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Abstract

Periodic and quasi-periodic solutions of the n-body problem are critical points of the action functional
constrained to the Sobolev space of symmetric loops. Variational methods yield collisionless orbits pro-
vided the group of symmetries fulfills certain conditions (such as the rotating circle property). Here we
generalize such conditions to more general group types and show how to constructively classify all groups
satisfying such hypothesis, by a decomposition into irreducible transitive components. As examples we
show approximate trajectories of some of the resulting symmetric minimizers.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction and main results

Periodic and quasi-periodic orbits for the n-body problem have received much of attention
over the last years, also because of the success of variational and topological methods. The start-
ing point can be traced back to the nonlinear analysis works of A. Ambrosetti, A. Bahri, V. Coti
Zelati, P. Majer, J. Mawhin, P.H. Rabinowitz, E. Serra and S. Terracini (among others) issued
around 1990 [1–4,22,23,25,30]; methods were developed that could deal with singular poten-
tials and particular symmetry groups of the functional. For other approaches one can see also
I. Stewart [31] and C. Moore [27]. The next new wave of results has followed the remarkable
A. Chenciner and R. Montgomery’s proof of the “figure-eight” periodic solution of the three-
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body problem in the case of equal masses [13], where collisions and singularities were excluded
by the computation of the action level on test curves and a non-commutative finite group of
symmetries was taken as the constraint for a global equivariant variational approach. In order
to generalize the equivariant variational method (that is, to restrict the action functional to the
space of equivariant loops) to a new range of applicability S. Terracini and the author in [19]
could make use of C. Marchal’s averaging idea [24] and prove that local minimizers of the action
functional are collisionless, provided an algebraic condition on the symmetry group (termed the
rotating circle property) holds. Meanwhile, symmetry groups and various approaches to level
estimates or local variations have been found, together with the corresponding symmetric min-
imizers, and published by many authors (see for example [6–9,14,15,18,20,28,29,32]). The aim
of this article is to provide a unified framework for the construction and classification problem
and at the same time to extend the application range of the averaging and blow-up techniques.
More precisely, when dealing with the problem of classifying in a constructive way finite sym-
metry groups for the n-body problem one has to face three issues. First, it is of course preferable
to have an equivalence relation defined between groups, which rules out differences thought as
non-substantial. Second, one has to find a suitable decomposition of a symmetry group into a
sum of (something like) irreducible components. The way of decomposing things depends upon
the context. In our settings we could choose an orthogonal representations decomposition (as di-
rect sum of G-modules) or a permutation decomposition, or a mixture of the two. Third, it would
be interesting to deduce from the irreducible components, from their (algebraic and combina-
torial) properties, some consequent properties of action-minimizing periodic orbits (like being
collisionless, existence, being homographic or non-homographic, and the like). The purpose of
the paper is to give a procedure for constructing all symmetry groups of the n-body problem (in
three-dimensional space, but of course the planar case can be done as a particular case) according
to these three options, with the main focus on the existence of periodic or quasi-periodic non-
colliding solutions. The main result can be used to list groups that might be considered as the
elementary building blocks for generic symmetry groups yielding collisionless minimizers.

The first reduction will be obtained by defining the cover of a symmetry group (that is, the
group acting on the time line instead of the time circle) and considering equivalent groups with
the same equivariant periodic trajectories (up to repeating loops and to time rescaling). Also, it
is possible to consider equivalent those symmetry groups that differ by a change in the action
functional, determined by the angular velocity of the rotating frame. Using this simple escamo-
tage it is possible to dramatically reduce the cardinality of the symmetry groups and to deal with
a finite number of (numerable) families of groups for every n. This step will be explained at the
end of Section 2. The next step is to exploit the fact that any finite permutation representation can
be decomposed à la Burnside into the disjoint sum of transitive (or, equivalently, homogeneous)
permutation representations. This decomposition requires the definition of a suitably crafted sum
of Lagrangian symmetry groups, which will be constructively written in term of Krh and K̂rh

data (to be defined later) yielded by the group. The transitive decomposition allows to state the
main result, which can be written as follows. Definition and notation of course refer to the body
of the paper and Appendix A.

Theorem A. Let G be a symmetry group (not bound to collisions) with a colliding G-symmetric
Lagrangian local minimizer. If G∗ ⊂ G is the T-isotropy group of the colliding time restricted to
the index subset of colliding bodies, then G∗ cannot act trivially on the index set; if the permuta-
tion isotropy of a transitive component of G∗ is trivial, then the image of G∗ in O(3) cannot be
one of the following: I , Cp (for p � 1), Dp (for p � 2), T , O , Y , P ′ , Cph.
2p



D.L. Ferrario / Advances in Mathematics 213 (2007) 763–784 765
This result allows to clarify and to extend the above-mentioned rotating circle property; in
the proof we show how with a simple application of the averaging Marchal technique on space
equivariant spheres one can deduce that for the group actions listed in the statement minimizers
are collisionless. It is also the case to mention that the transitive decomposition approach has two
interesting consequences: from one hand it is possible to determine whether the hypothesis of
Theorem A is fulfilled simply by computing the space-representations of the transitive decom-
position of the maximal T-isotropy subgroups of the symmetry group (thus making the task of
finding rotating circles unnecessary); on the other hand a machinery for finding examples of sym-
metry groups can be significantly improved by allowing the construction of actions using smaller
and combinatorial components. Even if feasible, a complete classification of all symmetry groups
satisfying the hypotheses which imply collisionless minimizers and coercivity would just result
into an unreasonably long unreadable list. We decided to formulate only the method that can
be used for such generation, leaving a few examples in the last section to illustrate it in simple
cases. Therefore the paper is basically organized as a multi-step proof of Theorem A, together
with the introduction and explanation of the necessary preliminaries, results and definitions. In
Section 2 we will review the notation and some basic properties of Lagrangian symmetry groups.
Details about Euclidean symmetry groups and notation can be found in Appendix A at the end of
the article. In Section 3 the definition of transitive decomposition and disjoint sum of symmetry
groups is carried out: this is one of the main steps in the construction process. Furthermore, in
Section 4 a simple proof allows to extend the averaging technique to all orientation-preserving
finite isotropy groups. Together with the rotating circle property and the classification of finite
subgroups of SO(3), this will yield a method for avoiding collisions. The analysis of possible
transitive component is then carried out in Section 5, according to the previous definitions and
results. At the end, in Section 6 the few examples mentioned above are shown, together with
pictures of the corresponding approximate minimizers. The first two examples are chosen to
show very simple cases in which the rotating circle property does not hold, while averaging on
equivariant spheres implies being collisionless.

