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1. Introduction

Let T > 0, and Ω be a bounded domain in R
N . In this paper we are concerned with linear partial integro-differential

equations of the form

∂t
(
k ∗ (u − u0)

)−Lu = f + div g, t ∈ (0, T ), x ∈ Ω, (1)

as well as related quasilinear problems

∂t
(
k ∗ (u − u0)

)− div a(t, x, u, Du) = b(t, x, u, Du), t ∈ (0, T ), x ∈ Ω, (2)

where in both cases k ∈ L1,loc(R+) is a nonnegative kernel that belongs to a certain kernel class (see (H1) and Defini-
tion 2.1 below), and k ∗ v denotes the convolution on the positive halfline w.r.t. the time variable, that is (k ∗ v)(t) =∫ t

0 k(t − τ )v(τ )dτ , t � 0.
As to (1), L is a second order operator w.r.t. the spatial variables in divergence form:

Lu = div
(

A(t, x)Du + b(t, x)u
)+ (c(t, x)|Du

)+ d(t, x)u.

Here A is R
N×N -valued, b and c take values in R

N , and d is a real-valued function. Further, Du stands for the gradient
of u, and (·|·) denotes the scalar product in R

N . The functions u0 = u0(x), f = f (t, x), and g = g(t, x) are given data; the
function u0 plays the role of the initial data for u.

Concerning the leading coefficients of L we merely assume measurability, boundedness, and a uniform parabolicity
condition. The coefficients of the lower order terms are assumed to belong to certain Lebesgue spaces of mixed type, so
they need not be bounded.
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In (2), the functions a : (0, T ) × Ω × R
N+1 → R

N and b : (0, T ) × Ω × R
N+1 → R are measurable and satisfy suitable

structure conditions, see (Q1)–(Q5) in Section 4.
An important example for the kernel k we have in mind is given by

k(t) = g1−α(t)e−μt, t > 0, α ∈ (0,1), μ � 0, (3)

where gβ denotes the Riemann–Liouville kernel

gβ(t) = tβ−1

Γ (β)
, t > 0, β > 0. (4)

In this case, (1) and (2) amount to time fractional equations of order α ∈ (0,1). Recall that for a (sufficiently smooth)
function v on R+ , the Riemann–Liouville fractional derivative Dα

t v of order α ∈ (0,1) is defined by Dα
t v = d

dt (g1−α ∗ v).
As to applications, problems of the form (1) and (2) arise for example in mathematical physics when describing dynamic

processes in materials with memory, e.g., in the theory of heat conduction with memory, see [13] and the references therein.
Time fractional diffusion equations also appear in the context of anomalous diffusion, see e.g. [11].

Letting ΩT = (0, T ) × Ω and ΓT = (0, T ) × ∂Ω one of the main objectives of this paper is to derive results asserting
the boundedness on ΩT of appropriately defined weak solutions of (1) and (2), respectively, that are bounded on ΓT . We
further establish the analogue of the well-known weak maximum principle for weak solutions of the parabolic equation
corresponding to (1), i.e. ∂t u −Lu = f + div g , see e.g. [12, Theorem 7.2, p. 188].

In the literature one finds many papers where equations of the form (1) and (2), as well as abstract variants of them
are studied in a strong setting, assuming more smoothness on the coefficients and nonlinearities, see e.g. [1,3,6,8,9,13,
15,16]. The purpose of the present paper is to develop further a theory of weak solutions to (1) and (2). In this sense
the boundedness results are an important first step towards a De Giorgi–Nash–Moser theory for time fractional evolution
equations in divergence form of order α ∈ (0,1).

Our proofs of the global boundedness results use De Giorgi’s iteration technique and are based on suitable a priori esti-
mates for weak solutions of (1) and (2), respectively. These estimates, which by partly standard arguments
(cf. [12, Chapters III and V]) lead to suitable Caccioppoli type inequalities, are derived by means of the basic inequality
(10) (see below) for nonnegative nonincreasing kernels. We point out that the basic L2 energy estimate for (1) has already
been established in [17], under conditions on the coefficients and data which are slightly more restrictive than the ones
assumed in the present paper.

One of the technical difficulties in deriving the desired estimates in the weak setting is to find an appropriate time
regularization of the equation. In the classical parabolic theory this is achieved by means of Steklov averages in time. In
the case of Eqs. (1) and (2) this method does not work any more, since Steklov average operators and convolution do not
commute. It turns out that instead one can use the Yosida approximation of the operator B defined by B v = ∂t(k ∗ v), e.g.,
in L2([0, T ]), which leads to a regularization of the kernel k (not of u!). This method has already been used in [14] and [17],
we also refer to [9], where a more general class of integro-differential operators (in time) is studied.

The paper is organized as follows. In Section 2 we introduce the class of kernels used in this paper, and explain the
approximation method in more detail. We also state the basic inequality (10) and collect some further auxiliary results.
In Section 3 we describe the weak formulation of (1) and prove the global boundedness of weak solutions as well as the
maximum principle. In Section 4 we extend these results to the quasilinear case.

2. Preliminaries

The following class of kernels has been introduced in [17] and is basic to our treatment of (1).

Definition 2.1. A kernel k ∈ L1,loc(R+) is said to be of type PC if it is nonnegative and nonincreasing, and there exists a
kernel l ∈ L1,loc(R+) such that k ∗ l = 1 in (0,∞). In this case, we say that (k, l) is a PC pair and write (k, l) ∈PC .

