Nilpotent symmetric Jacobian matrices and the Jacobian conjecture

Michiel de Bondt, Arno van den Essen
University of Nijmegen, Department of Mathematics, Postbus 9010, Nijmegen 6500 GL, Netherlands

Received 28 June 2003; received in revised form 19 February 2004
Communicated by C.A. Weibel

Abstract

Let $H : \mathbb{C}^n \to \mathbb{C}^n$ be a polynomial map such that the Jacobian $\mathcal{J}H$ of H is nilpotent and symmetric. The symmetric dependence problem, $SDP(n)$, asks whether the rows of the matrix $\mathcal{J}H$ are dependent over \mathbb{C}. We show that if $SDP(r)$ has an affirmative answer for all $r \leq n$, then the Jacobian conjecture holds for all $F : \mathbb{C}^n \to \mathbb{C}^n$ of the form $F = x + H$ with $\mathcal{J}H$ nilpotent and symmetric. As a consequence, we deduce the main result of (J. Pure Appl. Algebra, 189/1–3, 123–133), which asserts that the Jacobian conjecture holds for all polynomial maps of the form $F = x + H$, with $\mathcal{J}H$ nilpotent, symmetric and homogeneous, and $n \leq 4$.

© 2004 Published by Elsevier B.V.

MSC: 14R15; 14R10; 14E07

0. Introduction

Write $\mathcal{J}F$ for the Jacobian of a polynomial map $F : \mathbb{C}^n \to \mathbb{C}^n$. The Jacobian conjecture claims that F is an invertible polynomial map in case $\det \mathcal{J}F \in \mathbb{C}^*$. It was shown in [4] that in case $n \leq 4$, the Jacobian conjecture holds for all polynomial maps $F : \mathbb{C}^n \to \mathbb{C}^n$ of the form $F = x + H$, where H is homogeneous and $\mathcal{J}H$ is nilpotent and symmetric. Let $\mathcal{J}f$ be the matrix
defined by
\[
\mathcal{H} f = \begin{pmatrix}
\frac{\partial^2}{\partial x_1 \partial x_1} f & \frac{\partial^2}{\partial x_1 \partial x_2} f & \cdots & \frac{\partial^2}{\partial x_1 \partial x_n} f \\
\frac{\partial^2}{\partial x_2 \partial x_1} f & \frac{\partial^2}{\partial x_2 \partial x_2} f & \cdots & \frac{\partial^2}{\partial x_2 \partial x_n} f \\
\vdots & \vdots & & \vdots \\
\frac{\partial^2}{\partial x_n \partial x_1} f & \frac{\partial^2}{\partial x_n \partial x_2} f & \cdots & \frac{\partial^2}{\partial x_n \partial x_n} f
\end{pmatrix}.
\]

The main ingredient in the proof is a result due to Gordan and Nöther in [5], which asserts the following: if \(n \leq 4 \) and \(h \in \mathbb{C}[x_1, x_2, \ldots, x_n] \) is a homogeneous polynomial such that \(\det \mathcal{H} h = 0 \), then \(h \) is degenerate, i.e. there exists a \(T \in \text{GL}_n(\mathbb{C}) \) such that \(h(Tx) \in C[x_1, x_2, \ldots, x_{n-1}] \).

In this paper we generalize the main result of [4] to the \(n \)-dimensional case. More precisely, we show that if \(F \) is of the form \(F = x + H \) with \(\mathcal{J} H \) nilpotent and symmetric (\(H \) does not need to be homogeneous), then \(F \) is invertible, provided a certain dependence problem (\(\text{SDP}(n) \) in Section 1) has an affirmative answer. Since the Gordan–Nöther theorem implies that the homogeneous dependence problem (\(\text{HSDP}(n) \) in Section 1) has an affirmative answer for \(n \leq 4 \) (Corollary 1.3) and \(\text{SDP}(n) \) has an affirmative answer for \(n \leq 2 \) (Proposition 1.1), our main theorem (Theorem 2.1) implies the main result of [4].

The interest of studying the symmetric case comes from the fact that in [3], the authors have reduced the Jacobian conjecture to this case.

1. The symmetric dependence problem

Throughout this paper \(K \) denotes a field of characteristic zero and \(K[x] = K[x_1, x_2, \ldots, x_n] \) is the polynomial ring in \(n \) indeterminates over \(K \). In search of the Jacobian conjecture the following problem arose naturally (see [7, Conjecture 1, p. 80], [8, Conjecture B, p. 135], [9, Conjecture 11.3], [1] and [2, 7.1.7]).