2. Preliminaries

We denote by O(d) the orthogonal group in dimension d , that is, the group of d×d orthogonal
matrices over the real field R. The symbol Σn denotes the permutation group on n elements
{1, . . . , n} = n. Space isometries are named rotation, reflection, central inversion and rotatory
reflection (actually a central inversion is a particular rotatory reflection). We recall, following
the terminology and notation of [17, pp. 99, 270–277] and [16, Appendix A, pp. 351–367] (see
also [5,26]), that non-trivial finite subgroups of SO(3) are the following: Cp (the cyclic group
generated by a rotation of order p, for p � 2, with a single p-gonal axis), Dp (the dihedral group
of order 2p, with p horizontal diagonal axes and a vertical p-gonal axis, with p � 2), T ∼= A4
(the tetrahedral group of order 12, with 4 trigonal axes and 3 mutually orthogonal diagonal axes),
O ∼= S4 (the octahedral group of order 24, with 4 trigonal axes, the same as T , and 3 mutually
orthogonal tetragonal axes; it is isomorphic to the orientation-preserving symmetry group of
the cube and contains the tetrahedral group as a normal subgroup of index 2) and Y ∼= A5 (the
icosahedral group of order 60, with 6 pentagonal axes, 10 trigonal axes and 15 diagonal axes).
The dihedral group D2 is a normal subgroup of T of index 3. Further details on generators and
the subconjugacy poset of finite space groups can be found in Appendix A.

Let X be configuration space of n point particles in R3: X = (R3)n. Let T be the circle of
length T = |T|. A function T → X is a T -periodic path in X. By loops in X we mean the
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elements of the Sobolev space Λ = H 1(T,X), i.e. all L2 functions T → X with L2-derivative.
The aim is to find periodic (in an inertial frame or in a uniformly rotating frame) orbits for the
n-body problem: they can be obtained as critical points of the Lagrangian action functional

Aω =
∫
T

(∑
i∈n

mi

2

∣∣ẋi (t) + Ωxi(t)
∣∣2 +

∑
i<j

i,j∈n

mimj

∣∣xi(t) − xj (t)
∣∣−α

)
dt, (2.1)

where Ω is the anti-symmetric 3×3 matrix defined by the relation Ωv = ω×v for every v ∈ R3,
with the vector ω ∈ R3 representing the rotation axis of the rotating frame and its norm |ω| the
angular velocity. The domain of the functional Aω is Λ = H 1(T,X) (of course, allowing a range
with infinite value). Any collisionless critical point is in fact a C2 solution of the corresponding
Euler–Lagrange, or Newton, equations under a homogeneous gravitational potential of degree
−α, which is periodic in the rotating frame.

Now consider a group G acting orthogonally on T, R3 and permuting the indices in n. In
other words, consider three homomorphisms τ , ρ and σ from G to O(T), O(3) and Σn re-
spectively. The group G can be seen as subgroup (possibly modulo a normal subgroup) of the
direct product O(T) × O(3) × Σn under the monomorphism τ × ρ × σ , and the three homo-
morphisms can be recovered as projections onto the first, second and third factor of the direct
product. Given ρ and σ , it is customary to define an action on the configuration space X by the
rule (∀g ∈ G),xσ(g)i = ρ(g)xi . We will often denote by gi the index σ(g)i, and by gx the value
of g · x under this action of G. Furthermore, the action of G on T and X induces an action on the
functions T → X by the rule (∀g ∈ G),x(τ(g)t) = (gx)(t), and therefore Λ is a G-equivariant
vector space (the action of G is orthogonal under the standard Hilbert metric on Λ).

(2.2) Definition. A subgroup of O(T) × O(3) × Σn is termed symmetry group. It will be termed
a symmetry group of the Lagrangian action functional Aω if it leaves the value of the action Aω

(2.1) invariant.

Note that if i, j ∈ n are indices and gi = j for some element g ∈ G, then it is necessary that
mi = mj . More generally, consider the decomposition of n into (transitive) G-orbits, also known
as transitive decomposition of the G-set n. Indices in the same G-orbit must share the value
of the mass and, furthermore, the transitive decomposition yields an orthogonal splitting of the
configuration space:

X = (X1 + Xg1 + · · ·) ⊕ (X2 + Xg2 + · · ·) ⊕ · · · , (2.3)

where each Xj is a copy of R3 and each summand grouped by parentheses is given by a transi-
tive G-orbit in n. This transitive decomposition is nothing but the standard decomposition of a
permutation representation in the Burnside ring A(G). We recall that the determinant of a linear
representation is the one-dimensional representation obtained by taking the determinant of all
the matrices ρ(g), for g ∈ G.

(2.4) Definition. Consider a symmetry group G. A vector v ∈ R3 is a rotation axis for G if
(∀g ∈ G)gv ∈ {±v} (that is, the line 〈v〉 ⊂ R3 is G-invariant) and the orientation G-repre-
sentation on the time circle (that is, the determinant representation det(τ ) of the two-dimensional
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real representation τ ) coincides with the orientation representation on the orthogonal plane of v

(which coincides with det(ρ)det(v)).

We recall from [18, Proposition 2.15] that if ω is a rotation axis for a symmetry group G

(and the values of the masses are compatible with the transitive decomposition (2.3)) then G is a
symmetry group of the action functional Aω. The converse holds, after a straightforward proof,
for linear or orthogonal actions.

(2.5) In case the group has a rotation axis it is termed group of type R. If the symmetry group G

is not of type R, then all G-equivariant loops have zero angular momentum.

Proof. The proof of an analogous proposition for 3 bodies can be found in [18, Proposition 4.2];
the details are given for 3 bodies, but it can be trivially generalized to the case of n bodies: if J

denotes the angular momentum of the G-equivariant path x(t), for every g ∈ G the formula

J (gt) = det
(
ρ(g)

)
det

(
τ(g)

)
ρ(g)J (t)

holds, and hence the angular momentum J (which is constant) belongs to the subspace V in R3

fixed by the G-representation det(τ )det(ρ)ρ. But if V �= 0, then there is a non-trivial vector
v ∈ R with the property that for every g ∈ G, det(τ (g))det(ρ(g))ρ(g)v = v. If v denotes the
representation on 〈v〉 and ρ2 the representation on its orthogonal complement, it follows that

det
(
τ(g)

)
det

(
ρ2(g)

)
det(v)det(v) = 1,

and hence that det(τ ) = det(ρ2): the direction spanned by v is a rotation axis, which contradicts
the hypothesis. �

Let Iso(R) denote the group of (affine) isometries of the time line R, generated by transla-
tions and reflections. For every T > 0 there is a surjective projection Iso(R) → O(T), where
T = R/T Z. Let G be a symmetry group and G̃ its cover in Iso(R) × O(3) × Σn, that is the
pre-image of G via the projection

Iso(R) × O(3) × Σn → O(T) × O(3) × Σn.

It is easy to see that there is a canonical isomorphism

H 1(R,X)G̃ ∼= H 1(T,X)G

and hence we can consider solutions of the n-body problem which are G̃-equivariant loops in-
stead of the periodic solutions of the n-body problem which are G-equivariant. We can, when
needed, linearly rescale the time line. Assume now that the symmetry group G has a rotating
axis ω, and therefore that Aω is G-invariant. In a frame rotating around ω with fixed angular
velocity θ , the equation x(t) = eiθt q(t) induces an isomorphism θ∗

θ∗ :H 1(R,X) → H 1(R,X)

defined by θ∗q = x.
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The image θ∗(H 1(R,X)G̃) can be seen as

θ∗
(
H 1(R,X)G̃

) = H 1(R,X)G̃
′

for a new symmetry group G̃′ (still of type R); moreover, by a suitable choice of θ it is possible to
obtain a new group G′ (whose cover is G̃′) with the following property: if g is a time translation,
then ρ(g) is trivial on the orthogonal complement of the rotation axis ω. Since the following
diagram commutes

H 1(R,X)G̃
≈

Aω

H 1(R,X)G̃
′

Aω′
R

(where ω′ is chosen as suggested above) by a suitable change of angular velocity one could
reduce the size of the symmetry group G and assume that (if it is of type R, of course) all the
time-shifts (i.e. the elements of ker(det τ)) act trivially on the orthogonal complement of the
rotation axis. See also Section 3 of [7].

