On the symmetric hyperspace of the circle

Naotsugu Chinena, Akira Koyamab,*

a Hiroshima Institute of Technology, Saeki-ku, Hiroshima 731-5193, Japan
b Department of Mathematics, Faculty of Science, Shizuoka University, Suruga-ku, Shizuoka 422-8529, Japan

\section*{A R T I C L E I N F O}

Article history:
Received 17 January 2008
Received in revised form 19 October 2009
Accepted 19 October 2009

Keywords:
Symmetric hyperspace
Symmetric product
Compactification
Dunce hat

\section*{A B S T R A C T}

By \(X(n), n \geq 1\), we denote the \(n\)-th symmetric hyperspace of a metric space \(X\) as the space of non-empty finite subsets of \(X\) with at most \(n\) elements endowed with the Hausdorff metric. In this paper we shall describe the \(n\)-th symmetric hyperspace \(S^1(n)\) as a compactification of an open cone over \(\Sigma D^{n-2}\), here \(D^{n-2}\) is the higher-dimensional dunce hat introduced by Andersen, Marjanović and Schori (1993) \cite{2} if \(n\) is even, and \(D^{n-2}\) has the homotopy type of \(S^{n-2}\) if \(n\) is odd (see Andersen et al. (1993) \cite{2}). Then we can determine the homotopy type of \(S^1(n)\) and detect several topological properties of \(S^1(n)\).

\(©\) 2010 Elsevier B.V. All rights reserved.

\section{1. Introduction}

As an interesting construction in topology, Borsuk and Ulam \cite{3} introduced the \(n\)-th symmetric hyperspace of a metric space \(X\), denoted by \(X(n)\). Namely \(X(n)\) is the space of non-empty finite subsets of \(X\) with at most \(n\) elements endowed with the Hausdorff metric. They showed that for \(n = 1, 2, \text{ or } 3\), \(I(n)\) is homeomorphic to \(I^n\), denoted by \(I^n \approx \mathbb{I}^n\), and for \(n \geq 4\), \(I(n)\) cannot be embedded into \(\mathbb{R}^n\). Following them, many authors have considered topological structures of \(X(n)\).

For example, Molski \cite{10} showed that \(\mathbb{I}^2(2) \approx \mathbb{I}^2\) and for \(n \geq 3\) neither \(I^n(2)\) nor \(I^n(2)\) can be embedded into \(\mathbb{R}^{2n}\). In this direction Schori \cite{12} investigated a characterization of spaces of the type \(\mathbb{I}^n(n)\) by using suitable equivalence relations. In particular, he gave a description of \(I(n)\) as the product space \(c(D^{n-2}) \times \mathbb{I}\), where \(D^{n-2} = \{ A \in I(n) : 0, 1 \in A\}\) and \(c(Z)\) is the cone over a topological space \(Z\). Moreover Andersen, Marjanović and Schori \cite{2} studied the spaces \(D^n\) and showed that \(D^2\) is homeomorphic to the dunce hat \cite{14}, in general, \(D^{2n}\) is contractible but not collapsible, and \(D^{2n+1}\) has the same homotopy type of \(S^{2n+1}\). They call the spaces \(D^{2n}, n \geq 2\), higher-dimensional dunce hats.

Turning toward the spaces \(S^1(n)\), Wu \cite{13} proved that \(S^1(2n+1)\) has the same homology groups as the \((2n + 1)\)-sphere \(S^{2n+1}\) and \(H^0(S^1(2n)) = H^{2n-1}(S^1(2n)) = \mathbb{Z}\) and \(H^1(S^1(2n)) = 0\) if \(n \neq 0, 2n - 1\). In \cite{5} Bott corrected Borsuk’s statement \cite{4} and showed that \(S^1(3) \approx S^3\). In this paper we shall give a description of the spaces \(S^1(n)\) by using the identification spaces \(D^m\). Thus,

\textbf{Theorem 1.1.} For \(n \geq 2\) there exists a closed subset \(R\) of the \(n\)-th symmetric hyperspace \(S^1(n)\) which is homeomorphic to \(D^{n-1}\) such that \(S^1(n) \setminus R\) is homeomorphic to the open cone over \(\Sigma D^{n-2}\).

As its consequences we shall give an alternative proof of Bott’s theorem and show several interesting properties of \(S^1(m)\).

\textbf{Corollary 1.2.} For each \(n = 1, 2, \ldots, S^1(2n+1)\) has the same homotopy type of \(S^{2n+1}\) and \(S^1(2n)\) has the same homotopy type of \(S^{2n-1}\).

* Corresponding author.

E-mail addresses: naochin@cc-it-hiroshima.ac.jp (N. Chinen), sakoyam@ipc.shizuoka.ac.jp (A. Koyama).

0166-8641/$ – see front matter \(©\) 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.topol.2010.07.012
Corollary 1.3. For \(n \geq 4 \), \(S^1(n) \) is not an \(n \)-manifold. Moreover there exists no embedding of any orientable closed \(n \)-dimensional manifold into \(S^1(n) \).

We note that the space \(X(n) \) is often called symmetric product or symmetric potency of a space \(X \), for example, by Borsuk–Ulam, Schori, and many people or by Borsuk and Bott, respectively. However, we have another type of symmetric products and the notation is widely known. Thus, given a topological space to avoid any confusion we introduce a new name to the space \(SP_n \). Hereby in order to avoid any confusion we introduce a new name to the space \(X(n) \) “\(n \)-th symmetric hyperspace”. We shall mention some relations between two notations.