Dependence problem \(\text{DP}(n) \). Let \(H = (H_1, H_2, \ldots, H_n) \in K[x]^n \) such that \(\mathcal{J} H \) is nilpotent. Are the rows of \(\mathcal{J} H \) dependent over \(K \)?

It is not difficult to see that, in case \(H_i(0) = 0 \) for all \(i \), the dependence of the rows of \(\mathcal{J} H \) is equivalent to the linear dependence of the polynomials \(H_1, H_2, \ldots, H_n \) over \(K \).

Due to the embedding lemma (Lefschetz principle) (see [2, Lemma 1.1.13]), we only need to examine the case \(K = \mathbb{C} \) in the above and subsequent dependence problems.

In case \(n \leq 2 \), the dependence problem has an affirmative answer, however if \(n \geq 3 \) then there are counterexamples (see [2, Theorem 7.1.7]). On the other hand, if we
additionally assume that each H_i is either zero or homogeneous of a fixed degree $d \geq 1$, then the corresponding problem is still open for all $n \geq 3$:

Homogeneous dependence problem $HDP(n)$. Let $H = (H_1, H_2, \ldots, H_n) \in K[x]^n$ be homogeneous of degree $d \geq 1$ such that $\mathcal{J}H$ is nilpotent. Are the rows of $\mathcal{J}H$ dependent over K?

In fact a highly non-trivial result obtained by Hubbers in [6] (see also [2, Theorem 7.1.2]) completely classifies all such maps H in case $n=4$ and $d=3$. From this result it follows that the homogeneous dependence problem has an affirmative answer in this case, see [2, Corollary 7.1.4].

In this section we discuss the dependence problem for symmetric nilpotent Jacobian matrices. So let $F=(F_1, F_2, \ldots, F_n) \in K[x]^n$ and assume that $\mathcal{J}F$ is a symmetric matrix. Then $F=(\tilde{f})^\top$ for some $\tilde{f} \in K[x]$ (see for example [2, Lemma 1.3.53]). Consequently, a symmetric Jacobian matrix is of the form

$$
\mathcal{H}f = \begin{pmatrix}
\frac{\partial^2}{\partial x_1 \partial x_1} f & \frac{\partial^2}{\partial x_2 \partial x_1} f & \cdots & \frac{\partial^2}{\partial x_n \partial x_1} f \\
\frac{\partial^2}{\partial x_1 \partial x_2} f & \frac{\partial^2}{\partial x_2 \partial x_2} f & \cdots & \frac{\partial^2}{\partial x_n \partial x_2} f \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^2}{\partial x_1 \partial x_n} f & \frac{\partial^2}{\partial x_2 \partial x_n} f & \cdots & \frac{\partial^2}{\partial x_n \partial x_n} f
\end{pmatrix}.
$$

The above matrix $\mathcal{H}f$ is called the Hessian of f. Observe that $\mathcal{H}f = \mathcal{H}\tilde{f}$, where \tilde{f} is obtained from f by subtracting all monomials of degree ≤ 1. So \tilde{f} has only monomials of degree ≥ 2. Such a polynomial is called reduced. Furthermore, we call \tilde{f} the reduced part of f. Of course, the reduced part of a reduced polynomial is the polynomial itself.

Formulating the (homogeneous) dependence problem for symmetric Jacobian matrices then gives:

Symmetric dependence problem $SDP(n)$. Let $h \in K[x_1, x_2, \ldots, x_n]$ such that $\mathcal{H}h$ is nilpotent. Are the rows of $\mathcal{H}h$ dependent over K?

Homogeneous symmetric dependence problem $HSDP(n)$. Let $h \in K[x_1, x_2, \ldots, x_n]$ be homogeneous of degree $d \geq 2$ such that $\mathcal{H}h$ is nilpotent. Are the rows of $\mathcal{H}h$ dependent over K?

The following proposition is an immediate consequence of $DP(2)$, but a direct proof is easier and gives some ideas about nilpotent Hessians.

