On convexity of solutions of ordinary differential equations

M. Keller-Ressel ${ }^{\text {a }}$, E. Mayerhofer ${ }^{\text {b,c, }}$, A.G. Smirnov ${ }^{\text {d, } *, 2}$
${ }^{\text {a }}$ ETH Zürich, Departement Mathematik, HG G 50.1, Rämistrasse 101, 8092 Zürich, Switzerland
${ }^{\mathrm{b}}$ Vienna Institute of Finance, University of Vienna, Austria
c Vienna University of Economics and Business Administration, Heiligenstädterstrasse 46-48, 1190 Vienna, Austria
${ }^{\text {d }}$ I.E. Tamm Theory Department, P.N. Lebedev Physical Institute, Leninsky Prospect 53, Moscow 119991, Russia

ARTICLE INFO

Article history:

Received 10 June 2009
Available online 10 March 2010
Submitted by R. Kiesel

Keywords:

Initial value problem
Convexity
Ordered linear spaces
Quasi-monotonicity

Abstract

We prove a result on the convex dependence of solutions of ordinary differential equations on an ordered finite-dimensional real vector space with respect to the initial data.

(C) 2010 Elsevier Inc. All rights reserved.

1. Introduction

Let E be a finite-dimensional real vector space ordered by a closed proper cone ${ }^{3} C$.
Let $0<T \leqslant \infty, U \subset E$ be a nonempty open set, and $f:[0, T) \times U \rightarrow E$ be a locally Lipschitz continuous map. For any $x \in U$, the differential equation

$$
\begin{equation*}
\dot{\psi}(t)=f(t, \psi(t)) \tag{1}
\end{equation*}
$$

has a unique maximally extended solution $\psi_{f}(\cdot, x)$ satisfying $\psi_{f}(0, x)=x$. This solution is defined on a semi-interval $\left[0, \theta_{f}(x)\right.$), where $0<\theta_{f}(x) \leqslant T$. For any $t \geqslant 0$, we set $\mathcal{D}_{f}(t)=\left\{x \in U: t<\theta_{f}(x)\right\}$.

Let $D \subset E$. A map $g: D \rightarrow E$ is called quasi-monotone increasing [11] if the implication

$$
x \leqslant y, \quad l(x)=l(y) \quad \Longrightarrow \quad l(g(x)) \leqslant l(g(y))
$$

holds for all $x, y \in D$ and $l \in C^{*}$, where $C^{*}=\left\{l \in E^{*}: l(x) \geqslant 0\right.$ for any $\left.x \in C\right\}$ is the dual cone of C (E^{*} is the dual space of E). A map $g: D \rightarrow E$ is called convex if D is convex and

$$
\begin{equation*}
g(\lambda x+(1-\lambda) y) \leqslant \lambda g(x)+(1-\lambda) g(y) \tag{2}
\end{equation*}
$$

for all $x, y \in D$ and $\lambda \in[0,1]$. A set $D \subset E$ is said to be order regular if the relations $x \in D$ and $y \leqslant x$ imply that $y \in D$.

[^0]Our aim is to prove the next theorem.

Theorem 1. Let $U \subset E$ be a nonempty order-regular convex open set. Let $0<T \leqslant \infty$ and $f:[0, T) \times U \rightarrow E$ be a continuous map. If $f(t, \cdot)$ is quasi-monotone increasing and convex for all $t \in[0, T)$, then $\mathcal{D}_{f}(t)$ is convex for any $t \in[0, T)$, and $\psi_{f}(t, \cdot)$ is convex thereon.

In the formulation of Theorem 1, we do not require the local Lipschitz continuity of f because the latter is ensured by continuity and convexity (see Lemma 2 below). Note that the quasi-monotonicity of f is a sufficient but not necessary condition for Theorem 1 to hold. For example, if $f(t, x)=f(x)$ is a linear map, then $\psi_{f}(t, x)$ is linear and hence convex in x, but f may be not quasi-monotone increasing in this case. On the other hand, at least in the autonomous case $f(t, x)=f(x)$, the convexity of f is necessary to maintain the validity of Theorem 1 . Indeed, let f be locally Lipschitz, $x, y \in U$ and $z=\lambda x+(1-\lambda) y$ with $0 \leqslant \lambda \leqslant 1$. Suppose $\mathcal{D}_{f}(t)$ is convex for any $t \in[0, T)$, and $\psi_{f}(t, \cdot)$ is convex thereon. Then we have

$$
\frac{\psi_{f}(t, z)-z}{t} \leqslant \lambda \frac{\psi_{f}(t, x)-x}{t}+(1-\lambda) \frac{\psi_{f}(t, y)-y}{t}
$$

for t small enough. Passing to the limit $t \rightarrow 0$ in this inequality, we get $f(z) \leqslant \lambda f(x)+(1-\lambda) f(y)$, i.e., f is convex.
The question of convex dependence of solutions of (1) on initial data was first addressed in [7], and then pursued in $[5,4]$. In the last two papers, E was assumed to be an ordered Banach space and it was shown (for differentiable f in [5] and for general locally Lipschitz continuous f in [4]) that $\psi_{f}(t, \cdot)$ is convex on any convex domain contained in $\mathcal{D}_{f}(t)$ (in Appendix A to this paper, we give a very simple proof of this result). Here, we strengthen this result in the finitedimensional case by proving the convexity of $\mathcal{D}_{f}(t)$. Moreover, keeping in mind possible applications (see, e.g., an example in Section 5), we consider arbitrary open convex order-regular domains U rather than the case $U=E$ studied in $[5,4]$.

