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1. Introduction

Let E be a finite-dimensional real vector space ordered by a closed proper cone3 C .
Let 0 < T � ∞, U ⊂ E be a nonempty open set, and f : [0, T ) × U → E be a locally Lipschitz continuous map. For any

x ∈ U , the differential equation

ψ̇(t) = f
(
t,ψ(t)

)
(1)

has a unique maximally extended solution ψ f (·, x) satisfying ψ f (0, x) = x. This solution is defined on a semi-interval
[0, θ f (x)), where 0 < θ f (x) � T . For any t � 0, we set D f (t) = {x ∈ U : t < θ f (x)}.

Let D ⊂ E . A map g : D → E is called quasi-monotone increasing [11] if the implication

x � y, l(x) = l(y) �⇒ l
(

g(x)
)
� l

(
g(y)

)
holds for all x, y ∈ D and l ∈ C∗ , where C∗ = {l ∈ E∗: l(x) � 0 for any x ∈ C} is the dual cone of C (E∗ is the dual space
of E). A map g : D → E is called convex if D is convex and

g
(
λx + (1 − λ)y

)
� λg(x) + (1 − λ)g(y) (2)

for all x, y ∈ D and λ ∈ [0,1]. A set D ⊂ E is said to be order regular if the relations x ∈ D and y � x imply that y ∈ D .
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Our aim is to prove the next theorem.

Theorem 1. Let U ⊂ E be a nonempty order-regular convex open set. Let 0 < T � ∞ and f : [0, T ) × U → E be a continuous map.
If f (t, ·) is quasi-monotone increasing and convex for all t ∈ [0, T ), then D f (t) is convex for any t ∈ [0, T ), and ψ f (t, ·) is convex
thereon.

In the formulation of Theorem 1, we do not require the local Lipschitz continuity of f because the latter is ensured
by continuity and convexity (see Lemma 2 below). Note that the quasi-monotonicity of f is a sufficient but not necessary
condition for Theorem 1 to hold. For example, if f (t, x) = f (x) is a linear map, then ψ f (t, x) is linear and hence convex in x,
but f may be not quasi-monotone increasing in this case. On the other hand, at least in the autonomous case f (t, x) = f (x),
the convexity of f is necessary to maintain the validity of Theorem 1. Indeed, let f be locally Lipschitz, x, y ∈ U and
z = λx + (1 − λ)y with 0 � λ � 1. Suppose D f (t) is convex for any t ∈ [0, T ), and ψ f (t, ·) is convex thereon. Then we have

ψ f (t, z) − z

t
� λ

ψ f (t, x) − x

t
+ (1 − λ)

ψ f (t, y) − y

t

for t small enough. Passing to the limit t → 0 in this inequality, we get f (z) � λ f (x) + (1 − λ) f (y), i.e., f is convex.
The question of convex dependence of solutions of (1) on initial data was first addressed in [7], and then pursued

in [5,4]. In the last two papers, E was assumed to be an ordered Banach space and it was shown (for differentiable f
in [5] and for general locally Lipschitz continuous f in [4]) that ψ f (t, ·) is convex on any convex domain contained in
D f (t) (in Appendix A to this paper, we give a very simple proof of this result). Here, we strengthen this result in the finite-
dimensional case by proving the convexity of D f (t). Moreover, keeping in mind possible applications (see, e.g., an example
in Section 5), we consider arbitrary open convex order-regular domains U rather than the case U = E studied in [5,4].

The paper is organized as follows. In Section 2, we show that the conditions imposed on f in Theorem 1 ensure its local
Lipschitz continuity. In Section 3, we prove Theorem 1 in the case, where f is differentiable in the second variable. For
this, we combine the technique developed in [5] with the well-known “blow-up property” of ODEs in finite dimensions: as
t → θ f (x) for some x ∈ U , the maximal solution ψ f (t, x) of (1) must approach the boundary of the domain [0, T ) × U on
which f is defined. In Section 4, we get rid of the differentiability assumption and prove Theorem 1 in the general case.
Finally, in Section 5, we illustrate Theorem 1 by a concrete example of ODEs naturally arising in the theory of stochastic
processes.