(2.6) Example. Let G be the cyclic group of order l with generator g, such that ρ(g) is a
rotation of angle 2π/k, and σ(g) is the cyclic permutation (1,2, . . . , n) on n elements. The
action on the time circle (of length 2π ) is defined by a time-shift—that is, a rotation of T—of
angle 2π/gcd(k, n). The group has order l = gcd(k, n). Let q(t) be an equivariant trajectory:
qj (t + 2π/l) = ei2π/kqj−1, where we denote by eiα a rotation around the rotation axis of an-
gle α and j is meant modulo n. Its parametrization in a rotating frame with angular velocity θ ,
xj (t) = eiθt qj (t), fulfills the identity

xj (t + 2π/l) = e2πi(θ/ l+1/k)xj−1(t),

and θ can be chosen as −l/k, for example, in order to obtain the symmetry constraint

xj (t + 2π/l) = xj−1(t)

in a new rotating frame. Now, the action is redundant (that is, the period is strictly smaller than
2π ), since n | l and hence the resulting group has elements acting non-trivially on T but trivially
on the index set and on the space; a non-redundant representative for this action can be given by
factoring the group and rescaling the time: one obtains the choreography constraint

xj (t + 2π/n) = xj−1(t).

We finish this section by giving a few definitions of terms that will be used below.

(2.7) Definition. A symmetry group G is:

bound to collision: if every G-equivariant loop has collisions;
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homographic: if every G-equivariant loop is homographic, i.e. constant up to Euclidean simi-
larities;

transitive: if the permutation action of G on the index set is transitive;
fully uncoercive: if for every possible rotation vector ω the corresponding action functional Aω

is not coercive if restricted to the space of G-equivariant loops ΛG.

(2.8) Definition. The kernel ker τ is termed the core of the symmetry group.

3. Transitive groups and transitive decomposition

Consider a symmetry group G ⊂ O(T)×O(3)×Σn and its cover G̃ ⊂ Iso(R)×O(3)×Σn,
which is a discrete group acting on the time line R as time-shifts and time-reflections; the kernel
of the projection p : G̃ → G is a free abelian group of rank 1. Like for τ,ρ,σ , it is possible to
define the homomorphisms τ̃ : G̃ → Iso(R), ρ̃ : G̃ → O(3) and σ̃ : G̃ → Σn. Let us note that the
diagram

G̃
τ̃×ρ̃

p

Iso(R) × O(3)

G
τ×ρ

O(T) × O(3)

commutes: the horizontal arrows are monomorphisms and the vertical arrows are epimorphisms.
The image ρ̃(G̃) = ρ(G) ⊂ O(3) is a finite space point group. The group Ĝ = (τ̃ × ρ̃)(G̃) ⊂
Iso(R) × O(3) is therefore well defined, after a choice of cover G̃ → G (depending on the scale
of the time line). Hence, by rescaling the time line, it is possible to assume that the time-shifts
in τ̃ (G̃) are powers of the time shift t �→ t + 1: to the given symmetry group G we associate
the unique normalized cover Ĝ in Iso(R) × O(3) with such a property. As we noted above,
τ̃ × ρ̃ : G̃ ∼= Ĝ, and so there is a unique homomorphism σ̂ : Ĝ → Σn such that σ̂ ◦ (τ̃ × ρ̃) = σ̃ .
The group G̃ is the graph of σ̂ in Ĝ × Σn ⊂ Iso(R) × O(3) × Σn; σ̂ is the permutation homo-
morphism from the normalized cover.

(3.1) Definition. Now let G1 and G2 be two symmetry groups with the same normalized cover
Ĝ1 = Ĝ2 ⊂ Iso(R) × O(3) and permutation homomorphisms σ̂1 : Ĝ1 → Σn1 , σ̂2 : Ĝ2 → Σn2 .
The disjoint sum G1 + G2 is the group having as normalized cover the group Ĝ1 = Ĝ2 and
as permutation homomorphism the direct product σ̂1 × σ̂2 : Ĝ1 = Ĝ2 → Σn1 × Σn2 ⊂ Σn1+n2 ,
where the inclusion of Σn1 × Σn2 is the standard one.

(3.2) Let G be a symmetry group. Then there are a finite number of symmetry groups G1, . . . ,Gl

with normalized cover equal to Ĝ such that

G = G1 + G2 + · · · + Gl

and each Gi acts transitively on its index set.

Proof. The homomorphism σ̂ : Ĝ → Σn can be decomposed as σ̂ = σ̂1 × σ̂2 × · · · × σ̂l , where
each σ̂i : Ĝ → Σni

yields a transitive permutation representation of Ĝ on the set of ni indices. The
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decomposition is unique up to reordering, and gives rise to a subgroup G̃i of Iso(R)×O(3)×Σni

for i = 1, . . . , l. The group Gi is obtained as a factor group of G̃i . Note that n = n1 +· · ·+nl . �
We recall an elementary fact about group actions, which is quite relevant to the constructive

approach to the transitive decomposition.

(3.3) Assume that the action of a group G on a set X is transitive. Then for all i ∈ X, the
isotropy subgroups Hi = {g ∈ G | gi = i} are mutually conjugated in G. Left multiplication by
elements in G yields a bijection G/H1 ∼= X between X and the set of left cosets G/H1, which is
G-equivariant (that is, a G-bijection).

As a matter of fact, this property can be used to define a group action as a list of subgroups:
instead of defining the homomorphism σ :G → Σn, it is possible to consider a transitive decom-
position of σ = σ1 ×· · ·×σl and compute the list of isotropy subgroups H1, . . . ,Hl . Conversely,
given the group G and l subgroups H1, . . . ,Hl (not necessarily distinct), one can define the
permutation action of G on the disjoint sum

∐
i G/Hi , which is nothing but a homomorphism

σ :G → Σn, where n = ∑
i[G : Hi]. Therefore, a symmetry group G can be constructed by its

cover G̃, by the pair (Ĝ, σ̂ ) or equivalently by the (l + 1)-uple (Ĝ; Ĥ1, . . . , Ĥl) consisting of the
normalized cover and the l isotropy subgroups of all the transitive components. A transitive sym-
metry group hence is given by a pair (Ĝ; Ĥ ). Now we give a constructive procedure for dealing
with these data.