The paper is organized as follows. In Section 2, we show that the conditions imposed on f in Theorem 1 ensure its local Lipschitz continuity. In Section 3, we prove Theorem 1 in the case, where f is differentiable in the second variable. For this, we combine the technique developed in [5] with the well-known "blow-up property" of ODEs in finite dimensions: as $t \rightarrow \theta_{f}(x)$ for some $x \in U$, the maximal solution $\psi_{f}(t, x)$ of (1) must approach the boundary of the domain $[0, T) \times U$ on which f is defined. In Section 4, we get rid of the differentiability assumption and prove Theorem 1 in the general case. Finally, in Section 5, we illustrate Theorem 1 by a concrete example of ODEs naturally arising in the theory of stochastic processes.

2. Convexity and local Lipschitz continuity

Let $0<T \leqslant \infty$ and $\|\cdot\|$ be a norm on E. Let $U \subset E$ be a nonempty open set. Recall that a map $f:[0, T) \times U \rightarrow E$ is called locally Lipschitz if

$$
\begin{equation*}
L_{t, K}(f)=\sup _{0 \leqslant \tau \leqslant t, x_{1}, x_{2} \in K, x_{1} \neq x_{2}} \frac{\left\|f\left(\tau, x_{2}\right)-f\left(\tau, x_{1}\right)\right\|}{\left\|x_{2}-x_{1}\right\|}<\infty \tag{3}
\end{equation*}
$$

for any compact set $K \subset U$ and any $t \in[0, T)$.
Lemma 2. Let $f:[0, T) \times U \rightarrow E$ be a continuous map such that $f(t, \cdot)$ is convex on U for all $t \in[0, T)$. Then f is locally Lipschitz continuous.

Proof. Since C is closed and $C \cap(-C)=\{0\}$, the set $C \backslash\{0\}$ is contained in an open half-space of E. This implies that the dual cone C^{*} has a nonempty interior (see, e.g., [10, Section I.4.4, Lemma 1]). Let $l_{1}, \ldots, l_{n} \in C^{*}$ be a basis of E^{*}. Let the real-valued functions f_{1}, \ldots, f_{n} on $[0, T) \times U$ be defined by the relations $f_{j}(t, x)=l_{j}(f(t, x))$. Clearly, f_{j} are continuous on $[0, T) \times U$ and $f_{j}(t, \cdot)$ are convex on U for any $t \in[0, T)$. Let $e_{1}, \ldots, e_{n} \in E$ be the dual basis of $l_{1}, \ldots, l_{n}: l_{j}\left(e_{k}\right)=\delta_{j k}$. Then we have

$$
f(t, x)=\sum_{j=1}^{n} f_{j}(t, x) e_{j}
$$

Hence, it remains to prove that f_{j} are locally Lipschitz continuous, i.e., satisfy (3) with $\|\cdot\|$ in the numerator replaced with $|\cdot|$. Clearly, it suffices to check (3) in the case $K=B_{\chi, r}$, where $B_{\chi, r} \subset U$ is a closed ball of radius $r>0$ centered at $x \in U$. Let $r^{\prime}>r$ be such that $B_{x, r^{\prime}} \subset U$. By the continuity of f_{j}, there is $m>0$ such that $\left|f_{j}(\tau, x)\right| \leqslant m$ for any $\tau \in[0, t]$ and $x \in B_{x, r^{\prime}}$. By [12, Corollary 2.2.12], we have

$$
\left|f_{j}\left(\tau, x_{2}\right)-f_{j}\left(\tau, x_{1}\right)\right| \leqslant \frac{2 m}{r^{\prime}} \frac{r^{\prime}+r}{r^{\prime}-r}\left\|x_{2}-x_{1}\right\|
$$

for any $x_{1}, x_{2} \in B_{x, r}$ and $\tau \in[0, t]$. The lemma is proved.

3. The differentiable case

In the rest of the paper, we assume that $T \in(0, \infty]$ is fixed and set $I=[0, T)$.
Our consideration is essentially based on the next comparison result that is a particular case of a more general theorem proved by Volkmann [11] in the setting of normed vector spaces.

Lemma 3. Let $U \subset E$ be an open set. Let $f: I \times U \rightarrow E$ be a continuous locally Lipschitz map such that $f(t, \cdot)$ is quasi-monotone increasing on U for all $t \in I$. Let $0<t_{0} \leqslant T$ and $x, y:\left[0, t_{0}\right) \rightarrow U$ be differentiable maps such that $x(0) \leqslant y(0)$ and

$$
\dot{x}(t)-f(t, x(t)) \leqslant \dot{y}(t)-f(t, y(t)), \quad 0 \leqslant t<t_{0}
$$

Then we have $x(t) \leqslant y(t)$ for all $t \in\left[0, t_{0}\right)$.

In fact, this comparison statement is essentially equivalent to quasi-monotonicity [9], but the above formulation is enough for our purposes. The next lemma is a simple generalization of a well-known result for scalar-valued convex functions.