An important example is given by

k(t) = g1−α(t)e−μt and l(t) = gα(t)e−μt + μ
(
1 ∗ [gα(·)e−μ·])(t), t > 0, (5)

with α ∈ (0,1) and μ � 0. Both kernels are strictly positive and decreasing; observe that l̇(t) = ġα(t)e−μt < 0, t > 0. Their
Laplace transforms are given by

k̂(λ) = 1

(λ + μ)1−α
, l̂(λ) = 1

(λ + μ)α

(
1 + μ

λ

)
, Reλ > 0,

which shows that k ∗ l = 1 on (0,∞). Hence we have both (k, l) ∈PC , and (l,k) ∈PC .
We next discuss an important method of approximating kernels of type PC . Let 1 � p < ∞, (k, l) ∈PC , T > 0, and X be

a real Banach space. Then the operator B defined by

Bu = d
(k ∗ u), D(B) = {u ∈ L p

([0, T ]; X
)
: k ∗ u ∈ 0 H1

p

([0, T ]; X
)}

,

dt
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where the zero means vanishing at t = 0, is known to be m-accretive in L p([0, T ]; X), cf. [2,5,9]. Its Yosida approxima-
tions Bn , defined by Bn = nB(n + B)−1, n ∈ N, enjoy the property that for any u ∈ D(B), one has Bnu → Bu in L p([0, T ]; X)

as n → ∞. Further, one has the representation

Bnu = d

dt
(kn ∗ u), u ∈ L p

([0, T ]; X
)
, n ∈ N, (6)

where kn = nsn , and sn is the unique solution of the scalar-valued Volterra equation

sn(t) + n(sn ∗ l)(t) = 1, t > 0, n ∈ N,

see e.g. [14]. Denoting by hn ∈ L1,loc(R+) the resolvent kernel associated with nl, we have

hn(t) + n(hn ∗ l)(t) = nl(t), t > 0, n ∈ N, (7)

and hence, by convolving (7) with k,

(k ∗ hn)(t) + n(k ∗ hn ∗ l)(t) = n, t > 0, n ∈ N,

which shows that

kn = nsn = k ∗ hn, n ∈ N. (8)

From (k, l) ∈PC it follows that l is completely positive, see e.g. Theorem 2.2 in [4]. Consequently, l and hn are nonnegative,
and the kernels sn are nonnegative and nonincreasing for all n ∈ N, see e.g. [13, Proposition 4.5] and [4, Proposition 2.1].
From sn = 1 − 1 ∗ hn we further see that sn ∈ H1

1([0, T ]). In view of (8) we conclude that the kernels kn , n ∈ N, are also
nonnegative and nonincreasing, and that they belong to H1

1([0, T ]).
Note that for any function f ∈ L p([0, T ]; X), 1 � p < ∞, there holds hn ∗ f → f in L p([0, T ]; X) as n → ∞. In fact,

defining u = l ∗ f , we have u ∈ D(B), and

Bnu = d

dt
(kn ∗ u) = d

dt
(k ∗ l ∗ hn ∗ f ) = hn ∗ f → Bu = f in L p

([0, T ]; X
)

as n → ∞. In particular, kn → k in L1([0, T ]) as n → ∞.
We next state a fundamental identity for integro-differential operators of the form d

dt (k ∗ u). Suppose k ∈ H1
1([0, T ]) and

H ∈ C1(R). Then a straightforward computation shows that for a sufficiently smooth function u on (0, T ) one has for a.a.
t ∈ (0, T ),

H ′(u(t)
) d

dt
(k ∗ u)(t) = d

dt

(
k ∗ H(u)

)
(t) + (−H

(
u(t)

)+ H ′(u(t)
)
u(t)

)
k(t)

+
t∫

0

(
H
(
u(t − s)

)− H
(
u(t)

)− H ′(u(t)
)[

u(t − s) − u(t)
])[−k̇(s)

]
ds. (9)

We remark that an integrated version of (9) can be found in [10, Lemma 18.4.1].
Define now H(y) = 1

2 (y+)2, y ∈ R, where y+ := max{y,0}. Evidently, H ∈ C1(R) with derivative H ′(y) = y+ , y ∈ R.
Assume in addition that the kernel k ∈ H1

1([0, T ]) is nonnegative and nonincreasing. Then it follows from (9) and the
convexity of H that for any function u ∈ L2([0, T ]),

u(t)+
d

dt
(k ∗ u)(t) � 1

2

d

dt

(
k ∗ (u+)2)(t), a.a. t ∈ (0, T ). (10)

The next lemma concerning the geometric convergence of sequences of numbers will be needed for the De Giorgi
iteration arguments below. It can be found, e.g., in [12, Chapter II, Lemma 5.6] and [7, Chapter I, Lemma 4.1]. Its proof is by
induction.

Lemma 2.1. Let {yn}, n = 0,1,2, . . . , be a sequence of positive numbers, satisfying the recursion inequality

yn+1 � Cbn y1+γ
n , n = 0,1,2, . . . ,

where C,b > 1 and γ > 0 are given numbers. If

y0 � C−1/γ b−1/γ 2
,

then yn → 0 as n → ∞.

We conclude this preliminary part with an interpolation result which will be frequently used in Sections 3 and 4.
Let T > 0 and Ω be a bounded domain in R

N . For 1 < p � ∞ we define the space

V p := V p
([0, T ] × Ω

)= L2p
([0, T ]; L2(Ω)

)∩ L2
([0, T ]; H1

2(Ω)
)
, (11)
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endowed with the norm

|u|V p([0,T ]×Ω) := |u|L2p([0,T ];L2(Ω)) + |u|L2([0,T ];H1
2(Ω)).

Suppose that

p′
(

1 − 2

r

)
+ N

(
1

2
− 1

q

)
= 1, (12)

where p′ = p/(p − 1), and

r ∈ [2,2p], q ∈
[

2,
2N

N − 2

]
for N > 2,

r ∈ (2,2p], q ∈ [2,∞) for N = 2,

r ∈
[

4p

p + 1
,2p

]
, q ∈ [2,∞] for N = 1.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(13)

Then V p ↪→ Lr([0, T ]; Lq(Ω)), and

|u|Lr([0,T ];Lq(Ω)) � C(N,q)|u|V p([0,T ]×Ω). (14)

This is a consequence of the Gagliardo–Nirenberg and Hölder’s inequality. The case p = ∞ is contained, e.g., in [12, pp. 74
and 75]. The proof there easily extends to the general case.

3. Linear equations

In this section we study the linear equation (1). Let T > 0, and Ω be a bounded domain in R
N . In what follows (except

for Theorems 3.2 and 3.3) we will assume that

(H1) There exists l ∈ L1,loc(R+) such that (k, l) ∈PC . Further, l ∈ L p([0, T ]) for some p > 1.
(H2) A ∈ L∞((0, T ) × Ω;R

N×N ), and ∃ν > 0 such that(
A(t, x)ξ |ξ)� ν|ξ |2, for a.a. (t, x) ∈ ΩT , and all ξ ∈ R

N .

