Strongly clean matrix rings over local rings

Yuanlin Li

Department of Mathematics, Brock University, St. Catharines, Ontario, Canada L2S 3A1

Received 13 February 2006
Available online 30 November 2006
Communicated by Kent R. Fuller

Abstract

An element of a ring R with identity is called strongly clean if it is the sum of an idempotent and a unit that commute, and R is called strongly clean if every element of R is strongly clean. In this paper, we determine when a 2×2 matrix A over a commutative local ring is strongly clean. Several equivalent criteria are given for such a matrix to be strongly clean. Consequently, we obtain several equivalent conditions for the 2×2 matrix ring over a commutative local ring to be strongly clean, extending a result of Chen, Yang, and Zhou.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Strongly clean rings; Matrix rings; Commutative local rings; Similarity invariants

1. Introduction

Let R be an associative ring with identity. Call R clean if every element of R is the sum of an idempotent and a unit, and call R strongly clean if every element of R is the sum of an idempotent and a unit that commute. Semiperfect rings and unit-regular rings are examples of clean rings, as shown by Camillo and Yu [2], and Camillo and Khurana [1]. For the study of clean rings, we refer to [1,2,5–7,9]. Strongly clean rings were introduced by Nicholson [8], where their connection to Fitting’s Lemma was discussed. Clearly local rings and commutative semiperfect rings are strongly clean.

✩ This research was supported in part by Discovery Grants from the Natural Sciences and Engineering Research Council of Canada.

E-mail address: yli@brocku.ca.

0021-8693/$ – see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2006.10.032
In [5], Han and Nicholson showed that a ring R is clean if and only if the matrix ring $M_n(R)$ is clean for every $n \geq 1$. However, the analog for strongly clean rings fails to hold. Examples of non-strongly clean 2×2 matrices over a commutative local ring can be found in [10,11]. Recently, it was proved by Chen, Yang and Zhou in [4] that for each prime p, $M_2(\mathbb{Z}(p))$ is not strongly clean, where $\mathbb{Z}(p)$ is the localization of \mathbb{Z} at the prime ideal generated by p. In another recent paper [3], the same authors investigated when a 2×2 matrix ring $M_2(R)$ over a commutative local ring R is strongly clean, and they obtained a simple criterion for such a matrix ring to be strongly clean. However, their criterion cannot be used to determine whether an individual matrix A in $M_2(R)$ is strongly clean when the matrix ring $M_2(R)$ is not necessarily strongly clean.

In this paper, we determine when a 2×2 matrix A over a commutative local ring is strongly clean. In Section 2, several equivalent criteria for a 2×2 matrix A over a commutative local ring to be strongly clean are obtained (Theorem 2.6). In particular, it is shown that such a matrix A is strongly clean if and only if either A is invertible, or $A - I$ is invertible, or A is diagonalizable in $M_2(R)$. Consequently, we obtain several criteria for $M_2(R)$ to be strongly clean, extending the main result (Theorem 8) in [3]. In Section 3, we apply the criteria obtained in Theorem 2.6 to determine when a 2×2 matrix A over $\mathbb{Z}(p)$ is strongly clean. We show that such a matrix A is strongly clean if and only if either A is invertible, or $A - I$ is invertible, or $(\text{tr} A)^2 - 4 \det A$ is a square of a unit in $\mathbb{Z}(p)$.

Throughout the paper, $U(R)$ and $J(R)$ denote the group of units of R and the Jacobson radical of R, respectively. For an element a in a ring R, if $a = e + u$ where e is an idempotent and u is a unit such that $eu = ue$, then $a = e + u$ is referred to a strongly clean expression of a in R. Recall that two matrices A and B are similar if $A = P^{-1}BP$ for some invertible matrix P. A property is called a similarity invariant if it is shared by all similar matrices. For example, $\det A$, $\text{tr} A$ and strongly cleanness are among similarity invariants.

2. Strongly clean matrix rings

This section investigates the question of when a 2×2 matrix A over a commutative local ring is strongly clean. Our main result is Theorem 2.6, which provides several criteria for such a matrix A to be strongly clean. As a consequence, several necessary and sufficient conditions for a 2×2 matrix ring over a commutative local ring to be strongly clean are obtained in Theorem 2.8. We start with two useful lemmas.