Consider the core of G, ker τ ⊂ G and let K be its image in O(3): K = ρ(ker τ). Since the
core ker τ is normal in G, the space group ρ(G) is a subgroup of the normalizer NO(3)K of K

in O(3). The space group ρ(G) is also equal to the projection of Ĝ ⊂ Iso(R) × O(3) onto the
second factor. The pre-image of K under this projection is the kernel of Ĝ

∼=−→ G̃
τ̃−→ Iso(R). Let

us call it K̂ . The projection induces an isomorphism K̂ ∼= K . The homomorphism ρ induces a
homomorphism G/ker τ → WO(3)K of G/ker τ with image in the Weyl group of K in O(3). In
fact, G/ker τ is projected onto a subgroup of O(T) × WO(3)K , while Ĝ/K̂ (which is an infinite
cyclic or infinite dihedral group) is projected onto a subgroup of Iso(R) × WO(3)K .

(3.4) Definition (Krh data). Let G be a symmetry group. Then define

(i) K = ρ(ker τ) ⊂ O(3),
(ii) [r] ∈ WO(3)K as the image in the Weyl group of the generator mod ker τ of ker det τ ⊂ G/K

(corresponding to the time-shift with minimal angle, or, equivalently, the generator of the
cyclic part of Ĝ/K̂). If ker det τ = K , then [r] = 1.

(iii) [h] ∈ WO(3)K as the image in the Weyl group of one of the time-reflections (mod ker τ ) in
G/ker τ , in the cases such an element exists. Otherwise it is not defined.

In short, the triple (
K, [r], [h])

is said the Krh data of G. For the sake of simplicity we will often omit such square brackets,
if unnecessary. The Krh data are nothing but a constructive representation of Ĝ: in fact, Ĝ can
be defined as the subgroup of Iso(R) × O(3) with generators (0, g) as g ranges in K (here 0
denotes the trivial isometry of R) or in a subset of generators of K , together with (1, r) (where 1
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represents the time-shift t �→ t + 1) and, if it exists, (0̄, h) (where 0̄ represents the time-reflection
around 0 ∈ R).

Now we can consider the next piece of data in order to obtain the pair (Ĝ; Ĥ ): of course, the
permutation isotropy subgroup Ĥ .

(3.5) Definition (K̂rh data). Let G be a symmetry group acting transitively on the index set;
let Ĝ be its normalized cover in Iso(R) × O(3). Let Ĥ ⊂ Ĝ and H ⊂ G denote the isotropy
subgroups with respect to the index permutation action, as in (3.3). Consider the following three
elements.

(i) Let Ŝ denote the subgroup Ŝ = K ∩H ⊂ K (that is, the subgroup of the elements of G fixing
the time and indices). Recall that K̂ , K̂ ⊂ Iso(R) × O(3), as defined above, is isomorphic
to its projection on the second factor; the isomorphic image of Ŝ ⊂ K in K̂ will be denoted
by Ŝ with an abuse of notation.

(ii) The image of the isotropy H in G/ker τ is isomorphic to the image of Ĥ in Ĝ/K̂ . Its
intersection with the cyclic group ker det τ/ker τ ⊂ G/ker τ is a cyclic group with a dis-
tinguished non-trivial generator (if not trivial), say r mod ker τ . Under the isomorphism
in Ĝ/Ĥ a representative (k, r̂) of such a generator can be chosen in Iso(R) × NO(3)K ⊂
Iso(R) × O(3). As above we denote by k the time-shift t �→ t + k, and since Ĝ is assumed
to be normalized, k is an integer.

(iii) If the set H \ ker det τ is non-empty (that is, if there are time-reflections in H ), then let ĥ be
the projection in NO(3)K of one of its elements. Otherwise, it is undefined (empty).

The triple (
Ŝ, (k, r̂), ĥ

)
is said to be the K̂rh data of G.

As above for the Krh data, the K̂rh data yields an explicit description of Ĥ ⊂ Ĝ, as a set
of generators of Ĥ in Ĝ. In fact, the choice of Ŝ in K yields immediately its isomorphic image
in K̂ ; together with (k, r̂) and possibly (0̄, ĥ) a set of generators for Ĥ is obtained. The following
proposition follows directly from the definition.

(3.6) Let G be a transitive symmetry group and
(

Ŝ (k,r̂) ĥ
K [r] [h]

)
the matrix with as first row the K̂rh

data defined above in (3.5) and as second row the Krh data defined in (3.4). Then the normalized
cover Ĝ of G is, up to conjugacy, defined in Iso(R) × O(3) by the Krh data. The cover of the
isotropy Ĥ is defined by the K̂rh data (the first row). Its permutation representation on indices
can be deduced by considering the G-set G/H ∼= Ĝ/Ĥ .

We can explicitly describe the disjoint sum of symmetry groups by the following presentation
of the generators.

(3.7) Let G1 and G2 be two groups with the same Krh data. Then the disjoint sum G1 + G2 is
defined as follows: the normalized covers Ĝ1 and Ĝ2 are isomorphic and generated in Iso(R) ×
O(3) by the (common) Krh data. The action of such a resulting Ĝ on the index set can be defined
by taking the disjoint union of the Ĝ-sets Ĝ/Ĥ1 + Ĝ/Ĥ2, where Ĥ1 and Ĥ2 are defined by the
K̂rh data.
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In order to generate all the possible transitive symmetry groups it is now possible to proceed
as follows: first define the Krh data (according to the classification of finite subgroups of O(3),
as in Appendix A, this can be done in a parametrized finite number of ways). Then choose
the subgroup Ŝ ⊂ K and the other K̂rh data accordingly. By definition, it is only needed to
take elements in the Weyl group of the finite subgroups K of O(3) (which in general is finite).
Some restrictions apply in order to choose the subgroup Ŝ, as it is explained by the following
proposition.

(3.8) Let H1 denote one of the isotropy subgroups defined above in (3.3) for the transitive sym-
metry group G. Assume that ker τ �= 1. Then one (and only one) of the following cases can occur:⎧⎨⎩

ker τ ∩ H1 = 1,

ker τ ∩ H1 = 〈reflection along a plane〉,
ker τ ∩ H1 = ker τ.

Proof. We tacitly assumed that the core ker τ is not a reflection along a plane, since otherwise
the problem would be a planar n-body problem or bound to collisions. Furthermore, since we
assume ker τ �= 1, the only one part is trivial. Suppose on the other hand that ker τ ∩ H1 �= 1. Let
E � R3 be the linear fixed subspace

E = (
R3)ker τ∩H1 .

The configuration space X can be seen as the space of maps G/H1 → R3, where G/H1 is seen as
a G-set with [G : H1] elements and R3 is of course a G-space via ρ. The action on X (as space of
maps) is the diagonal action, and configurations in Xker τ correspond to (ker τ)-equivariant maps
G/H1 → R3. Now, the number of (ker τ)-orbits in G/H1 is also the number of the double cosets
ker τ \ G/H1; since ker τ is normal in G, it coincides with the number of H1-orbits in G/ker τ ,
which is [G : H1 ker τ ]. Any (ker τ)-map x :G/H1 → R3 (i.e. an element in Xker τ ) can therefore
be decomposed into a sum of [G : H1 ker τ ] disjoint parts (more precisely, its domain can be)
corresponding to the (ker τ)-orbits in G/H1. Each map defined on a ker τ -orbit is conjugated via
an element of G to a ker τ -map of type

ker τ/(ker τ ∩ H1) → (
R3)ker τ∩H1 = E

(thus yielding [ker τ : ker τ ∩ H1] particles in E). The space Xker τ is isomorphic to a direct sum
of [G : H1 ker τ ] copies of E, over which the action of G acts via conjugation (actually, it is the
induced/inflated module).