Lemma 4. Let $U \subset E$ be an open convex set. A differentiable function $g: U \rightarrow E$ is convex on U if and only if

$$
\begin{equation*}
g(y)-g(x) \geqslant g^{\prime}(x)(y-x), \quad x, y \in U \tag{4}
\end{equation*}
$$

Proof. Let $h=y-x$ and $\lambda \in(0,1)$. If g is convex on U, then

$$
g(x+\lambda h)=g((1-\lambda) x+\lambda y) \leqslant(1-\lambda) g(x)+\lambda g(y)
$$

This implies that

$$
\frac{g(x+\lambda h)-g(x)}{\lambda} \leqslant g(y)-g(x)
$$

In view of the closedness of C, passing to the limit $\lambda \rightarrow 0$ yields (4). Conversely, let (4) hold and $z=\lambda x+(1-\lambda) y$. Then we have

$$
g(x)-g(z) \geqslant-(1-\lambda) g^{\prime}(z) h, \quad g(y)-g(z) \geqslant \lambda g^{\prime}(z) h
$$

Multiplying the left and right estimates by λ and $1-\lambda$ respectively and summing the resulting inequalities, we obtain (2). The lemma is proved.

For differentiable functions, we have the following characterization of quasi-monotonicity [3, Theorem 5].
Lemma 5. Let $U \subset E$ be open and convex. A differentiable function $g: U \rightarrow E$ is quasi-monotone increasing on U if and only if the linear map $g^{\prime}(x): E \rightarrow E$ is quasi-monotone increasing for any $x \in U$.

Suppose $f: I \times U \rightarrow E$ is a continuous map such that $f(t, \cdot)$ is differentiable on U for all $t \in I$ and the derivative $f^{\prime}(t, \cdot)$ is continuous on $I \times U$ (here and below, $f^{\prime}(t, \cdot)$ denotes the derivative of the map $x \rightarrow f(x, t)$ with respect to x for fixed t). Then f is locally Lipschitz, and we have

$$
\begin{equation*}
L_{t, K}(f)=\sup _{0 \leqslant \tau \leqslant t, x \in K}\left\|f^{\prime}(\tau, x)\right\| \tag{5}
\end{equation*}
$$

for any $t \in I$, and for any compact convex set $K \subset U$ with a nonempty interior. Given $x \in U$ and $0 \leqslant t<\theta_{f}(x)$, we define the linear map $B^{x}(t): E \rightarrow E$ by setting

$$
\begin{equation*}
B^{x}(t)=f^{\prime}\left(t, \psi_{f}(t, x)\right) \tag{6}
\end{equation*}
$$

For $x \in U$ and $y \in E$, we denote by $w_{y}^{x}(t)$ the solution of the initial value problem

$$
\begin{equation*}
\dot{w}_{y}^{x}(t)=B^{x}(t) w_{y}^{x}(t), \quad 0 \leqslant t<\theta_{f}(x), \quad w_{y}^{x}(0)=y \tag{7}
\end{equation*}
$$

Clearly, w_{y}^{x} is linear in y. For the norm of w_{y}^{x}, we have the standard bound (see, e.g., [2, Chapter IV, Lemma 4.1])

$$
\begin{equation*}
\left\|w_{y}^{x}(t)\right\| \leqslant\|y\| \exp \left(\int_{0}^{t}\left\|B^{x}(\tau)\right\| d \tau\right), \quad 0 \leqslant t<\theta_{f}(x) \tag{8}
\end{equation*}
$$

Lemma 6. Let $U \subset E$ be a convex open set and $f: I \times U \rightarrow E$ be a continuous map such that $f(t, \cdot)$ is differentiable on U for all $t \in I$ and the derivative $f^{\prime}(t, \cdot)$ is continuous on $I \times U$. Suppose $f(t, \cdot)$ is convex and quasi-monotone increasing on U for all $t \in I$. For any $x, y \in U$, we have

$$
\begin{equation*}
w_{y-x}^{x}(t) \leqslant \psi_{f}(t, y)-\psi_{f}(t, x) \leqslant w_{y-x}^{y}(t), \quad 0 \leqslant t<t_{0} \tag{9}
\end{equation*}
$$

where $t_{0}=\min \left(\theta_{f}(x), \theta_{f}(y)\right)$.
Proof. It suffices to prove the left inequality in (9) because it implies the right one after interchanging x and y. Let $s(t)=$ $\psi_{f}(t, y)-\psi_{f}(t, x)$. By Lemma 4, we have

$$
\dot{s}(t)=f\left(t, \psi_{f}(t, y)\right)-f\left(t, \psi_{f}(t, x)\right) \geqslant B^{x}(t) s(t), \quad 0 \leqslant t<t_{0}
$$

By Lemma 5, the map $B^{x}(t)$ is quasi-monotone increasing for any $t \in\left[0, t_{0}\right)$ and, therefore, the desired inequality follows from (7) and Lemma 3. The lemma is proved.