By definitions it is clear that \(X(2) \) is homeomorphic to \(SP^2(X) \) for any space \(X \). It is a folklore that for every \(n \geq 2 \), \(SP^n(S^2) \) is homeomorphic to the complex projective space \(PC^n \) (compare with Molski [10]). Morton [11] gave a topological description of \(SP^n(S^1) \). Namely, if \(n \) is odd, \(SP^n(S^1) \) is homeomorphic to the product space \(S^1 \times \mathbb{R}^{n-1} \), and if \(n \) is even, \(SP^n(S^1) \) is the non-orientable \(\mathbb{R}^{n-1} \)-bundle over \(S^1 \). Hence \(SP^n(S^1) \) has the same homotopy type of \(S^1 \). Thereby we can see that, if \(n \geq 3 \), Corollary 1.2 shows that \(SP^n(S^1) \) is even homotopically different from \(S^1(n) \). On the other hand, Illanes and Nadler [8, Question 83-14] posed the problem: \textbf{Is the 2-sphere embeddable in the second symmetric product of a curve?} Recently Koyama, Krasinkiewicz and Spie\'{z} [9] showed that the \(n \)-sphere, \(n \geq 2 \), cannot be embedded into the \(n \)-th symmetric product \(SP^n(X) \) of any curve (\(= \) one-dimensional continuum) \(X \). Here we pose the following problem:

Problem 1.4. Is the \(n \)-sphere, \(n \geq 4 \), embeddable into the \(n \)-th symmetric hyperspace \(X(n) \) of a curve \(X \)?

2. Preliminaries

Notation 2.1. Let denote the set of all natural numbers, integers and real numbers by \(\mathbb{N}, \mathbb{Z} \) and \(\mathbb{R} \), respectively. Write \(I = [0, 1], \mathbb{R}_+ = [0, \infty), S^1_+ = \{ (x, y) \in \mathbb{R}^2: x^2 + y^2 = 1 \} \) and the \(n \)-th product of \(S^1 \) by \(T^n \). Define \(q : I \rightarrow S^1_+ \) by \(q(t) = (\cos 2\pi t, \sin 2\pi t) \) and \(q_n : I^n \rightarrow T^n \) by \(q_n(x_1, \ldots, x_0) = (q(x_1), \ldots, q(x_0)) \).

For convenience we specify the following symbols: For \(0 \leq s < t \leq 1 \)

\[
\begin{align*}
\Delta^n &= \{ (x_1, \ldots, x_n) \in \mathbb{R}^n: x_1 \leq \cdots \leq x_n \}, \\
\widehat{\Delta}^n &= \{ x \in \Delta^n: 0 < x_1 < \cdots < x_n < 1 \}, \\
\Delta_1^n(s, t) &= \{ x \in \Delta^n: s \leq x_1, x_n \leq t \}, \\
\Delta_0^n(s, t) &= \{ x \in \Delta^n(s, t): x_1 = s \}, \\
\Delta_1^n(s, t) &= \{ x \in \Delta^n(s, t): x_n = t \}, \\
\Delta_{0,1}^n(s, t) &= \Delta_0^n(s, t) \cap \Delta_1^n(s, t) = \{ x \in \Delta^n(s, t): x_1 = s, x_n = t \}.
\end{align*}
\]

For \(0 \leq t \leq 1/2, \alpha_t = 1/2 - t, \beta_t = 1/2 + t \in I \),

\[
\begin{align*}
a_0(t) &= (\alpha_t, \ldots, \alpha_t), & a_1(t) &= (\beta_t, \ldots, \beta_t) \in \Delta^n, \\
\Delta_0^n(t) &= \Delta_0^n(\alpha_t, \beta_t), & \Delta_1^n(t) &= \Delta_1^n(\alpha_t, \beta_t), \\
\Delta_1^n(t) &= \Delta_1^n(t) \cup \Delta_0^n(t) & \text{and } \Delta_{0,1}^n(t) &= \Delta_0^n(t) \cap \Delta_1^n(t).
\end{align*}
\]

(See Figs. 2.1.1 and 2.1.2.)
Definition 2.2. Define an equivalence relation \(\equiv \) in \(\Delta^2 \) generated by the followings: \((x_1, x_2) \equiv (x_1', x_2')\) if and only if \(x_1 = x_2 = 1\) and \(x_2 = x_1'\) or \(x_1 = 0\) and \(x_2 = x_1 = x_2' = x_1' = 0\). We say \(D^2 = \Delta^2 / \equiv\) the dunce hat which is a contractible 2-polyhedron. It is known that \(D^2\) is not collapsible but \(D^2 \times \mathbb{I}\) is collapsible (see Fig. 2.2.1). See \cite{14} for details.

Definition 2.3. Let \((X, d)\) be a metric space, \(2^X = \{A \subset X: A\) is a closed subset of \(X\}\) with the Hausdorff metric and \(n \in \mathbb{N}\). For \(n = 1, 2, \ldots\), the \(n\)-th symmetric hyperspace of \(X\) is defined by

\[
X(n) = \{ A \subset X: 1 \leq |A| \leq n \} \subset 2^X.
\]

Let \(p_{X(n)}: X^n \to X(n)\) be the projection. We write

\[
r_n = p_{S(0)} \circ (q_{n, \Delta^n}) : \Delta^n \to S^1(n), \quad r'_n = p_{I(n)} : \Delta^n \to \mathbb{I}(n),
\]

\[
D^n = r_{n+2}(\Delta^n_{0,1}(1/2)) \quad \text{and} \quad I^n_0(n+2) = r'_{n+2}(\Delta^n_{0,1}(1/2)).
\]

Lemma 2.4.

(1) Both \(r_n : \Delta^n \to S^1(n)\) and \(r'_n : \Delta^n \to I(n)\) are surjective.

(2) For every \(z \in \Delta^n\), \(r_n^{-1}(r_n(z))\) and \(r'_n^{-1}(r'_n(z))\) are degenerate.

(3) Let \(0 < s < t < 1\). Then, \(x \in \Delta^n_{0,1}(s, t)\) implies \(r_n^{-1}(r_n(x)) \subset \Delta^n_{0,1}(s, t)\) and \(r'_n^{-1}(r'_n(x)) \subset \Delta^n_{0,1}(s, t)\).

