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Structure and function of the C-terminal domain of MrpA in the Bacillus
subtilis Mrp-antiporter complex – The evolutionary progenitor of the
long horizontal helix in complex I
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a b s t r a c t

MrpA and MrpD are homologous to NuoL, NuoM and NuoN in complex I over the first 14 transmem-
brane helices. In this work, the C-terminal domain of MrpA, outside this conserved area, was inves-
tigated. The transmembrane orientation was found to correspond to that of NuoJ in complex I. We
have previously demonstrated that the subunit NuoK is homologous to MrpC. The function of the
MrpA C-terminus was tested by expression in a previously used Bacillus subtilis model system. At
neutral pH, the truncated MrpA still worked, but at pH 8.4, where Mrp-complex formation is needed
for function, the C-terminal domain of MrpA was absolutely required.
� 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction composed of two types of homologous polypeptides with some-
Complex I or NADH:quinone oxidoreductase is the last enzyme
in the classical mitochondrial respiratory chain for which high res-
olution structural information became available [1–4]. The elec-
tron transfer from the NADH binding site on the NuoE/51 kDa
subunit via a series of FeS clusters to the quinone binding site in
the NuoD/49 kDa subunit [5], is coupled to proton pumping across
the membrane domain with a 4H+/2e� stoichiometry [6]. However,
the actual coupling mechanism between the two activities remains
poorly understood. The membrane domain of complex I is domi-
nated by three large, conserved subunits. In addition to being sim-
ilar to each other [7], the primary sequence of NuoL/ND5, NuoM/
ND4 and NuoN/ND2 was found to be homologous to two other pro-
teins, MrpA and MrpD from the Mrp-antiporter complex [8]. In
addition, MrpA/NuoL and MrpD/NuoM and N form two distinct
phylogenetic clusters [9], showing that the protein family is
what different functions. This was later corroborated by functional
comparisons using a model system where plasmid-encoded MrpA
or NuoL could rescue Bacillus subtilis DmrpA but not B. subtilis
DmrpD, whereas the opposite was seen for plasmid-encoded MrpD
and NuoN [10].

The structures of three complex I proteins NuoL, NuoM and
NuoN revealed an almost perfect structural overlap with each
other over the first 14 TM helices [1]. Only the most distally located
subunit, NuoL, contains an additional C-terminal segment not pres-
ent in the other proteins. This domain was also the largest surprise
from the structure, and revealed as a long horizontal helix originat-
ing from NuoL in the distal end of the membrane domain and
reaching back all the way towards the proximal, promontory do-
main. This domain consists of a predicted transmembrane segment
(helix 15), a long horizontal helix, followed by a final transmem-
brane helix (helix 16). This intriguing structure, found in both pro-
karyote and eukaryote complex I [1,3], was named ‘‘coupling rod’’
or ‘‘piston’’, and initially envisioned to provide the means for the
long range conformational changes needed to drive the redox
coupled proton pump. The function of the C-terminal extension
in NuoL has since then been addressed in some recent papers.
Removal of the domain affected the proton pumping efficiency of
the purified and liposome-reconstituted enzyme. Mutations of
protonatable residues (particularly Asp563) in the Escherichia coli
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long horizontal helix also affected H+/e� stoichiometry [11]. Other
studies showed that truncation of NuoL greatly affected the stabil-
ity of the complex in vivo [12]. To further scrutinize the proposed
piston-like function, a subsequent analysis of both point muta-
tions, insertions and substitutions demonstrated that although
many of the manipulations affected complex I stability, by altering
the ‘‘piston’’, it still retained the normal H+/e� stoichiometry [13].
Therefore, it was concluded that the NuoL long horizontal helix is
important for stability and formation of a mechanical connection,
but its role in energy transduction remains uncertain.