Since E is finite-dimensional, the closed ordering cone C is normal. In terms of the partial order induced by C, this means that there exists $\mu_{C}>0$ such that the implication

$$
\begin{equation*}
0 \leqslant x \leqslant y \quad \Longrightarrow \quad\|x\| \leqslant \mu_{C}\|y\| \tag{10}
\end{equation*}
$$

holds for all $x, y \in E$.
If f is continuously differentiable in the second variable, Theorem 1 follows from the next lemma.
Lemma 7. Let U and f be as in Lemma 6 and suppose in addition that U is order-regular. Let $x, y \in U, \lambda \in[0,1]$, and $z=\lambda x+(1-\lambda) y$. Let $t_{0}=\min \left(\theta_{f}(x), \theta_{f}(y)\right)$. Then we have $\theta_{f}(z) \geqslant t_{0}$ and

$$
\begin{equation*}
\psi_{f}(t, z) \leqslant \lambda \psi_{f}(t, x)+(1-\lambda) \psi_{f}(t, y), \quad 0 \leqslant t<t_{0} \tag{11}
\end{equation*}
$$

Let $0 \leqslant t<t_{0}$ and $K \subset U$ be a compact convex set with a nonempty interior such that $\psi_{f}(\tau, x)$ and $\psi_{f}(\tau, y)$ lie in K for all $\tau \in[0, t]$. Then

$$
\begin{equation*}
\left\|\psi_{f}(t, z)\right\| \leqslant R_{K}\left[1+\mu_{C} e^{L_{t, K}(f) t}\right] \tag{12}
\end{equation*}
$$

where $R_{K}=\sup _{\xi \in K}\|\xi\|$.
Proof. Let $\tau_{0}=\min \left(\theta_{f}(x), \theta_{f}(y), \theta_{f}(z)\right)$. Since $z-x=(1-\lambda)(y-x)$ and $z-y=-\lambda(y-x)$, it follows from Lemma 6 that

$$
\begin{aligned}
& (1-\lambda) w_{y-x}^{x}(t) \leqslant \psi_{f}(t, z)-\psi_{f}(t, x) \leqslant(1-\lambda) w_{y-x}^{z}(t), \\
& -\lambda w_{y-x}^{y}(t) \leqslant \psi_{f}(t, z)-\psi_{f}(t, y) \leqslant-\lambda w_{y-x}^{z}(t)
\end{aligned}
$$

for any $0 \leqslant t<\tau_{0}$. Multiplying the first and second inequalities by λ and $1-\lambda$ respectively and adding the results, we get

$$
\begin{equation*}
-\lambda(1-\lambda) v(t) \leqslant \psi_{f}(t, z)-u(t) \leqslant 0, \quad 0 \leqslant t<\tau_{0}, \tag{13}
\end{equation*}
$$

where $u, v:\left[0, t_{0}\right) \rightarrow E$ are given by

$$
\begin{equation*}
u(t)=\lambda \psi_{f}(t, x)+(1-\lambda) \psi_{f}(t, y), \quad v(t)=w_{y-x}^{y}(t)-w_{y-x}^{x}(t) \tag{14}
\end{equation*}
$$

In view of (10), it follows from (13) that

$$
\begin{equation*}
\left\|\psi_{f}(t, z)\right\| \leqslant\|u(t)\|+\left\|\psi_{f}(t, z)-u(t)\right\| \leqslant\|u(t)\|+\mu_{c} \lambda(1-\lambda)\|v(t)\|, \quad 0 \leqslant t<\tau_{0} . \tag{15}
\end{equation*}
$$

Suppose that $\tau_{0}<t_{0}$. Then we obviously have $\tau_{0}=\theta_{f}(z)$. Since both u and v are continuous on [$0, t_{0}$), it follows from (15) that $\psi_{f}(t, z)$ is bounded on [$0, \theta_{f}(z)$). This implies that we can choose a sequence $t_{k} \uparrow \tau_{0}$ such that $\psi_{f}\left(t_{k}, z\right)$ converge to some $x_{0} \in E$ as $k \rightarrow \infty$. By (13), we have $\psi_{f}\left(t_{k}, z\right) \leqslant u\left(t_{k}\right)$ for all k. As C is closed, it follows that $x_{0} \leqslant u\left(\tau_{0}\right)$. We hence have $x_{0} \in U$ because U is order-regular and $u\left(\tau_{0}\right) \in U$ by the convexity of U. On the other hand, we cannot have $x_{0} \in U$ because $\psi_{f}(t, z)$ is a maximal solution and must approach the boundary of $I \times U$ as $t \rightarrow \theta_{f}(z)$ (see [2, Chapter II, Theorem 3.1]). This contradiction shows that

$$
\begin{equation*}
\tau_{0}=t_{0} \tag{16}
\end{equation*}
$$

Combining this relation with (13) and (14), we obtain (11). Let $t \in\left[0, t_{0}\right.$) and $K \subset U$ be a convex compact set with a nonempty interior such that both $\psi_{f}(\tau, x)$ and $\psi_{f}(\tau, y)$ lie in K for any $\tau \in[0, t]$. It follows from (14), (8), (6), and (5) that

$$
\|v(t)\| \leqslant 2\|y-x\| e^{L_{t, K}(f) t} \leqslant 4 R_{K} e^{L_{t, K}(f) t}
$$

In view of (16), inserting this estimate and the obvious inequalities $\|u(t)\| \leqslant R_{K}$ and $\lambda(1-\lambda) \leqslant 1 / 4$ in (15) yields (12). The lemma is proved.

4. Proof of Theorem 1

To pass from continuously differentiable to arbitrary continuous functions, we shall need some results concerning the continuous dependence of solutions of (1) on the map f. Recall that Eq. (1) possesses a maximal solution satisfying a given initial condition if the function $f: I \times U \rightarrow E$ is continuous. Note however that such a solution may be not unique if f is not locally Lipschitz continuous.