Lemma 2.1. [3, Lemma 1] Let R be a commutative ring such that $J(R)$ is prime, $w \in J(R)$ and $u \in U(R)$. The following statements are equivalent:

1. $x^2 - ux = w$ is solvable in R.
2. $x^2 - ux = w$ is solvable in $J(R)$.
3. $x^2 - ux = w$ is solvable in $U(R)$.

Lemma 2.2. [3, Lemma 4] Let R be a commutative ring. Let $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$, $E = \begin{pmatrix} a & b \\ c & -a \end{pmatrix} \in M_2(R)$ and $U = A - E$. Then $A = E + U$ is a strongly clean expression of A if and only if the following conditions hold:

$$bc = a - a^2,$$

$$a_{21}b = a_{12}c,$$
Proof. We will show that the following statements are equivalent:

\[t(a - a^2) = a_{12}a_{21}, \]
\[\text{where } s = a_{11} - a_{22}. \]

Remark 2.3. We note that solving \(a - a^2 \) from the first, third and fourth equations in the above lemma yields \(t(a - a^2) = a_{12}a_{21}, \) where \(t = (\text{tr}A)^2 - 4 \text{ det}A. \)

The following proposition is crucial for developing criteria for a \(2 \times 2 \) matrix over a commutative ring to be strongly clean.

Proposition 2.4. Let \(R \) be a commutative ring such that \(J(R) \) is prime. Assume that \(A = \begin{pmatrix} a_{11} & a_{12} \\ w & 0 \end{pmatrix} \in M_2(R), \) where \(a_{11}, a_{12} \in \mathcal{U}(R) \) and \(w \in J(R) \) is such that \(\text{det}(A - I) \notin \mathcal{U}(R). \) Then the following statements are equivalent:

1. \(A \) is strongly clean.
2. The equation \(x^2 - x = \frac{\text{det}A}{(\text{tr}A)^2 - 4 \text{ det}A} \) is solvable in \(R. \)
3. The characteristic equation of \(A, x^2 - (\text{tr}A)x + \text{ det}A = 0 \) is solvable in \(R. \)

Proof. We will show that \((3) \Rightarrow (1) \Rightarrow (2) \Rightarrow (3). \)

\((3) \Rightarrow (1). \) Assume that the characteristic equation of \(A, \)
\[x^2 - (\text{tr}A)x + \text{det}A = 0 \] is solvable in \(R. \) Since \(\text{tr}A = a_{11} \in \mathcal{U} \) and \(\text{det}A = -a_{12}w \in J(R), \) by Lemma 2.1 we can find two solutions \(\lambda_1 \) and \(\lambda_2 \) to (*) such that \(\lambda_1 \in J(R) \) and \(\lambda_2 = \text{tr}A - \lambda_1 = a_{11} - \lambda_1 \in \mathcal{U}(R). \) We now show that there exist two eigenvectors \(X_1 \) and \(X_2 \) of \(A \) such that \(P = (X_1, X_2) \in M_2(R) \) is invertible and \(P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 \\ \lambda_1^1 - \lambda_1 & a_{11} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} \lambda_1^1 - \lambda_1 & 0 \\ 0 & a_{11} \end{pmatrix} \) is strongly clean. Thus \(A \) is strongly clean.

Let \(X_1 = \begin{pmatrix} a_{12} \\ -(a_{11} - \lambda_1) \end{pmatrix} \) and \(X_2 = \begin{pmatrix} a_{11} \lambda_1 \\ w \end{pmatrix}. \) Then it is straightforward to check \(AX_1 = \lambda_1 X_1 \) and \(AX_2 = \lambda_2 X_2 = (a_{11} - \lambda_1)X_2. \) Now \(P = (X_1, X_2) \) is invertible because \(\text{det}P = (a_{11} - \lambda_1)^2 + a_{12}w \in \mathcal{U}(R). \) Therefore, \(P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 \\ 0 & a_{11} - \lambda_1 \end{pmatrix} \) as desired.