The structural information from complex I can be used to make
a model of the homologous parts of the MrpA and MrpD subunits
of the Mrp-antiporter [14]. It was noticed that NuoK and MrpC are
homologous proteins [15], which corroborated the notion that a
whole antiporter module was recruited to complex I and NuoL,
NuoM and NuoN were not simply the result from triplication of
one primordial gene [18]. The most recent high resolution struc-
ture revealed that the NuoH subunit has an antiporter-fold too,
although any primary sequence similarity has been obliterated
[4]. Since MrpA is the evolutionary progenitor of NuoL, in this work
the structure and function of the C-terminal domain of MrpA, pro-
jecting beyond the universally conserved domain, was investi-
gated. Interestingly, not only the long horizontal helix, but also
the NuoJ subunit in complex I originates in this part of MrpA.
The function of the antiporter-domain of complex I could also
depend on its evolutionary relationship with Mrp. This issue was
addressed by truncating the MrpA subunit, and investigating the
Table 1
Bacteria, plasmids and primers used in this work.

Bacteria Relevant properties

E. coli XL1-Blue recAl, endAl, gyrA96, thi, hsdR17, supE44, relAl (lac)
E. coli JM109 endAl, glnV44, thi-1, relA1, gyrA96, recA1, mcrBp D

lacZDM15] hsdR17(rK_mK
+)

B. subtilis 168A Wild type, (type train), trpC2
B. subtilis DmrpA DmrpA bler

Plasmids
pEC86 ccm operon, CmR

pVM4h mrpA fused with cccA0-6xCAT, AmpR

pVM4(P474) mrpA truncated at the codon encoding P474 and fus
pVM4(K679) mrpA truncated at the codon encoding K679 and fus
pVM4(V734) mrpA truncated at the codon encoding V734 and fus
pVM4(P474)G9C mrpA carrying mutation G9C, truncated at the codon

6xCAT, AmpR

pMCh nuoM fused with cccA0-6xCAT, AmpR

pMMA(P474) mrpA with first 4 codons replaced by first 4 codons o
P474 and fused with cccA0-6xCAT, AmpR

pMMA(K679) mrpA with first 4 codons replaced by first 4 codons o
K679 and fused with cccA0-6xCAT, AmpR

pMMA(V734) mrpA with first 4 codons replaced by first 4 codons o
V734 and fused with cccA0-6xCAT, AmpR

pMMA mrpA with first 4 codons replaced by first 4 codons of
pCW6 CmR

pVM11 mrpA fused with cccA0 , CmR

pMrpAtr mrpA truncated at the codon encoding I472 and fus
pVM7 mrpABCD fused with cccA0at mrpD, CmR

pMrpAtrBCD mrpABCD with mrpA truncated at the codon encodin
Primers Primer sequence
MrpAtr-forw 50 P-GGGCTTGATGACTCTCGG 30

MrpAtrP474-rev 50 P-AGGCTCTATCAGGCTGTACGAC 30

MrpAtrK679-rev 50 P-TTTTGTTTTCAGCCTCAGTTTCG 30

MrpAtrV734-rev 50 P-GACATTGACGACATTATCCCCT 30

MrpAG9C-forw 50 P-AGAGTGCATACCGGCTGGTTTGT 30

MrpAG9C-rev 50 P-TTTTGCGTATTTTGCCAAGAAGG 30

MrpA-Blunt-T13 -forw 50 TGGTTTGTGTTGATCCTGC 30

Cytc-Blunt-G1 -forw 50 GGGCTTGATGACTCTCGGGA 30

NuoM-Blunt-C 12-rev 50 P-GGGTAGTAACATGGCGATCTTTATTCCTT 30

MrpA-pCW6-up 50 P-GGGCTTGATGACTCTCGGGAGATTG 30

MrpA-pCW6-down 50 P-CTCTATCAGGCTGTACGACAATATATTCGGG 30

MrpABCD-pVM7-up 50 P-ACAGCATGATTAAAACAAAAGTAAAAGAGGAGGG
MrpABCD-pVM7-down 50 P-CTCTATCAGGCTGTACGACAATATATTCGGG 30
function in the B. subtilis strains deleted for mrpA, that was previ-
ously utilized as a model system [10].
2. Materials and methods