2. Convexity and local Lipschitz continuity

Let 0 < T � ∞ and ‖ · ‖ be a norm on E . Let U ⊂ E be a nonempty open set. Recall that a map f : [0, T ) × U → E is
called locally Lipschitz if

Lt,K ( f ) = sup
0�τ�t, x1,x2∈K , x1 �=x2

‖ f (τ , x2) − f (τ , x1)‖
‖x2 − x1‖ < ∞ (3)

for any compact set K ⊂ U and any t ∈ [0, T ).

Lemma 2. Let f : [0, T ) × U → E be a continuous map such that f (t, ·) is convex on U for all t ∈ [0, T ). Then f is locally Lipschitz
continuous.

Proof. Since C is closed and C ∩ (−C) = {0}, the set C \ {0} is contained in an open half-space of E . This implies that the
dual cone C∗ has a nonempty interior (see, e.g., [10, Section I.4.4, Lemma 1]). Let l1, . . . , ln ∈ C∗ be a basis of E∗ . Let the
real-valued functions f1, . . . , fn on [0, T ) × U be defined by the relations f j(t, x) = l j( f (t, x)). Clearly, f j are continuous on
[0, T ) × U and f j(t, ·) are convex on U for any t ∈ [0, T ). Let e1, . . . , en ∈ E be the dual basis of l1, . . . , ln: l j(ek) = δ jk . Then
we have

f (t, x) =
n∑

j=1

f j(t, x)e j .

Hence, it remains to prove that f j are locally Lipschitz continuous, i.e., satisfy (3) with ‖ · ‖ in the numerator replaced with
| · |. Clearly, it suffices to check (3) in the case K = Bx,r , where Bx,r ⊂ U is a closed ball of radius r > 0 centered at x ∈ U . Let
r′ > r be such that Bx,r′ ⊂ U . By the continuity of f j , there is m > 0 such that | f j(τ , x)| � m for any τ ∈ [0, t] and x ∈ Bx,r′ .
By [12, Corollary 2.2.12], we have

∣∣ f j(τ , x2) − f j(τ , x1)
∣∣ � 2m

r′
r′ + r

r′ − r
‖x2 − x1‖

for any x1, x2 ∈ Bx,r and τ ∈ [0, t]. The lemma is proved. �
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3. The differentiable case

In the rest of the paper, we assume that T ∈ (0,∞] is fixed and set I = [0, T ).
Our consideration is essentially based on the next comparison result that is a particular case of a more general theorem

proved by Volkmann [11] in the setting of normed vector spaces.

Lemma 3. Let U ⊂ E be an open set. Let f : I × U → E be a continuous locally Lipschitz map such that f (t, ·) is quasi-monotone
increasing on U for all t ∈ I . Let 0 < t0 � T and x, y : [0, t0) → U be differentiable maps such that x(0) � y(0) and

ẋ(t) − f
(
t, x(t)

)
� ẏ(t) − f

(
t, y(t)

)
, 0 � t < t0.

Then we have x(t) � y(t) for all t ∈ [0, t0).

In fact, this comparison statement is essentially equivalent to quasi-monotonicity [9], but the above formulation is
enough for our purposes. The next lemma is a simple generalization of a well-known result for scalar-valued convex func-
tions.

Lemma 4. Let U ⊂ E be an open convex set. A differentiable function g : U → E is convex on U if and only if

g(y) − g(x) � g′(x)(y − x), x, y ∈ U . (4)

Proof. Let h = y − x and λ ∈ (0,1). If g is convex on U , then

g(x + λh) = g
(
(1 − λ)x + λy

)
� (1 − λ)g(x) + λg(y).

This implies that

g(x + λh) − g(x)

λ
� g(y) − g(x).

In view of the closedness of C , passing to the limit λ → 0 yields (4). Conversely, let (4) hold and z = λx + (1 − λ)y. Then
we have

g(x) − g(z) � −(1 − λ)g′(z)h, g(y) − g(z) � λg′(z)h.