(H3) u0 ∈ L2(Ω), and∣∣|b|2 + |g|2 + |c|2 + |d| + | f |∣∣Lr([0,T ];Lq(Ω))
=: C D < ∞,

where

p′

r
+ N

2q
= 1 − β,

and

r ∈
[

p′

(1 − β)
,∞
]
, q ∈

[
N

2(1 − β)
,∞
]
, β ∈ (0,1) for N � 2,

r ∈
[

p′

(1 − β)
,

2p′

(1 − 2β)

]
, q ∈ [1,∞], β ∈

(
0,

1

2

)
for N = 1.

We say that a function u is a weak solution (subsolution, supersolution) of (1) in ΩT , if u belongs to the space

Ṽ p := {v ∈ L2p
([0, T ]; L2(Ω)

)∩ L2
([0, T ]; H1

2(Ω)
)

such that k ∗ v ∈ C
([0, T ]; L2(Ω)

)
, and (k ∗ v)|t=0 = 0

}
,

and for any nonnegative test function

η ∈ H̊1,1
2 (ΩT ) := H1

2

([0, T ]; L2(Ω)
)∩ L2

([0, T ]; H̊1
2(Ω)

) (
H̊1

2(Ω) := C∞
0 (Ω) H1

2(Ω)
)

with η|t=T = 0 there holds

T∫
0

∫
Ω

(−ηt
[
k ∗ (u − u0)

]+ (ADu + bu|Dη) − (c|Du)η − duη
)

dx dt

= (�, �)

T∫ ∫ (
f η − (g|Dη)

)
dx dt. (15)
0 Ω
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It is not difficult to verify, by means of Hölder’s inequality and the interpolation inequality (14), that under conditions (H1)–
(H3) the integrals in (15) are finite, cf. the proof of Theorem 3.1 below. We point out that (1) is considered without any
boundary conditions, in this sense weak solutions of (1) as defined above are local ones. Note that for an energy estimate
for weak solutions u ∈ Ṽ p of (1) one can work with a weaker version of condition (H3), see e.g. Theorem 3.2 below. We
further remark that weak solutions of (1) in the class Ṽ p have been constructed in [17] under the assumptions (H1), (H2),
and a stronger variant of (H3). Notice also that the function u0 plays the role of the initial data for u, at least in a weak
sense. In case of sufficiently smooth functions u and k ∗ (u − u0) the condition (k ∗ u)|t=0 = 0 implies u|t=0 = u0, see [17].

The following lemma is basic to deriving a priori estimates for weak (sub-/super-) solutions of (1) as it provides an
equivalent weak formulation of (1) where the kernel k is replaced with the more regular kernel kn (n ∈ N) defined in (8). In
what follows the kernels hn , n ∈ N, are as in Section 2.

Lemma 3.1. Let the assumptions (H1)–(H3) be satisfied. Then u ∈ Ṽ p is a weak solution (subsolution, supersolution) of (1) if and only
if for any nonnegative function ψ ∈ H̊1

2(Ω) one has∫
Ω

(
ψ∂t
[
kn ∗ (u − u0)

]+ (hn ∗ [ADu + bu]|Dψ
)− (hn ∗ [(c|Du) + du

])
ψ
)

dx

= (�, �)

∫
Ω

([hn ∗ f ]ψ − (hn ∗ g|Dψ)
)

dx, a.a. t ∈ (0, T ), n ∈ N. (16)

Proof. We may restrict ourselves to the subsolution case as the remaining cases can be treated analogously.
The ‘if’ part is readily seen as follows. Given an arbitrary nonnegative η ∈ H̊1,1

2 (ΩT ) satisfying η|t=T = 0, we take in (16)
ψ(x) = η(t, x) for any fixed t ∈ (0, T ), integrate from t = 0 to t = T , and integrate by parts w.r.t. the time variable. Re-
lation (15) then follows by sending n → ∞; here we use the approximating properties of the kernels hn described in
Section 2.

To show the ‘only–if’ part, we choose the test function

η(t, x) =
T∫

t

hn(σ − t)ϕ(σ , x)dσ =
T −t∫
0

hn(σ )ϕ(σ + t, x)dσ , t ∈ (0, T ), x ∈ Ω, (17)

with arbitrary n ∈ N and nonnegative ϕ ∈ H̊1,1
2 (ΩT ) satisfying ϕ|t=T = 0; η is nonnegative since ϕ and hn are so (see

Section 2). Then

ηt(t, x) =
T∫

t

hn(σ − t)ϕσ (σ , x)dσ , a.a. (t, x) ∈ ΩT .

By Fubini’s theorem, we have

T∫
0

( T∫
t

hn(σ − t)ψ1(σ )dσ

)
ψ2(t)dt =

T∫
0

ψ1(t)

( t∫
0

hn(t − σ)ψ2(σ )dσ

)
dt,

for all ψ1,ψ2 ∈ L2([0, T ]). So it follows from (15) and kn = hn ∗ k (cf. (8)) that

T∫
0

∫
Ω

(−ϕt
[
kn ∗ (u − u0)

]+ (hn ∗ [ADu + bu]|Dϕ
)− (hn ∗ [(c|Du) + du

])
ϕ
)

dx dt

�
T∫

0

∫
Ω

([hn ∗ f ]ϕ − (hn ∗ g|Dϕ)
)

dx dt, n ∈ N.

Observe that kn ∗ (u − u0) ∈ 0 H1
2([0, T ]; L2(Ω)). Therefore, integrating by parts and using ϕ|t=T = 0 yields

T∫
0

∫
Ω

(
ϕ∂t
[
kn ∗ (u − u0)

]+ (hn ∗ [ADu + bu]|Dϕ
)− (hn ∗ [(c|Du) + du

])
ϕ
)

dx dt

�
T∫ ∫ ([hn ∗ f ]ϕ − (hn ∗ g|Dϕ)

)
dx dt (18)
0 Ω
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for all n ∈ N and ϕ ∈ H̊1,1
2 (ΩT ) with ϕ|t=T = 0. By means of a simple approximation argument, we infer that (18) holds

true for any ϕ of the form ϕ(t, x) = χ(t1,t2)(t)ψ(x), where χ(t1,t2) denotes the characteristic function of the time-interval
(t1, t2), 0 < t1 < t2 < T , and ψ ∈ H̊1

2(Ω) is nonnegative. Appealing to the Lebesgue differentiation theorem, we then obtain
the desired relation (16). �
Theorem 3.1. Let T > 0 and Ω ⊂ R

N be a bounded domain. Let further the assumptions (H1)–(H3) be satisfied. Suppose K � 0 is
such that u0 � K a.e. in Ω . Then there exists a constant C = C(p,q, r, |l|Lp([0,T ]), T , N, ν,Ω, C D ) such that for any weak subsolution

u ∈ Ṽ p of (1) in ΩT satisfying u � K a.e. on ΓT there holds u � C(1 + K ) a.e. in ΩT .