\((1) \Rightarrow (2). \) Assume that \(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} a_{11} - a \\ a_{12} - b \\ w - c \\ -d \end{pmatrix} = E + U \) is such that \(E^2 = E, EU = UE \) and \(\text{det}U \in \mathcal{U}(R). \)

Comparing the \((1, 1)\) and \((1, 2)\)-entries of \(EU = UE \) yields \(bw = a_{12}c \) and \(a_{11}b = (a - d)a_{12}. \) Thus
\[c = \frac{bw}{a_{12}} \in J(R) \tag{2.1} \]
and
\[b = \frac{(a - d)a_{12}}{a_{11}}. \tag{2.2} \]
Since \(\det U = (a_{11} - a)(-d) - (a_{12} - b)(w - c) \in \mathcal{U}(R) \) and \((a_{12} - b)(w - c) \in J(R) \) by (2.1), we conclude that

\[
a_{11} - a \in \mathcal{U}(R) \quad \text{and} \quad d \in \mathcal{U}(R).
\]

Comparing the (1, 1) and (2, 2)-entries of \(E^2 = E \) yields that \(a - a^2 = bc \) and \(d - d^2 = bc \). This gives

\[
(a - d)(1 - a - d) = 0.
\]

Since \(a(1 - a) = bc \in J(R) \) and \(J(R) \) is prime, either \(a \in J(R) \) or \(1 - a \in J(R) \). The latter together with \(d \in \mathcal{U}(R) \) imply that \(1 - a - d \in \mathcal{U}(R) \) and thus \(a - d = 0 \) by (2.4). It follows from (2.1) and (2.2) that \(b = c = 0 \), so \(E = al \) with \(a^2 = a \). Since \(J(R) \) is prime, we must have either \(a = 0 \) or \(a = 1 \). This implies that either \(A = U \) or \(A - I = U \) is invertible, contradicting the assumption. So we must have \(a \in J(R) \), and thus \(a - d \) is a unit. By (2.4), \(d = 1 - a \). It now follows immediately from Lemma 2.2 that \(a - a^2 = bc \), \(sb = a_{12}(2a - 1) \) and \(sc = a_{21}(2a - 1) \). Solving \(a^2 - a \) from these equations yields that \(a^2 - a = \frac{\det A}{(\text{tr} A)^2 - 4 \det A} \) (see Remark 2.3). Therefore, \(x^2 - x = \frac{\det A}{(\text{tr} A)^2 - 4 \det A} \) has a solution \(a \) in \(R \).

(2) \(\Rightarrow \) (3). Assume that the equation \(x^2 - x = \frac{\det A}{(\text{tr} A)^2 - 4 \det A} \) is solvable in \(R \). We first construct a matrix \(B \) such that its characteristic equation is the above one. Clearly, if \(B = \left(\begin{array}{cc} 1 & 0 \\ \frac{1}{(\text{tr} A)^2 - 4 \det A} & 1 \end{array} \right) \), then \(B \) is a desired matrix. Moreover, \(\det(B - I) = \det B = -\frac{\det A}{(\text{tr} A)^2 - 4 \det A} \in J(R) \), so \(B \) satisfies all assumptions. Since the characteristic equation of \(B \) is solvable in \(R \), by what we just proved (the implication of (3) \(\Rightarrow \) (1)) \(B \) is strongly clean. Using the implication of (1) \(\Rightarrow \) (2) on \(B \), we conclude that the equation \(y^2 - y = \frac{\det B}{(\text{tr} B)^2 - 4 \det B} \) is solvable in \(R \). Since \(\frac{\det B}{(\text{tr} B)^2 - 4 \det B} = \frac{-\det A}{(\text{tr} A)^2 - 4 \det A}/(1 - 4(-\det A/(\text{tr} A)^2 - 4 \det A)) = \frac{-\det A}{(\text{tr} A)^2 - 4 \det A} \), the above equation reduces to \(y^2 - y = \frac{-\det A}{(\text{tr} A)^2} \). Replacing \((\text{tr} A)y \) by \(x \) yields that \(x^2 - (\text{tr} A)x + \det A = 0 \) is solvable in \(R \). This completes the proof. □

Remark 2.5.