2.1. Molecular biology

For fusion protein expression, E. coli JM109, pEC86 were grown
microaerophilicly in LB media containing 0.5% NaCl, 50 lM IPTG
for 40 hours at 30 �C, 200 rpm. For solid media, 1.5% agar was
added. B.subtilis strains were kept on TBAB plates (Difco). Antibiot-
ics were added in the following concentrations when appropriate:
100 lg/ml ampicillin (Sigma), 12.5 lg/ml chloramphenicol for
E. coli and 5 lg/ml chloramphenicol (Duchefa) for B. subtilis. The
primers were synthesized by Invitrogen. Standard Molecular Biol-
ogy techniques were from Fermentas or New England Biolabs. The
PCRs were performed using High Fidelity Phusion Hot Start II DNA
polymerase (Finnzymes). DNA sequencing reactions were carried
out using Big Dye™ (Applied Biosystems) at the Biomolecular
Resource Facility, Lund University.
2.2. Transmembrane topology prediction

The primary sequences were collected from the protein se-
quence database UniProt. The multiple sequence alignments were
done using CLUSTALW [16]. The structure-based sequence
Reference or source

Promega
(lacproAB) e14-[F0 traD36 proABp laclq Promega

Bacillus Genetic Stock Center
[10]

[26]
This work

ed with cccA0-6xCAT, AmpR This work
ed with cccA0-6xCAT, AmpR This work
ed with cccA0-6xCAT, AmpR This work
encoding P474 and fused with cccA0- This work

This work
f nuoM, truncated at the codon encoding This work

f nuoM, truncated at the codon encoding This work

f nuoM, truncated at the codon encoding This work

nuoM and fused with cccA0-6xCAT, AmpR This work
Claes von Wachenfeldt
[18]

ed with cccA0 , CmR This work
[10]

g I472 and fused with cccA0 at mrpD, CmR This work

GA 30



Fig. 1. Schematic drawing of the MrpA polypeptide with the fully conserved part (A), the part conserved only in NuoL (B, see also Fig. 2A) and the part conserved as NuoJ of
complex I (C, see also Fig. 2B ). The positions of the four cytochrome c550 fusions are indicated with triangles (see also Fig. 3), red, filled symbols for fusion proteins that
expresses as holo-cytochrome and open symbols for apo-cytochrome.
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alignments were done using the high resolution crystal structure
[14]. The transmembrane topology was predicted by HMMTOP,
TMHMM from the Center for Biological Sequence Analysis, Depart-
ment of Systems Biology, Technical University of Denmark, TopPred
[17] and TMpred provided by EMBnet with their default values.

2.3. Construction of the fusion proteins with cytochrome c

The plasmids pVM4(P474) encoding MrpA truncated at P474,
pVM4(K679) encoding MrpA truncated at K679 and pVM4(V734)
encoding MrpA truncated at V734 were generated by an amplifica-
tion of the plasmid pVM4 h encoding full length MrpA from B. sub-
tilis C-terminally fused with a cyt c550-His-tag [18]. The PCRs were
done using one downward primer, MrpAtr-forw, and three differ-
ent upward primers for the different mrpA truncations:
MrpAtrP474-rev, MrpAtrK679-rev and MrpAtrV734-rev (Table 1).
The PCR products were self-circularized and used for transforma-
tion of E. coli XL1-Blue. The transformants were selected on LB-agar
plates containing ampicillin and sequenced over the truncation
points. Subsequently, E. coli JM109 harboring pEC86 [19] was
transformed with the constructed plasmids.

The plasmid pVM4(P474)G9C carrying a G9C mutation in the
truncated mrpA gene was constructed by amplifying the plasmid
pVM4(P474) using two primers: MrpAG9C-forw and MrpAG9C-
rev (Table 1). Subsequent ligation, transformation and selection
were done as before.