Remarks 3.1.

(i) There is a corresponding result for weak supersolutions u of (1) in the situation where u0 � K a.e. in Ω , and u � K a.e.
on ΓT , for some K � 0. This follows immediately from Theorem 3.1 by replacing u with −u, and u0 with −u0.

(ii) The statement of Theorem 3.1 remains true if r and q in (H3) are different for different coefficients and data, that is
when |b|2 ∈ Lr1([0, T ]; Lq1 (Ω)), |g|2 ∈ Lr2([0, T ]; Lq2 (Ω)), and so forth with ri and qi satisfying the same conditions as
r and q in (H3). This can been seen by working with several functions μκ,i and by generalizing the iteration argument
for the function φ, see below. In the classical parabolic case this issue is discussed in [12, Chapter III, Remark 7.2].

Proof of Theorem 3.1. Suppose u ∈ Ṽ p is a weak subsolution of (1) in ΩT . Then, by Lemma 3.1, for any nonnegative function
ψ ∈ H̊1

2(Ω) relation (16) holds with the ‘�’ sign. For t ∈ (0, T ) we take in (16) the test function ψ = u+
κ := (uκ )+ , where

uκ := u − κ , and κ ∈ R satisfying the condition

κ � κ0 := max
{

0,ess sup
Ω

u0,ess sup
ΓT

u
}
. (19)

The resulting inequality can be written in the form∫
Ω

(
u+

κ ∂t(kn ∗ uκ ) + (hn ∗ [ADu + bu]|Du+
κ

)− (hn ∗ [(c|Du) + du
])

u+
κ

)
dx

�
∫
Ω

([hn ∗ f ]u+
κ − (hn ∗ g|Du+

κ

)+ u+
κ (u0 − κ)kn

)
dx, a.a. t ∈ (0, T ). (20)

Clearly,∫
Ω

u+
κ (u0 − κ)kn dx � 0, a.a. t ∈ (0, T ),

by positivity of kn and (19). Thanks to (10) we further have

u+
κ ∂t(kn ∗ uκ ) � 1

2
∂t
(
kn ∗ (u+

κ

)2)
, a.a. (t, x) ∈ ΩT . (21)

Using these relations it follows from (20) that∫
Ω

(
1

2
∂t
[
kn ∗ (u+

κ

)2]+ (hn ∗ [ADu + bu]|Du+
κ

)− (hn ∗ [(c|Du) + du
])

u+
κ

)
dx

�
∫
Ω

([hn ∗ f ]u+
κ − (hn ∗ g|Du+

κ

))
dx, a.a. t ∈ (0, T ). (22)

Next we convolve (22) with the nonnegative kernel l from assumption (H1), and observe that in view of

kn ∗ (u+
κ

)2 ∈ 0 H1
1

([0, T ]; L1(Ω)
)

and kn = k ∗ hn we have

l ∗ ∂t
(
kn ∗ (u+

κ

)2)= ∂t
(
l ∗ kn ∗ (u+

κ

)2)= hn ∗ (u+
κ

)2
.

Sending then n → ∞, and selecting an appropriate subsequence, if necessary, we thus arrive at

1

2

∫ (
u+

κ

)2
dx + l ∗

∫ (
ADu|Du+

κ

)
dx � l ∗ F , a.a. t ∈ (0, T ), (23)
Ω Ω
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where

F (t) =
∫
Ω

(−(bu + g|Du+
κ

)+ [(c|Du) + du + f
]
u+

κ

)
dx.

By (H2), we have∫
Ω

(
ADu|Du+

κ

)
dx =

∫
Ω

(
ADu+

κ |Du+
κ

)
dx � ν

∫
Ω

∣∣Du+
κ

∣∣2 dx, (24)

and thus∫
Ω

(
u+

κ

)2
dx � 2l ∗ F , a.a. t ∈ (0, T ).

Young’s inequality for convolutions then gives∣∣u+
κ

∣∣2
L2p([0,t1];L2(Ω))

= ∣∣(u+
κ

)2∣∣
Lp([0,t1];L1(Ω))

� 2|l|Lp([0,t1])|F |L1([0,t1]) � 2|l|Lp([0,T ])|F |L1([0,t1]) (25)

for all t1 ∈ (0, T ].
Returning to (23), we may also drop the first term, convolve the resulting inequality with k, and use k ∗ l = 1 as well

as (24), thereby obtaining

ν
∣∣Du+

κ

∣∣2
L2([0,t1];L2(Ω))

� |F |L1([0,t1]). (26)

In order to estimate |F |L1([0,t1]) , which appears on the right side of both (25) and (26), we proceed similarly as in
[12, p. 184]. We denote the Lebesgue measure in R

N by λN and set

Aκ (t) = {x ∈ Ω: u(t, x) > κ
}
, t ∈ (0, T ).

Then

|F |L1([0,t1]) � ε
∣∣Du+

κ

∣∣2
L2([0,t1];L2(Ω))

+ C(ε)

t1∫
0

∫
Aκ (t)

(|b|2u2 + |g|2 + |c|2(uκ )2 + |du|uκ + | f |uκ

)
dx dt,

for all ε > 0. Selecting ε sufficiently small and assuming κ � 1, this together with (25), and (26) gives

∣∣u+
κ

∣∣2
V p([0,t1]×Ω)

� C
(
ν, |l|p, T , p

) t1∫
0

∫
Aκ (t)

D(t, x)
(
(uκ )2 + κ2)dx dt, (27)

where |l|p := |l|Lp([0,T ]) , and

D(t, x) = ∣∣b(t, x)
∣∣2 + ∣∣g(t, x)

∣∣2 + ∣∣c(t, x)
∣∣2 + ∣∣d(t, x)

∣∣+ ∣∣ f (t, x)
∣∣,

and V p([0, t1] × Ω) is defined as in (11). Using Hölder’s inequality and (H3) we thus have with 1/r + 1/r′ = 1 and 1/q +
1/q′ = 1 that∣∣u+