Lemma 2.5. For every \(n \in \mathbb{N}\), \(D^n\) is homeomorphic to \(I^n_0(n+2)\).

Proof. It suffices to show that for each point \(x = (0, x_2, \ldots, x_{n+1}, 1) \in \Delta^{n+2}_{0,1}(1/2)\)

\[
r^{-1}_{n+2}(r_{n+2}(x)) \cap \Delta^{n+2}_{0,1}(1/2) = r^{-1}_{n+2}(r'_{n+2}(x)) \cap \Delta^{n+2}_{0,1}(1/2).
\]

Take any \(x' = (0, x'_2, \ldots, x'_{n+1}, 1) \in r^{-1}_{n+2}(r_{n+2}(x)) \cap \Delta^{n+2}_{0,1}(1/2)\), and set \(A = \{0, x_2, \ldots, x_{n+1}, 1\}\), \(A' = \{0, x'_2, \ldots, x'_{n+1}, 1\}\) and \(k = |A| \geq 2\). Then, \(A = A'\). Thus, there exists \(y_i \in \mathbb{I} (i = 1, \ldots, k)\) such that \(0 = y_1 < y_2 < \cdots < y_{k-1} < y_k = 1\) and \(A = \{y_1, \ldots, y_k\}\). By definition \(r_n(x'') = [y_1, \ldots, y_k] = r_{n+2}(x)\), hence, \(r^{-1}_{n+2}(r_{n+2}(x)) \cap \Delta^{n+2}_{0,1}(1/2) \subset r^{-1}_{n+2}(r'_{n+2}(x)) \cap \Delta^{n+2}_{0,1}(1/2)\).

Take any \(x' = (0, x'_2, \ldots, x'_{n+1}, 1) \in r'^{-1}_{n+2}(r'_{n+2}(x)) \cap \Delta^{n+2}_{0,1}(1/2)\), and set \(A = \{0, x_2, \ldots, x_{n+1}, 1\}\), \(A' = \{0, x'_2, \ldots, x'_{n+1}, 1\}\) and \(k = |A| \geq 2\). Then, \(A = A'\). Thus, there exists \(y_i \in \mathbb{I} (i = 1, \ldots, k)\) such that \(0 = y_1 < y_2 < \cdots < y_{k-1} < y_k = 1\) and \(A = \{y_1, \ldots, y_k\}\). Then by definition \(r_{n+2}(x') = q(y_1), \ldots, q(y_{k-1})\) = \(r_{n+2}(x)\), hence, \(r'^{-1}_{n+2}(r'_{n+2}(x)) \cap \Delta^{n+2}_{0,1}(1/2) \supset r^{-1}_{n+2}(r'_{n+2}(x)) \cap \Delta^{n+2}_{0,1}(1/2)\). \(\square\)

Thus, \(D^0\) is a point, \(D^1\) is homeomorphic to \(S^1\) by \([2, p. 9]\) and \(D^2\) is homeomorphic to the dunce hat by \([2, Theorem \, 2.1]\). Moreover, by \([2, Theorem \, 3.4]\), for every \(n \in \mathbb{N} \cup \{0\}\) \(D^{2n}\) is contractible and \(D^{2n+1}\) has the same homotopy type of the \((2n+1)\)-sphere \(S^{2n+1}\).

Lemma 2.6. For every \(n \in \mathbb{N} \) with \(n \geq 2\), \(r_n(\Delta^n_{0,1}(1/2))\) is homeomorphic to \(D^{n-1}\).

Proof. Recall \(\Delta^n_{0,1}(1/2) = \{x \in \Delta^n: 0 = x_1 < x_2 < \cdots < x_n < 1\}\) and \(\Delta^{n+1}_{0,1}(1/2) = \{x \in \Delta^{n+1}: 0 = x_1 < x_2 < \cdots < x_n < x_{n+1} = 1\}\). Define \(f : \Delta^n_{0,1}(1/2) \to \Delta^{n+1}_{0,1}(1/2)\) by \(f(0, x_2, \ldots, x_n) = (0, x_2, \ldots, x_n, 1)\). We note that for every \(x \in \Delta^n_{0,1}(1/2)\), \(f(r_n^{-1}(r_n(x))) = r^{-1}_{n+1}(r_{n+1}(f(x))) \cap \Delta^{n+1}_{0,1}(1/2)\). Hence, \(f\) induces the homeomorphism \(F : r_n(\Delta^n_0(t)) \to r_{n+1}(\Delta^{n+1}_{0,1}(1/2)) = D^{n-1}\). \(\square\)

Lemma 2.7. Let \(0 < t \leq 1/2\) and \(n \in \mathbb{N}\) with \(n \geq 2\). Then, \(r_n(\Delta^n_{0,1}(t))\) is homeomorphic to \(D^{n-2}\).
Proof. We may assume $0 < t < 1/2$. Recall $\Delta^n_{0,1}(t) = \{ x \in \Delta^n : x_1 = x_2 = \cdots = x_{n-1} = 0 \}$ and $\Delta^n_{0,1}(1/2) = \{ x \in \Delta^n : x_1 \leq x_2 \leq \cdots \leq x_n = 1 \}$. Define $\psi : [\alpha_t, \beta_t] \to \Delta^{n-1}$ by $\psi((1 - s)\alpha_t + s \beta_t) = x_i$ for each $s \in [0, 1]$ and $f : \Delta^n_{0,1}(t) \to \Delta^n_{0,1}(1/2)$ by $f(\alpha_t, x_2, \ldots, x_{n-1}, \beta_t) = (0, \varphi(x_2), \ldots, \varphi(x_{n-1}), 1)$. We note that for every $x \in \Delta^n_{0,1}(t)$, $f(r_n(t x)) = r_n(f(t x)) \in \Delta^n_{0,1}(1/2)$. Hence, f induces the homeomorphism $F : r_n(\Delta^n_{0,1}(t)) \to r_n(\Delta^n_{0,1}(1/2)) = \mathbb{D}^{n-2}$. □