Now, consider the hypothesis that ker τ �= ker τ ∩H1. The dimension dimE can be 0, 1 or 2 (it
cannot be 3 since by assumption ker τ ∩H1 �= 1 and the action of ker τ on R3 is faithful). If it is 0,
then ker τ = ker τ ∩ H1 (since otherwise at each time a collision would occur. If dimE = 1 (and
ker τ �= ker τ ∩ H1, assumption above) then either the group G is fully uncoercive or it is bound
to collisions: in fact for one-dimensional E there cannot exist rotation axes, and any symmetry
element yielding coercivity would make the group bound to collisions (the complementary of
the collision set in E is not connected). It is left the case dimE = 2, i.e. where ker τ ∩ H1 is the
group generated by a single plane reflection. If the plane π fixed by ker τ ∩ H1 is ker τ -invariant
(that is, (ker τ)π = π ), then ker τ ∩H1 is normal in ker τ and the (ker τ)-representation given by
ρ is one of the following:
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(1) Cph with p � 1 (the group generated by the reflection around the plane π and p rotations
orthogonal to π ),

(2) I × Dp with p � 2 even (the Coxeter group generated by the reflection around π and p

“vertical” plane reflections),
(3) DpCp with p � 2 (the Coxeter group generated by p plane reflections), and
(4) D2pDp with p � 1 (generated by Dp and −ζ2p: it is a Coxeter group for p odd).

Cases (2), (3) and (4) do not possibly have rotation axes, and a symmetry group extending ker τ
and not coercive would be fully uncoercive. Since the bodies are constrained to belong to π

(H1 is the isotropy of the permutation action) and the singular set of π cuts π into different
components, a symmetry group extending such ker τ cannot be coercive without being bound to
collisions. Case (1) is of a different type: the p = [ker τ : ker τ ∩H1] bodies are constrained to be
vertices of a regular k-agon centered at the origin and contained in π . The direction orthogonal to
π is a rotation axis. This is the case in which the reflection along a plane yields possible periodic
orbits. �

Note that if ker τ ∩ H1 = 1, then the isotropy H1 is isomorphic to its image under ρ (after the
composition with the projection onto the (ker τ)-quotient) in the Weyl group WO(3)K .

4. Local variations and averaging techniques over equivariant spheres

The disjoint sum of symmetry groups defined in the previous section allows one to generate
all symmetry groups in terms of transitive components. In this section we show how the de-
composition is related to colliding trajectories and local variations. The purpose is to extend the
range of applicability of the averaging technique of [19] to a wider class of symmetry groups.
For details on the blow-up and the averaging technique we refer to Sections 7–9 of [19]. Let Ĝ be
the normalized cover of a symmetry group and x = x(t) ∈ Λ = H 1(R,X)Ĝ an equivariant local
minimizer. Assume that at time t = 0 ∈ R the trajectory x(t) collides, and all bodies in a cluster
k ⊂ n collide (which means that other bodies might collide, but not with bodies in k). Given the
colliding cluster k ⊂ n at time t = 0, let G∗ ⊂ G be the following subgroup:

G∗ = {
g ∈ G: g(k) = k, g(0) = 0

}
,

and analogously Ĝ∗ = {g ∈ Ĝ: g(k) = k, g(0) = 0}. Since they do not contain time-shifts, the
projection Ĝ → G induces an isomorphism Ĝ∗ ∼= G∗. It is the subgroup consisting of those ele-
ments fixing the colliding time 0 and sending indices in k to indices in k. Let q̄(t) be the blow-up
of x(t) centered at 0 with respect to k; what is proved in [19] can be rephrased as follows: q̄(t) is
a G∗-equivariant local minimizer with respect to compactly supported G∗-equivariant variations
of the Lagrangian action A, restricted to the path space H 1(R,Xk)G∗ . The transitive decom-
position is obtained by restricting the permutation action to the colliding particles in k, that is,
restricting σ : Ĝ → Σn to σ∗ : Ĝ∗ → Σk (where we denote by Σk the permutation group of ele-
ments in k). A similar procedure gives the restriction σ̂∗ of σ̂ . If Ĥ1, . . . , Ĥl are the (permutation)
isotropy subgroups of Ĝ relative to the indices i1, . . . , il , then the permutation isotropy subgroups
of Ĝ∗ are the intersection Ĥij ∩ Ĝ∗ for those ij corresponding to indices in k. It is important to
understand that the configuration space Xk of the particles in k can be decomposed as orthogo-
nal sum of components corresponding to the σ̂∗-orbits of Ĝ∗ in k, and hence the components are
Ĝ∗-invariant. As a consequence, if with an abuse of notation we denote again with Ĥ1, . . . , Ĥl
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the isotropy subgroups in Ĝ∗ relative to the indices in k instead of those relative to n, the index
set can be decomposed as k = ∐

i=1,...,l ki , where for each i one has ki
∼= Ĝ∗/Ĥi ; therefore k has∑l

i=1[Ĝ∗ : Ĥi] elements. By looking at the orthogonal decomposition analogous to (2.3) (with
k instead of n), one can deduce that the subspace fixed by G∗ in the configuration space Xk can
be written as X

G∗
k = X

G∗
k1

+ · · · + X
G∗
kl

.

Let us define

S(s, δ) =
∞∫

0

[
1

|t2/(2+α)s + δ|α − 1

|t2/(2+α)s|α
]

dt.

The following lemma can be found in Section 9 of [19].

(4.1) Let q̄(t) be a colliding blow-up trajectory and s̄ the limiting central configuration in Xk. If

there exists a symmetric configuration δ ∈ X
Ĝ∗
k (that is, δ is fixed by the isotropy Ĝ∗) such that

for every i, j ∈ k

S(s̄i − s̄j , δi − δj ) � 0

and for at least a pair of indices the inequality is strict, then the colliding blow-up trajectory q̄(t)

is not a minimizer.

Now we consider three different procedures that can be used to find such a δ. A symmetric
variation δ that let the action functional A decrease on the standard variation is called V-variation.

The following proposition is contained in theorem (10.10) of [19] (it is proved in the second
part of the proof).

(4.2) If G∗ acts trivially on k via σk, then a V-variation always exists.

Note that since G∗ acts on the time line fixing the point 0, this lemma is mainly relevant in the
case G∗ has a time-reflection: the symmetry constraint can be written as “all the point particles
at time t = 0 belong to a linear subspace of R3.” It might be of interest to see also [10]. As we
noted above, it is equivalent to consider G∗ or Ĝ∗.

We recall from [19] that a circle S ⊂ R3 (with center in the origin 0) is called rotating under a
group G∗ for an index i when it is G∗-invariant and S ⊂ (R3)Hi , where Hi ⊂ G∗ is the isotropy
of i with respect to the permutation action of G∗ on the index set, via σ . Proposition (9.8) of [19]
can be rephrased as follows.

