(1)

(2)

CORE



Contents lists available at ScienceDirect

Journal of Mathematical Analysis and

**Applications** 

www.elsevier.com/locate/imaa

# On convexity of solutions of ordinary differential equations

M. Keller-Ressel<sup>a</sup>, E. Mayerhofer<sup>b,c,1</sup>, A.G. Smirnov<sup>d,\*,2</sup>

<sup>a</sup> ETH Zürich, Departement Mathematik, HG G 50.1, Rämistrasse 101, 8092 Zürich, Switzerland

<sup>b</sup> Vienna Institute of Finance, University of Vienna, Austria

<sup>c</sup> Vienna University of Economics and Business Administration, Heiligenstädterstrasse 46-48, 1190 Vienna, Austria

<sup>d</sup> I.E. Tamm Theory Department, P.N. Lebedev Physical Institute, Leninsky Prospect 53, Moscow 119991, Russia

#### ARTICLE INFO

Article history: Received 10 June 2009 Available online 10 March 2010 Submitted by R. Kiesel

Keywords: Initial value problem Convexity Ordered linear spaces Ouasi-monotonicity

# ABSTRACT

We prove a result on the convex dependence of solutions of ordinary differential equations on an ordered finite-dimensional real vector space with respect to the initial data. © 2010 Elsevier Inc. All rights reserved.

## 1. Introduction

.

Let *E* be a finite-dimensional real vector space ordered by a closed proper cone<sup>3</sup> *C*.

Let  $0 < T \le \infty$ ,  $U \subset E$  be a nonempty open set, and  $f: [0,T) \times U \to E$  be a locally Lipschitz continuous map. For any  $x \in U$ , the differential equation

$$\dot{\psi}(t) = f(t, \psi(t))$$

has a unique maximally extended solution  $\psi_f(\cdot, x)$  satisfying  $\psi_f(0, x) = x$ . This solution is defined on a semi-interval  $[0, \theta_f(x))$ , where  $0 < \theta_f(x) \leq T$ . For any  $t \geq 0$ , we set  $\mathcal{D}_f(t) = \{x \in U: t < \theta_f(x)\}$ .

Let  $D \subset E$ . A map  $g: D \to E$  is called quasi-monotone increasing [11] if the implication

 $x \leq y, \quad l(x) = l(y) \implies \quad l(g(x)) \leq l(g(y))$ 

holds for all x,  $y \in D$  and  $l \in C^*$ , where  $C^* = \{l \in E^*: l(x) \ge 0 \text{ for any } x \in C\}$  is the dual cone of C ( $E^*$  is the dual space of *E*). A map  $g: D \rightarrow E$  is called convex if *D* is convex and

$$g(\lambda x + (1 - \lambda)y) \leq \lambda g(x) + (1 - \lambda)g(y)$$

for all  $x, y \in D$  and  $\lambda \in [0, 1]$ . A set  $D \subset E$  is said to be order regular if the relations  $x \in D$  and  $y \leq x$  imply that  $y \in D$ .

0022-247X/\$ - see front matter © 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2010.03.008

Corresponding author.

E-mail addresses: kemartin@math.ethz.ch (M. Keller-Ressel), eberhard.mayerhofer@vif.ac.at (E. Mayerhofer), smirnov@lpi.ru (A.G. Smirnov).

E.M. gratefully acknowledges financial support from WWTF (Vienna Science and Technology Fund).

<sup>&</sup>lt;sup>2</sup> The research of A.G.S. was supported by the Russian Foundation for Basic Research (Grant No. 09-01-00835) and the Program for Supporting Leading Scientific Schools (Grant No. LSS-1615.2008).

<sup>&</sup>lt;sup>3</sup> A set C in a real vector space E is called a cone if  $\lambda C \subset C$  for any  $\lambda > 0$ . A cone C is said to be proper if  $C + C \subset C$  and  $C \cap (-C) = \{0\}$ . A cone C induces a partial order on E if and only if it is proper.

Our aim is to prove the next theorem.

**Theorem 1.** Let  $U \subset E$  be a nonempty order-regular convex open set. Let  $0 < T \leq \infty$  and  $f : [0, T) \times U \rightarrow E$  be a continuous map. If  $f(t, \cdot)$  is quasi-monotone increasing and convex for all  $t \in [0, T)$ , then  $\mathcal{D}_f(t)$  is convex for any  $t \in [0, T)$ , and  $\psi_f(t, \cdot)$  is convex thereon.

In the formulation of Theorem 1, we do not require the local Lipschitz continuity of f because the latter is ensured by continuity and convexity (see Lemma 2 below). Note that the quasi-monotonicity of f is a sufficient but not necessary condition for Theorem 1 to hold. For example, if f(t, x) = f(x) is a linear map, then  $\psi_f(t, x)$  is linear and hence convex in x, but f may be not quasi-monotone increasing in this case. On the other hand, at least in the autonomous case f(t, x) = f(x), the convexity of f is necessary to maintain the validity of Theorem 1. Indeed, let f be locally Lipschitz,  $x, y \in U$  and  $z = \lambda x + (1 - \lambda)y$  with  $0 \le \lambda \le 1$ . Suppose  $\mathcal{D}_f(t)$  is convex for any  $t \in [0, T)$ , and  $\psi_f(t, \cdot)$  is convex thereon. Then we have

$$\frac{\psi_f(t,z)-z}{t} \leq \lambda \frac{\psi_f(t,x)-x}{t} + (1-\lambda) \frac{\psi_f(t,y)-y}{t}$$

for t small enough. Passing to the limit  $t \to 0$  in this inequality, we get  $f(z) \leq \lambda f(x) + (1 - \lambda) f(y)$ , i.e., f is convex.