3. $S^1(n)$ is a compactification of the open cone of $\Sigma \Delta^n_{0,1}(t)$

The cone of a metric space X is the identification space $X \times [0, 1]$. Let $\varphi : X \times [0, 1] \to X \times [0, 1]$ be the quotient map. Then we call the image $\varphi(X \times \{ 0 \})$ the cone point. The open cone of X is the image $\varphi(X \times (0, 1))$ and we denote by $C(X)$. Suppose that a subset X of \mathbb{R}^M and a point $v_0 \in \mathbb{R}^N$ are in general position. Then we call the subset $X \cup \{ s v_0 + s x \in \mathbb{R}^N : x \in X \}, 0 \leq s \leq 1$ the geometric cone of X with the vertex v_0. The suspension ΣX of X is the quotient space of $X \times \{ -1, 1 \}$ by the equivalence relation induced by $(x, -1) \sim (x', -1)$ and $(x, 1) \sim (x', 1)$. Namely, $\Sigma X = X \times \{ -1, 1 \}/(X \times \{ -1, 1 \}, X \times \{ 1 \})$. We call the identified points of $X \times \{ -1, 1 \}$ and $X \times \{ 1 \}$ the suspension points of X.

Lemma 3.1. Let $0 < t < 1/2$ and $j = 0, 1$. Then, $r_n(\Delta^n_{0,1}(t))$ is homeomorphic to the cone $c(r_n(\Delta^n_{0,1}(t)))$ of $r_n(\Delta^n_{0,1}(t))$ with the cone point $r_n(\alpha_t(j))$.

Proof. Recall $\Delta^n_{0,1}(t) = \{ x \in \Delta^n : x_1 = x_2 = \cdots = x_{n-1} = 0 \}$ and $\Delta^n_{0,1}(t) = \{ x \in \Delta^n : x_n = 1 \}$. Here we may identify the cone $c(\Delta^n_{0,1}(t))$ with the geometric cone of $\Delta^n_{0,1}(t)$ with the vertex $\alpha_t(0)$. Write $c(\Delta^n_{0,1}(t)) = \{ (1 - s)\alpha_t(0) + s x \in \Delta^n : x \in \Delta^n_{0,1}(t), 0 \leq s \leq 1 \}$.

We note that $c(\Delta^n_{0,1}(t)) = \Delta^n_{0,1}(t)$: For any point $x = (\alpha_t, x_2, \ldots, x_{n-1}, \beta_t) \in \Delta^n_{0,1}(t)$ and $0 \leq s \leq 1$. Since $\alpha_t \leq x_2 \leq \cdots \leq x_{n-1} \leq \beta_t$,

$$\alpha_t \leq (1 - s)\alpha_t + s x_2 \leq \cdots \leq (1 - s)\alpha_t + s x_{n-1} \leq (1 - s)\alpha_t + s \beta_t \leq \beta_t.$$ Thus,

$$(1 - s)\alpha_t(0) + s x \leq (\alpha_t, (1 - s)\alpha_t + s x_2, \ldots, (1 - s)\alpha_t + s x_{n-1}, (1 - s)\alpha_t + s \beta_t) \leq \Delta^n_{0,1}(t).$$

Hence, $c(\Delta^n_{0,1}(t)) \subset \Delta^n_{0,1}(t)$. Take any $x = (\alpha_t, x_2, \ldots, x_{n-1}, \beta_t) \in \Delta^n_{0,1}(t)$. Since $\alpha_t \leq x_n \leq \beta_t$, there exists $s \in [0, 1]$ such that $x_n = (1 - s)\alpha_t + s \beta_t$. If $s = 0, x_1 = \alpha_t$ for each $i = 1, \ldots, n$. We may assume that $s > 0$. For $i = 1, \ldots, n$ set $x_i' = s^{-1}[x_i - (1 - s)\alpha_t]$. Since $\alpha_t \leq x_2 \leq \cdots \leq x_{n-1} \leq (1 - s)\alpha_t + s \beta_t \leq \beta_t$,

$$(\alpha_t, x_2, \ldots, x_{n-1}, \beta_t) = (\alpha_t, (1 - s)\alpha_t + s x_2, \ldots, (1 - s)\alpha_t + s x_{n-1}, (1 - s)\alpha_t + s \beta_t) \leq (\alpha_t, x_2, \ldots, x_{n-1}, \beta_t) \in \Delta^n_{0,1}(t).$$

Hence $x_n = (1 - s)\alpha_t + s x_n' \leq (1 - s)\alpha_t + s \beta_t$.

Therefore $c(\Delta^n_{0,1}(t)) = \Delta^n_{0,1}(t)$. By (3.1), note that every s-level of $c(\Delta^n_{0,1}(t))$ is equal to $\Delta^n_{0,1}(\alpha_t, (1 - s)\alpha_t + s \beta_t) \subset \Delta^n_{0,1}(t)$.

Let take points $x = (\alpha_t, x_2, \ldots, x_{n-1}, \beta_t), x' = (\alpha_t, x_2', \ldots, x_{n-1}', \beta_t) \in \Delta^n_{0,1}(t)$. If $r_n(x) = r_n(x')$, by (3.1),

$$r_n((1 - s)\alpha_t(0) + s x) = (1 - s)\alpha_t(0) + s x'$$

for each $s \in [0, 1]$. If $r_n((1 - s)\alpha_t(0) + s x) = r_n((1 - s)\alpha_t(0) + s x')$ for some $s \in [0, 1]$, by (3.1) and Lemma 2.4(3), we similarly have that $x \in r_n(\alpha_t(0))$. Hence, the homeomorphism $f_0 : c(\Delta^n_{0,1}(t)) \to \Delta^n_{0,1}(t)$ given by $f_0((1 - s)\alpha_t(0) + s x) = (1 - s)\alpha_t(0) + s x$ induces the homeomorphism $F_0 : r_n(\alpha_t(0)) \to r_n(\alpha_t(0))$ and $F_0(\alpha_t(0)) = r_n(\alpha_t(0))$.

