v0(x̄) , t�vt (z̄) � �v1(ȳ) (55)

and

[(1− t)2�vt (z̄) − (1− t)�v0(x̄)][t2�vt (z̄) − t�v1(ȳ)] � [t (1− t)�vt (z̄)]2 .

After some computations, the last inequality yields

�vt (z̄)[t�v0(x̄) + (1− t)�v1(ȳ)] � �v0(x̄)�v1(ȳ) . (56)

In view of the differential equations satisfied byv0 and v1 (problem (52)) we must
have

t�v0(x̄) + (1− t)�v1(ȳ) < 0 . (57)

Let 
 = |∇vs(z̄)| = |∇v0(x̄)| = |∇v1(ȳ)|. From (56) and (57) we have

�vt (z̄) � �v0(x̄)�v1(ȳ)[(1− t)�v0(x̄) + t�v1(ȳ)]−1,
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which (using the differential equations) is equivalent to

A
2 + B

vt (z̄)
� (A
2 + B)2

v0(x̄)v1(ȳ)

[
t
A
2 + B

v0(x̄)
+ (1− t)

A
2 + B

v1(ȳ)

]−1

and then

1

vt (z̄)
� 1

(1− t)v0(x̄) + tv1(ȳ)
⇒ c(x̄, ȳ) � 0 .

CaseII: (x̄, ȳ) ∈ �(K0×K1). Notice that if x̄ ∈ �K0 and ȳ ∈ �K1, we have trivially
c(x̄, ȳ) � 0. So we have to deal with the case:x̄ ∈ int(K0) and ȳ ∈ �K1 (the symmetric
case can be treated exactly in the same way). Let� be the outer unit normal to�K1
at ȳ; the function

�(r) = c(x̄ + r�, ȳ + r�) = vt (z̄ + r�) − [(1− t)v0(x̄ + r�) + tv1(ȳ + r�)] ,

is defined in r ∈ [−�,0] for some positive�; moreover, if c attains its absolute
minimum at(x̄, ȳ), then� attains its absolute minimum at 0. We compute the left-side
derivative of� at 0:

�′(0−) = �vt

��
(z̄) −

[
(1− t)

�v0
��

(x̄) + t
�v1
��

(ȳ)

]
.

By the Hopf Lemma, which can be applied as�K1 is of classC2,

�u1
��

(ȳ) < 0 whence
�v1
��

(ȳ) = −∞ .

Consequently�′(0−) = ∞ which contradicts the fact that 0 is a minimum point for�.
Next, we consider the general case, i.e. without assumptions on the regularity of�K0

and �K1. For a convex bodyK, let u be the solution of problem (48) in � = int(K).
There exists a sequence of convex open sets{�j }j , j ∈ N, with boundary of classC2,
such that

�̄j ⊂ �j+1,

+∞⋃
j=1

�j = � .

For everyj ∈ N, let uj be the unique solution of (48) in �j ; by Proposition19, we
know thatuj minimizes (49) in �j . Setting

uj (x) = 0 in�\�j ,
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we getuj ∈ W
1,2
0 (�), so that, for the minimizing properties ofu in �,

F(uj ) � F(u) , ∀ j ∈ N .

From (48), the Gauss–Green formula and the definition ofF it follows that

F(uj ) = p − 1

2(p + 1)

∫
�j

|∇uj |2 dx ,

so that, asp < 1,

∫
�j

|∇uj |2 dx �
∫
�

|∇u|2 dx . (58)

The Poincaré inequality together with (58) imply that the sequenceuj is bounded
in W

1,2
0 (�), therefore we can find a subsequenceuj ′ and a functionũ ∈ W

1,2
0 (�)

satisfying uj ′ ⇀ ũ in W
1,2
0 (�) as j ′ → +∞. In particular ũ must be a solution of

(48) in � and thenũ = u; this implies that the whole sequenceuj converges tou.
From (58) and the lower semi-continuity of

w →
∫
�

|∇w|2 dx, w ∈ W
1,2
0 (�) ,

it follows that

lim
j→+∞

∫
�

|∇uj |2 dx =
∫
�

|∇u|2 dx .

Using this fact and the weak convergence we obtain thatuj tends tou in W
1,2
0 (�)

and, up to a subsequence, we may assume that the convergence is almost everywhere.
GivenK0 andK1 in Kn, let �0,j and�1,j be two sequences of open sets approxi-

mating the interior ofK0 andK1, respectively, constructed as above, and let

�t,j = (1− t)�0,j + t�1,j .