The question of convex dependence of solutions of (1) on initial data was first addressed in [7], and then pursued in [5,4]. In the last two papers, *E* was assumed to be an ordered Banach space and it was shown (for differentiable *f* in [5] and for general locally Lipschitz continuous *f* in [4]) that  $\psi_f(t, \cdot)$  is convex on any convex domain contained in  $\mathcal{D}_f(t)$  (in Appendix A to this paper, we give a very simple proof of this result). Here, we strengthen this result in the finitedimensional case by proving the convexity of  $\mathcal{D}_f(t)$ . Moreover, keeping in mind possible applications (see, e.g., an example in Section 5), we consider arbitrary open convex order-regular domains *U* rather than the case U = E studied in [5,4].

The paper is organized as follows. In Section 2, we show that the conditions imposed on f in Theorem 1 ensure its local Lipschitz continuity. In Section 3, we prove Theorem 1 in the case, where f is differentiable in the second variable. For this, we combine the technique developed in [5] with the well-known "blow-up property" of ODEs in finite dimensions: as  $t \rightarrow \theta_f(x)$  for some  $x \in U$ , the maximal solution  $\psi_f(t, x)$  of (1) must approach the boundary of the domain  $[0, T) \times U$  on which f is defined. In Section 4, we get rid of the differentiability assumption and prove Theorem 1 in the general case. Finally, in Section 5, we illustrate Theorem 1 by a concrete example of ODEs naturally arising in the theory of stochastic processes.

## 2. Convexity and local Lipschitz continuity

Let  $0 < T \leq \infty$  and  $\|\cdot\|$  be a norm on *E*. Let  $U \subset E$  be a nonempty open set. Recall that a map  $f : [0, T) \times U \to E$  is called locally Lipschitz if

$$L_{t,K}(f) = \sup_{0 \le \tau \le t, \ x_1, x_2 \in K, \ x_1 \neq x_2} \frac{\|f(\tau, x_2) - f(\tau, x_1)\|}{\|x_2 - x_1\|} < \infty$$
(3)

for any compact set  $K \subset U$  and any  $t \in [0, T)$ .

**Lemma 2.** Let  $f : [0, T) \times U \to E$  be a continuous map such that  $f(t, \cdot)$  is convex on U for all  $t \in [0, T)$ . Then f is locally Lipschitz continuous.

**Proof.** Since *C* is closed and  $C \cap (-C) = \{0\}$ , the set  $C \setminus \{0\}$  is contained in an open half-space of *E*. This implies that the dual cone *C*<sup>\*</sup> has a nonempty interior (see, e.g., [10, Section I.4.4, Lemma 1]). Let  $l_1, \ldots, l_n \in C^*$  be a basis of  $E^*$ . Let the real-valued functions  $f_1, \ldots, f_n$  on  $[0, T) \times U$  be defined by the relations  $f_j(t, x) = l_j(f(t, x))$ . Clearly,  $f_j$  are continuous on  $[0, T) \times U$  and  $f_j(t, \cdot)$  are convex on *U* for any  $t \in [0, T)$ . Let  $e_1, \ldots, e_n \in E$  be the dual basis of  $l_1, \ldots, l_n$ :  $l_j(e_k) = \delta_{jk}$ . Then we have

$$f(t, x) = \sum_{j=1}^{n} f_j(t, x) e_j.$$

Hence, it remains to prove that  $f_j$  are locally Lipschitz continuous, i.e., satisfy (3) with  $\|\cdot\|$  in the numerator replaced with  $|\cdot|$ . Clearly, it suffices to check (3) in the case  $K = B_{x,r}$ , where  $B_{x,r} \subset U$  is a closed ball of radius r > 0 centered at  $x \in U$ . Let r' > r be such that  $B_{x,r'} \subset U$ . By the continuity of  $f_j$ , there is m > 0 such that  $|f_j(\tau, x)| \leq m$  for any  $\tau \in [0, t]$  and  $x \in B_{x,r'}$ . By [12, Corollary 2.2.12], we have

$$|f_j(\tau, x_2) - f_j(\tau, x_1)| \leq \frac{2m}{r'} \frac{r' + r}{r' - r} ||x_2 - x_1||$$

for any  $x_1, x_2 \in B_{x,r}$  and  $\tau \in [0, t]$ . The lemma is proved.  $\Box$ 

# 3. The differentiable case

In the rest of the paper, we assume that  $T \in (0, \infty]$  is fixed and set I = [0, T).

Our consideration is essentially based on the next comparison result that is a particular case of a more general theorem proved by Volkmann [11] in the setting of normed vector spaces.