κ

∣∣2
V p([0,t1]×Ω)

� C |D|Lr ([0,t1];Lq(Ω))

∣∣(u+
κ

)2 + κ2χ{u>κ}
∣∣

Lr′ ([0,t1];Lq′ (Ω))
; (28)

here C is as in (27), and χ{u>κ} denotes the characteristic function of the set of points (t, x) ∈ (0, t1)×Ω at which u(t, x) > κ .
We may then estimate, using again Hölder’s inequality,

∣∣(u+
κ

)2∣∣
Lr′ ([0,t1];Lq′ (Ω))

�
∣∣u+

κ

∣∣2
L2r′(1+δ)([0,t1];L2q′(1+δ)(Ω))

μ
δ

r′(1+δ)
κ , (29)

with

μκ =
{∫ t1

0 λN (Aκ (t))
r′
q′ dt: q > 1,

λ1({t ∈ (0, t1): λN(Aκ (t)) > 0}): q = 1,

and

δ = 2β

′ . (30)

2(p − 1) + N
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It is not difficult to verify that, by virtue of (H3), the numbers r̃ := 2r′(1 + δ) and q̃ := 2q′(1 + δ) are subject to conditions
(12) and (13) with (r,q) being replaced by (r̃, q̃). Therefore, using inequality (14), it follows from (29) that

∣∣(u+
κ

)2∣∣
Lr′ ([0,t1];Lq′ (Ω))

� C(N,q)
∣∣u+

κ

∣∣2
V p([0,t1]×Ω)

μ
δ

r′(1+δ)
κ . (31)

We may further write

∣∣κ2χ{u>κ}
∣∣

Lr′ ([0,t1];Lq′ (Ω))
= κ2μ

1
r′
κ . (32)

Combining (28), (31), and (32) we obtain

∣∣u+
κ

∣∣2
V p([0,t1]×Ω)

� C1|D|Lr([0,t1];Lq(Ω))

(∣∣u+
κ

∣∣2
V p([0,t1]×Ω)

μ
δ

r′(1+δ)
κ + κ2μ

1
r′
κ

)
, (33)

with C1 = C1(ν, |l|p, T , p, N,q).
We now choose t1 = T /n where n ∈ N is so large that

C1|D|Lr([0,T ];Lq(Ω))t
δ

r′(1+δ)

1 λN (Ω)
δ

q′(1+δ) � 1

2
. (34)

Setting C2
2 = 2C1|D|Lr([0,T ];Lq(Ω)) , inequality (33) then implies

∣∣u+
κ

∣∣2
V p([0,t1]×Ω)

� C2
2κ

2μ
1
r′
κ , κ � κ̃0 := max{κ0,1}. (35)

Define the function

φ(κ) = μ
1
r̃
κ , κ � κ̃0.

We will show that φ(2M) = 0 provided M � κ̃0 is sufficiently large. The argument is analogous to the proof of Theorem 6.1
in Chapter II of [12]. For the sake of completeness we give the details.

By virtue of inequalities (14) and (35), we have for any κ2 > κ1 � κ̃0

(κ2 − κ1)φ(κ2) �
∣∣u+

κ1

∣∣
Lr̃([0,t1];Lq̃(Ω))

� C(N,q)
∣∣u+

κ1

∣∣
V p([0,t1]×Ω)

� C3κ1φ(κ1)
1+δ, (36)

where C3 = CC2. We take κ2 = ξn+1 and κ1 = ξn with ξn = M(2 − 2−n), n = 0,1,2, . . . , and M � κ̃0 being fixed. This gives

φ(ξn+1) � C3ξn

ξn+1 − ξn
φ(ξn)1+δ � 4C32nφ(ξn)1+δ,

which, together with Lemma 2.1, shows that the sequence yn = φ(ξn), n = 0,1, . . . , will go to zero as n → ∞, provided
φ(ξ0) is sufficiently small, namely

φ(ξ0) = φ(M) � (4C3)
−1/δ2−1/δ2

. (37)

By taking in (36) κ2 = M = mκ̃0 and κ1 = κ̃0, we obtain

φ(M) � C3

m − 1
φ(κ̃0)

1+δ � C3

m − 1
t(1+δ)/r̃

1 λN (Ω)(1+δ)/q̃.

Hence (37) is satisfied for

m = 1 + C3t(1+δ)/r̃
1 λN (Ω)(1+δ)/q̃(4C3)

1/δ21/δ2
.

It follows that for this m

ess sup
[0,t1]×Ω

u � 2M = 2mκ̃0. (38)

To obtain a bound on the whole time-interval [0, T ], we proceed by induction. Using (38) we next derive an estimate
on [t1,2t1], which together with (38) is then employed to find an upper bound on [2t1,3t1], and so forth until we reach T
after finitely many steps. Due to the nonlocalness of the integro-differential operator in time, in each step we have to use
the bounds established in all of the previous steps, that is up to t = 0.

Let T0 ∈ (0, T ) and suppose that u ∈ Ṽ p is a weak subsolution of (1) in ΩT which is bounded above on [0, T0]×Ω . Then
as above we have∫

Ω

(
ψ∂t(kn ∗ uκ ) + (hn ∗ [ADu + bu]|Dψ

)− (hn ∗ [(c|Du) + du
])

ψ
)

dx

�
∫ ([hn ∗ f ]ψ − (hn ∗ g|Dψ) + ψ(u0 − κ)kn

)
dx, a.a. t ∈ (T0, T ), (39)
Ω
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for any nonnegative ψ ∈ H̊1
2(Ω), κ ∈ R, and n ∈ N. Recall that kn ∈ H1

1([0, T ]) with derivative k̇n � 0. We define

Hκ,n(t, x) =
T0∫

0

[−k̇n(t − τ )
]
uκ (τ , x)dτ , t ∈ (T0, T ), x ∈ Ω. (40)

By Jensen’s inequality,

∣∣Hκ,n(t, x)
∣∣2 �

(
kn(t − T0) − kn(t)

) T0∫
0

[−k̇n(t − τ )
]∣∣uκ (τ , x)