With obvious extension of notation, fori = 0,1, t , let ui,j be the solution of problem

(48) in �i,j , and vi,j = u
(p−1)/p
i,j . For the previous part of the proof,

vt,j ((1− t)x + ty) � (1− t)v0,j (x) + tv1,j (y) , x ∈ �0,j , y ∈ �1,j . (59)

As j tends to+∞ (up to subsequences), fori = 0,1, t ,

vt ((1− t)x + ty) � (1− t)v0(x) + tv1(y)
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for almost everyx ∈ �0 and almost everyy ∈ �1; as all the involved functions are
continuous, we obtain the claim of the theorem.�

Another result that we shall use is the following theorem, containing thePrékopa–
Leindler inequality and including anecessaryequality condition.

Theorem 21 (Prékopa–Leindler inequality). Let f, g and h be measurable, nonnegative
functions defined inRn and let t ∈ [0,1]. Assume that

h((1− t)x + ty) � f 1−t (x)gt (y) , ∀x, y ∈ Rn . (60)

Then ∫
Rn

h(z) dz �
(∫

Rn

f (x) dx

)1−t (∫
Rn

g(y) dy

)t

. (61)

Moreover, if

0<

∫
Rn

f (x) dx ,

∫
Rn

g(y) dy ,

and equality holds in(61), then f coincides almost everywhere with a log-concave
function and there exist C, a > 0, and a vectorx ∈ Rn such that

f (x) = Cg(ax + x) , ∀x ∈ Rn . (62)

For the proof of inequality (61) we refer, for instance, to[14]; the equality condition
follows from Theorem 12 in[13].

Proof of Theorem 11. Firstly, we consider themultiplicative formof the inequality
contained in Theorem11:

F((1− t)K0 + tK1) � F(K0)
1−tF(K1)

t , ∀K0, K1 ∈ Kn, t ∈ [0,1] . (63)

We remark that, for arbitraryK0,K1 ∈ Kn andt ∈ [0,1], (16) follows from (63) applied to

K ′
0 = (F(K0))

−1/� K0 , K ′
1 = (F(K1))

−1/� K1 ,

t ′ = t (F(K1))
1/�

(1− t)(F(K0))1/� + t (F(K1))1/�
.

Moreover, if K0,K1 ∈ Kn and t ∈ [0,1] render (16) an equality, thenK ′
0, K ′

1
and t ′ defined as above give equality in (63). Hence, it suffices to prove (63) and to
characterize the corresponding equality conditions.
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For i = 0,1, t , let ui be the solutionu of problem (48) for K = Ki ; we have, by
the divergence theorem:

F(Ki) =
∫
Ki

|∇ui |2 dx =
∫
Ki

(div(ui∇ui) − u�ui) dx =
∫
Ki

u
p+1
i dx .

Let x ∈ K0, y ∈ K1 and z = (1− t)x + ty ∈ Kt ; from Theorem20 we know that

[ut (z)] 1−p
2 � (1− t)[u0(x)] 1−p

2 + t[u1(y)] 1−p
2 .

Let us extendui as zero outsideKi , i = 0,1, s, and define

f = u
p+1
0 , g = u

p+1
1 , h = u

p+1
t .

We have, forx ∈ K0 and y ∈ K1,

h((1− t)x + ty) � [(1− t)f (x)r + tg(y)r ]1/r , where r = 1− p

2(p + 1)
> 0 .

By the arithmetic–geometric mean inequality

h((1− t)x + ty) � f (x)1−t g(y)t , ∀x ∈ K0 , y ∈ K1,

in fact, this inequality holds for allx, y ∈ Rn: indeed, if eitherx /∈ K0 or y /∈ K1,
then the right-hand side vanishes. Hence we can apply the Prékopa–Leindler inequality
(Theorem21) to obtain

∫
Rn

h(x) dx �
(∫

Rn

f (x) dx

)1−t (∫
Rn

g(x) dx

)t

, (64)

i.e. (63). Moreover, if equality holds in (63), then (64) becomes an equality and in
particular f and g render the Prékopa–Leindler inequality an equality. By Theorem21
and the fact thatf (x) is positive if and only ifx ∈ K0, and g(y) is positive if and
only if y ∈ K1, we conclude thatK0 andK1 coincide up to a translation.�

Remark 22. Theorem10 can be proved along the lines of the proof of Theorem11 and
taking the following considerations into account. Firstly, neither the proof of Proposi-
tion 19, nor the ones of Theorems20 and11 require the convexity of the involved sets,
once that they are assumed to have boundary of classC2; indeed, the only assumption
on the boundary that is necessary is to have the interior sphere property in order to
apply the Hopf Lemma. Moreover, concerning equality conditions, in Theorem10 it
has to be used the fact that functions giving equality in the Prékopa–Leindler inequality
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are necessarily log-concave, this implies that ifC0 andC1 give equality in (13), then
they are convex.
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