**Lemma 3.** Let  $U \subset E$  be an open set. Let  $f : I \times U \to E$  be a continuous locally Lipschitz map such that  $f(t, \cdot)$  is quasi-monotone increasing on U for all  $t \in I$ . Let  $0 < t_0 \leq T$  and  $x, y : [0, t_0) \to U$  be differentiable maps such that  $x(0) \leq y(0)$  and

$$\dot{x}(t) - f(t, x(t)) \leq \dot{y}(t) - f(t, y(t)), \quad 0 \leq t < t_0.$$

Then we have  $x(t) \leq y(t)$  for all  $t \in [0, t_0)$ .

In fact, this comparison statement is essentially equivalent to quasi-monotonicity [9], but the above formulation is enough for our purposes. The next lemma is a simple generalization of a well-known result for scalar-valued convex functions.

**Lemma 4.** Let  $U \subset E$  be an open convex set. A differentiable function  $g: U \to E$  is convex on U if and only if

$$g(y) - g(x) \ge g'(x)(y - x), \quad x, y \in U.$$
 (4)

**Proof.** Let h = y - x and  $\lambda \in (0, 1)$ . If *g* is convex on *U*, then

$$g(x + \lambda h) = g((1 - \lambda)x + \lambda y) \leq (1 - \lambda)g(x) + \lambda g(y)$$

This implies that

$$\frac{g(x+\lambda h)-g(x)}{\lambda}\leqslant g(y)-g(x).$$

In view of the closedness of *C*, passing to the limit  $\lambda \to 0$  yields (4). Conversely, let (4) hold and  $z = \lambda x + (1 - \lambda)y$ . Then we have

$$g(x) - g(z) \ge -(1 - \lambda)g'(z)h,$$
  $g(y) - g(z) \ge \lambda g'(z)h.$ 

Multiplying the left and right estimates by  $\lambda$  and  $1 - \lambda$  respectively and summing the resulting inequalities, we obtain (2). The lemma is proved.  $\Box$ 

For differentiable functions, we have the following characterization of quasi-monotonicity [3, Theorem 5].

**Lemma 5.** Let  $U \subset E$  be open and convex. A differentiable function  $g: U \to E$  is quasi-monotone increasing on U if and only if the linear map  $g'(x): E \to E$  is quasi-monotone increasing for any  $x \in U$ .

Suppose  $f: I \times U \to E$  is a continuous map such that  $f(t, \cdot)$  is differentiable on U for all  $t \in I$  and the derivative  $f'(t, \cdot)$  is continuous on  $I \times U$  (here and below,  $f'(t, \cdot)$  denotes the derivative of the map  $x \to f(x, t)$  with respect to x for fixed t). Then f is locally Lipschitz, and we have

$$L_{t,K}(f) = \sup_{0 \le \tau \le t, \ x \in K} \left\| f'(\tau, x) \right\|$$
(5)

for any  $t \in I$ , and for any compact convex set  $K \subset U$  with a nonempty interior. Given  $x \in U$  and  $0 \le t < \theta_f(x)$ , we define the linear map  $B^x(t) : E \to E$  by setting

$$B^{X}(t) = f'(t, \psi_{f}(t, x)).$$
(6)

For  $x \in U$  and  $y \in E$ , we denote by  $w_y^x(t)$  the solution of the initial value problem

$$\dot{w}_{y}^{x}(t) = B^{x}(t)w_{y}^{x}(t), \quad 0 \leq t < \theta_{f}(x), \qquad w_{y}^{x}(0) = y.$$
(7)

Clearly,  $w_v^x$  is linear in y. For the norm of  $w_v^x$ , we have the standard bound (see, e.g., [2, Chapter IV, Lemma 4.1])

$$\left\|w_{y}^{x}(t)\right\| \leq \left\|y\right\| \exp\left(\int_{0}^{t} \left\|B^{x}(\tau)\right\| d\tau\right), \quad 0 \leq t < \theta_{f}(x).$$

$$\tag{8}$$

**Lemma 6.** Let  $U \subset E$  be a convex open set and  $f : I \times U \to E$  be a continuous map such that  $f(t, \cdot)$  is differentiable on U for all  $t \in I$  and the derivative  $f'(t, \cdot)$  is continuous on  $I \times U$ . Suppose  $f(t, \cdot)$  is convex and quasi-monotone increasing on U for all  $t \in I$ . For any  $x, y \in U$ , we have

$$w_{y-x}^{x}(t) \leq \psi_{f}(t, y) - \psi_{f}(t, x) \leq w_{y-x}^{y}(t), \quad 0 \leq t < t_{0},$$
where  $t_{0} = \min(\theta_{f}(x), \theta_{f}(y)).$ 
(9)

**Proof.** It suffices to prove the left inequality in (9) because it implies the right one after interchanging *x* and *y*. Let  $s(t) = \psi_f(t, y) - \psi_f(t, x)$ . By Lemma 4, we have

$$\dot{s}(t) = f\left(t, \psi_f(t, y)\right) - f\left(t, \psi_f(t, x)\right) \ge B^{x}(t)s(t), \quad 0 \le t < t_0.$$

By Lemma 5, the map  $B^x(t)$  is quasi-monotone increasing for any  $t \in [0, t_0)$  and, therefore, the desired inequality follows from (7) and Lemma 3. The lemma is proved.  $\Box$ 

Since *E* is finite-dimensional, the closed ordering cone *C* is normal. In terms of the partial order induced by *C*, this means that there exists  $\mu_C > 0$  such that the implication

$$0 \leqslant x \leqslant y \implies ||x|| \leqslant \mu_{\mathcal{C}} ||y|| \tag{10}$$

holds for all  $x, y \in E$ .