Multiplying the left and right estimates by λ and 1 − λ respectively and summing the resulting inequalities, we obtain (2).
The lemma is proved. �

For differentiable functions, we have the following characterization of quasi-monotonicity [3, Theorem 5].

Lemma 5. Let U ⊂ E be open and convex. A differentiable function g : U → E is quasi-monotone increasing on U if and only if the
linear map g′(x) : E → E is quasi-monotone increasing for any x ∈ U .

Suppose f : I × U → E is a continuous map such that f (t, ·) is differentiable on U for all t ∈ I and the derivative f ′(t, ·)
is continuous on I × U (here and below, f ′(t, ·) denotes the derivative of the map x → f (x, t) with respect to x for fixed t).
Then f is locally Lipschitz, and we have

Lt,K ( f ) = sup
0�τ�t, x∈K

∥∥ f ′(τ , x)
∥∥ (5)

for any t ∈ I , and for any compact convex set K ⊂ U with a nonempty interior. Given x ∈ U and 0 � t < θ f (x), we define the
linear map Bx(t) : E → E by setting

Bx(t) = f ′(t,ψ f (t, x)
)
. (6)

For x ∈ U and y ∈ E , we denote by wx
y(t) the solution of the initial value problem

ẇx
y(t) = Bx(t)wx

y(t), 0 � t < θ f (x), wx
y(0) = y. (7)

Clearly, wx
y is linear in y. For the norm of wx

y , we have the standard bound (see, e.g., [2, Chapter IV, Lemma 4.1])

∥∥wx
y(t)

∥∥ � ‖y‖exp

( t∫
0

∥∥Bx(τ )
∥∥dτ

)
, 0 � t < θ f (x). (8)
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Lemma 6. Let U ⊂ E be a convex open set and f : I × U → E be a continuous map such that f (t, ·) is differentiable on U for all t ∈ I
and the derivative f ′(t, ·) is continuous on I × U . Suppose f (t, ·) is convex and quasi-monotone increasing on U for all t ∈ I . For any
x, y ∈ U , we have

wx
y−x(t) � ψ f (t, y) − ψ f (t, x) � w y

y−x(t), 0 � t < t0, (9)

where t0 = min(θ f (x), θ f (y)).

Proof. It suffices to prove the left inequality in (9) because it implies the right one after interchanging x and y. Let s(t) =
ψ f (t, y) − ψ f (t, x). By Lemma 4, we have

ṡ(t) = f
(
t,ψ f (t, y)

) − f
(
t,ψ f (t, x)

)
� Bx(t)s(t), 0 � t < t0.

By Lemma 5, the map Bx(t) is quasi-monotone increasing for any t ∈ [0, t0) and, therefore, the desired inequality follows
from (7) and Lemma 3. The lemma is proved. �

Since E is finite-dimensional, the closed ordering cone C is normal. In terms of the partial order induced by C , this
means that there exists μC > 0 such that the implication

0 � x � y �⇒ ‖x‖ � μC ‖y‖ (10)

holds for all x, y ∈ E .
If f is continuously differentiable in the second variable, Theorem 1 follows from the next lemma.

Lemma 7. Let U and f be as in Lemma 6 and suppose in addition that U is order-regular. Let x, y ∈ U , λ ∈ [0,1], and z = λx+(1−λ)y.
Let t0 = min(θ f (x), θ f (y)). Then we have θ f (z) � t0 and

ψ f (t, z) � λψ f (t, x) + (1 − λ)ψ f (t, y), 0 � t < t0. (11)

Let 0 � t < t0 and K ⊂ U be a compact convex set with a nonempty interior such that ψ f (τ , x) and ψ f (τ , y) lie in K for all τ ∈ [0, t].
Then ∥∥ψ f (t, z)

∥∥ � R K
[
1 + μC eLt,K ( f )t], (12)

where R K = supξ∈K ‖ξ‖.