2.4. Construction of the expression plasmids encoding full
and truncated MrpA

The plasmid pMCh encoding NuoM from E. coli fused with cyt
c550-His-tag [18] was used for a partial replacement of nuoM gene
by mrpA gene. The mrpA sequence encoding MrpA lacking the first
four amino acids and truncated at P474 was amplified from the
genomic DNA of B. subtilis by using the primers MrpA-Blunt-T13-
forw and MrpAtrP474-rev (Table 1). The vector pMCh was ampli-
fied by using the primers Cytc-Blunt-G1-forw and NuoM-Blunt-
C12-rev (Table 1) omitting the nuoM gene but leaving the first four
codons encoding MLLP of NuoM. The two PCR fragments having
only blunt ends were ligated together, used for transformation
and selected as before. The construct was sequenced over the
two fusion points and named pMMA(P474).

Subsequently, the constructs pMMA(K679), pMMA(V734) and
pMMA were made. Fragments mrpA(K679)-cytc, mrpA(V734)-cytc
and mrpA-cytc, from pVM4(K679), pVM4(V734) and pVM4h,
respectevely, were generated by restriction with FseI cutting in
mrpA and PpMUI cutting in cytochrome c gene, and inserted into
pMMA(P474) cleaved by the same enzymes. The constructs were
verified by sequencing over the promoter and the entire fusion
gene region and used for transformation of the expression strain
E. coli JM109 harboring pEC86 [19].
2.5. Construction of C-terminally truncated MrpA and MrpABCD

For construction of pMrpAtr, the entire pVM11 encoding mrpA
from B. subtilis in pCW6 was amplified omitting the mrpA gene part
encoding the C-terminus from I472 by using the primers MrpA-
pCW6-up and MrpA-pCW6-down (Table 1). For truncation of the
C-terminal domain of MrpA expressed in MrpABCD complex, the
plasmid pVM7 containing the mrpABCD gene, was amplified omit-
ting the same part of mrpA gene as before by using the primers
MrpABCD-pVM7-up and MrpABCD-pVM7-down (Table 1) The
PCR products were self-circularized and used for transformation
of E. coli JM109. The constructs were sequenced over the truncation
point. The B. subtilis DmrpA strain was subsequently transformed
with the constructed plasmids.

2.6. Production of the cytochrome c fusion proteins

The full length and truncated MrpAcytH, MrpA(G9C)cytH,
MMrpAcytH were produced in E. coli JM109 constitutively coex-
pressing the ccm operon, which is responsible for heme insertion
and cytochrome c maturation, from pEC86 (kindly provided by Lin-
da Thöny-Meyer). The cell membranes were isolated as described
previously [18]. Protein concentration was determined by BCA Pro-
tein Assay Kit (Pierce) with bovine serum albumin (Sigma), as stan-
dard. The proteins were purified using a HisTrap column (GE
Healthcare) as before [20]. Proteins were concentrated using Mili-
pore Amicol Ultra, MWCO 30000.

2.7. Western blot and heme staining

SDS–PAGE was performed as described by Neville using 10%
polyacrylamide gels [21]. The transfer to PVDF membrane (Mili-
pore) was done according to the manufacture’s instructions. The
immunodetection was done as described previously [20] using
anti-cyt c550 rabbit antibodies, as the primary antibody (kindly
provided by Lars Hederstedt), and alkaline phosphatase linked
goat-anti rabbit antibodies, as the secondary antibody. The PVDF
membrane was developed with ECF (GE Healthcare). Activities
were monitored as a blue fluorescence at 530 nm using a Bio-Rad
ChemiDoc MP imaging system. For heme staining, the peroxidase
activity was visualized directly in the gel by the method of Kashino
et al. [22] using 3,3-diaminobenzidine tetrahydrochloride, as
substrate.

2.8. Optical spectroscopy

Optical spectra of the cyt c550-tagged proteins were recorded
using a Shimadzu UVPC 2100 spectrophotometer. Using the extinc-
tion coefficient of cytochrome c550e = 24 mM�1cm�1[23], concen-
trations of the fusion proteins were calculated [20].