If f is continuously differentiable in the second variable, Theorem 1 follows from the next lemma.

**Lemma 7.** Let U and f be as in Lemma 6 and suppose in addition that U is order-regular. Let  $x, y \in U, \lambda \in [0, 1]$ , and  $z = \lambda x + (1 - \lambda)y$ . Let  $t_0 = \min(\theta_f(x), \theta_f(y))$ . Then we have  $\theta_f(z) \ge t_0$  and

$$\psi_f(t,z) \leq \lambda \psi_f(t,x) + (1-\lambda)\psi_f(t,y), \quad 0 \leq t < t_0.$$

$$\tag{11}$$

Let  $0 \le t < t_0$  and  $K \subset U$  be a compact convex set with a nonempty interior such that  $\psi_f(\tau, x)$  and  $\psi_f(\tau, y)$  lie in K for all  $\tau \in [0, t]$ . Then

$$\left\|\psi_{f}(t,z)\right\| \leqslant R_{K} \left[1 + \mu_{C} e^{L_{t,K}(f)t}\right],\tag{12}$$

where  $R_K = \sup_{\xi \in K} \|\xi\|$ .

**Proof.** Let  $\tau_0 = \min(\theta_f(x), \theta_f(y), \theta_f(z))$ . Since  $z - x = (1 - \lambda)(y - x)$  and  $z - y = -\lambda(y - x)$ , it follows from Lemma 6 that

$$(1-\lambda)w_{y-x}^{x}(t) \leq \psi_{f}(t,z) - \psi_{f}(t,x) \leq (1-\lambda)w_{y-x}^{z}(t)$$
$$-\lambda w_{y-x}^{y}(t) \leq \psi_{f}(t,z) - \psi_{f}(t,y) \leq -\lambda w_{y-x}^{z}(t),$$

for any  $0 \le t < \tau_0$ . Multiplying the first and second inequalities by  $\lambda$  and  $1 - \lambda$  respectively and adding the results, we get

$$-\lambda(1-\lambda)\nu(t) \leqslant \psi_f(t,z) - u(t) \leqslant 0, \quad 0 \leqslant t < \tau_0, \tag{13}$$

where  $u, v : [0, t_0) \rightarrow E$  are given by

$$u(t) = \lambda \psi_f(t, x) + (1 - \lambda) \psi_f(t, y), \qquad v(t) = w_{y-x}^y(t) - w_{y-x}^x(t).$$
(14)

In view of (10), it follows from (13) that

$$\|\psi_f(t,z)\| \le \|u(t)\| + \|\psi_f(t,z) - u(t)\| \le \|u(t)\| + \mu_C \lambda(1-\lambda)\|v(t)\|, \quad 0 \le t < \tau_0.$$
(15)

Suppose that  $\tau_0 < t_0$ . Then we obviously have  $\tau_0 = \theta_f(z)$ . Since both u and v are continuous on  $[0, t_0)$ , it follows from (15) that  $\psi_f(t, z)$  is bounded on  $[0, \theta_f(z))$ . This implies that we can choose a sequence  $t_k \uparrow \tau_0$  such that  $\psi_f(t_k, z)$  converge to some  $x_0 \in E$  as  $k \to \infty$ . By (13), we have  $\psi_f(t_k, z) \leq u(t_k)$  for all k. As C is closed, it follows that  $x_0 \leq u(\tau_0)$ . We hence have  $x_0 \in U$  because U is order-regular and  $u(\tau_0) \in U$  by the convexity of U. On the other hand, we cannot have  $x_0 \in U$  because  $\psi_f(t, z)$  is a maximal solution and must approach the boundary of  $I \times U$  as  $t \to \theta_f(z)$  (see [2, Chapter II, Theorem 3.1]). This contradiction shows that

$$\tau_0 = t_0. \tag{16}$$

Combining this relation with (13) and (14), we obtain (11). Let  $t \in [0, t_0)$  and  $K \subset U$  be a convex compact set with a nonempty interior such that both  $\psi_f(\tau, x)$  and  $\psi_f(\tau, y)$  lie in K for any  $\tau \in [0, t]$ . It follows from (14), (8), (6), and (5) that

$$\|\mathbf{v}(t)\| \leq 2\|\mathbf{y} - \mathbf{x}\|e^{L_{t,K}(f)t} \leq 4R_K e^{L_{t,K}(f)t}$$

In view of (16), inserting this estimate and the obvious inequalities  $||u(t)|| \leq R_K$  and  $\lambda(1-\lambda) \leq 1/4$  in (15) yields (12). The lemma is proved.  $\Box$ 

# 4. Proof of Theorem 1

To pass from continuously differentiable to arbitrary continuous functions, we shall need some results concerning the continuous dependence of solutions of (1) on the map f. Recall that Eq. (1) possesses a maximal solution satisfying a given initial condition if the function  $f : I \times U \rightarrow E$  is continuous. Note however that such a solution may be not unique if f is not locally Lipschitz continuous.