Similarly we have that $r_n(\alpha_t(0))$ is homeomorphic to the cone $c(r_n(\alpha_t(0)))$ with the cone point $r_n(\alpha_t(0))$. □

Lemma 3.2. Let $0 < t < 1/2$. Then $r_n(\Delta^n_{0,1}(t))$ is homeomorphic to the suspension $\Sigma r_n(\Delta^n_{0,1}(t))$ of $r_n(\Delta^n_{0,1}(t))$ with suspension points $r_n(\alpha_t(0))$ and $r_n(\alpha_t(1))$.

Proof. By Lemma 3.1 it suffices to see that $r_n(\alpha_t(0)) \cap r_n(\alpha_t(1)) = r_n(\alpha_t(0))$. Take any $x = (x_1, x_2, \ldots, x_{n-1}, \beta_t) \in \Delta^n_{0,1}(t)$ such that $r_n(x) \in r_n(\alpha_t(0)) \cap r_n(\alpha_t(1))$. Since $r_n(x) \in r_n(\alpha_t(0))$, $0 < \alpha_t \leq x_1$ and $\Delta^n_{0,1}(t) = \{ z \in \Delta^t : \alpha_t = 1 \leq z_2 \leq \cdots \leq z_n \leq \beta_t \}, x_1 = \alpha_t$. Thus, $x = (\alpha_t, x_2, \ldots, x_{n-1}, \beta_t) \in \Delta^n_{0,1}(t)$. Hence, $r_n(\alpha_t(0)) \cap r_n(\alpha_t(1)) \subset r_n(\alpha_t(0))$. As the converse relation is clear, we have that $r_n(\alpha_t(0)) \cap r_n(\alpha_t(1)) = r_n(\alpha_t(0))$. □

Lemma 3.3. $r_n(\alpha_{1/2}) = r_n(\Delta^n_{0,1}(1/2)) = r_n(\Delta^n_{0,1}(1/2))$.

Proof. We show only $r_n(\alpha_{1/2}) = r_n(\Delta^n_{0,1}(1/2))$. For any point $x = (0, x_2, \ldots, x_{n-1}, 1) \in \Delta^n_{0,1}(1/2)$, we define the point $x' = (x_2, \ldots, x_{n-1}, 1) \in \Delta^n_{0,1}(1/2)$. Then since $q(0) = q(1), r_n(x) = r_n(x')$. Hence, $r_n(\Delta^n_{0,1}(1/2)) \supset r_n(\Delta^n_{0,1}(1/2))$. Similarly, we can show that $r_n(\Delta^n_{0,1}(1/2)) \subset r_n(\Delta^n_{0,1}(1/2))$, which proves the desired equation. □
Theorem 3.4. Fix a given $t \in (0, 1/2)$. Then $S^1(n) \setminus r_n(\Delta^n(1/2))$ is homeomorphic to the open cone $\tilde{c}(\Sigma r_n(\Delta^n_0,1(t)))$ of $\Sigma r_n(\Delta^n_0,1(t))$ with the cone point $r_n(a_0(0)) = r_n(a_1(0))$. Namely $S^1(n)$ is a compactification of $\tilde{c}(\Sigma r_n(\Delta^n_0,1(t)))$ whose remainder is homeomorphic to $r_n(\Delta^n_G(1/2))$.

Proof. We consider the subset of \mathbb{R}^n

$$\{(1-s)c + sx: x \in \Delta^n(t), 0 \leq s < \gamma_1\},$$

where $c = a_0(0) = (1/2, 1/2, \ldots, 1/2)$ and $\gamma_1 = (1 - 2\alpha t)^{-1} = (2t)^{-1}$.

Suppose that for points $x = (x_1, x_2, \ldots, x_n)$. Then, $(1-s)/2 + sx_i = (1-s)/2 + s'x_i$ for all $i = 1, \ldots, n$. In particular, $(1-s)/2 + sx_1, (1-s)/2 + sx_n) = ((1-s)/2 + s'x_1, (1-s)/2 + s'x_n).$ If $s = 0$, $s' = 0$ or $x'_1 = x'_n = 1/2$. If $x'_1 = x'_n = 1/2$, then $x'_i = x_i = \ldots = x'_{n-1} = x'_n = 1/2$. It follows that $x' \notin \Delta^n(t)$, a contradiction. Suppose that $s \neq 0$ and $s' \neq 0$. By Fig. 3.4.1, we have $(x_1, x_n) = (x'_1, x'_n).$ Then we have $s = s'$. Hence $x_i = x'_i, i = 1, 2, \ldots, n$. Thus, $x = x'$. This shows that our set is homeomorphic to the open cone $\tilde{c}(\Delta^n(t))$ of $\Delta^n(t)$. Therefore we can denote our set as follows

$$\tilde{c}(\Delta^n(t)) = \{(1-s)c + sx: x \in \Delta^n(t), 0 \leq s < \gamma_1\}.$$

Next we show that $\Delta^n \setminus \Delta^n(1/2) = \tilde{c}(\Delta^n(t))$. Take any $(1-s)c + sx \in \tilde{c}(\Delta^n(t))$ for $0 \leq s < \gamma_t$ and $x \in \Delta^n(t)$. Then

$$(1-s)c + sx = (1-s)2sx_1, 1/2, \ldots, (1-s)2sx_n)/2.$$

Since $\alpha t \leq x_1$, thus, $\gamma_2^{-1} = 1 - 2\alpha t \geq 1 - 2x_1$, we have that $1 - s + 2sx_1 = 1 - s(1 - 2x_1) > 1 - \gamma_2(1 - 2x_1) > 0$. Since $1 - 2\alpha t = 2\beta t - 1$ and $x_n \leq \beta t$, $1 - (1-s)2sx_1)/2 = (1-s)(1-2sx_1)/2 \geq (1-s)(1-2\beta t)/2 = (1-s)/\gamma_2)/2 > 0$. Since $\alpha t \leq x_1 \leq \ldots \leq x_n \leq \beta t$, $0 < (1-s)2sx_1)/2 \leq \ldots \leq (1-s)2sx_n)/2 < 1$.