(A)

(B)

Fig. 2. A and B. Structure-based sequence alignments of the C-terminal domain of MrpA with NuoL (A) and NuoJ (B) (see also Fig. 1). The sequences are (from top to bottom):
Bacillus subtilis [Q9K2S2], Staphylococcus aureus [Q0Q2K0], Corynebacterium glutamicum [Q8NM51], Escherichia coli [P33607], Thermus thermophilus [Q56227], Bacillus cereus
[B3YZU6]. Orientation of the predicted transmembrane segments is indicated by letters: i – for ‘‘inside’’ and o – for ‘‘outside’’. The conserved residues are in bold. The
positions, where cytochrome c550 domain was fused to MrpA, are indicated by arrows. (A) The first part of the C-terminal domain: positions of the transmembrane segments
of MrpA were in good agreement with the known structure of NuoL [14], and are highlighted by gray boxes. The helix numbering on top of the sequence is referring to MrpA
and on bottom to NuoL. Amino acids that have been mutated in NuoL from E. coli and reported in the literature [11,25] are marked by black dots. Those that showed a
significant effect on complex I activity or proton pumping capacity when mutated are surrounded by squares. The long helix in MrpA from B. subtilis, region L535–R554, is
approximately half of the size of the long horizontal helix in NuoL from E. coli, region A538–L583 (19–23 vs 41–46 amino acids in the selected organisms, respectively). (B)
The second part of the C-terminal domain: position of the transmembrane segments in MrpA were in good agreement with the known structure of NuoJ [14], and are
highlighted by gray boxes. Amino acids that have been mutated in MrpA from B. subtilis and reported in the literature [30] are marked by stars and those in NuoJ from E. coli
[31–32] are marked by dots. Amino acids that showed a significant effect on complex activity when mutated are surrounded by squares.
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Fig. 3. The four different cytochrome c fusion proteins in purified and concentrated fractions detected by immunodetection with anti-cyt c550 antibodies (Panel A) and heme
staining (Panel B). The calculated masses of the proteins are: 63.8 kDa for MMrpA(P474)cytH in Lane 1, 86.8 kDa for MMrpA(K679)cytH in Lane 2, 92.7 kDa for
MMrpA(V734)cytH in Lane 3 and 97.1 kDa for MMrpAcytH in Lane 4 (pointed by arrows). NuoMcytH, with a calculated mass of 67.2 kDa, was used as a control to account for
the somewhat anomalous migration of membrane proteins in gels. The last lane in Panel A and the first lane in Panel B contained 5 lg of NuoMcytH, others contained 50 lg of
membrane protein. Both gels contain some degradation products however occurring only in the holo-cytochrome-proteins.

Table 2
Growth properties of B. subtilis deletion strain, expressing antiporter-like proteins
under different growth conditions.

B. subtilis DmrpA at 80 mM Na+

At pH 6.5 Max OD g (min)

MrpA 1.72 ± 0.03 71
MrpAtr 1.64 ± 0.02 87

At pH 7.4
MrpA 1.84 ± 0.06 46
MrpAtr 1.49 ± 0.05 97
MrpABCD 1.78 ± 0.02 52
MrpAtrBCD 1.43 ± 0.02 103

At pH 8.4
MrpA 1.76 ± 0.03 64
MrpAtr 0.17 ± 0.02 na
MrpABCD 1.65 ± 0.02 72
MrpAtrBCD 0.16 ± 0.03 na
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2.9. Growth studies in B. subtilis

All growth studies were done as described previously [10].
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Fig. 4. Growth properties of the B. subtilis DmrpA deletion strain at pH 7.4 and 80 mM Na
but expression of MrpD does not improve the growth. Expression of MrpA lacking the C-
length MrpA (A). Expression of MrpABCD from a plasmid also results in wild type gro
behaved essentially as the truncated MrpA expressed alone.
3. Results and discussion