∣∣2 dτ , (41)

which shows that Hk,n ∈ L2([T0, T ] × Ω). Therefore we may use the decomposition

(kn ∗ uκ )(t, x) =
t∫

T0

kn(t − τ )uκ (τ , x)dτ +
T0∫

0

kn(t − τ )uκ (τ , x)dτ , t ∈ (T0, T ),

to rewrite (39) as

∫
Ω

(
ψ∂t

t∫
T0

kn(t − τ )uκ (τ , x)dτ + (hn ∗ [ADu + bu]|Dψ
)− (hn ∗ [(c|Du) + du

])
ψ

)
dx

�
∫
Ω

([hn ∗ f ]ψ − (hn ∗ g|Dψ) + ψ(u0 − κ)kn + ψ Hκ,n
)

dx, a.a. t ∈ (T0, T ). (42)

We then shift the time according to s = t − T0. Employing the notation ṽ(s) = v(s + T0), s ∈ (0, T − T0), for functions v
defined on (T0, T ), (42) becomes∫

Ω

(
ψ∂s(kn ∗ ũκ ) + ((hn ∗ [ADu + bu])˜|Dψ

)− (hn ∗ [(c|Du) + du
])˜ψ)dx

�
∫
Ω

([hn ∗ f ]˜ψ − ((hn ∗ g)˜|Dψ
)+ ψ(u0 − κ)k̃n + ψ H̃κ,n

)
dx, a.a. s ∈ (0, T − T0). (43)

Setting T0 = t1, we can now argue as above to get an upper bound for u on [t1,2t1] × Ω . We restrict κ to

κ � κ̃1 := max
{
κ̃0,ess sup

[0,t1]×Ω

u
}

= max{κ̃0,2mκ̃0} = 2mκ̃0,

which entails that u0 −κ � 0 as well as H̃κ,n � 0. Consequently, the terms involving these functions can be dropped in (43).
We take ψ = ũ+

κ and use the analogue of (21). Convolving the resulting inequality with l, and sending n → ∞ then yields

1

2

∫
Ω

(
ũ+

κ

)2
dx + l ∗

∫
Ω

(
ÃDũ|Dũ+

κ

)
dx � l ∗ F̃ , a.a. s ∈ (0, T − t1),

which is the time shifted version of (23). We conclude that

ess sup
[t1,t2]×Ω

u � 2mκ̃1 = 4m2κ̃0. (44)

These arguments can now be repeated for the time-intervals [ jt1, ( j + 1)t1], j = 2, . . . ,n − 1, thereby obtaining a bound

ess sup
ΩT

u � C κ̃0,

with a constant C = C(p,q, r, |l|p, T , N, ν, λN (Ω), C D). �
As an immediate consequence of Theorem 3.1 and Remark 3.1(i) we obtain the global boundedness of weak solutions

of (1) that are bounded on the parabolic boundary of ΩT .

Corollary 3.1. Let T > 0 and Ω ⊂ R
N be a bounded domain. Assume that the assumptions (H1)–(H3) are satisfied. Suppose K � 0 is

such that |u0| � K a.e. in Ω . Then there exists a constant C = C(p,q, r, |l|Lp([0,T ]), T , N, ν,Ω, C D ) such that for any weak solution

u ∈ Ṽ p of (1) in ΩT satisfying |u| � K a.e. on ΓT there holds |u| � C(1 + K ) a.e. in ΩT .
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For weak subsolutions (supersolutions) of (1) the maximum (minimum) principle is valid in the subsequent form. Let
(H3′) stand for

u0 ∈ L2(Ω),
∣∣|c|2 + |d|∣∣ ∈ Lr

([0, T ]; Lq(Ω)
)
,

where

p′

r
+ N

2q
= 1,

and

r ∈ [p′,∞), q ∈
[

N

2
,∞
]

for N � 2,

r ∈ [p′,2p′], q ∈ [1,∞] for N = 1.

Theorem 3.2. Let T > 0 and Ω ⊂ R
N be a bounded domain. Suppose the conditions (H1), (H2), and (H3′) are fulfilled, and assume

that b ≡ g ≡ 0, f ≡ 0, and d � 0 in ΩT . Then for any weak subsolution (supersolution) u ∈ Ṽ p of (1), we have for a.a. (t, x) ∈ ΩT

u(t, x) � max
{

0,ess sup
Ω

u0,ess sup
ΓT

u
} (

u(t, x) � min
{

0, ess inf
Ω

u0,ess inf
ΓT

u
})

,

provided this maximum (minimum) is finite.

Proof. It suffices to consider the subsolution case. Note first that Lemma 3.1 also holds under the conditions of Theorem 3.2.
We take

κ = max
{

0,ess sup
Ω

u0,ess sup
ΓT

u
}

in (23), assuming that this quantity is finite. By the assumptions on the coefficients and data, we have

F (t) � G(t) :=
∫
Ω

(c|Du)u+
κ dx, a.a. t ∈ (0, T ).

We may then argue similarly as in the proof of Theorem 3.1 to find that for any t1 ∈ (0, T ]∣∣u+
κ

∣∣2
V p([0,t1]×Ω)

� C
(
ν, |l|Lp([0,T ]), p, T

)|G|L1([0,t1]),

and thus∣∣u+
κ

∣∣2
V p([0,t1]×Ω)

� C̃
(
ν, |l|p, p, T

)∣∣|c|2∣∣Lr ([0,t1];Lq(Ω))

∣∣u+
κ

∣∣2
L2r′ ([0,t1];L2q′ (Ω))

. (45)

By (H3′), the numbers 2r′ and 2q′ are subject to the conditions (12) and (13). Therefore, using inequality (14), we deduce
that ∣∣u+

κ

∣∣2
V p([0,t1]×Ω)

� C0
∣∣|c|2∣∣Lr ([0,t1];Lq(Ω))

∣∣u+
κ

∣∣2
V p([0,t1]×Ω)

,

with a positive constant C0 = C0(ν, |l|p, p, T , N,q). For t1 satisfying the condition

C0
∣∣|c|2∣∣Lr ([0,t1];Lq(Ω))

< 1

we then obtain∣∣u+
κ

∣∣2
V p([0,t1]×Ω)

� 0,

that is u � κ a.e. in (0, t1) × Ω . To establish this inequality on ΩT we proceed by induction as in the proof of Theorem 3.1,
using the fact that the function Hκ,n defined in (40) is nonpositive on (T0, T ) whenever u � κ a.e. in (0, T0) × Ω . �

In all of the previous results we assumed that the kernel l belongs to L p([0, T ]) for some p > 1. It turns out that the
maximum principle still holds when this assumption is dropped and in addition we have c ≡ 0.