The next lemma easily follows from Theorem 3.2 in Chapter II of [2].

**Lemma 8.** Let  $U \subset E$  be open. Let  $f, f_1, f_2, \ldots$  be continuous maps from  $I \times U$  to E. Suppose f is locally Lipschitz and  $f_n$  converge to f uniformly on all compact subsets of  $I \times U$ . Let  $\psi_n \in C^1([0, \theta_n), U)$  be maximal solutions of

$$\dot{\psi}_n(t) = f_n\left(t, \psi_n(t)\right) \tag{17}$$

such that  $\psi_n(0)$  converge to some  $u \in U$  as  $n \to \infty$ . Then we have

$$\theta_f(u) \leqslant \underline{\lim}\,\theta_n. \tag{18}$$

Let  $0 \le a < \theta_f(u)$  and  $n_0$  be such that  $\theta_n > a$  for  $n > n_0$ . Then the sequence  $\psi_{n_0+k}(t)$ , k = 1, 2, ..., converges to  $\psi_f(t, u)$  uniformly on [0, a] as  $k \to \infty$ .

**Lemma 9.** Let  $U \subset E$  be open. Let  $f, f_1, f_2, ...$  be continuous maps from  $I \times U$  to E. Suppose f is locally Lipschitz and  $f_n$  converge to f uniformly on compact subsets of  $I \times U$ . Let 0 < a < T and  $\psi_n \in C^1([0, a], U)$  be solutions of (17) such that  $\psi_n(0)$  converge to some  $u \in U$  as  $n \to \infty$ . If for some compact set  $K \subset U$ ,  $\psi_n(t) \in K$  for all  $t \in [0, a]$ , then  $\theta_f(u) > a$ , and we have  $\psi_n(t) \to \psi_f(t, u)$  and  $\dot{\psi}_n(t) \to \dot{\psi}_f(t, u)$  uniformly on [0, a].

**Proof.** Since  $f_n$  are uniformly bounded on the compact set  $Q = [0, a] \times K$ , Eq. (17) implies that  $\dot{\psi}_n$  are uniformly bounded. Hence,  $\psi_n$  are uniformly equicontinuous. By the Arzelà–Ascoli theorem, it follows that the sequence  $\psi_n$  is relatively compact in C[0, a]. Let  $\psi_{n_k}$  be a subsequence of  $\psi_n$  uniformly converging to a function  $\psi$ . Obviously,  $\psi(0) = u$  and  $\psi(t) \in K$  for  $t \in [0, a]$ . Fix  $\varepsilon > 0$ . Because f is uniformly continuous on Q, there exists a  $\delta > 0$  such that  $||f(t, x_1) - f(t, x_2)|| < \varepsilon/2$ for any  $(t, x_i) \in Q$  such that  $||x_2 - x_1|| < \delta$ . Let  $k_0$  be such that  $||\psi_{n_k}(t) - \psi(t)|| < \delta$  and  $||f_{n_k}(t, x) - f(t, x)|| < \varepsilon/2$  for all  $(t, x) \in Q$  and  $k \ge k_0$ . Then we have

$$\begin{split} \left\| f_{n_k} \big( t, \psi_{n_k}(t) \big) - f \big( t, \psi(t) \big) \right\| &\leq \left\| f_{n_k} \big( t, \psi_{n_k}(t) \big) - f \big( t, \psi_{n_k}(t) \big) \right\| \\ &+ \left\| f \big( t, \psi_{n_k}(t) \big) - f \big( t, \psi(t) \big) \right\| < \varepsilon, \quad t \in [0, a], \end{split}$$

for any  $k \ge k_0$ , and in view of (17), the sequence  $\dot{\psi}_{n_k}(t)$  converges to  $f(t, \psi(t))$  uniformly on [0, a]. On the other hand, the uniform convergence of  $\dot{\psi}_{n_k}$  implies that  $\psi$  is continuously differentiable and  $\dot{\psi}$  is the limit of  $\dot{\psi}_{n_k}$ . This means that  $\psi$  satisfies (1). Since f is locally Lipschitz, this implies that  $\psi$  is the restriction of  $\psi_f(\cdot, u)$  to [0, a] and, therefore,  $\theta_f(u) > a$ . We thus see that all uniformly converging subsequences of  $\psi_n$  have the same limit. As the sequence  $\psi_n$  is relatively compact, we conclude that  $\psi_n(t) \rightarrow \psi_f(t, u)$  uniformly on [0, a]. Replacing  $\psi_{n_k}$  with  $\psi_n$  in the above proof, we obtain the uniform convergence of  $\dot{\psi}_n$ . The lemma is proved.  $\Box$ 

**Proof of Theorem 1.** For  $\kappa > 0$ , we set  $U(\kappa) = \{\xi \in U : B_{\xi,\kappa} \subset U\}$ , where  $B_{\xi,\kappa}$  is the closed ball of radius  $\kappa$  centered at  $\xi$ . Clearly, the set  $U(\kappa)$  is open, convex, and order-regular for any  $\kappa > 0$ . Let  $t \in I$ ,  $x, y \in \mathcal{D}_f(t)$  and  $z = \lambda x + (1 - \lambda)y$  for some  $\lambda \in [0, 1]$ . We have to show that  $\theta_f(z) > t$  and inequality (11) holds. Let  $S \subset U$  be a convex compact set whose interior contains  $\psi_f(\tau, x)$  and  $\psi_f(\tau, y)$  for all  $\tau \in [0, t]$ . Choose  $\kappa > 0$  such that  $S \subset U(\kappa)$ .