The next lemma easily follows from Theorem 3.2 in Chapter II of [2].
Lemma 8. Let $U \subset E$ be open. Let f, f_{1}, f_{2}, \ldots be continuous maps from $I \times U$ to E. Suppose f is locally Lipschitz and f_{n} converge to f uniformly on all compact subsets of $I \times U$. Let $\psi_{n} \in C^{1}\left(\left[0, \theta_{n}\right), U\right)$ be maximal solutions of

$$
\begin{equation*}
\dot{\psi}_{n}(t)=f_{n}\left(t, \psi_{n}(t)\right) \tag{17}
\end{equation*}
$$

such that $\psi_{n}(0)$ converge to some $u \in U$ as $n \rightarrow \infty$. Then we have

$$
\begin{equation*}
\theta_{f}(u) \leqslant \underline{\lim } \theta_{n} . \tag{18}
\end{equation*}
$$

Let $0 \leqslant a<\theta_{f}(u)$ and n_{0} be such that $\theta_{n}>a$ for $n>n_{0}$. Then the sequence $\psi_{n_{0}+k}(t), k=1,2, \ldots$, converges to $\psi_{f}(t, u)$ uniformly on $[0, a]$ as $k \rightarrow \infty$.

Lemma 9. Let $U \subset E$ be open. Let f, f_{1}, f_{2}, \ldots be continuous maps from $I \times U$ to E. Suppose f is locally Lipschitz and f_{n} converge to f uniformly on compact subsets of $I \times U$. Let $0<a<T$ and $\psi_{n} \in C^{1}([0, a], U)$ be solutions of (17) such that $\psi_{n}(0)$ converge to some $u \in U$ as $n \rightarrow \infty$. If for some compact set $K \subset U, \psi_{n}(t) \in K$ for all $t \in[0, a]$, then $\theta_{f}(u)>a$, and we have $\psi_{n}(t) \rightarrow \psi_{f}(t, u)$ and $\dot{\psi}_{n}(t) \rightarrow \dot{\psi}_{f}(t, u)$ uniformly on $[0, a]$.

Proof. Since f_{n} are uniformly bounded on the compact set $Q=[0, a] \times K$, Eq. (17) implies that $\dot{\psi}_{n}$ are uniformly bounded. Hence, ψ_{n} are uniformly equicontinuous. By the Arzelà-Ascoli theorem, it follows that the sequence ψ_{n} is relatively compact in $C[0, a]$. Let $\psi_{n_{k}}$ be a subsequence of ψ_{n} uniformly converging to a function ψ. Obviously, $\psi(0)=u$ and $\psi(t) \in K$ for $t \in[0, a]$. Fix $\varepsilon>0$. Because f is uniformly continuous on Q, there exists a $\delta>0$ such that $\left\|f\left(t, x_{1}\right)-f\left(t, x_{2}\right)\right\|<\varepsilon / 2$ for any $\left(t, x_{i}\right) \in Q$ such that $\left\|x_{2}-x_{1}\right\|<\delta$. Let k_{0} be such that $\left\|\psi_{n_{k}}(t)-\psi(t)\right\|<\delta$ and $\left\|f_{n_{k}}(t, x)-f(t, x)\right\|<\varepsilon / 2$ for all $(t, x) \in Q$ and $k \geqslant k_{0}$. Then we have

$$
\begin{aligned}
\left\|f_{n_{k}}\left(t, \psi_{n_{k}}(t)\right)-f(t, \psi(t))\right\| \leqslant & \left\|f_{n_{k}}\left(t, \psi_{n_{k}}(t)\right)-f\left(t, \psi n_{n_{k}}(t)\right)\right\| \\
& +\left\|f\left(t, \psi_{n_{k}}(t)\right)-f(t, \psi(t))\right\|<\varepsilon, \quad t \in[0, a]
\end{aligned}
$$

for any $k \geqslant k_{0}$, and in view of (17), the sequence $\dot{\psi}_{n_{k}}(t)$ converges to $f(t, \psi(t))$ uniformly on [$0, a$]. On the other hand, the uniform convergence of $\dot{\psi}_{n_{k}}$ implies that ψ is continuously differentiable and $\dot{\psi}$ is the limit of $\dot{\psi}_{n_{k}}$. This means that ψ satisfies (1). Since f is locally Lipschitz, this implies that ψ is the restriction of $\psi_{f}(\cdot, u)$ to $[0, a]$ and, therefore, $\theta_{f}(u)>a$. We thus see that all uniformly converging subsequences of ψ_{n} have the same limit. As the sequence ψ_{n} is relatively compact, we conclude that $\psi_{n}(t) \rightarrow \psi_{f}(t, u)$ uniformly on $[0, a]$. Replacing $\psi_{n_{k}}$ with ψ_{n} in the above proof, we obtain the uniform convergence of $\dot{\psi}_{n}$. The lemma is proved.

Proof of Theorem 1. For $\kappa>0$, we set $U(\kappa)=\left\{\xi \in U: B_{\xi, \kappa} \subset U\right\}$, where $B_{\xi, \kappa}$ is the closed ball of radius κ centered at ξ. Clearly, the set $U(\kappa)$ is open, convex, and order-regular for any $\kappa>0$. Let $t \in I, x, y \in \mathcal{D}_{f}(t)$ and $z=\lambda x+(1-\lambda) y$ for some $\lambda \in[0,1]$. We have to show that $\theta_{f}(z)>t$ and inequality (11) holds. Let $S \subset U$ be a convex compact set whose interior contains $\psi_{f}(\tau, x)$ and $\psi_{f}(\tau, y)$ for all $\tau \in[0, t]$. Choose $\kappa>0$ such that $S \subset U(\kappa)$.