Proof. Let τ0 = min(θ f (x), θ f (y), θ f (z)). Since z − x = (1 − λ)(y − x) and z − y = −λ(y − x), it follows from Lemma 6 that

(1 − λ)wx
y−x(t) � ψ f (t, z) − ψ f (t, x) � (1 − λ)wz

y−x(t),

−λw y
y−x(t) � ψ f (t, z) − ψ f (t, y) � −λwz

y−x(t),

for any 0 � t < τ0. Multiplying the first and second inequalities by λ and 1 − λ respectively and adding the results, we get

−λ(1 − λ)v(t) � ψ f (t, z) − u(t) � 0, 0 � t < τ0, (13)

where u, v : [0, t0) → E are given by

u(t) = λψ f (t, x) + (1 − λ)ψ f (t, y), v(t) = w y
y−x(t) − wx

y−x(t). (14)

In view of (10), it follows from (13) that∥∥ψ f (t, z)
∥∥ �

∥∥u(t)
∥∥ + ∥∥ψ f (t, z) − u(t)

∥∥ �
∥∥u(t)

∥∥ + μC λ(1 − λ)
∥∥v(t)

∥∥, 0 � t < τ0. (15)

Suppose that τ0 < t0. Then we obviously have τ0 = θ f (z). Since both u and v are continuous on [0, t0), it follows from (15)
that ψ f (t, z) is bounded on [0, θ f (z)). This implies that we can choose a sequence tk ↑ τ0 such that ψ f (tk, z) converge to
some x0 ∈ E as k → ∞. By (13), we have ψ f (tk, z) � u(tk) for all k. As C is closed, it follows that x0 � u(τ0). We hence have
x0 ∈ U because U is order-regular and u(τ0) ∈ U by the convexity of U . On the other hand, we cannot have x0 ∈ U because
ψ f (t, z) is a maximal solution and must approach the boundary of I × U as t → θ f (z) (see [2, Chapter II, Theorem 3.1]).
This contradiction shows that

τ0 = t0. (16)

Combining this relation with (13) and (14), we obtain (11). Let t ∈ [0, t0) and K ⊂ U be a convex compact set with a
nonempty interior such that both ψ f (τ , x) and ψ f (τ , y) lie in K for any τ ∈ [0, t]. It follows from (14), (8), (6), and (5) that∥∥v(t)

∥∥ � 2‖y − x‖eLt,K ( f )t � 4R K eLt,K ( f )t .

In view of (16), inserting this estimate and the obvious inequalities ‖u(t)‖ � R K and λ(1 − λ) � 1/4 in (15) yields (12). The
lemma is proved. �
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4. Proof of Theorem 1

To pass from continuously differentiable to arbitrary continuous functions, we shall need some results concerning the
continuous dependence of solutions of (1) on the map f . Recall that Eq. (1) possesses a maximal solution satisfying a given
initial condition if the function f : I × U → E is continuous. Note however that such a solution may be not unique if f is
not locally Lipschitz continuous.

The next lemma easily follows from Theorem 3.2 in Chapter II of [2].

Lemma 8. Let U ⊂ E be open. Let f , f1, f2, . . . be continuous maps from I × U to E. Suppose f is locally Lipschitz and fn converge to
f uniformly on all compact subsets of I × U . Let ψn ∈ C1([0, θn), U ) be maximal solutions of

ψ̇n(t) = fn
(
t,ψn(t)

)
(17)

such that ψn(0) converge to some u ∈ U as n → ∞. Then we have

θ f (u) � lim θn. (18)

Let 0 � a < θ f (u) and n0 be such that θn > a for n > n0 . Then the sequence ψn0+k(t), k = 1,2, . . . , converges to ψ f (t, u) uniformly
on [0,a] as k → ∞.