Proposition 1.1. $SDP(2)$ has an affirmative answer.
Proof. Let $M \in \text{Mat}_2(K[x])$ be symmetric and nilpotent (M does not need to be a Hessian matrix). Then $M^2 = 0$. So the first row v^1 of M satisfies $v^1 M = 0$. Since v is the first column of M, $v^1 \cdot v = 0$. In other words, v is orthogonal to itself with respect to the common bilinear form $(a, b) = \sum_{i=1}^{n} a_i b_i$ (here $n = 2$). Such a vector is called isotropic.

Since v is isotropic, $v_2^2 = -v_1^2$, i.e. $v_2 = \pm iv_1$, where $i = \sqrt{-1}$. Consequently, $(1, \pm i) \cdot M = 0$. In particular, $i \in K$ or $M = 0$. \qed

One can easily see that for $j \geq r/2$ and symmetric $M \in \text{Mat}_n(K[x])$ with $M^r = 0$ and $M^{r-1} \neq 0$, all rows of M^j are orthogonal to each other. In particular, all rows of M^j are isotropic. Furthermore, all nonzero rows of M^{r-1} are eigenvectors of M. Isotropic vectors seem to play an important role in the theory of nilpotent Hessians.

Now we relate the $\text{HSDP}(n)$ to the Gordan–Nöther theorem mentioned in the introduction. Let $f \in K[x]$ and $T \in \text{GL}_n(K)$. Put $f \circ T = f(Tx)$. Then it is well-known that

$$\mathcal{H}(f \circ T) = T^\dagger (\mathcal{H} f)|_{T^\dagger} T,$$

where $M|_{T^\dagger}$ is the matrix with entries $M_{ij}(Tx)$.

We call f degenerate if there exists a $T \in \text{GL}_n(K)$ such that $f \circ T \in K[x_1, x_2, \ldots, x_{n-1}]$.

Proposition 1.2. Let $f \in K[x_1, x_2, \ldots, x_n]$. Then the following statements are equivalent.

(i) The rows of $\mathcal{H} f$ are dependent over K.
(ii) The columns of $\mathcal{H} f$ are dependent over K.
(iii) There exists a nonzero $v \in K^n$ such that $\mathcal{H} f \cdot v = 0$.
(iv) There exists a $T \in \text{GL}_n(K)$ such that the last column of $\mathcal{H}(f \circ T)$ equals zero.
(v) The reduced part \tilde{f} of f is degenerate, i.e. there exists a $T \in \text{GL}_n(K)$ such that $\tilde{f} \circ T \in K[x_1, x_2, \ldots, x_{n-1}]$.

Moreover, the $T \in \text{GL}_n(K)$ for which (iv) holds match those for which (v) holds.

Proof. (iii) is a reformulation of (ii). Further, (i) and (ii) are equivalent, since $\mathcal{H} f$ is symmetric. So it suffices to show (iii) \Rightarrow (iv), (iv) \Rightarrow (v), and (v) \Rightarrow (iii).

First assume (iii). Extend v to a $T \in \text{GL}_n(K)$ such that v is the last column of T. Then the last column of $\mathcal{H} f \cdot T$ equals $\mathcal{H} f \cdot v = 0$. From (1), (iv) now follows.

Next assume (iv). Since $\mathcal{H}(f \circ T)$ is symmetric, the last row of $\mathcal{H}(f \circ T)$ is zero. So $\partial f / \partial x_i \partial f / \partial x_n(f \circ T) = 0$ for all i. Since char$K = 0$, it follows that $\partial f / \partial x_n(f \circ T) \in K$. Notice that the reduced part of $f \circ T$ is just $\tilde{f} \circ T$. Consequently, $\partial f / \partial x_n(\tilde{f} \circ T) = 0$ and (v) follows.

Finally assume (v). Since $\tilde{f} \circ T \in K[x_1, x_2, \ldots, x_{n-1}]$, the last column of $\mathcal{H}(f \circ T) = \mathcal{H}(\tilde{f} \circ T)$ equals zero. So the nth standard basis vector e_n satisfies $\mathcal{H}(f \circ T) \cdot e_n = 0$. From (1), it follows that $\mathcal{H} f \cdot T e_n = 0$ and (iii) follows. \qed

Corollary 1.3. $\text{HSDP}(n)$ has an affirmative answer for all $n \leq 4$.