(4.3) If there is an index i ∈ k and a circle S ⊂ R3 which is rotating under G∗ for the index i,
then the average ∫

δ∈ιiS

∑
j �=i

S(s̄i − s̄j , δi − δj ) < 0,

is strictly negative, where ιiS ⊂ Xk is the image of the rotating circle S under the inclusion ιi
defined as the inclusions in the proof of (3.8). In other words, if there is a rotating circle under
Hi ⊂ G∗ then by averaging it is possible to find a V-variation.
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The next proposition is a new generalization of the rotating circle property. It allows to find
V-variations in cases in which there are no rotating circles (for example, if K ⊂ O(3) is an
irreducible representation, or even in the dihedral case K = Dp with p � 2). We will illustrate
in Section 6 some easy but non-trivial cases in which proposition (4.3) does not hold (while
proposition (4.4) does).

(4.4) Let G∗ be as above the symmetry group of a blow-up solution q̄ . If detρ(G∗) = 1 (i.e. G∗
acts orientation-preserving on the space R3) and for one of the indices i ∈ k the permutation
isotropy Hi (restricted to G∗) is trivial, then there exists a V-variation, obtained by averaging
over a 2-sphere.

Proof. Let S2 ⊂ R3 be a 2-sphere centered in 0. If Hi = Hi ∩ G∗ = 1, then the space E =
(R3)G∗∩Hi is equal to R3 and it contains the sphere S2. As explained also in the proof of (3.8),
the fixed configuration space XG∗ can be decomposed into a sum of copies of E (exactly |G∗|,
since the isotropy is trivial) and an orthogonal complement (which depends on the indices which
are not in the same homogeneous part of the index i): hence there is an embedding ιi :S2 → Xk
defined by the group action. Now, all elements of G∗ by hypotheses act by rotations on R3. Next,
consider the average

A =
∫

δ∈ιiS
2

∑
i<j

S(s̄i − s̄j , δi − δj ).

The sum is equal to the sum of terms like

Ag =
∫

δi∈S2

S
(
s̄i − s̄j , (1 − g)δi

)

where g ranges in G∗. But since g acts as rotation in R3, (1 − g) is the projection onto the plane
orthogonal to the line l fixed by g, composed with a rotation around l and a dilation. Therefore
for each g ∈ G∗ there is a positive constant cg > 0 such that

Ag = cg

∫
δi∈S

S(s̄i − s̄j , δi) (4.5)

obtained as in the case of the integration on a disc (see also [11]). The proof of this fact is
simple: write R3 as the orthogonal sum C ⊕ l, where l is the line fixed by g; δi can be written as
(sinϕ eiθ , cosϕ), where θ ∈ [0,2π] and ϕ ∈ [0,π]. Let zg denote the complex number acting by
left multiplication on C exactly as the rotation g: we can write

∫
2

S
(
s̄i − s̄j , (1 − g)δi

) =
∫

δ∈S

∫
ϕ∈[0,π]

sinϕS
(
s̄i − s̄j , sinϕ (1 − zg)δ

)
,

δi∈S
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where S is the unit circle in C; by homogeneity S(ξ,μδ) = μ1−α/2S(ξ, δ), and hence the last
term can be written as

∫
δ∈S

S(s̄i − s̄j , δ) ·
π∫

0

(
sinϕ|1 − zg|

)1−α/2 sinϕ dϕ

from which Eq. (4.5) follows. Since such terms are always strictly negative, the conclusion fol-
lows. �

Note that (4.3) and (4.4) hold true if and only if an hypothesis is fulfilled on one of the transi-
tive components. In other words, a V-variation obtained by averaging over an equivariant circle
or an equivariant sphere exists if and only if it is possible to obtain a V-variation by averaging
over a circle only in one of the transitive components in which Ĝ∗ can be subdivided. Moreover,
if the hypothesis holds for Ĝ∗ then it will hold for all the subgroups of Ĝ∗ and hence also for all
k ⊂ n. So if all transitive components of the possible Ĝ∗ ⊂ Ĝ fulfill one of the hypotheses then
G-equivariant local minimizers are surely collisionless.

5. Transitive components of groups with collisionless minimizers

In this section we try to analyse which transitive groups can be taken as building blocks for
the generation of non-colliding minimizers. We begin by listing all the properties that we would
like a symmetry group to have. The list will promptly imply Theorem A.

(5.1) Definition. We say that a group G has property (5.1) if it is:

(i) not bound to collision,
(ii) not fully uncoercive,

(iii) not homographic, and at last that
(iv) for all maximal time-isotropy subgroups G∗ ⊂ G at least one of the propositions (4.2), (4.3)

or (4.4) can be applied (that is, either G∗ acts trivially on indexes, or there is a transitive
component with a rotating circle or G∗ acts by rotations on the Euclidean space R3).

According to its definition, if the group is not fully uncoercive, then possibly considering a
non-zero angular velocity vector ω, local minima always exist in the rotating frame. Of course,
we exclude the groups bound to collisions; we exclude homographic groups for the obvious
reason that we are looking for collisionless solutions which are not homographic. Now, if fur-
thermore property (iv) (which can be easily tested only on the transitive components, as noted
above) holds, the existence of a V-variation implies that all local minimizers are collisionless,
which is our goal.

We start by considering the possible cores for G (not considering at the moment the permu-
tations on the indices), as the first entry in the Krh data (K, r,h). All finite subgroups of SO(3)

listed in Table 1 at page 782 (and the trivial group, not listed) can be cores by (4.4), as far as
the isotropy (Ŝ in the K̂rh data of the corresponding component) of one of the indices is trivial.
Then, of the groups of Table 2, the central inversion group I and the central prism/antiprism
I × Cp group have a rotating circle and can be considered. The groups I × Dp with p � 2 are
generated by plane reflections for p even and do not contain rotating circles: the action restricted
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to invariant planes is never consisting of rotations. The only possible hypothesis for the existence
of a V-variation is the triviality of the permutation action: but the subspace of R3 fixed is 0, and
hence with more than one particle the group would be bound to collisions. The remaining groups
I × T , I × O and I × Y of the table act on R3 without invariant planes (the representation is
irreducible) and hence they must be excluded. The same is true for the full tetrahedron group OT

of Table 3. Of the three remaining groups in the same table, the prism/antiprism group C2pCp

clearly has a rotating circle and must be added to the list. The groups DpCp (the p-gonal planes
reflection group) and D2pDp (for p � 2) do not have rotating circles and have reflections: not
only none of (4.2), (4.3) and (4.4) can be applied, but all the symmetry groups with this core are
bound to collisions or fully uncoercive.

(5.2) The groups satisfying (5.1) are the following: (1) Cp (for p � 1), (2) I × Cp (for p � 1),
(3) C2pCp (for p � 2), (4) Dp (for p � 2), (5) T , (6) O , (7) Y .

For the same reason this is also the list of projections on O(3) of the (possible) maximal
time-isotropy groups and of the cores. This concludes the proof of Theorem A.

It is interesting, however, to consider extensions (of index 2) of such cores as possible time-
isotropy groups for times fixed by reflections. The method used for obtaining the existence of
V-variations sets constraints on the type of admissible extensions: a group with V-variations
obtained only by averaging on spheres and without rotating circles cannot be extended other
than in SO(3), as in the case of the last four items in the list.