Lemma 9. Let U ⊂ E be open. Let f , f1, f2, . . . be continuous maps from I × U to E. Suppose f is locally Lipschitz and fn converge
to f uniformly on compact subsets of I × U . Let 0 < a < T and ψn ∈ C1([0,a], U ) be solutions of (17) such that ψn(0) converge to
some u ∈ U as n → ∞. If for some compact set K ⊂ U , ψn(t) ∈ K for all t ∈ [0,a], then θ f (u) > a, and we have ψn(t) → ψ f (t, u)

and ψ̇n(t) → ψ̇ f (t, u) uniformly on [0,a].

Proof. Since fn are uniformly bounded on the compact set Q = [0,a] × K , Eq. (17) implies that ψ̇n are uniformly bounded.
Hence, ψn are uniformly equicontinuous. By the Arzelà–Ascoli theorem, it follows that the sequence ψn is relatively compact
in C[0,a]. Let ψnk be a subsequence of ψn uniformly converging to a function ψ . Obviously, ψ(0) = u and ψ(t) ∈ K for
t ∈ [0,a]. Fix ε > 0. Because f is uniformly continuous on Q , there exists a δ > 0 such that ‖ f (t, x1) − f (t, x2)‖ < ε/2
for any (t, xi) ∈ Q such that ‖x2 − x1‖ < δ. Let k0 be such that ‖ψnk (t) − ψ(t)‖ < δ and ‖ fnk (t, x) − f (t, x)‖ < ε/2 for all
(t, x) ∈ Q and k � k0. Then we have∥∥ fnk

(
t,ψnk (t)

) − f
(
t,ψ(t)

)∥∥ �
∥∥ fnk

(
t,ψnk (t)

) − f
(
t,ψnk (t)

)∥∥
+ ∥∥ f

(
t,ψnk (t)

) − f
(
t,ψ(t)

)∥∥ < ε, t ∈ [0,a],
for any k � k0, and in view of (17), the sequence ψ̇nk (t) converges to f (t,ψ(t)) uniformly on [0,a]. On the other hand,
the uniform convergence of ψ̇nk implies that ψ is continuously differentiable and ψ̇ is the limit of ψ̇nk . This means that ψ

satisfies (1). Since f is locally Lipschitz, this implies that ψ is the restriction of ψ f (·, u) to [0,a] and, therefore, θ f (u) > a.
We thus see that all uniformly converging subsequences of ψn have the same limit. As the sequence ψn is relatively compact,
we conclude that ψn(t) → ψ f (t, u) uniformly on [0,a]. Replacing ψnk with ψn in the above proof, we obtain the uniform
convergence of ψ̇n . The lemma is proved. �
Proof of Theorem 1. For κ > 0, we set U (κ) = {ξ ∈ U : Bξ,κ ⊂ U }, where Bξ,κ is the closed ball of radius κ centered at ξ .
Clearly, the set U (κ) is open, convex, and order-regular for any κ > 0. Let t ∈ I , x, y ∈ D f (t) and z = λx + (1 − λ)y for some
λ ∈ [0,1]. We have to show that θ f (z) > t and inequality (11) holds. Let S ⊂ U be a convex compact set whose interior
contains ψ f (τ , x) and ψ f (τ , y) for all τ ∈ [0, t]. Choose κ > 0 such that S ⊂ U (κ).

Let ρ be a nonnegative smooth function on E such that ρ(ξ) = 0 for ‖ξ‖ > 1 and
∫

E ρ(ξ)dξ = 1. For any positive ε � κ ,
we define the map fε : I × U (κ) → E by setting

fε(τ , ξ) =
∫
E

f (τ , ξ − εη)ρ(η)dη.