(1) If condition (2) in Proposition 2.4 is satisfied, then the equation \(x^2 - x = \frac{\det A}{(\text{tr} A)^2 - 4 \det A} \) has a solution \(x_0 \in J(R) \) by Lemma 2.1. Let \(a = x_0, b = a_{12}/a_{11}(2a - 1), c = a_{21}/a_{11}(2a - 1), d = 1 - a, \) and let \(E = \left(\begin{array}{cc} a & b \\ c & 1-a \end{array} \right) \in M_2(R) \) and \(U = A - E \). It is straightforward to check that all five conditions in Lemma 2.2 are satisfied. Therefore, \(A = E + U \) is a strongly clean expression of \(A \).

(2) In view of the proof of Proposition 2.4, we conclude that matrix \(A = \left(\begin{array}{cc} a_{11} & a_{12} \\ w & 0 \end{array} \right) \) is strongly clean if and only if it is diagonalizable in \(M_2(R) \).

We are now ready to provide criteria in terms of similarity invariants for a \(2 \times 2 \) matrix over a commutative local ring to be strongly clean.

Theorem 2.6. Let \(R \) be a commutative local ring and let \(A \in M_2(R) \) be such that \(\det A \in J(R) \) and \(\det(A - I) \in J(R) \). Then the following statements are equivalent:
Remark 2.7.

Case I. Just proved we may assume that A is diagonalizable in $M_2(R)$.

Proof. Let $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in M_2(R)$ be such that $\det A \in J(R)$ and $\det(A - I) \in J(R)$. Then $\text{tr} A = 1 + \det A - \det(A - I) \in U(R)$. We first show that A is similar to the matrix $\begin{pmatrix} \frac{\text{tr} A}{\det A} & b_{12} \\ \det A \end{pmatrix}$ for some unit $b_{12} \in U(R)$ by using case-by-case analysis. Since R is a local ring, either $a_{12} \in U(R)$ or $a_{12} \in J(R)$.

Case I. $a_{12} \in U(R)$. Let $P = \begin{pmatrix} 0 & 1 \\ a_{12} & 0 \end{pmatrix}$. Then
\[
P^{-1}AP = \begin{pmatrix} 1 & 0 \\ -\frac{a_{12}}{a_{22}} & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ a_{12} & 1 \end{pmatrix} = \begin{pmatrix} \text{tr} A & a_{12} \\ -\frac{\det A}{a_{12}} & 0 \end{pmatrix},
\]
as desired.

Case II. $a_{12} \in J(R)$. Assume that $a_{21} \in U(R)$. Since A is similar to $\begin{pmatrix} a_{22} & a_{21} \\ a_{12} & a_{11} \end{pmatrix}$, we are back to Case I.

Next we assume that both a_{12} and a_{21} are in $J(R)$. Since $\det A = a_{11}a_{22} - a_{12}a_{21} \in J(R)$, we have $a_{11}a_{22} \in J(R)$. This together with $\text{tr} A = a_{11} + a_{22} \in U(R)$ imply that either $a_{11} \in U(R)$ and $a_{22} \in J(R)$, or $a_{11} \in J(R)$ and $a_{22} \in U(R)$. Since $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ is similar to $\begin{pmatrix} a_{22} & a_{21} \\ a_{12} & a_{11} \end{pmatrix}$, without loss of generality we may always assume that $a_{11} \in U(R)$ and $a_{12}, a_{21}, a_{22} \in J(R)$. Let $P = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Then
\[
P^{-1}AP = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{12} \\ a_{21} + a_{22} \end{pmatrix}
\]
where $b_{12} = a_{11} + a_{12} - a_{21} - a_{22} \in U(R)$. Again we are back to Case I, and therefore, A is similar to $\begin{pmatrix} \frac{\text{tr} A}{\det A} & b_{12} \\ \det A \end{pmatrix}$ for some $b_{12} \in U(R)$.