(5.3) The index 2 extensions satisfying (5.1) of cores satisfying (5.1) are the following: (1) C1:
I , C2C1, C2; (2) Cp (for p � 2): C2p , Dp , I ×Cp , C2pCp; (3) P ′

2p (for p � 1): I ×C2p; (4) Dp

(for p � 2): D2p; (5) T : O; (6) O: nothing; (7) Y : nothing.

Proof. The index 2 extensions of the trivial group are of course the groups of order 2 in the
list (5.2): I , C2C1 and C2. The extensions of Cp in p � 2 in SO(3) are C2p and Dp . The
remaining groups in (5.2) of order 2p containing Cp are I × Cp and C2pCp . Now consider
the two prism/antiprism family of groups I × Cp and C2pCp: they have a rotating plane and
are not orientation-preserving: hence they can be extended without restrictions on the orientation
once the rotating plane is preserved. On the other hand, if R3 is disconnected by the collision
subspaces, then it is not possible to assume coercivity and being collisionless. Hence groups with
fixed planes must be eliminated: of the two families I ×Cp and C2pCp only the antiprism family
of groups P ′

2p survives, with normalizer I × C2p(= C2ph). The group Dp (without rotating
circles) can be only in the orientation-preserving group D2p . The group T can be extended only
in O , while O and Y do not have index 2 extensions in SO(3). �

We end the section by exhibiting two examples of such groups (in terms of their Krh data).
Recall that the matrices of Krh and K̂rh data are

(
Ŝ (k,r̂)
K [r]

)
(for the cyclic type) or

(
Ŝ (k,r̂) ĥ
K [r] [h]

)
(for brake or dihedral type), as defined in (3.6).

(5.4) Example (Cyclic type and trivial core). Let us now consider the simpler case of trivial core
with cyclic action type. By definition K = 1 and hence Ŝ = 1, which implies Z ∼= Ĝ = 〈(1, r)〉 ⊂
Iso(R)×O(3) in the cyclic case. About the pair (k, r̂) generating the cover Ĥ of the permutation
isotropy, it must be a power of the generator (1, r) and hence of the form (k, rk).
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If the action is of cyclic type, then the Krh can be written as
(

1 (k,rk)
1 r

)
, where up to rotating

frames r can be chosen with order at most 2 (it is not difficult to see that every cyclic sym-
metry group is of type R). Since if r = 1, then it must be r̂ = 1, we have for every k � 1 the
choreographic symmetry (

1 (k,1)

1 1

)
,

which acts transitively on the set of k bodies. Of course, the constraints can be written also as the
better known form x1(t + i) = xi(t) for i = 1, . . . , k for k-periodic loops.

If r is the reflection −ζ2, then the Krh is(
1 (k, (−ζ2)

k)

1 −ζ2

)
,

which acts again on set of k indices, but with a resulting cyclic group G with 2k elements. Any
other choice of r would give rise to one of these groups, up to a change of rotating frame.

(5.5) Example (Dihedral type and trivial core). Following the same argument as in Section 6
of [18], one can see that the Krh for a dihedral group of type R can be chosen of the following
forms (for h1 and h2 integers):(

1 (k,1) ∗
1 1 (−1)h1ζ

h2
2

)
or

(
1 (k, (−ζ2)

k) ∗
1 −ζ2 (−1)h1ζ2

h2

)
.

Groups not of type R can be found in a similar fashion.

6. A few simple examples

In this last section we give some simple examples of minimizers symmetric with respect to
groups generated by Krh data as explained above. The first two examples have been selected
because they illustrate exactly under which extent Theorem A is a real generalization of the
results in [19]. In fact, examples (6.1) and (6.2) are the simplest cases in which the rotating
circle property does not hold (as we have mentioned above, if K is irreducible in O(3) there
cannot be rotating circles) but, since K is a rotation group and at the same time the maximal
T-isotropy subgroup of the symmetry group (the action is of cyclic type), proposition (4.4) can
be applied. Example (6.2) for k = 2 yields a symmetry group for 4 bodies in the space, which
is the simplest example on which the results of [19] could not be applied. Example (6.1) (also
called the buckyball) has been selected mainly because it generates quite interesting collisionless
periodic orbits of 60 bodies with equal masses and icosahedral symmetry.

(6.1) Example. Consider the icosahedral group Y of order 60. The group G with Krh data(
1 (1,−1)

Y −1

)
is isomorphic to the direct product I × Y of order 120, and acts on the Euclidean space R3 as
the full icosahedron group. The action on T is cyclic and given by the fact that ker τ = 1 × Y .
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Fig. 1. 60-icosahedral Y , 12-tetrahedral T and 24-octahedral O periodic minimizers (chiral).

Since G (more properly, its isomorphic image in O(3) under ρ) is generated by π3, π ′
3 and −1

(see Appendix A about notation on generators and finite subgroups of O(3)), the action in terms
of generators can be described as follows: for each t ∈ T, τ(π3)(t) = τ(π ′

3)(t) = t , τ(−1)(t) =
t +T/2 (assuming period T ). The isotropy is generated by the central inversion −1, and hence the
set of bodies is G/I ∼= Y . Thus at any time t the 60 point particles are constrained to be a Y -orbit
in R3 (which does not mean they are vertices of a icosahedron, simply that the configuration is Y -
equivariant). The permutation action is given by left multiplication: σ(π3)(y) = π3y, σ(π ′

3)(y) =
π ′

3y and σ(−1)(y) = y for each y ∈ Y . After half period every body is in the antipodal position:
xi(t + T/2) = −xi (in other words, the group contains the anti-symmetry, also known as Italian
symmetry—see [2,3,11,12]). Of course, the group Y is just an example: one can choose also the
tetrahedral group T or the octahedral O and obtain anti-symmetric orbits for 12 (tetrahedral) or
24 (octahedral) bodies, as depicted in Fig. 1. The action is by its definition transitive and coercive;
local minimizers are collisionless since the maximal T-isotropy group acts as a subgroup of
SO(3) (i.e. orientation-preserving).

(6.2) Example. Let G be the group with Krh data(
1 (1,−1)

Dk −1

)
,

where Dk is the rotation dihedral group of order 2k. As in the previous example, the action is such
that the action functional is coercive and its local minima are collisionless. At every time instant
the bodies are Dk-equivariant in Rk and the anti-symmetry holds. Approximations of minima
can be seen in Fig. 2. The group action in terms of generators is as follows: the generators of
Dk are ζk and κ (see Table 1), which generate G together with −1 (G is therefore isomorphic to
I × Dk). One has, for every t ∈ T, τ(ζk)(t) = t , τ(κ)(t) = t and τ(−1)(t) = t + T/2 (where T

is the period); the permutation action is given by left multiplication of the 2k elements of Dk , as
above.

The next example is meant to illustrate a simple case of sum of groups, and the connection
with the shape of the corresponding equivariant minimizers. It is interesting to see that the disjoint
sum of groups has minimizers made of perturbations of the minimizers of the single transitive
components in the decomposition, as it is illustrated in Fig. 3.
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Fig. 2. 4-dihedral D2 and 6-dihedral D6 symmetric periodic minimizers.