Theorem 3.3. Let T > 0 and Ω ⊂ R
N be a bounded domain. Suppose there exists l ∈ L1,loc(R+) such that (k, l) ∈ PC . Let further

(H2) be satisfied, and assume that u0 ∈ L2(Ω), b ≡ c ≡ g ≡ 0, f ≡ 0, and 0 � d ∈ L∞([0, T ]; Lq(Ω)), where q ∈ [N/2,∞] for
N � 3, q ∈ (1,∞] for N = 2, and q ∈ [1,∞] for N = 1. Then for any weak subsolution (supersolution) u ∈ Ṽ 1 of (1), we have for a.a.
(t, x) ∈ ΩT

u(t, x) � max
{

0,ess sup
Ω

u0, ess sup
ΓT

u
} (

u(t, x) � min
{

0,ess inf
Ω

u0,ess inf
ΓT

u
})

,

provided this maximum (minimum) is finite.
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Proof. We proceed as in the proof of the preceding theorem. Observe that the assumptions on d ensure that duu+
κ ∈ L1(ΩT ).

Since c ≡ 0, we have this time F � 0 a.e. in (0, T ), and hence (V 1(ΩT ) = L2([0, T ]; H1
2(Ω)))∣∣u+

κ

∣∣2
V 1([0,T ]×Ω)

� 0, with κ = max
{

0,ess sup
Ω

u0,ess sup
ΓT

u
}
,

which immediately implies the assertion. �
We conclude this section with an example showing that the case p = 1 can occur.
Let (γn)n∈N be a sequence of positive real numbers such that

∑∞
n=1 γn < ∞. Let further (αn)n∈N be a sequence of

numbers in (0,1) that converges to 0 as n → ∞. We then set

l(t) =
∞∑

n=1

γn gαn (t)e−t , t > 0,

see (4) for the definition of gαn . By Euler’s integral for the Gamma function,∣∣gαn (·)e−·∣∣
L1(R+)

= 1, n ∈ N,

and therefore l ∈ L1(R+) with |l|L1(R+) =∑∞
n=1 γn . Moreover, for every n ∈ N, gαn (t)e−t is completely monotone, that is

(−1) j(gαn e−·)( j)(t) � 0, t > 0, for j = 0,1,2, . . . . Consequently, l enjoys the same property. Furthermore, by Theorem 5.4 in
Chapter 5 of [10], the kernel l has a resolvent k ∈ L1,loc(R+) of the first kind, that is k ∗ l = 1 on (0,∞), and this resolvent
is completely monotone as well. In particular, k is nonnegative and nonincreasing, and so (k, l) ∈ PC . Since αn → 0, there
do not exist p > 1 and T > 0 such that l ∈ L p([0, T ]).

4. Quasilinear equations

In this section we extend the previous results to quasilinear equations of the form (2) with suitable structure conditions.
This is possible, as also known from the elliptic and parabolic case, since the test function method used above does not
depend so much on the linearity of the operator L but on a certain nonlinear structure.

Let (H1) hold, and u0 ∈ L2(ΩT ). We will assume that the functions a : ΩT × R
N+1 → R

N and b : ΩT × R
N+1 → R are

measurable and satisfy

(Q1)
(
a(t, x, ξ, η)|η)� C0|η|2 − c0|ξ |γ − ϕ0(t, x),

(Q2)
∣∣a(t, x, ξ, η)

∣∣� C1|η| + c1|ξ |γ̃ + ϕ1(t, x),

(Q3)
∣∣b(t, x, ξ, η)

∣∣� C2|η| 2(γ −1)
γ + c2|ξ |γ −1 + ϕ2(t, x),

for a.a. (t, x) ∈ ΩT , and all ξ ∈ R, η ∈ R
N . Here Ci, ci , i = 0,1,2, are positive constants, and

(Q4) The parameter γ lies in the range

2 � γ < 2γ̃ , with γ̃ := 2p′ + N

2p′ + N − 2
.

(Q5) The functions ϕi , i = 0,1,2, defined on ΩT are nonnegative, ϕ1 ∈ L2(ΩT ), and ϕ0,ϕ2 ∈ Lq̂(ΩT ), where

1

q̂

(
p′ + N

2

)
= 1 − β̂, β̂ ∈ (0,1].

A function u ∈ Ṽ p is called a weak solution (subsolution, supersolution) of (2) in ΩT , if a(t, x, u, Du) and b(t, x, u, Du) are

measurable, and for any nonnegative test function η ∈ H̊1,1
2 (ΩT ) with η|t=T = 0 there holds

T∫
0

∫
Ω

(−ηt
[
k ∗ (u − u0)

]+ (a(t, x, u, Du)|Dη
)− b(t, x, u, Du)η

)
dx dt = (�, �) 0. (46)

One verifies using (14), which shows V p ↪→ L2γ̃ (ΩT ), and Hölder’s inequality that under the above structure conditions this
definition makes sense, see also the estimates below.

Theorem 4.1. Let T > 0 and Ω ⊂ R
N be a bounded domain. Let u0 ∈ L2(Ω), and assume that (H1), (Q1)–(Q5) are satisfied. Let q be

a fixed positive number such that

(γ − 2)

(
p′ + N

)
< q � 2γ̃ .
2
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Suppose further that K � 0 is such that u0 � K a.e. in Ω . Then any weak subsolution u ∈ Ṽ p of (2) satisfying u � K a.e. on ΓT is
essentially bounded above in ΩT by a constant C depending only on the data, q, and |u|Lq(ΩT ) . In the case γ = 2, the constant C
depends only on the data.

An analogous result holds for supersolutions that are bounded below on the parabolic boundary, cf. Remark 3.1(i) in the
linear case.

Proof of Theorem 4.1. We proceed as in the linear case. Note first that one can easily prove a result analogous to Lemma 3.1.
Following the lines in the proof of Theorem 3.1 we obtain for κ � κ0 (see (19)), by means of the assumed structure condi-
tions,

∣∣u+
κ

∣∣2
V p([0,t1]×Ω)

� C

t1∫
0

∫
Aκ (t)

([|Du| 2(γ −1)
γ + |u|γ −1 + ϕ2

]
u+

κ + |u|γ + ϕ0
)

dx dt, (47)

where the constant C depends only on |l|p, T , p and the constants appearing in (Q1) and (Q3). The first term on the right
is estimated using Young’s inequality,

|Du| 2(γ −1)
γ u+

κ � ε|Du|2 + C(ε)
(
u+

κ

)γ
, ε > 0.