Let ρ be a nonnegative smooth function on E such that $\rho(\xi)=0$ for $\|\xi\|>1$ and $\int_{E} \rho(\xi) d \xi=1$. For any positive $\varepsilon \leqslant \kappa$, we define the map $f_{\varepsilon}: I \times U(\kappa) \rightarrow E$ by setting

$$
f_{\varepsilon}(\tau, \xi)=\int_{E} f(\tau, \xi-\varepsilon \eta) \rho(\eta) d \eta
$$

Let ϕ denote the restriction of f to $I \times U(\kappa)$. Clearly, f_{ε} are smooth in the second variable and converge to ϕ uniformly on compact subsets of $I \times U(\kappa)$ as $\varepsilon \rightarrow 0$. It is straightforward to check that f_{ε} are convex quasi-monotone increasing maps on $U(\kappa)$ such that

$$
\begin{equation*}
L_{t, S}\left(f_{\varepsilon}\right) \leqslant L_{t, S_{\kappa}}(f) \tag{19}
\end{equation*}
$$

where S_{κ} is the closed κ-neighborhood of S. Our choice of κ ensures that $t<\min \left(\theta_{\phi}(x), \theta_{\phi}(y)\right)$. Let $t_{\varepsilon}=\min \left(\theta_{f_{\varepsilon}}(x), \theta_{f_{\varepsilon}}(y)\right)$. By Lemma 8 , there exists $0<\varepsilon_{0} \leqslant \kappa$ such that $t_{\varepsilon}>t$ for any $0<\varepsilon \leqslant \varepsilon_{0}$ and $\psi_{f_{\varepsilon}}(\cdot, x) \rightarrow \psi_{f}(\cdot, x)$ and $\psi_{f_{\varepsilon}}(\cdot, y) \rightarrow \psi_{f}(\cdot, y)$ uniformly on [$0, t$] as $\varepsilon_{0} \geqslant \varepsilon \rightarrow 0$. Decreasing ε_{0} if necessary, we can ensure that $\psi_{f_{\varepsilon}}(\tau, x)$ and $\psi_{f_{\varepsilon}}(\tau, y)$ lie in S for all $\tau \in[0, t]$ and $\varepsilon \in\left(0, \varepsilon_{0}\right]$. It follows from Lemma 7 that $\theta_{f_{\varepsilon}}(z) \geqslant t_{\varepsilon}>t$ and

$$
\begin{align*}
& \psi_{f_{\varepsilon}}(\tau, z) \leqslant \lambda \psi_{f_{\varepsilon}}(\tau, x)+(1-\lambda) \psi_{f_{\varepsilon}}(\tau, y), \tag{20}\\
& \left\|\psi_{f_{\varepsilon}}(\tau, z)\right\| \leqslant R_{S}\left[1+\mu_{C} e^{t L_{t, S_{K}}(f)}\right] \tag{21}
\end{align*}
$$

for any $0 \leqslant \tau \leqslant t$ and $0<\varepsilon \leqslant \varepsilon_{0}$. Let $r>0$ and $K=(S-C) \cap\{\xi \in E:\|\xi\| \leqslant r\}$. Since S is compact and C is closed, $S-C$ is closed and, therefore, K is compact. The order-regularity of $U(\kappa)$ implies that $K \subset U(\kappa)$. By (20) and (21), we have $\psi_{f_{\varepsilon}}(\tau, z) \in K$ for all $0 \leqslant \tau \leqslant t$ if r is large enough. It follows from Lemma 9 that $\theta_{\phi}(z)>t$ and $\psi_{f_{\varepsilon}}(\cdot, z) \rightarrow \psi_{\phi}(\cdot, z)$ uniformly on [0,t]. Obviously, $\mathcal{D}_{\phi} \subset \mathcal{D}_{f}$ and ψ_{ϕ} is the restriction of ψ_{f} to \mathcal{D}_{ϕ}. Hence $\theta_{f}(z) \geqslant \theta_{\phi}(z)>t$ and passing to the limit $\varepsilon \rightarrow 0$ in inequality (20) for $\tau=t$ yields (11). The theorem is proved.

5. Example

As an illustration, we give an example of a system of ODEs that arises naturally in the theory of stochastic processes and satisfies all conditions of Theorem 1 . We consider a so-called affine process evolving on the state space $C:=\mathbb{R}_{\geqslant 0}^{d}$ (see [1]). Such a process $X=\left(X_{t}\right)_{t \geqslant 0}$, can be regarded as a multi-type extension of the singe-type continuously branching process of [6], which arises as a continuous-time limit of a classical Galton-Watson branching process. X is defined as a stochastically continuous, time-homogeneous Markov process starting at $X_{0} \in C$, with the property that the moment generating function is of the form

$$
\begin{equation*}
\mathbb{E}\left[e^{x \cdot X_{t}}\right]=e^{\psi(t, x) \cdot X_{0}} \tag{22}
\end{equation*}
$$

for all $(t, x) \in \mathbb{R}_{\geqslant 0} \times \mathbb{R}^{d}$, and where $\psi: \mathbb{R}_{\geqslant 0} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d} \cup\{\infty\} .{ }^{4}$. We assume that the time-derivative of $\psi(t, x)$ at $t=0$,

$$
f(x):=\left.\frac{\partial}{\partial t} \psi(t, x)\right|_{t=0}
$$

exists and is a continuous function on the set $U=\left\{x \in \mathbb{R}^{d}: f(x)<\infty\right\}$. In this case the map $\psi(t, x)$ satisfies the following differential equation:

$$
\begin{equation*}
\frac{\partial}{\partial t} \psi(t, x)=f(\psi(t, x)), \quad \psi(0, x)=x \tag{23}
\end{equation*}
$$