The predicted transmembrane topology of the MrpA polypep-
tide is schematically shown in Fig. 1. The first 14 TM helices
(Fig. 1, A) correspond to the domain conserved in all members of
the protein family. The C-terminal domain of MrpA can be further
divided in two parts: the first two transmembrane helices with a
long helix in between, corresponding to the part conserved in NuoL
(Fig. 1, B) and the second part comprising five predicted TM helices
that we postulated correspond to NuoJ in complex I (Fig. 1, C [24]).
As seen in Fig. 2, there are a few conserved elements in this area,
but the overall sequence similarity is low. To assess the function
of the long horizontal helix in NuoL, point mutations as well as
more detailed insertions and other modifications to alter the puta-
tive ‘‘piston’’ rigidity have been made by other groups [12–13,25].
The size of the structural element found in NuoL, but not in NuoM
and N, is ranging from 57–129 amino acids in complex I, whereas
the corresponding sequence in MrpA is generally smaller, ranging
from 41 to 54 amino acids long. The size difference is the most
prominent in the area shown in Fig. 2A, where the central part of
the MrpA long helix is about half the length (15–23 amino acids
in MrpA’s) of that seen in the equivalent stretch (A538–L583) in
the structure of E. coli (46 amino acids). The length of this
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Fig. 5. Growth properties of the B. subtilis DmrpA deletion strain at pH 8.4 and 80 mM Na+. MrpA alone expressed in trans restores the wild type growth properties only after a
lag-phase of about 4 h (A). Expression of the MrpABCD from a plasmid prevents the lag- phase (B), strongly suggesting that Mrp-complex formation is required for its function
at pH 8.4. The truncated MrpA could not restore the growth, neither when expressed alone (A) nor when expressed together with MrpBCD (B). This implies that the C-
terminal domain of MrpA is essential for Mrp-complex formation.

Fig. 6. Tentative model of the MrpA, C and D part of the Mrp-antiporter, based on
the proposed structural similarities to complex I. In the model, the long horizontal
helix has been truncated to correspond to the part conserved in MrpA, and Helix 16
in NuoL has been fused to Helix 1 in NuoJ to mimic the full length MrpA (red). NuoK
is equivalent to MrpC (grey) and NuoN corresponds to MrpD (green). One of the
large subunits, NuoM, has been removed from the complex I structure to resemble
the Mrp-complex, with only two large antiporter-like polypeptides. The three Mrp
subunits MrpE, F and G that are present in the full size Mrp-complex but not
conserved in complex I, are not shown in the model.

3346 E. Virzintiene et al. / FEBS Letters 587 (2013) 3341–3347
structural elements, corresponding to HLa plus HLb in the E coli
structure [14], are in the range of 35–52 amino acids in NuoL se-
quences in general. This probably reflects that MrpA has only one
homologous partner protein, MrpD, whereas long horizontal helix
in NuoL must embrace both NuoM and NuoN subunits.

The predicted topology of MrpA was then tested experimentally
using the cytochrome c550 fusion method described previously
[20]. Briefly, the heme c insertion apparatus needed for covalent
attachment of heme to the CxxCH motif in c-type cytochromes is
only present in the E. coli periplasm [19,26]. Therefore, a holo-cyto-
chrome can only be formed when the membrane protein to be
tested has the C-terminus on the periplasmic side of the membrane
when the fusion protein is expressed in E. coli, whereas otherwise
the apo-cytochrome can be detected using anti-cytochrome c550

antibodies. Therefore, the cytochrome-tagging strategy is applica-
ble to determine the transmembrane topology of membrane pro-
teins [20] and is also useful to stabilize and enhance the
expression of some proteins [18].