Hence, choosing ε sufficiently small, the gradient term can be absorbed by the left-hand side in (47). Setting μκ :=
|λN(Aκ (·))|L1([0,t1]) ,

β := 1 − 1

q
(γ − 2)

(
p′ + N

2

)
∈ (0,1], and δ := 2β

2(p′ − 1) + N
,

we further have (cf. [12, pp. 425, 426])

t1∫
0

∫
Aκ (t)

|u|γ dx dt � |u|γ −2
Lq(ΩT )|uχ{u>κ}|2L 2q

q−(γ −2)

([0,t1]×Ω)

� C(N,q)|u|γ −2
Lq(ΩT )

(∣∣u+
κ

∣∣2
V p([0,t1]×Ω)

μ
δ(q−γ +2)

(1+δ)q
κ + κ2μ

q−(γ −2)
q

κ

)
. (48)

Recall that V p ↪→ L2γ̃ (ΩT ), so |u|Lq(ΩT ) is finite.
As in the proof of Theorem 3.1 we may estimate, with the aid of (Q5),

t1∫
0

∫
Aκ (t)

(
ϕ2u+

κ + ϕ0
)

dx dt � C(N, q̂)|ϕ2 + ϕ0|Lq̂(ΩT )

(∣∣u+
κ

∣∣2
V p([0,t1]×Ω)

μ
δ̂

q̂′(1+δ̂)
κ + κ2μ

1
q̂′
κ

)
, (49)

provided that κ � 1; here δ̂ is defined as δ with β replaced by β̂ . From (47)–(49) and the trivial inequality μκ � t1λN (Ω)

we then infer that∣∣u+
κ

∣∣2
V p([0,t1]×Ω)

� C
(∣∣u+

κ

∣∣2
V p([0,t1]×Ω)

tρ1 + κ2μ
min{ q−(γ −2)

q , 1
q̂′ }

κ

)
, (50)

where

ρ = min

{
δ(q − γ + 2)

(1 + δ)q
,

δ̂

q̂′(1 + δ̂)

}
,

and C depends on the data (including λN (Ω)), q, and on |u|Lq(ΩT ); in the case γ = 2 the constant C depends only on the

data. Choose t1 so small that Ctρ1 � 1
2 . Then

∣∣u+
κ

∣∣2
V p([0,t1]×Ω)

� 2Cκ2μ
min{ q−(γ −2)

q , 1
q̂′ }

κ , κ � κ̃0 = max{κ0,1}.

Defining φ(κ) = μ
1/q̃
κ , κ � κ̃0, with

q̃ =
⎧⎨
⎩

2(1+δ)q
q−(γ −2)

: q−(γ −2)
q < 1

q̂′ ,

2q̂′(1 + δ̂): q−(γ −2)
q � 1

q̂′ ,

we may then proceed exactly as in the proof of Theorem 3.1, thereby establishing first an upper bound on (0, t1) × Ω , and
then also on ΩT , by an analogous induction argument. �

The maximum principle holds in the following form.
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Theorem 4.2. Let T > 0 and Ω ⊂ R
N be a bounded domain. Suppose there exists l ∈ L1,loc(R+) such that (k, l) ∈PC . Suppose further

u0 ∈ L2(Ω), (Q1) with c0 = 0 and ϕ0 ≡ 0, as well as (Q2) with ϕ1 ∈ L2(ΩT ), and assume that b ≡ 0. Then for any weak subsolution
(supersolution) u ∈ Ṽ 1 of (2), we have for a.a. (t, x) ∈ ΩT

u(t, x) � max
{

0,ess sup
Ω

u0,ess sup
ΓT

u
} (

u(t, x) � min
{

0,ess inf
Ω

u0,ess inf
ΓT

u
})

,

provided this maximum (minimum) is finite.

Proof. The proof is analogous to that of Theorem 3.3. �
Finally we consider the case of ‘natural’ or Hadamard growth conditions with respect to |Du|. Suppose for simplicity that

(Q)
(
a(t, x, ξ, η)|η)� C0|η|2, ∣∣a(t, x, ξ, η)

∣∣� C1|η|, ∣∣b(t, x, ξ, η)
∣∣� C2|η|2,

for a.a. (t, x) ∈ ΩT , and all ξ ∈ R, η ∈ R
N , where Ci , i = 0,1,2 are positive constants. In the classical parabolic case one

knows that weak solutions of the corresponding problem under the conditions (Q) are in general not bounded. However
there exist results (also in a more general situation) providing L∞ bounds in terms of the data under the additional as-
sumption that the weak solution is bounded, see e.g. [12, Chapter V, Theorem 2.2]. It turns out that analogous results can
be proved for (2). Here we only formulate such a result in the case where (Q) holds.

Theorem 4.3. Let T > 0 and Ω ⊂ R
N be a bounded domain. Suppose there exists l ∈ L1,loc(R+) such that (k, l) ∈PC . Suppose further

u0 ∈ L∞(Ω), and that (Q) is satisfied. Then for any bounded weak solution u ∈ Ṽ 1 of (2),

|u|L∞(ΩT ) � max
{
|u0|L∞(Ω),ess sup

ΓT

|u|
}
.

Proof. We proceed as in the proof of [7, Theorem 17.1]. Set

κ0 =
{
|u0|L∞(Ω),ess sup

ΓT

|u|
}
,

and assume that K := ess supΩT
u > κ0. We then take test functions u+

κ where κ = K −ε � κ0, ε > 0, and estimate as above.
By (Q) we obtain∣∣u+

κ

∣∣2
V 1(ΩT )

� C(C0, C2)
∣∣∣∣Du+

κ

∣∣2u+
κ

∣∣
L1(ΩT )

� εC(C0, C2)
∣∣∣∣Du+

κ

∣∣2∣∣
L1(ΩT )

.

Thus if ε is sufficiently small, we have |u+
κ |2V 1(ΩT )

� 0, that is u � κ < K a.e. in ΩT , a contradiction. Hence, u � κ0 a.e.
in ΩT . The lower bound is proved analogously. �
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