Proof. Suppose that \(\mathcal{H} \) is nilpotent. Then \(\det \mathcal{H} = 0 \) in particular. By the theorem of Gordan and Nöther mentioned in the introduction, \(h \) is degenerate. If \(\deg h \leq 1 \), then the reduced part of \(h \) equals zero. If \(\deg h \geq 2 \), then \(h \) is reduced, for \(h \) is homogeneous. In either case, the reduced part of \(h \) is degenerate. Now apply Proposition 1.2, (v) \(\Rightarrow \) (i). \(\square \)

In the remainder of this section, we assume that \(K \) is algebraically closed (in fact it is sufficient that \(K \) is closed under taking square roots).

Suppose that \(\mathcal{H} \) is nilpotent and \(T \) is orthogonal, i.e. \(T^t T = 1 \). From (1), it follows that \(\mathcal{H}(h \circ T) \) is nilpotent as well. So an interesting question is whether \(T \) can always be chosen orthogonal in the definition of degenerate, in which case we call \(h \) orthogonally degenerate. The answer is no. Take \(h = (x_1 + ix_2)^2 \) and suppose that \(h \circ T \in K[x_1] \). Then \(\mathcal{H}(h \circ T) \) is of the form

\[
\begin{pmatrix}
a & 0 \\
0 & 0
\end{pmatrix}
\]

So \(\mathcal{H}(h \circ T) \) cannot both be nilpotent and have rank 1.

We call \(f \) isotropically degenerate if there is an orthogonal \(T \in GL_n(K) \) such that \(f \circ T \in K[x_1, x_2, \ldots, x_n] \). Clearly, the above \(h \) with \(n = 2 \) is isotropically degenerate (take \(T = 1 \)).

The following lemma gives a class of \(f \in K[x] \) that are orthogonally degenerate.

Lemma 1.4. Let \(f \in K[x_1, x_2, \ldots, x_n] \) be reduced such that \(\mathcal{H} f \cdot v = 0 \) for some non-isotropic \(v \). Then \(f \) is orthogonally degenerate.

Proof. Replacing \(v \) by \(v/\langle v, v \rangle \), we may assume that \(\langle v, v \rangle^{1/2} = 1 \). Then, using the Gram–Schmidt process, we can find an orthogonal \(T \in GL_n(K) \) such that \(v \) is the last column of \(T \), i.e.

\[
v = T \cdot e_n.
\]

So \(\mathcal{H} f \cdot T \cdot e_n = \mathcal{H} f \cdot v = 0 \). From (1), it follows that

\[
\mathcal{H}(f \circ T) \cdot e_n = 0.
\]

So the last column of \(\mathcal{H}(f \circ T) \) equals zero. Now apply proposition 1.2, (iv) \(\Rightarrow \) (v). \(\square \)

The following lemma, which gives a class of \(f \in K[x] \) that are isotropically degenerate, is harder to prove than the above lemma. A problem is that (iv) \(\Rightarrow \) (v) of Proposition 1.2 cannot be applied directly.

Lemma 1.5. Let \(f \in K[x_1, x_2, \ldots, x_n] \) be reduced such that \(\mathcal{H} f \cdot v = 0 \) for some isotropic \(v \neq 0 \). Then \(f \) is isotropically degenerate.

Proof. Since permutation matrices are orthogonal, we may assume that \(v_1 \neq 0 \). Replacing \(v \) by \(v/v_1 \), we may assume that \(v_1 = 1 \). The first standard basis vector \(e_1 \) and the
vector \(\tilde{v} = -i(0, v_2, v_3, \ldots, v_n) \) satisfy \(\langle e_1, \tilde{v} \rangle = 0, \langle e_1, e_1 \rangle = 1 \), and \(\langle \tilde{v}, \tilde{v} \rangle = \langle e_1, e_1 \rangle - \langle v, v \rangle = 1 \).

By the Gram–Schmidt process there exists an orthogonal \(T \in GL_n(K) \) such that the last two columns of \(T \) are \(e_1 \) and \(\tilde{v} \), in this order. So

\[
T \cdot (e_{n-1} + ie_n) = (Te_{n-1} + iTe_n) = (e_1 + i\tilde{v}) = v.
\]

and therefore, \(\mathcal{H} f \cdot T \cdot (e_{n-1} + ie_n) = \mathcal{H} f \cdot v = 0 \).

In order to prove this lemma, we define \(S \in GL_n(K) \) by

\[
S(x) = (x_1, x_2, \ldots, x_{n-2}, x_{n-1} + ix_n, -ix_n).
\]

Then \(S^{-1}(x) = (x_1, x_2, \ldots, x_{n-2}, x_{n-1} + x_n, iix_n) \). In particular, \(S^{-1} \cdot e_n = e_{n-1} + ie_n \).