(6.3) Example. To illustrate the case of non-transitive symmetry group, consider the following
(cyclic) Krh data (

1 (3,−1)

1 −1

)
,

which yield a group of order 6 acting cyclically on 3 bodies, and with the antipodal map on R3.
Since ker τ is trivial and the group is of cyclic type, local minima are collisionless. Now, by
adding k copies of such group one obtains a symmetry group having k copies of it as its tran-
sitive components, where still local minimizers are collisionless and the restricted functional is
coercive. In terms of generators, consider a cyclic group of order 6 generated by an element g;
the action on the time line is given by τ(g)(t) = t + T/6 for each t , where T is the period.
The action on the set of 6k indices is given by cyclic permutations on all the k blocks, and the
action on the space (via ρ) is given by ρ(g)(x) = −x for all x. Let us recall that the minimiz-
ers of the components are rotating Lagrange configurations. Some possible minima (numerically
approximated) can be found in Fig. 3, for k = 3,4.

Fig. 3. 9 and 12 bodies in anti-choreographic constraints grouped by 3.



D.L. Ferrario / Advances in Mathematics 213 (2007) 763–784 781
(6.4) Remark. The planar case can be dealt exactly as we did for the spatial case, with a signif-
icant simplification: only when the permutation action is trivial or there exists a rotating circle
(that is, under these hypotheses the maximal T-isotropy group of all possible colliding times has
transitive components which act on the position space as rotations). A transitive decomposition
of such planar symmetry group, also, is much simpler since the core has to be a (regular polygon)
cyclic group. Nevertheless, also in the planar case many examples can be built using these sim-
ple building blocks. It is still an open problem whether there are symmetry groups not bound to
collisions with (local or global?) minimizers which are colliding trajectories. It has been proved
in [7] that it cannot happen for n = 3, but to the author’s knowledge there is not yet a general
result.

Appendix A. Notation on finite space groups

The finite subgroups of O(3) are index 2 extensions of the groups listed above. Let I denote
the group generated by the central inversion −1 ∈ O(3). Since O(3) = I × SO(3) and I is the
center of O(3), finite groups containing the central inversion are I , I × Cp , I × Dp , I × T ,
I × O and I × Y .

The remaining mixed groups are those not containing the central inversion: C2pCp (of or-
der 2p), DpCp (of order 2p, it is a Coxeter group, i.e. generated by plane reflections; it is the
full symmetry group of a p-gonal pyramid), D2pDp (of order 4p; it is a Coxeter group if p is
odd, full symmetry group of a p-gonal prism or a p-gonal dipyramid) and S4A4 = OT (of order
24, it is a Coxeter group: the full symmetry group of a tetrahedron). One word about notation:
mixed groups are denoted by a pair GH , where G is a finite rotation group of Table 1, which
turns out to be isomorphic to the group under observation but not conjugated to it, and H is a
subgroup of index 2 in G. Given such a pair, a group not containing I is obtained as the union
(of sets) H ∪ (−1(G \ H)). Let ζp and κ be the rotations

ζp =
[ cos 2π/p − sin 2π/p 0

sin 2π/p cos 2π/p 0
0 0 1

]
, κ =

[1 0 0
0 −1 0
0 0 −1

]
,

and, if ϕ = (
√

5 + 1)/2 denotes the golden ratio, let π3 and π ′
3 be the rotations defined by the

following matrices:

π3 =
[0 1 0

0 0 1
1 0 0

]
, π ′

3 =
[

ϕ/2 (1 − ϕ)/2 1/2
(ϕ − 1)/2 −1/2 −ϕ/2

1/2 ϕ/2 (1 − ϕ)/2

]
.

Then the generators and normalizers of finite subgroups of SO(3) are listed in Table 1. For more
data on the icosahedral group, see also [21].

Note that other symbols might be used: O− = O = OT , Dd
2p = D2pDp , Dz

p = DpCp ,

Z−
2p = Z2p = C2pCp , Zc

2 = I , Zp = Cp , I = Y (here there is a notation clash with I = 〈−1〉);
the Schönflies notation for crystallographic point groups (or the equivalent Hermann–Mauguin
notation) is also another option: for example, Td = OT , Th = I ×T , Oh = I ×O , Yh = I ×Y or
DpCp = Cpv . Groups generated by reflections (that is, Coxeter groups) are DpCp (with p � 1),
D2pDp (with p odd), I × Dp (with p even), OT , I × O , I × Y .

Finally, note that the G-orbit of a point in general position in R3 is a regular p-agon for
G = Cp but it is not a regular polygon for G = Dp or if G is a polyhedral group (full or rotation).
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Table 1
Finite subgroups of SO(3), their normalizers in SO(3) and generators (the generators of the normalizer are obtaining
adding the generator of the fourth column to the generators of the second column)
Name Symbol Order Generators NSO(3)G Generators
Rotation cyclic Cp p � 2 ζp O(2) ζ∗, κ

Rotation three axes D2 4 ζ2, κ O ζ4, π3
Rotation dihedral Dp 2p � 6 ζp , κ D2p ζ2p

Rotation tetrahedral T ∼= A4 12 ζ2, π3 O ζ4
Rotation octahedral O ∼= S4 24 ζ4, π3 O

Rotation icosahedral Y ∼= A5 60 π3, π ′
3 Y

Table 2
Finite subgroups of O(3) containing the central inversion
Name Symbol Order Generators NO(3)G Generators
Central inversion I 2 −1 O(3)

Prism/antiprism I × Cp 2p � 4 −1, ζp I × O(2) ζ∗, κ

Three planes I × D2 8 −1, ζ2, κ I × O ζ4, π3
I × Dp 2p � 6 −1, ζp , κ I × D2p ζ2p

I × T 24 −1, ζ2, π3 I × O ζ4
Full octahedron I × O 48 −1, ζ4, π3 I × O

Full icosahedron I × Y 120 −1, π3, π ′
3 I × Y

Table 3
Finite subgroups of O(3) of mixed type, their normalizers and generators
Name Symbol Order Generators NO(3)G Generators
Prism/antiprism C2pCp 2p � 2 −ζ2p I × O(2) ζ∗, −1
Reflections dihedral DpCp 2p � 4 ζp , −κ I × D2p −1

D2pDp 4p � 4 ζp , κ , −ζ2p I × D2p −1
Full tetrahedron OT 24 ζ2, π3, −ζ4 I × O −1

For the groups I × Cp and C2pCp , the G-orbit of a point (in general position in R3) is the set
of vertices of a prism if p is even and G = I × Cp or if p is odd and G = C2pCp . It is the
set of vertices of an antiprism (also known as twisted prism) if p is odd and G = I × Cp or
if p is even and G = C2pCp . Therefore such groups might be called prism/antiprism groups
correspondingly. In the Schönflies notation the antiprism group of order 2p is denoted by S2p

and the prism group of order 2p by Cph. To avoid possible confusion, we define for p � 1 the
antiprism group S2p also as

P ′
2p =

{
I × Cp if p is odd,

C2pCp if p is even.

It is a cyclic group generated by a rotatory reflection of order 2p. The prism group on the other
hand is defined for p � 1 as

Cph =
{

I × Cp if p is even,

C2pCp if p is odd

and is generated by a rotation of order p together with a reflection (with fixed plane orthogonal
to the rotation axis).
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