Hence $\Delta^n \setminus \Delta^n(1/2) = \tilde{c}(\Delta^n(t))$.

Take any $x \in \Delta^n \setminus \Delta^n(1/2)$ with $x \neq c$. There exist $\lambda \in (0, \infty)$ and $(x'_1, x'_n) \in \Delta^n(t)$ such that $(x'_1, x'_n) = ((1-\lambda)/2 + \lambda x_1, (1-\lambda)/2 + \lambda x_n)$ (see Fig. 3.4.2). Then we define $x'_i = (1-\lambda)/2 + \lambda x_i$ for each $i = 1, \ldots, n$ and consider the point $x' = (x'_1, \ldots, x'_n) = (1-\lambda)c + \lambda x \in \mathbb{R}^n$. Since we clearly see that $\alpha t \leq x'_1 \leq \ldots \leq x'_n \leq \beta t$, and $x'_i = \alpha t$ or $x'_n = \beta t, x' \in \Delta^n(t).$

Defining $\mu = \lambda^{-1} > 0$, we have

$$(1-\mu)c + \mu x' = (1-\mu)c + \mu(1-\lambda)c + \mu\lambda x = (1-\lambda^{-1})c + \lambda^{-1}(1-\lambda)c + x = x.$$

Suppose that $\mu \geq \gamma_1$. If $x'_1 = \alpha t$, then

$$(1-\mu)/2 + \mu\alpha t = 1/2 + \mu(\alpha t - 1/2) = 1/2 - \mu t \leq 0,$$

a contradiction. If $x'_n = \beta t$,

$$(1-\mu)/2 + \mu\beta t = 1/2 + \mu(\beta t - 1/2) = 1/2 + \mu t \geq 1,$$

a contradiction. Thus, we see that $0 < \mu < \gamma_1$. Hence $x \in \tilde{c}(\Delta^n(t))$, and $\Delta^n \setminus \Delta^n(1/2) \subset \tilde{c}(\Delta^n(t))$. Therefore $\Delta^n \setminus \Delta^n(1/2) = \tilde{c}(\Delta^n(t))$.

Fig. 3.4.1. Fig. 3.4.2.
Let $0 \leq s < \gamma t$ and $x \in \Delta^n(t)$. Then

$$(1 - s)c + sx = ((1 - s + 2sx_1)/2, \ldots, (1 - s + 2sx_n)/2).$$

For any $x' \in r^{-1}_n(r_n(x))$, since

$$(1 - s)c + sx' = ((1 - s + 2sx'_1)/2, \ldots, (1 - s + 2sx'_n)/2),$$

$r_n((1 - s)c + sx) = r_n((1 - s)c + sx')$, $(1 - s)c + sx' \in r^{-1}_n(r_n((1 - s)c + sx))$. Next we consider the case when there exist points $y, z \in \Delta^n \setminus \Delta^n(1/2)$ with $r_n(y) = r_n(z) = r_n(c)$. Then as seen as in the above, there exist $y', z' \in \Delta^n(t)$ and $\lambda, \lambda' \in [0, \gamma t)$ such that $y' = (1 - \lambda)c + \lambda y$ and $z' = (1 - \lambda')c + \lambda' z$. Since $r_n(y) = r_n(z)$, $y_1 = z_1$ and $y_n = z_n$. Thus, $(y'_1, y'_n) = (z'_1, z'_n)$. Then as seen as in the above, $\lambda = \lambda'$. Hence, if $y_1 = z_1$ for some i, $y'_i = z'_j$. Therefore $r_n(y') = r_n(z')$. Moreover, we note that $\lambda = \lambda'$ implies $y, z \in \Delta^n(t')$ for some $t' \in [0, 1/2)$. Hence the identity map $\tilde{\phi} : \tilde{\varphi}(\Delta^n(t)) \to \Delta^n \setminus \Delta^n(1/2)$ induces the homeomorphism $\tilde{\varphi}_n : \tilde{\varphi}(\Delta^n(t)) \to r_n(\Delta^n \setminus \Delta^n(1/2))$. Therefore, by Lemmas 3.2 and 3.3, we have Theorem 3.4.

Corollary 3.5. Let $n \in \mathbb{N}$ with $n \geq 2$. Then there exists a closed subset R of $S^1(n)$ which is homeomorphic to D^{n-1} such that $S^1(n) \setminus R$ is homeomorphic to the open cone $\tilde{\varphi}(\Sigma D^{n-2})$ over ΣD^{n-2}.

Theorem 3.6. Let $0 < t_0 < 1/2$, $n \in \mathbb{N}$ and $K = \bigcup_{t_0 \leq t \leq 1/2} r_n(\Delta^n(t))$. Then there exists a deformation retraction from K to $r_n(\Delta^n(1/2))$.

Proof. For each $x \in \Delta^n(t_0)$ we define

$$x' = s_0(x - c) + c,$$

where $s_0 = 1/(2t_0)$ and $c = a_0(0) = (1/2, \ldots, 1/2) \in \Delta^n$. Since $s_0(\alpha(t_0 - 1/2) + 1/2 = 0$ and $s_0(\beta(t_0 - 1/2) + 1/2 = 1$, $x \in \Delta^n(t_0)$ implies $x' \in \Delta^n(1/2)$ for $j = 0, 1$.