Moreover, the components of the map $f(x)$ are of so-called Levy-Khintchine type (cf. [8, Theorem 8.1]):

$$
f_{i}(x)=\frac{\alpha_{i}}{2} x_{i}^{2}+x \cdot \beta^{i}-c_{i}+\int_{c \backslash\{0\}}\left(e^{x \cdot \xi}-1-x \cdot \xi \mathbf{I}_{|\xi| \leqslant 1}\right) \mu_{i}(d \xi)
$$

with I, the indicator function, where, for all $i \in\{1, \ldots, d\}$,

- $\alpha_{i} \in \mathbb{R}_{\geqslant 0}$;
- $\beta^{i} \in \mathbb{R}^{d}$ with $\beta_{k}^{i}-\int_{|\xi| \leqslant 1} \xi_{k} \mu_{i}(d \xi) \geqslant 0$ for all $k \neq i$;
- $c_{i} \in \mathbb{R} \geqslant 0$;
- $\mu_{i}(d \xi)$ are Borel measures on $C \backslash\{0\}$ assigning finite mass to the set $\{\xi \in C:|\xi|>1\}$ and satisfying the integrability condition

$$
\int_{\xi \in C, 0<|\xi| \leqslant 1}\left(\sum_{k \neq i}\left|\xi_{k}\right|+\left|\xi_{i}\right|^{2}\right) \mu_{i}(d \xi)<\infty
$$

on its complement.
The above conditions are both necessary and sufficient for the existence of X and referred to as admissibility conditions (see [1]).

In the following we consider the ordering on \mathbb{R}^{d} induced by the cone $\mathbb{R}_{\geqslant 0}^{d}$.
Proposition 10. The domain U is convex and order-regular and the map $f(x)$ is convex and quasi-monotone increasing thereon.
Proof. We make use of the following representations of $f_{i}(x)$:

$$
\begin{equation*}
f_{i}(x)=\log \int_{\mathbb{R}^{d}} e^{x \cdot \xi} p_{i}(d \xi)=f_{i}^{\dagger}(x)+\int_{C \backslash\{0\},|\xi|>1}\left(e^{x \cdot \xi}-1\right) \mu_{i}(d \xi), \tag{24}
\end{equation*}
$$

[^1]where $p_{i}(d \xi)$ is an infinitely divisible, substochastic measure on \mathbb{R}^{d}, and $f_{i}^{\dagger}(x)$ is a function on \mathbb{R}^{d}, that can be extended to an entire function on \mathbb{C}^{d}. The representation as $\log \int_{\mathbb{R}^{d}}{ }^{x \cdot \xi} p_{i}(d \xi)$ is an immediate consequence of the Levy-Khintchine formula, and its analytic extension to exponential moments [8, Theorem 8.1, Theorem 25.17]. The second representation of $f_{i}(x)$ follows directly from [8, Lemma 25.6]. To show that $f_{i}(x)$ is convex, apply Hölder's inequality:
\[

$$
\begin{aligned}
f_{i}(\lambda x+(1-\lambda) y) & =\log \int_{\mathbb{R}^{d}} e^{\lambda x \cdot \xi} e^{(1-\lambda) y \cdot \xi} p_{i}(d \xi) \leqslant \lambda \log \int_{\mathbb{R}^{d}} e^{x \cdot \xi} p_{i}(d \xi)+(1-\lambda) \log \int_{\mathbb{R}^{d}} e^{y \cdot \xi} p_{i}(d \xi) \\
& =\lambda f_{i}(x)+(1-\lambda) f_{i}(y)
\end{aligned}
$$
\]

for all $x, y \in \mathbb{R}^{d}$ and $\lambda \in(0,1)$. We show next that the domain U is order-regular. Assume that $x \in U$, i.e. $f_{i}(x)<\infty$ for all i, and let $y \leqslant x$. Using the second representation in (24) it is clear that $f_{i}^{\dagger}(y)<\infty$. But also the integral with respect to $\mu_{i}(d \xi)$ is finite, since the integrand is dominated by $\left(e^{x \cdot \xi}-1\right) \mathbf{1}_{|\xi| \geqslant 1}$, whose integral is finite by assumption. We conclude that $f_{i}(y)<\infty$, and thus that $y \in U$, i.e., U is order-regular. Finally we show that $f(x)$ is also quasi-monotone increasing. Assume that $y \leqslant x$ with $y_{i}=x_{i}$ for some $i \in\{1, \ldots, d\}$. It follows that

$$
f_{i}(x)-f_{i}(y)=\sum_{k \neq i}\left(x_{k}-y_{k}\right) \cdot\left(\beta_{k}^{i}-\int_{\xi \in C, 0<|\xi| \leqslant 1} \xi_{k} \mu_{i}(d \xi)\right)+\int_{C}\left(e^{x \cdot \xi}-e^{y \cdot \xi}\right) \mu_{i}(d \xi) \geqslant 0
$$

where we have made use of the admissibility conditions given above.