Let  $\rho$  be a nonnegative smooth function on E such that  $\rho(\xi) = 0$  for  $\|\xi\| > 1$  and  $\int_E \rho(\xi) d\xi = 1$ . For any positive  $\varepsilon \leq \kappa$ , we define the map  $f_{\varepsilon} : I \times U(\kappa) \to E$  by setting

$$f_{\varepsilon}(\tau,\xi) = \int_{E} f(\tau,\xi-\varepsilon\eta)\rho(\eta)\,d\eta.$$

Let  $\phi$  denote the restriction of f to  $I \times U(\kappa)$ . Clearly,  $f_{\varepsilon}$  are smooth in the second variable and converge to  $\phi$  uniformly on compact subsets of  $I \times U(\kappa)$  as  $\varepsilon \to 0$ . It is straightforward to check that  $f_{\varepsilon}$  are convex quasi-monotone increasing maps on  $U(\kappa)$  such that

$$L_{t,S}(f_{\varepsilon}) \leqslant L_{t,S_{\varepsilon}}(f), \tag{19}$$

where  $S_{\kappa}$  is the closed  $\kappa$ -neighborhood of S. Our choice of  $\kappa$  ensures that  $t < \min(\theta_{\phi}(x), \theta_{\phi}(y))$ . Let  $t_{\varepsilon} = \min(\theta_{f_{\varepsilon}}(x), \theta_{f_{\varepsilon}}(y))$ . By Lemma 8, there exists  $0 < \varepsilon_0 \leq \kappa$  such that  $t_{\varepsilon} > t$  for any  $0 < \varepsilon \leq \varepsilon_0$  and  $\psi_{f_{\varepsilon}}(\cdot, x) \rightarrow \psi_f(\cdot, x)$  and  $\psi_{f_{\varepsilon}}(\cdot, y) \rightarrow \psi_f(\cdot, y)$ uniformly on [0, t] as  $\varepsilon_0 \geq \varepsilon \rightarrow 0$ . Decreasing  $\varepsilon_0$  if necessary, we can ensure that  $\psi_{f_{\varepsilon}}(\tau, x)$  and  $\psi_{f_{\varepsilon}}(\tau, y)$  lie in S for all  $\tau \in [0, t]$  and  $\varepsilon \in (0, \varepsilon_0]$ . It follows from Lemma 7 that  $\theta_{f_{\varepsilon}}(z) \geq t_{\varepsilon} > t$  and

$$\begin{aligned} \psi_{f_{\varepsilon}}(\tau, z) &\leqslant \lambda \psi_{f_{\varepsilon}}(\tau, x) + (1 - \lambda) \psi_{f_{\varepsilon}}(\tau, y), \\ \|\psi_{f_{\varepsilon}}(\tau, z)\| &\leqslant R_{S} \left[1 + \mu_{C} e^{tL_{t, S_{\varepsilon}}(f)}\right] \end{aligned}$$
(20)

for any  $0 \le \tau \le t$  and  $0 < \varepsilon \le \varepsilon_0$ . Let r > 0 and  $K = (S - C) \cap \{\xi \in E: \|\xi\| \le r\}$ . Since *S* is compact and *C* is closed, S - C is closed and, therefore, *K* is compact. The order-regularity of  $U(\kappa)$  implies that  $K \subset U(\kappa)$ . By (20) and (21), we have  $\psi_{f_{\varepsilon}}(\tau, z) \in K$  for all  $0 \le \tau \le t$  if *r* is large enough. It follows from Lemma 9 that  $\theta_{\phi}(z) > t$  and  $\psi_{f_{\varepsilon}}(\cdot, z) \to \psi_{\phi}(\cdot, z)$  uniformly on [0, t]. Obviously,  $\mathcal{D}_{\phi} \subset \mathcal{D}_{f}$  and  $\psi_{\phi}$  is the restriction of  $\psi_{f}$  to  $\mathcal{D}_{\phi}$ . Hence  $\theta_{f}(z) \ge \theta_{\phi}(z) > t$  and passing to the limit  $\varepsilon \to 0$ in inequality (20) for  $\tau = t$  yields (11). The theorem is proved.  $\Box$ 