Let us consider the set

$$Z = \{(1 - \mu)x + \mu x' : \mu \in \mathbb{I}, x \in \Delta^n(t_0)\}.$$

For points $x, y \in \Delta^n(t_0)$ suppose that there exist $\mu, \nu \in \mathbb{I}$ such that $(1 - \mu)x + \mu x' = (1 - \nu)y + \nu y'$. Then, since $(x'_1, x'_n) = (y'_1, y'_n)$, $(x_1, x_n) = (y_1, y_n)$ and $\mu = \nu$. Hence we have that $x = y$. This shows that Z is homeomorphic to $\Delta^n(1/2) \times I$ and $\Delta^n(t_0) \times I$ (see Fig. 3.6.1).

Next we show that $Z \subseteq \bigcup_{t_0 \leq t \leq 1/2} \Delta^n(t)$. It is clear that $Z \subseteq \Delta^n$. For $\mu \in \mathbb{I}$ $(1 - \mu)\alpha(t_0) = \alpha(t_0)$ for some $t_0 \leq t \leq 1/2$ if and only if $(1 - \mu)\beta(t_0) + \mu = \beta(t_0)$. Hence for any $x \in \Delta^n(t_0)$ or $\Delta^n(t)$, $(1 - \mu)x + \mu x' \in \Delta^n(t)$ or $\Delta^n(t)$ for some $t_0 < t < 1/2$, respectively. Therefore $Z \subseteq \bigcup_{t_0 \leq t \leq 1/2} \Delta^n(t)$. Conversely take any $y \in \bigcup_{t_0 \leq t \leq 1/2} \Delta^n(t)$. Since $(y_1, y_n) \in \bigcup_{t_0 \leq t \leq 1/2} \Delta^n(t)$, we can easily find $\lambda \in \mathbb{I}$ and $(x_1, x_n) \in \Delta^n(t_0)$ such that

$$(x_1, x_n) = \left((1 - \lambda)/2 + \lambda y_1, (1 - \lambda)/2 + \lambda y_n\right).$$

Defining $x_i = (1 - \lambda)/2 + \lambda y_i$ for each $i = 1, \ldots, n$, we have the points

$$x = (x_1, \ldots, x_n) \in \Delta^n(t_0) \quad \text{and} \quad x' = s_0(x - c) + c \in \Delta^n(1/2).$$

Define $\mu = (1 - \lambda)/(s_0 - 1) \geq 0$. Since $1 - \mu + \mu s_0 = \lambda^{-1}$ and $\mu(s_0 - 1) = (1 - \lambda)/\lambda$, for every $i = 1, 2, \ldots, n$,
(1 − µ)x₁ + µx′₁ = (1 − µ + µs₀)x₁ + µ(1 − s₀)/2
= (1 − µ + µs₀)(1 − λ)/2 + λ(1 − µ + µs₀)y₁ + µ(1 − s₀)/2
= (1 − λ)/2λ + y₁ − (1 − λ)/2λ.

This shows that µ ∈ I and Y ⊂ Z. Hence \(\bigcup_{0 \leq t \leq 1/2} \Delta^n(t) = Z \) and \(r_n(Z) = K \). Moreover, we essentially show that \(\Delta^n(1/2) = \{ x' : x \in \Delta^n(t₀) \} \) and there exists the natural homeomorphism \(F : \Delta^n(1/2) \times I \to \bigcup_{0 \leq t \leq 1/2} \Delta^n(t) \) defined by \(F(x, µ) = (1 − µ)x + µx' \).

Define \(H : \bigcup_{0 \leq t \leq 1/2} \Delta^n(t) \times I \to \bigcup_{0 \leq t \leq 1/2} \Delta^n(t) \) by

\[H((1 − µ)x + µx', u) = (1 − (µ + (1 − µ)u)x + (µ + (1 − µ)u)x' \] (3.4)

for each \(x \in \Delta^n(t₀) \) and each \(u \in I \). It is clear that \(H_0 = id_Z \), \(H_u|_{\Delta^n(1/2)} = id_{\Delta^n(1/2)} \) and \(H_1(Z) = \Delta^n(1/2) \). For \(x \in \Delta^n(t₀) \), \(u \in I \), by (3.3) and (3.4),

\[H((1 − µ)x + µx', u) = (1 − ν)x + νx' = (1 − ν + νs₀)x + ν(1 − νs₀)c, \]

where \(ν = µ + (1 − µ)µ \). Hence for any \(y \in r_n^{-1}(r_n(x)) \) and any \(µ \in I \) we can see that \(r_n(H((1 − µ)y + µy', u)) = r_n(H((1 − µ)y + µy', u)) \). Hence, \(H \) induces the map \(\bar{H} : K \times I \to K \) such that \(\bar{H}_0 = id_K \), \(\bar{H}_u|_{r_n^{-1}(\Delta^n(1/2))} = id_{r_n^{-1}(\Delta^n(1/2))} \) and \(\bar{H}_1(K) = r_n(\Delta^n(1/2)) \). Therefore \(\bar{H}_1 : K \to r_n(\Delta^n(1/2)) \) is a deformation retraction, which prove the theorem. □

4. Application: a homotopy type of \(S^1(n) \)

Theorem 4.1. Let \(n \in N. \) Then \(S^1(2n + 1) \) has the same homotopy type of the \((2n + 1) \)-sphere \(S^{2n+1} \).

Proof. By Theorem 3.4, Lemmas 2.6 and 2.7, \(S^1(2n + 1) \) is homeomorphic to the open cone \(\tilde{c}(\Sigma D^{2n-1}) \) of \(\Sigma D^{2n-1} \) and \(S^1(2n + 1) \) is a compactification of \(\tilde{c}(\Sigma D^{2n-1}) \) whose remainder is homeomorphic to \(D^{2n} \). Let \(\rho : S^1(2n + 1) \to S^1(2n + 1)/r_{2n+1}(\Delta^{2n+1}(1/2)) \) be the projection. Then \(S^1(2n + 1)/r_{2n+1}(\Delta^{2n+1}(1/2)) \) is homeomorphic to the double suspension \(S^2 D^{2n-1} \) of \(D^{2n-1} \). Hence, by [2, Theorem 3.4], \(S^1(2n + 1)/r_{2n+1}(\Delta^{2n+1}(1/2)) \) has the same homotopy type of the \((2n + 1) \)-sphere \(S^{2n+1} \) and \(\rho \) is a cell-like map. Therefore \(S^1(2n + 1) \) has the same homotopy type of the \((2n + 1) \)-sphere \(S^{2n+1} \). □

Theorem 4.2. Let \(n \in N. \) Then \(S^1(2n) \) has the same homotopy type of the \((2n − 1) \)-sphere \(S^{2n-1} \).