Therefore, it follows from (3) that

\[
T \cdot S^{-1} \cdot e_n = T \cdot (e_{n-1} + ie_n) = v.
\]

Consequently, \(\mathcal{H} f \cdot T \cdot S^{-1} \cdot e_n = \mathcal{H} f \cdot v = 0 \). From (1), it follows that \(g = f \circ T \circ S^{-1} \) satisfies \(\mathcal{H}g \cdot e_n = 0 \) and therefore

\[
g \in K[x_1, x_2, \ldots, x_{n-1}].
\]

Consequently, \(f \circ T = g \circ S \) is a polynomial in the first \(n - 1 \) coordinates of \(Sx \), i.e. \(f \circ T \in K[x_1, x_2, \ldots, x_{n-2}, x_{n-1} + ix_n] \). \(\square \)

The following proposition claims that a degenerate \(f \) is either orthogonally or isotropically degenerate.

Proposition 1.6. Let \(f \in K[x_1, x_2, \ldots, x_n] \) be degenerate (not necessarily reduced). Say that \(f \circ T \in K[x_1, x_2, \ldots, x_{n-1}] \) with \(T \in GL_n(K) \). Let \(v = Te_n \) be the last column of \(T \).

1. If \(v \) is not isotropic, then \(f \) is orthogonally degenerate.
2. If \(v \) is isotropic, then \(f \) is isotropically degenerate.

Proof. Write \(\tilde{f} \) for the reduced part of \(f \). Suppose first that \(v \) is not isotropic. Assume without loss of generality that \(\langle v, v \rangle = 1 \). From Lemma 1.4, it follows that there is an orthogonal \(\tilde{T} \in GL_n(K) \) such that \(\tilde{f} \circ \tilde{T} \in K[x_1, x_2, \ldots, x_{n-1}] \). Without loss of generality, we may assume that \(f(0) = 0 \). Since \(f - \tilde{f} \) is linear, it follows that

\[
(f \circ \tilde{T}) = ((f - \tilde{f}) \circ \tilde{T}) + (\tilde{f} \circ \tilde{T})
\]

\[
= ((f - \tilde{f}) \circ (\tilde{T} - T)) + ((f - \tilde{f}) \circ T) + (\tilde{f} \circ \tilde{T})
\]

\[
= ((f - \tilde{f}) \circ (\tilde{T} - T)) + (f \circ T) - (\tilde{f} \circ T) + (\tilde{f} \circ \tilde{T}).
\]

According to (2), we may assume that the last column of \(\tilde{T} - T \) equals zero. So \(\tilde{T} - T \in K[x_1, x_2, \ldots, x_{n-1}]^\ell \). Since \(f \circ T \in K[x_1, x_2, \ldots, x_{n-1}] \) by assumption and \(\tilde{f} \circ T \) is the reduced part of \(f \circ T \), it follows from (7) that \(f \circ \tilde{T} \in K[x_1, x_2, \ldots, x_{n-1}] \).
Suppose next that v is isotropic. Assume without loss of generality that $v_1 = 1$. From Lemma 1.5, it follows that there is an orthogonal $\tilde{T} \in GL_n(K)$ such that $\hat{f} \circ \tilde{T} \in K[x_1, x_2, \ldots, x_{n-1} + ix_n]$. Take S as in the proof of Lemma 1.5. Similar to the case that v is orthogonal, it follows from (6) that $g = f \circ \tilde{T} \circ S^{-1} \in K[x_1, x_2, \ldots, x_{n-1}]$ and therefore $f \circ \tilde{T} = g \circ S \in K[x_1, x_2, \ldots, x_{n-1} + ix_n]$. \qed

To describe the next results, it is convenient to introduce some new notation. Let $x = x_1, x_2, \ldots, x_n, M \in Mat_n(K[x])$, and $f \in K[x]$. Then write x_* for $x_1, x_2, \ldots, x_{n-1}$, M_* for $(M_{ij})_{1 \leq i, j \leq n-1} \in Mat_{n-1}(K[x])$, and f_* for f, viewed as polynomial in x_* over $K[x_*]$. Similarly, we define $x_{**} = x_1, x_2, \ldots, x_{n-2}$, $M_{**} = (M_{ij})_{1 \leq i, j \leq n-2}$, etc. Also, we define $\mathcal{H}_*, \mathcal{H}_{**}, \mathcal{H}_*, \mathcal{H}_{**}$ in a similar way. So we have for example $\mathcal{H}_* f_* = (\mathcal{H} f)_*$.