Let φ denote the restriction of f to I × U (κ). Clearly, fε are smooth in the second variable and converge to φ uniformly on
compact subsets of I × U (κ) as ε → 0. It is straightforward to check that fε are convex quasi-monotone increasing maps
on U (κ) such that

Lt,S( fε) � Lt,Sκ ( f ), (19)

where Sκ is the closed κ-neighborhood of S . Our choice of κ ensures that t < min(θφ(x), θφ(y)). Let tε = min(θ fε (x), θ fε (y)).
By Lemma 8, there exists 0 < ε0 � κ such that tε > t for any 0 < ε � ε0 and ψ fε (·, x) → ψ f (·, x) and ψ fε (·, y) → ψ f (·, y)

uniformly on [0, t] as ε0 � ε → 0. Decreasing ε0 if necessary, we can ensure that ψ fε (τ , x) and ψ fε (τ , y) lie in S for all
τ ∈ [0, t] and ε ∈ (0, ε0]. It follows from Lemma 7 that θ fε (z) � tε > t and
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ψ fε (τ , z) � λψ fε (τ , x) + (1 − λ)ψ fε (τ , y), (20)∥∥ψ fε (τ , z)
∥∥ � R S

[
1 + μC etLt,Sκ ( f )] (21)

for any 0 � τ � t and 0 < ε � ε0. Let r > 0 and K = (S − C) ∩ {ξ ∈ E: ‖ξ‖ � r}. Since S is compact and C is closed,
S − C is closed and, therefore, K is compact. The order-regularity of U (κ) implies that K ⊂ U (κ). By (20) and (21), we have
ψ fε (τ , z) ∈ K for all 0 � τ � t if r is large enough. It follows from Lemma 9 that θφ(z) > t and ψ fε (·, z) → ψφ(·, z) uniformly
on [0, t]. Obviously, Dφ ⊂ D f and ψφ is the restriction of ψ f to Dφ . Hence θ f (z) � θφ(z) > t and passing to the limit ε → 0
in inequality (20) for τ = t yields (11). The theorem is proved. �
5. Example

As an illustration, we give an example of a system of ODEs that arises naturally in the theory of stochastic processes
and satisfies all conditions of Theorem 1. We consider a so-called affine process evolving on the state space C := R

d
�0

(see [1]). Such a process X = (Xt)t�0, can be regarded as a multi-type extension of the singe-type continuously branching
process of [6], which arises as a continuous-time limit of a classical Galton–Watson branching process. X is defined as
a stochastically continuous, time-homogeneous Markov process starting at X0 ∈ C , with the property that the moment
generating function is of the form

E
[
ex·Xt

] = eψ(t,x)·X0 (22)

for all (t, x) ∈ R�0 × R
d , and where ψ : R�0 × R

d → R
d ∪ {∞}.4 We assume that the time-derivative of ψ(t, x) at t = 0,

f (x) := ∂

∂t
ψ(t, x)

∣∣∣∣
t=0

exists and is a continuous function on the set U = {x ∈ R
d: f (x) < ∞}. In this case the map ψ(t, x) satisfies the following

differential equation:

∂

∂t
ψ(t, x) = f

(
ψ(t, x)

)
, ψ(0, x) = x. (23)

Moreover, the components of the map f (x) are of so-called Levy–Khintchine type (cf. [8, Theorem 8.1]):

f i(x) = αi

2
x2

i + x · β i − ci +
∫

C\{0}

(
ex·ξ − 1 − x · ξ I|ξ |�1

)
μi(dξ),

with I, the indicator function, where, for all i ∈ {1, . . . ,d},

• αi ∈ R�0;
• β i ∈ R

d with β i
k − ∫

|ξ |�1 ξkμi(dξ) � 0 for all k �= i;
• ci ∈ R�0;
• μi(dξ) are Borel measures on C \ {0} assigning finite mass to the set {ξ ∈ C : |ξ | > 1} and satisfying the integrability

condition ∫
ξ∈C,0<|ξ |�1

( ∑
k �=i

|ξk| + |ξi|2
)

μi(dξ) < ∞

on its complement.

The above conditions are both necessary and sufficient for the existence of X and referred to as admissibility conditions
(see [1]).

In the following we consider the ordering on R
d induced by the cone R

d
�0.

Proposition 10. The domain U is convex and order-regular and the map f (x) is convex and quasi-monotone increasing thereon.