Next we assume that both a_{12} and a_{21} are in $J(R)$. Since $\det A = a_{11}a_{22} - a_{12}a_{21} \in J(R)$, we have $a_{11}a_{22} \in J(R)$. This together with $\text{tr} A = a_{11} + a_{22} \in U(R)$ imply that either $a_{11} \in U(R)$ and $a_{22} \in J(R)$, or $a_{11} \in J(R)$ and $a_{22} \in U(R)$. Since $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ is similar to $\begin{pmatrix} a_{22} & a_{21} \\ a_{12} & a_{11} \end{pmatrix}$, without loss of generality we may always assume that $a_{11} \in U(R)$ and $a_{12}, a_{21}, a_{22} \in J(R)$. Let $P = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Then
\[
P^{-1}AP = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{12} \\ a_{21} + a_{22} \end{pmatrix}
\]
where $b_{12} = a_{11} + a_{12} - a_{21} - a_{22} \in U(R)$. Again we are back to Case I, and therefore, A is similar to $\begin{pmatrix} \frac{\text{tr} A}{\det A} & b_{12} \\ \det A \end{pmatrix}$ for some $b_{12} \in U(R)$.

Since $\det A, \det(A - I), \text{tr} A$ and strongly cleanness are similarity invariants, by what we just proved we may assume that $A = \begin{pmatrix} \frac{\text{tr} A}{\det A} & b_{12} \\ \det A \end{pmatrix}$ for some $b_{12} \in U(R)$. It now follows immediately from Proposition 2.4 and Remark 2.5 that (1) \iff (2) \iff (3) \iff (4). Note that in (5) $\det B = \det(B - I) = \frac{-\det A}{(\text{tr} A)^2 - 4\det A} \in J(R)$ and the characteristic equation of B is $x^2 - x - \frac{\det A}{(\text{tr} A)^2 - 4\det A} = 0$. We conclude that (2) \iff (5) follows from (1) \iff (3).

An element $r \in R$ (a matrix $A \in M_n(R)$) is called a trivial strongly clean element (matrix) if either $r \in U(R)$ or $r - 1 \in U(R)$ (either $\det A \in U(R)$ or $\det(A - I) \in U(R)$).

Remark 2.7.

(1) Let R be a commutative local ring. Assume that $A \in M_2(R)$ is not a trivial strongly clean matrix. Then by Theorem 2.6, A is strongly clean if and only if A is diagonalizable in $M_2(R)$.

(2) We note that not all strongly clean matrices are necessarily diagonalizable. For example, matrices $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ are clearly strongly clean, but none of them are diagonalizable in $M_2(F)$ where F is a field.
As a consequence of Theorem 2.6, we obtain the following criteria for the 2×2 matrix ring $M_2(R)$ over a commutative local ring R to be strongly clean, extending the main result [3, Theorem 8] of Chen, Yang and Zhou.

Theorem 2.8. Let R be a commutative local ring. Then the following statements are equivalent:

1. $M_2(R)$ is strongly clean.
2. For every $A \in M_2(R)$ with $\det A \in J(R)$ and $\det(A-I) \in J(R)$, the characteristic equation of A, $x^2 - (\text{tr} A)x + \det A = 0$ is solvable in R.
3. For every $A \in M_2(R)$ with $\det A \in J(R)$ and $\det(A-I) \in J(R)$, the equation $x^2 - x - \frac{\det A}{(\text{tr} A)^2 - 4 \det A} = 0$ is solvable in R.
4. For every $A \in M_2(R)$ with $\det A \in J(R)$ and $\det(A-I) \in J(R)$ is diagonalizable in $M_2(R)$.
5. For every $w \in J(R)$, the matrix $B = \begin{pmatrix} 1 & w \\ 0 & 1 \end{pmatrix}$ is strongly clean.
6. For every $w \in J(R)$, the equation $x^2 - x + w = 0$ is solvable in R.
7. For every $w \in J(R)$ and $u \in U(R)$, the equation $x^2 - ux + w = 0$ is solvable in R.