Suppose that $f \in K[x]$ such that $\mathcal{H} f \cdot v = 0$. Take T as in Proposition 1.6 and write $g = f \circ T$. If v is not isotropic, then $g \in K[x_*]$ and therefore

$$
\mathcal{H} \ g = \begin{pmatrix}
0 \\
\mathcal{H}_* g_* \\
\vdots \\
0 \\
\cdots \\
0
\end{pmatrix}.
$$

Consequently

$\mathcal{H} g$ is nilpotent, if and only if $\mathcal{H}_* g_*$ is nilpotent

(8)
in case v is not isotropic.

If v is isotropic, then $g \in K[x_{**}, x_{n-1} + ix_n]$ and therefore

$$
\mathcal{H} \ g = \begin{pmatrix}
\mathcal{H}_{**} g_{**} & w & i w \\
w^t & a & i a \\
i w^t & i a & -a
\end{pmatrix}
$$

for some $w \in K[x]^{n-2}$ and $a \in K[x]$. In order to obtain the ‘isotropic analogon’

$\mathcal{H} g$ is nilpotent, if and only if $\mathcal{H}_{**} g_{**}$ is nilpotent

(9)
of (8), we need the following lemma.

Lemma 1.7. Let R be a commutative ring with $i = \sqrt{-1}$ and $M \in Mat_n(R)$ symmetric and of the form

$$
M = \begin{pmatrix}
M_{**} & w & i w \\
w^t & a & i a \\
i w^t & i a & -a
\end{pmatrix}
$$

with $w \in R^{n-2}$ and $a \in R$. Then M is nilpotent, if and only if M_{**} is nilpotent.
Proof. Suppose by induction that \(M^r \) is of the form

\[
M^r = \begin{pmatrix}
(M_{ss})^r & u & iu \\
u^t & b & ib \\
iu^t & ib & -b
\end{pmatrix}.
\]

(10)

Then,

\[
M^{r+1} = M \cdot M^r = \begin{pmatrix}
(M_{ss})^{r+1} & M_{ss}u & iM_{ss}u \\
(M_{ss}u)^t & \langle w, u \rangle & i\langle w, u \rangle \\
i(M_{ss}u)^t & i\langle w, u \rangle & -\langle w, u \rangle
\end{pmatrix}.
\]

So \(M^r \) is of the form (10) for all \(r \).

If \(M \) is nilpotent, then \(M_{ss} \) is nilpotent as well, since \((M_{ss})^r \) is a submatrix of \(M^r \) for all \(r \). Hence assume that \(M_{ss} \) is nilpotent. Take \(r \) such that \((M_{ss})^r = 0 \). Then

\[
M^r = \begin{pmatrix}
\emptyset & u & iu \\
u^t & b & ib \\
iu^t & ib & -b
\end{pmatrix}
\]

and one can easily verify that \(M^{2r} = (M^r)^2 = 0 \). So \(M \) is nilpotent. □

2. The main result

The following result is the main theorem of this paper. Again, we assume that \(K \) is a field of characteristic zero.

Theorem 2.1. Let \(n \geq 1 \) and suppose that \(H \in K[x]^n \) such that \(JH \) is nilpotent and symmetric.

1. If \(SDP(p) \) has an affirmative answer for all \(p \leq n \), then \(x + H \) is invertible.
2. If \(H \) is homogeneous, \(SDP(p) \) has an affirmative answer for all \(p \leq n - 2 \), and also \(HSDP(n-1) \) and \(HSDP(n) \) have an affirmative answer, then \(x + H \) is invertible.

Proof. In case \(n = 1 \), \(JH = 0 \) and therefore \(H \) is constant and \(x - H \) is the inverse of \(x + H \). So assume that \(n \geq 2 \). Since \(JH \) is symmetric, we have \(JH = Hh \) for some reduced \(h \). If \(H(0) = 0 \), then \((JH)^t = H \) as well. Since translations are invertible, we assume that \(H(0) = 0 \).

We shall show the following assertions.