Proof. We make use of the following representations of f i(x):

f i(x) = log
∫
Rd

ex·ξ pi(dξ) = f †
i (x) +

∫
C\{0}, |ξ |>1

(
ex·ξ − 1

)
μi(dξ), (24)

4 We set ψ(t, x) = ∞, whenever the left side of (22) is infinite. Note that for (t, x) ∈ R�0 × (−∞,0]d it is always guaranteed that ψ(t, x) is finite.
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where pi(dξ) is an infinitely divisible, substochastic measure on R
d , and f †

i (x) is a function on R
d , that can be extended

to an entire function on C
d . The representation as log

∫
Rd ex·ξ pi(dξ) is an immediate consequence of the Levy–Khintchine

formula, and its analytic extension to exponential moments [8, Theorem 8.1, Theorem 25.17]. The second representation of
f i(x) follows directly from [8, Lemma 25.6]. To show that f i(x) is convex, apply Hölder’s inequality:

f i
(
λx + (1 − λ)y

) = log
∫
Rd

eλx·ξ e(1−λ)y·ξ pi(dξ) � λ log
∫
Rd

ex·ξ pi(dξ) + (1 − λ) log
∫
Rd

e y·ξ pi(dξ)

= λ f i(x) + (1 − λ) f i(y)

for all x, y ∈ R
d and λ ∈ (0,1). We show next that the domain U is order-regular. Assume that x ∈ U , i.e. f i(x) < ∞ for

all i, and let y � x. Using the second representation in (24) it is clear that f †
i (y) < ∞. But also the integral with respect to

μi(dξ) is finite, since the integrand is dominated by (ex·ξ − 1)1|ξ |�1, whose integral is finite by assumption. We conclude
that f i(y) < ∞, and thus that y ∈ U , i.e., U is order-regular. Finally we show that f (x) is also quasi-monotone increasing.
Assume that y � x with yi = xi for some i ∈ {1, . . . ,d}. It follows that

f i(x) − f i(y) =
∑
k �=i

(xk − yk) ·
(

β i
k −

∫
ξ∈C,0<|ξ |�1

ξk μi(dξ)

)
+

∫
C

(
ex·ξ − e y·ξ )μi(dξ) � 0,

where we have made use of the admissibility conditions given above. �
Appendix A

In this section we give a very simple proof of the convexity result [4] for ODEs in ordered normed spaces. Let E be a real
normed space (not necessarily finite-dimensional) ordered by a proper closed cone C . As shown in [11], Lemma 3 holds for
E if one of the following conditions is satisfied:

1. C has a nonempty interior,
2. E is complete,
3. C is a distance set (i.e., for every x ∈ E , there is y ∈ C such that ‖x − y‖ is equal to the distance from x to C ).

As above, let T ∈ (0,∞] and I = [0, T ). Theorem 1 in [4] follows immediately from the next result.

Theorem 11. Let E be an ordered normed space such that one of the above conditions is satisfied. Let U ⊂ E be an open convex set and
f : I × U → E be a continuous locally Lipschitz map such that f (t, ·) is quasi-monotone increasing and convex on U for all t ∈ I . Let
0 < t0 � T and x1, x2, x3 : [0, t0) → U be differentiable maps such that

ẋi(t) = f
(
t, xi(t)

)
, i = 1,2,3,

and x3(0) = λx1(0) + (1 − λ)x2(0) for some λ ∈ [0,1]. Then x3(t) � λx1(t) + (1 − λ)x2(t) for all t < t0 .

Proof. Set z(t) = λx1(t) + (1 − λ)x2(t) for t < t0. By the convexity of f ,

ż(t) − f
(
t, z(t)

) = λẋ1(t) + (1 − λ)ẋ2(t) − f
(
t, λx1(t) + (1 − λ)x2(t)

)
� λ

(
ẋ1(t) − f

(
t, x1(t)

)) + (1 − λ)
(
ẋ2(t) − f

(
t, x2(t)

)) = 0 = ẋ3(t) − f
(
t, x3(t)

)
for all t < t0. Since z(0) = x3(0), the above-mentioned analogue of Lemma 3 for normed spaces implies that z(t) � x3(t).
The theorem is proved. �
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