# 5. Example

As an illustration, we give an example of a system of ODEs that arises naturally in the theory of stochastic processes and satisfies all conditions of Theorem 1. We consider a so-called *affine process* evolving on the state space  $C := \mathbb{R}_{\geq 0}^d$ (see [1]). Such a process  $X = (X_t)_{t \geq 0}$ , can be regarded as a multi-type extension of the singe-type continuously branching process of [6], which arises as a continuous-time limit of a classical Galton–Watson branching process. *X* is defined as a stochastically continuous, time-homogeneous Markov process starting at  $X_0 \in C$ , with the property that the moment generating function is of the form

$$\mathbb{E}[e^{x \cdot X_t}] = e^{\psi(t, x) \cdot X_0} \tag{22}$$

for all  $(t, x) \in \mathbb{R}_{\geq 0} \times \mathbb{R}^d$ , and where  $\psi : \mathbb{R}_{\geq 0} \times \mathbb{R}^d \to \mathbb{R}^d \cup \{\infty\}$ .<sup>4</sup> We assume that the time-derivative of  $\psi(t, x)$  at t = 0,

$$f(\mathbf{x}) := \frac{\partial}{\partial t} \psi(t, \mathbf{x}) \Big|_{t=0}$$

exists and is a continuous function on the set  $U = \{x \in \mathbb{R}^d: f(x) < \infty\}$ . In this case the map  $\psi(t, x)$  satisfies the following differential equation:

$$\frac{\partial}{\partial t}\psi(t,x) = f(\psi(t,x)), \qquad \psi(0,x) = x.$$
(23)

Moreover, the components of the map f(x) are of so-called Levy–Khintchine type (cf. [8, Theorem 8.1]):

$$f_i(x) = \frac{\alpha_i}{2} x_i^2 + x \cdot \beta^i - c_i + \int_{C \setminus \{0\}} \left( e^{x \cdot \xi} - 1 - x \cdot \xi \mathbf{I}_{|\xi| \leq 1} \right) \mu_i(d\xi),$$

with **I**, the indicator function, where, for all  $i \in \{1, ..., d\}$ ,

- $\alpha_i \in \mathbb{R}_{\geq 0}$ ;
- $\beta^i \in \mathbb{R}^{\hat{d}}$  with  $\beta^i_k \int_{|\xi| \leq 1} \xi_k \mu_i(d\xi) \ge 0$  for all  $k \neq i$ ;
- $c_i \in \mathbb{R}_{\geq 0}$ ;
- $\mu_i(d\xi)$  are Borel measures on  $C \setminus \{0\}$  assigning finite mass to the set  $\{\xi \in C: |\xi| > 1\}$  and satisfying the integrability condition

$$\int_{\xi \in C, \, 0 < |\xi| \leq 1} \left( \sum_{k \neq i} |\xi_k| + |\xi_i|^2 \right) \mu_i(d\xi) < \infty$$

on its complement.

The above conditions are both necessary and sufficient for the existence of X and referred to as *admissibility* conditions (see [1]).

In the following we consider the ordering on  $\mathbb{R}^d$  induced by the cone  $\mathbb{R}^d_{\geq 0}$ .

**Proposition 10.** The domain U is convex and order-regular and the map f(x) is convex and quasi-monotone increasing thereon.

**Proof.** We make use of the following representations of  $f_i(x)$ :

$$f_i(x) = \log \int_{\mathbb{R}^d} e^{x \cdot \xi} p_i(d\xi) = f_i^{\dagger}(x) + \int_{C \setminus \{0\}, |\xi| > 1} \left( e^{x \cdot \xi} - 1 \right) \mu_i(d\xi),$$
(24)

<sup>&</sup>lt;sup>4</sup> We set  $\psi(t, x) = \infty$ , whenever the left side of (22) is infinite. Note that for  $(t, x) \in \mathbb{R}_{\geq 0} \times (-\infty, 0]^d$  it is always guaranteed that  $\psi(t, x)$  is finite.

where  $p_i(d\xi)$  is an infinitely divisible, substochastic measure on  $\mathbb{R}^d$ , and  $f_i^{\dagger}(x)$  is a function on  $\mathbb{R}^d$ , that can be extended to an entire function on  $\mathbb{C}^d$ . The representation as  $\log \int_{\mathbb{R}^d} e^{x\cdot\xi} p_i(d\xi)$  is an immediate consequence of the Levy–Khintchine formula, and its analytic extension to exponential moments [8, Theorem 8.1, Theorem 25.17]. The second representation of  $f_i(x)$  follows directly from [8, Lemma 25.6]. To show that  $f_i(x)$  is convex, apply Hölder's inequality:

$$f_i(\lambda x + (1-\lambda)y) = \log \int_{\mathbb{R}^d} e^{\lambda x \cdot \xi} e^{(1-\lambda)y \cdot \xi} p_i(d\xi) \leq \lambda \log \int_{\mathbb{R}^d} e^{x \cdot \xi} p_i(d\xi) + (1-\lambda) \log \int_{\mathbb{R}^d} e^{y \cdot \xi} p_i(d\xi)$$
$$= \lambda f_i(x) + (1-\lambda) f_i(y)$$

for all  $x, y \in \mathbb{R}^d$  and  $\lambda \in (0, 1)$ . We show next that the domain U is order-regular. Assume that  $x \in U$ , i.e.  $f_i(x) < \infty$  for all i, and let  $y \leq x$ . Using the second representation in (24) it is clear that  $f_i^{\dagger}(y) < \infty$ . But also the integral with respect to  $\mu_i(d\xi)$  is finite, since the integrand is dominated by  $(e^{x \cdot \xi} - 1)\mathbf{1}_{|\xi| \ge 1}$ , whose integral is finite by assumption. We conclude that  $f_i(y) < \infty$ , and thus that  $y \in U$ , i.e., U is order-regular. Finally we show that f(x) is also quasi-monotone increasing. Assume that  $y \leq x$  with  $y_i = x_i$  for some  $i \in \{1, \ldots, d\}$ . It follows that