Proof. For every $A \in M_2(R)$, if $\det A \in U(R)$ or $\det(A-I) \in U(R)$, then A is strongly clean. So we may assume that neither $\det A$ nor $\det(A-I)$ is a unit. Since R is local, we must have $\det A \in J(R)$ and $\det(A-I) \in J(R)$, and thus $\text{tr} A \in U(R)$. Now Theorem 2.6 implies that (1) \iff (2) \iff (3) \iff (4) \iff (5).

Next we show that (5) \implies (6) \implies (7) \implies (2).

(5) \implies (6). For every $w \in J(R)$, $\det B = \det(B-I) = w \in J(R)$. Since B is strongly clean, it follows immediately from Theorem 2.6 that the characteristic equation of B, $x^2 - x + w = 0$ is solvable in R.

(6) \implies (7). For every $u \in U(R)$ and $w \in J(R)$, consider the equation $y^2 - y + \frac{w}{u^2} = 0$. Since $\frac{w}{u^2} \in J(R)$, by the assumption the above equation has a solution y_0 in R. Now it is easy to check that $x_0 = u y_0$ is a solution to $x^2 - ux + w = 0$.

(7) \implies (2) is obvious (by setting $u = \text{tr} A$ and $w = \det A$).

This completes the proof. \square

We note that the equivalency of (6) and (7) in the above theorem answers a question raised in [3], and it also allows us to restate the main result (Theorem 8) of [3] in the following simplified form.

Corollary 2.9. Let R be a commutative local ring. Then the 2×2 matrix ring $M_2(R)$ over R is strongly clean if and only if for every $w \in J(R)$, the equation $x^2 - x + w = 0$ is solvable in R.

3. The 2×2 matrix ring $M_2(\mathbb{Z}_p)$

It was shown in [4] that for any prime p, $M_2(\mathbb{Z}_p)$ is not strongly clean. In this section, we apply Theorem 2.6 to determine when a matrix $A \in M_2(\mathbb{Z}_p)$ is strongly clean. The following results slightly improve several results from Section 2 of [4].

Proposition 3.1. Let R be a commutative local ring. If $A \in M_2(R)$ is strongly clean, then exactly one of the following holds:
(1) Either A or $A - I$ is invertible.
(2) $\det A \in J(R)$, $\det(A - I) \in J(R)$ and $(\text{tr } A)^2 - 4 \det A = u^2$ for some $u \in \mathcal{U}(R)$.

Proof. Let A be a strongly clean matrix. We may assume that $\det A \in J(R)$ and $\det(A - I) \in J(R)$. Thus $\text{tr } A \in \mathcal{U}(R)$ and so $(\text{tr } A)^2 - 4 \det A \in \mathcal{U}(R)$. By Theorem 2.6, there exists $x_0 \in R$ such that $x_0^2 - (\text{tr } A)x_0 + \det A = 0$, or $(2x_0)^2 - 2(\text{tr } A)(2x_0) + 4 \det A = 0$. This gives $(\text{tr } A)^2 - 4 \det A = (2x_0 - \text{tr } A)^2 = u^2$. Since $(\text{tr } A)^2 - 4 \det A$ is a unit, u must be a unit. \(\square \)

Theorem 3.2. Let R be a commutative local ring such that either $J(R) = 2R$ and R is a domain, or $2 \in \mathcal{U}(R)$. Then $A \in M_2(R)$ is strongly clean if and only if exactly one of the following holds:

(1) Either A or $A - I$ is invertible.
(2) $\det A \in J(R)$, $\det(A - I) \in J(R)$ and $(\text{tr } A)^2 - 4 \det A = u^2$ for some $u \in \mathcal{U}(R)$.

Proof. The necessity follows from Proposition 3.1.

We now show the sufficiency. Let $A \in M_2(R)$. As before, we may assume that $\det A \in J(R)$, $\det(A - I) \in J(R)$ and $(\text{tr } A)^2 - 4 \det A = u^2$ for some $u \in \mathcal{U}(R)$.

Case I. $2 \in \mathcal{U}(R)$. Let $x_0 = \frac{\text{tr } A + u}{2}$. Then x_0 is a solution to the characteristic equation of A, i.e. $(x_0^2 - (\text{tr } A)x_0 + \det A = 0$. By Theorem 2.6 A is strongly clean.