It was noted earlier that the B. subtilis MrpA mRNA form a stem-
loop structure immediately downstream of the GTG start codon of
mrpA which interferes with translation using an inducible promo-
tor instead of the naturally regulated expression. A synonymous
mutation (G9 to C) that previously was used to avoid the formation
of the secondary structure and allow protein synthesis [27], was
however not sufficient to achieve reasonably high MrpA protein
production in E. coli (not shown). Therefore, a novel construct con-
taining the upstream region and four coding residues of the NuoM,
a construct that normally allows high expression levels [18] was
made. Yet, the expressed amount of MMrpA(P474)cytH corre-
sponding to the fully conserved part of MrpA (Fig. 1A), was only
30% of what we normally produce of NuoM. Still, it definitely con-
tained a holo-cytochrome c (Fig. 3B) and just like all other fusion
proteins could be detected by the antibodies (Fig. 3A). The full
length MMrpAcytH protein did not contain heme in the polypep-
tide, neither did MMrpA(K679)cytH, whereas the MMrpA(V734)-
cytH contained heme (Fig. 3B). In crude fractions from cells
expressing MMrpA(P474)cytH and MMrpA(V734)cytH, about
20 nmol of cytochrome c per mg membrane protein could be de-
tected from optical spectra whereas membranes from cells
expressing MMrpA(K679)cytH or full length MMrpAcytH did not
contain any spectroscopically detectable heme. This confirms the
predicted transmembrane topology of MrpA and its homology to
the long horizontal helix and to NuoJ in complex I. The Mrp-com-
plex contains an additional three small proteins, MrpE, F and G, of
poorly understood function [28], that do not seem to be conserved
in complex I (but see also [29]). Such redundant proteins are easily
lost during evolution, provided that they are not trapped in the
protein for structural reasons.

Function of the C-terminal domain in MrpA. For synthesis in B.
subtilis, the MrpA was expressed from the PSPAC promotor of pCW6
but otherwise with its natural regulatory elements left in place. In
these constructs (pMrpAtr and pMrpAtrBCD, see Table 1) MrpA
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was truncated at position I472 (Fig. 2A), both in the single MrpA
subunit and in MrpABCD sub-complex, and expressed in B. subtilis
DMrpA. The deletion strain was grown at different pH and the cells
were challenged with 80 mM Na+, conditions that were tried out
earlier [10]. At pH 7.4 the bacteria expressing the truncated MrpA
were growing a bit slower than the wild type, with a generation
time of 97 min compared to 46 min for the full length protein. Like-
wise, the bacteria expressing MrpABCD from a plasmid were a bit
slower than expressing MrpA alone, irrespectively if the MrpA was
truncated or not (Table 2, Fig. 4). The slightly longer generation
times reflect the heavier load to express four extra proteins instead
of just one. At pH 8.4, the MrpA expressing deletion strain showed
a long lag-phase that is not seen in the MrpABCD case. This was ob-
served previously [10], and was interpreted such that Mrp-com-
plex formation is required for the antiporter-complex to work at
more alkaline pH. Therefore, MrpABCD expressed together can
start to operate immediately, whereas a subunit expressed alone
from a plasmid will need to be incorporated into a newly synthe-
sized chromosomally encoded protein-complex, resulting in the
observed lag-phase. This interpretation also fitted the observation
that complex I subunits could substitute for MrpA or MrpD at neu-
tral pH, but never at pH 8.4. Interestingly, at pH 8.4, the truncation
of MrpA had a drastic effect on growth. Neither the MrpAtr alone
nor the MrpAtrBCD could rescue the B. subtilis DMrpA strain (Ta-
ble 2, Fig. 5). This demonstrates the structural importance of the
long horizontal helix and the whole C-terminal domain also in
the Mrp-complex. This further implies that the conserved part of
MrpA, a subunit presumably responsible for ion conduction, is
working in spite of the truncation, albeit a bit slower, whereas
the C-terminal domain is essential for Mrp-complex formation
and growth at pH 8.4. Unfortunately, no real high resolutions
structural information is available for the Mrp-antiporter complex,
but taken together, we can propose substantial structural similar-
ities between the two (Fig. 6).
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