$$f_i(x) - f_i(y) = \sum_{k \neq i} (x_k - y_k) \cdot \left(\beta_k^i - \int_{\xi \in C, \, 0 < |\xi| \leq 1} \xi_k \,\mu_i(d\xi)\right) + \int_C \left(e^{x \cdot \xi} - e^{y \cdot \xi}\right) \mu_i(d\xi) \ge 0,$$

where we have made use of the admissibility conditions given above.  $\Box$ 

#### Appendix A

In this section we give a very simple proof of the convexity result [4] for ODEs in ordered normed spaces. Let E be a real normed space (not necessarily finite-dimensional) ordered by a proper closed cone C. As shown in [11], Lemma 3 holds for E if one of the following conditions is satisfied:

- 1. C has a nonempty interior,
- 2. *E* is complete,
- 3. *C* is a distance set (i.e., for every  $x \in E$ , there is  $y \in C$  such that ||x y|| is equal to the distance from x to C).

As above, let  $T \in (0, \infty)$  and I = [0, T). Theorem 1 in [4] follows immediately from the next result.

**Theorem 11.** Let *E* be an ordered normed space such that one of the above conditions is satisfied. Let  $U \subset E$  be an open convex set and  $f: I \times U \to E$  be a continuous locally Lipschitz map such that  $f(t, \cdot)$  is quasi-monotone increasing and convex on *U* for all  $t \in I$ . Let  $0 < t_0 \leq T$  and  $x_1, x_2, x_3 : [0, t_0) \to U$  be differentiable maps such that

$$\dot{x}_i(t) = f(t, x_i(t)), \quad i = 1, 2, 3,$$

and  $x_3(0) = \lambda x_1(0) + (1 - \lambda)x_2(0)$  for some  $\lambda \in [0, 1]$ . Then  $x_3(t) \leq \lambda x_1(t) + (1 - \lambda)x_2(t)$  for all  $t < t_0$ .

**Proof.** Set  $z(t) = \lambda x_1(t) + (1 - \lambda) x_2(t)$  for  $t < t_0$ . By the convexity of f,

$$\dot{z}(t) - f(t, z(t)) = \lambda \dot{x}_1(t) + (1 - \lambda) \dot{x}_2(t) - f(t, \lambda x_1(t) + (1 - \lambda) x_2(t))$$
  
$$\geq \lambda (\dot{x}_1(t) - f(t, x_1(t))) + (1 - \lambda) (\dot{x}_2(t) - f(t, x_2(t))) = 0 = \dot{x}_3(t) - f(t, x_3(t))$$

for all  $t < t_0$ . Since  $z(0) = x_3(0)$ , the above-mentioned analogue of Lemma 3 for normed spaces implies that  $z(t) \ge x_3(t)$ . The theorem is proved.  $\Box$ 

#### References

- [1] D. Duffie, D. Filipović, W. Schachermayer, Affine processes and applications in finance, Ann. Appl. Probab. 13 (3) (2003) 984–1053.
- [2] P. Hartman, Ordinary Differential Equations, John Wiley & Sons, Inc., New York, 1964.
- [3] G. Herzog, Quasimonotonicity, Nonlinear Anal. 47 (4) (2001) 2213-2224.
- [4] G. Herzog, R. Lemmert, A note on convex dependence of solutions of IVPs relative to initial values, Nonlinear Anal. 68 (12) (2008) 3841-3844.
- [5] V. Lakshmikantham, N. Shahzad, W. Walter, Convex dependence of solutions of differential equations in a Banach space relative to initial data, Nonlinear Anal. 27 (12) (1996) 1351–1354.
- [6] J. Lamperti, Continuous state branching processes, Bull. Amer. Math. Soc. 73 (1967) 382–386.
- [7] A.V. Sarychev, On equation  $x^{(n+1)} = f(t, x, x, ..., x^{(n)})$  with convex quasi-monotone right-hand side, Nonlinear Anal. 27 (7) (1996) 785–792.
- [8] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge Stud. Adv. Math., vol. 68, Cambridge University Press, Cambridge, 1999, translated from the 1990 Japanese original, revised by the author.
- [9] R. Uhl, Ordinary differential inequalities and quasimonotonicity in ordered topological vector spaces, Proc. Amer. Math. Soc. 126 (7) (1998) 1999–2003.
- [10] V.S. Vladimirov, Generalized Functions in Mathematical Physics, Mir, Moscow, 1979, translated from the second Russian edition by G. Yankovskii. [11] P. Volkmann, Über die Invarianz konvexer Mengen und Differentialungleichungen in einem normierten Raume, Math. Ann. 203 (1973) 201–210.
- [12] C. Zălinescu, Convex Analysis in General Vector Spaces, World Scientific Publishing, River Edge, NJ, 2002.