(i) If \(h \) is degenerate and (homogeneous and \(H \)) \(SDP(n-1) \) has an affirmative answer, then \(h \) is isotropically degenerate.
(ii) If \(h \in K[x_{ss}x_{n-1} + iu_n] \), then \(x + H \) is invertible over \(K \), if and only if \(x_{ss} + H_{ss} \) is invertible over \(K(x_{n-1} + iu_n) \).
Suppose first that these assertions hold. Since $SDP(n)$ resp. $HSDP(n)$ is assumed to have an affirmative answer, it follows from (i) and Proposition 1.2 that h is isotropically degenerate. Suppose that conclusion 1. resp. 2. of this theorem does not hold. Take n minimal such that H satisfies the conditions of this theorem, but $x + H$ is not invertible. Since h is isotropically degenerate, there is an orthogonal $T \in GL_n(K)$ such that $h \circ T \in K[x_{ss}, x_{n-1} + ix_n]$.

If $n \geq 3$, then it follows from (9) and (ii) that there is a $G \in K(y)[x_{ss}]$ such that JG is nilpotent and symmetric, but $x_{ss} + G$ is not invertible over $K(y)$. Since G satisfies the conditions of this theorem as well as H, we have a contradiction, so $n \leq 2$. The case $n = 1$ is trivial, so assume that $n = 2$. Take $G = (H_1, H_2, 0)$. Then $x + H$ is invertible, if and only if $(x, x_3) + G$ is invertible. Furthermore, the invertibility of G reduces to the case $n = 1$ of this theorem, which is trivially satisfied.

First, we show assertion (i). Suppose that h is (homogeneous and) not isotropically degenerate. Since h is assumed to be degenerate, h is orthogonally degenerate according to Proposition 1.6. Take T orthogonal such that $h \circ T \in K[x^*]$. Since $g = h \circ T$ is reduced, it follows from (8) and the fact that $(H)SDP(n - 1)$ has an affirmative answer that g is degenerate, so g is either isotropically or orthogonally degenerate according to Proposition 1.6. If g is isotropically degenerate, then h is isotropically degenerate as well. If, on the other hand, g is orthogonally degenerate, then there is an orthogonal $S \in GL_n(K)$ such that $g \circ S \in K[x_{ss}]$. Therefore $h \circ (T \circ S) \in K[x_{ss}] \subseteq K[x_{ss}, x_{n-1} + ix_n]$ and h is isotropically degenerate.

Next, we show assertion (ii). Suppose that $h \in K[x_{ss}, x_{n-1} + ix_n]$, say that $h = g(x_{ss}, x_{n-1} + ix_n)$ with $g \in K[x^*]$. Put $H_{ss} = (J_{ss}h)^\gamma$. Then

$$P_1 := x + H$$

$$= \left(x_{ss} + H_{ss}, x_{n-1} + \left(\frac{\partial}{\partial x_{n-1}} g \right)(x_{ss}, x_{n-1} + ix_n) \right)$$

is invertible, if and only if

$$P_2 := (x_{ss}, x_{n-1} + ix_n, x_n) \circ P_1$$

$$= \left(x_{ss} + H_{ss}, x_{n-1} + ix_n, x_n + i \left(\frac{\partial}{\partial x_{n-1}} g \right)(x_{ss}, x_{n-1} + ix_n) \right)$$

is invertible. Put $G_{ss} = J_{ss}g$, then $G_{ss} = H_{ss}(x_{ss}, x_{n-1} - ix_n, x_n)$. So P_2 is invertible, if and only if

$$P_3 := P_2 \circ (x_{ss}, x_{n-1} - ix_n, x_n)$$

$$= \left(x_{ss} + G_{ss}, x_{n-1}, x_n + i \left(\frac{\partial}{\partial x_{n-1}} g \right)(x_{ss}, x_{n-1}) \right)$$
is invertible. P_3 is invertible, if and only
\[P_4 := \left(x^*, x_n - i \left(\frac{\partial}{\partial x_{n-1}} g \right)(x^*) \right) \circ P_3 = (x^* + G^*^*, x_{n-1}, x_n) \]
is invertible. Since $G^*^* \in K[x^*]^{n-2}$, it follows that P_4 is invertible, if and only if $x^* + G^*^*$ is invertible over $K[x_{n-1}]$, i.e. if and only if $x^* + H^*^*$ is invertible over $K[x_{n-1} + IX_n]$. By [2, Lemma 1.1.8], this last statement is equivalent to the assertion that $x^* + H^*^*$ is invertible over $K(x_{n-1} + iX_n)$. This gives assertion (ii). □

References