Appendix A

In this section we give a very simple proof of the convexity result [4] for ODEs in ordered normed spaces. Let E be a real normed space (not necessarily finite-dimensional) ordered by a proper closed cone C. As shown in [11], Lemma 3 holds for E if one of the following conditions is satisfied:

1. C has a nonempty interior,
2. E is complete,
3. C is a distance set (i.e., for every $x \in E$, there is $y \in C$ such that $\|x-y\|$ is equal to the distance from x to C).

As above, let $T \in(0, \infty]$ and $I=[0, T)$. Theorem 1 in [4] follows immediately from the next result.
Theorem 11. Let E be an ordered normed space such that one of the above conditions is satisfied. Let $U \subset E$ be an open convex set and $f: I \times U \rightarrow E$ be a continuous locally Lipschitz map such that $f(t, \cdot)$ is quasi-monotone increasing and convex on U for all $t \in I$. Let $0<t_{0} \leqslant T$ and $x_{1}, x_{2}, x_{3}:\left[0, t_{0}\right) \rightarrow U$ be differentiable maps such that

$$
\dot{x}_{i}(t)=f\left(t, x_{i}(t)\right), \quad i=1,2,3,
$$

and $x_{3}(0)=\lambda x_{1}(0)+(1-\lambda) x_{2}(0)$ for some $\lambda \in[0,1]$. Then $x_{3}(t) \leqslant \lambda x_{1}(t)+(1-\lambda) x_{2}(t)$ for all $t<t_{0}$.
Proof. Set $z(t)=\lambda x_{1}(t)+(1-\lambda) x_{2}(t)$ for $t<t_{0}$. By the convexity of f,

$$
\begin{aligned}
\dot{z}(t)-f(t, z(t)) & =\lambda \dot{x}_{1}(t)+(1-\lambda) \dot{x}_{2}(t)-f\left(t, \lambda x_{1}(t)+(1-\lambda) x_{2}(t)\right) \\
& \geqslant \lambda\left(\dot{x}_{1}(t)-f\left(t, x_{1}(t)\right)\right)+(1-\lambda)\left(\dot{x}_{2}(t)-f\left(t, x_{2}(t)\right)\right)=0=\dot{x}_{3}(t)-f\left(t, x_{3}(t)\right)
\end{aligned}
$$

for all $t<t_{0}$. Since $z(0)=x_{3}(0)$, the above-mentioned analogue of Lemma 3 for normed spaces implies that $z(t) \geqslant x_{3}(t)$. The theorem is proved.

References

[1] D. Duffie, D. Filipović, W. Schachermayer, Affine processes and applications in finance, Ann. Appl. Probab. 13 (3) (2003) 984-1053.
[2] P. Hartman, Ordinary Differential Equations, John Wiley \& Sons, Inc., New York, 1964.
[3] G. Herzog, Quasimonotonicity, Nonlinear Anal. 47 (4) (2001) 2213-2224.
[4] G. Herzog, R. Lemmert, A note on convex dependence of solutions of IVPs relative to initial values, Nonlinear Anal. 68 (12) (2008) $3841-3844$.
[5] V. Lakshmikantham, N. Shahzad, W. Walter, Convex dependence of solutions of differential equations in a Banach space relative to initial data, Nonlinear Anal. 27 (12) (1996) 1351-1354.
[6] J. Lamperti, Continuous state branching processes, Bull. Amer. Math. Soc. 73 (1967) 382-386.
[7] A.V. Sarychev, On equation $x^{(n+1)}=f\left(t, x, \dot{x}, \ldots, x^{(n)}\right)$ with convex quasi-monotone right-hand side, Nonlinear Anal. 27 (7) (1996) 785-792.
[8] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge Stud. Adv. Math., vol. 68, Cambridge University Press, Cambridge, 1999, translated from the 1990 Japanese original, revised by the author.
[9] R. Uhl, Ordinary differential inequalities and quasimonotonicity in ordered topological vector spaces, Proc. Amer. Math. Soc. 126 (7) (1998) 1999-2003.
[10] V.S. Vladimirov, Generalized Functions in Mathematical Physics, Mir, Moscow, 1979, translated from the second Russian edition by G. Yankovskiĭ.
[11] P. Volkmann, Über die Invarianz konvexer Mengen und Differentialungleichungen in einem normierten Raume, Math. Ann. 203 (1973) $201-210$.
[12] C. Zălinescu, Convex Analysis in General Vector Spaces, World Scientific Publishing, River Edge, NJ, 2002.

[^0]: * Corresponding author.

 E-mail addresses: kemartin@math.ethz.ch (M. Keller-Ressel), eberhard.mayerhofer@vif.ac.at (E. Mayerhofer), smirnov@lpi.ru (A.G. Smirnov).
 ${ }^{1}$ E.M. gratefully acknowledges financial support from WWTF (Vienna Science and Technology Fund).
 2 The research of A.G.S. was supported by the Russian Foundation for Basic Research (Grant No. 09-01-00835) and the Program for Supporting Leading Scientific Schools (Grant No. LSS-1615.2008).
 ${ }^{3}$ A set C in a real vector space E is called a cone if $\lambda C \subset C$ for any $\lambda>0$. A cone C is said to be proper if $C+C \subset C$ and $C \cap(-C)=\{0\}$. A cone C induces a partial order on E if and only if it is proper.

[^1]: ${ }^{4}$ We set $\psi(t, x)=\infty$, whenever the left side of (22) is infinite. Note that for $(t, x) \in \mathbb{R} \geqslant 0 \times(-\infty, 0]^{d}$ it is always guaranteed that $\psi(t, x)$ is finite.