Case II. $J(R) = 2R$ and R is a domain. Since $(\text{tr } A + u)^2 = 2(\text{tr } A)^2 + 2(\text{tr } A)u - 4 \det A \in J(R)$ and R is local, we have $\text{tr } A + u \in J(R)$. Let $\text{tr } A + u = 2r$. We now show that r is a solution to the equation $(x)^2 - (\text{tr } A)x + \det A = 0$. Again A is strongly clean by Theorem 2.6. Note that $4(r^2 - (\text{tr } A)r + \det A) = (2r - \text{tr } A)^2 + 4 \det A - (\text{tr } A)^2 = u^2 - u^2 = 0$. Since R is a domain, we conclude $r^2 - (\text{tr } A)r + \det A = 0$ as desired. \(\square \)

In particular, when $R = \mathbb{Z}_{(p)}$, the assumptions in the above theorem are satisfied, so we obtain the following result.

Corollary 3.3. Let $R = \mathbb{Z}_{(p)}$. Then a matrix $A \in M_2(R)$ is strongly clean if and only if one of the following holds:

(1) Either A or $A - I$ is invertible.
(2) $\det A \in J(R)$, $\det(A - I) \in J(R)$ and $(\text{tr } A)^2 - 4 \det A = u^2$ for some $u \in \mathcal{U}(R)$.

We conclude this paper by stating an alternative criterion for a matrix $A \in M_2(\mathbb{Z}_{(2)})$ to be strongly clean.

Proposition 3.4. Let $R = \mathbb{Z}_{(2)}$. Then a matrix $A \in M_2(R)$ is strongly clean if and only if one of the following holds:

(1) Either A or $A - I$ is invertible.
(2) $\det A \in J(R)$, $\det(A - I) \in J(R)$ and $w = \frac{\det A}{(\text{tr } A)^2 - 4 \det A} = \frac{2n}{m}$, where $(n, m) = 1$, $m = (2l + 1)^2$ and $2n = s(s + 1) - l(l + 1)$ for some integers l, s.
Proof. As before, we need only consider that $A \in M_2(\mathbb{Z}_2)$ such that $\det A \in J(\mathbb{Z}_2)$ and $\det(A - I) \in J(\mathbb{Z}_2)$. By Theorem 2.6, A is strongly clean if and only if the matrix $\left(\begin{array}{cc} det A & 1 \\ \frac{1}{(tr A)^2 - 4 det A} & 0 \end{array} \right)$ is strongly clean. Without loss of generality, we may always assume that $A = \left(\begin{array}{cc} 1 & w \\ 0 & 0 \end{array} \right)$ where $w = \frac{2n}{m} \in J(R)$, m is odd and $(n, m) = 1$.

For the sufficiency, we compute $(tr A)^2 - 4 det A = 1 + \frac{8n}{m} = \frac{(2l+1)^2 + 4(s(s+1) - l(l+1))}{(2l+1)^2} = \frac{(2s+1)^2}{2l+1} = u^2$ where $u \in U(\mathbb{Z}_2)$. So A is strongly clean by Corollary 3.3.

Conversely, if A is strongly clean, then by Corollary 3.3 $(tr A)^2 - 4 det A = u^2 = \frac{(2s+1)^2}{2l+1}$, where $(2s + 1, 2l + 1) = 1$. On the other hand, $(tr A)^2 - 4 det A = 1 + 4w = 1 + \frac{8n}{m}$. Thus $\frac{m+8n}{m} = \frac{(2s+1)^2}{(2l+1)^2}$. This implies that $m = (2l + 1)^2$ and $8n = (2s + 1)^2 - (2l + 1)^2$. Therefore, $2n = s(s + 1) - l(l + 1)$ as desired. \[\square \]

In view of Proposition 3.4, one can easily check in $M_2(\mathbb{Z}_2)$, $\left(\begin{array}{cc} 1 & 1 \\ \frac{1}{2} & 0 \end{array} \right)$ is strongly clean, but $\left(\begin{array}{cc} 1 & 1 \\ \frac{1}{2} & 0 \end{array} \right)$ is not.

References