Proof. By Theorem 3.4, Lemmas 2.6 and 2.7, \(S^1(2n) \) is homeomorphic to the open cone \(\tilde{c}(\Sigma D^{2n-2}) \) of \(\Sigma D^{2n-2} \) and \(S^1(2n) \) is a compactification of \(\tilde{c}(\Sigma D^{2n-2}) \) whose remainder is homeomorphic to \(D^{2n-1} \).

Let us define

\[K_0 = \bigcup_{1/4 \leq t \leq 1/2} r_{2n}(\Delta^{2n}(t)) \quad \text{and} \quad K_1 = Cl(S^1(2n) \setminus K_0). \]

Then \(S^1(2n) = K_0 \cup K_1 \) and \(K_0 \cap K_1 = r_{2n}(\Delta^{2n}(1/4)) \) is homeomorphic to \(\Sigma D^{2n-2} \). Hence by [2, Theorem 3.4] \(K_0 \cap K_1 \) is contractible, and thereby an AR. Then there exists a retraction \(r_1 : K_1 \to K_0 \cap K_1 \) which is homotopic to the identity map \(K_1 \to K_1 \). Hence, by Theorem 3.6, there exists a retraction \(r : S^1(2n) \to r_{2n}(\Delta^{2n}(1/2)) \) which is homotopic to the identity map \(S^1(2n) \to S^1(2n) \). Therefore \(S^1(2n) \) has the same homotopy type of \(D^{2n-1} \). It follows, by [2, Theorem 3.4], that \(S^1(2n) \) has the homotopy type of the \((2n − 1) \)-sphere \(S^{2n-1} \).

It is well known that \(S^1(2) \) is homeomorphic to the Möbius band. By Theorem 4.2 we can see that \(S^1(2n), n \geq 2, \) is not a closed \(2n \)-manifold: Suppose that \(S^1(2n) \) is a \(2n \)-manifold. Then \(S^1(2n) \) is orientable because \(\pi_1(S^1(2n)) \) is trivial. However \(H_{2n}(S^1(2n)) \) is trivial; a contradiction. Thus, we have the following (see Theorem 6.4 for general case).

Corollary 4.3. Any \(S^1(2n) \) is not a closed \(2n \)-manifold.

5. Application: \(S^1(3) \) is homeomorphic to \(S^3 \)

In case of \(n = 3 \) Theorem 3.4 implies the more precise description as follows:

Theorem 5.1. \(S^1(3) \setminus r_{3}(\Delta^{3}(1/2)) \) is homeomorphic to \(\mathbb{R}^3 \) and \(S^1(3) \) is a compactification of \(\mathbb{R}^3 \) whose remainder is homeomorphic to the dunce hat \(D^2 \).
Lemma 5.2. $S^1(3)$ is a 3-manifold.

Proof. By Theorem 5.1, $S^1(3) \setminus r_3(\Delta^3(1/2))$ is homeomorphic to R^3. Hence, every $z \in S^1(3) \setminus r_3(\Delta^3(1/2))$ has a neighborhood which is homeomorphic to R^3. Choose $z \in \Delta^1(1/2)$. Then, we can write $q_3(z) = (s, t, u)$ such that $x_0 \in [s, u]$, where $x_0 = (1, 0) \in S^1$. There exists a homeomorphism $h : S^1 \to S^1$ such that $p_{S^1(3)}(h(s), h(t), h(u)) \in S^1(3) \setminus r_3(\Delta^3(1/2))$. Let $H : S^1(3) \to S^1(3)$ be the homeomorphism induced by $h \times h \times h : T^3 \to T^3$ such that $H \circ r_3(z) \in S^1(3) \setminus r_3(\Delta^3(1/2))$. Hence, $r_3(z)$ has a neighborhood which is homeomorphic to R^3. □

From Theorem 4.1 and Lemma 5.2 we obtain the following (cf. [1, Theorem 3]).

Corollary 5.3. (Bott [5]) $S^3(3)$ is homeomorphic to S^3.

Since $r_3(\Delta^3(1/2))$ satisfies the cellularity criterion, we get the following. See [7, pp. 143–147].

Corollary 5.4. The dunce hat $r_3(\Delta^3(1/2))$ is cellular in $S^1(3)$.

6. Application: $S^1(n)$ is not an n-manifold for each $n \geq 4$

Notation 6.1. Write $T_m = \{(t \cos 2\pi k/m, t \sin 2\pi k/m) \in R^2 : t \in \mathbb{R}, k = 0, \ldots, m-1\}$ for $m, n \in \mathbb{N}$.

$$\triangle_n^{n+2} = \{(x_1, \ldots, x_{n+2}) \in \triangle_n^{n+2}(1/2) : x_i = x_{i+1}\} \text{ for } i = 1, \ldots, n+1,$$

$$\partial \triangle_n^{n+2}(1/2) = \triangle_n^{n+2} \cup \cdots \cup \triangle_{n+1}^{n+2} \text{ and } \triangle_{n+1}^{n+2} = \triangle_{0,1}^{n+2}(1/2) \setminus \partial \triangle_{0,1}^{n+2}(1/2).$$

Lemma 6.2. For every $n \in \mathbb{N}$ and every $i = 1, \ldots, n+1$, $r_n(\triangle_{1}^{n+2})$ is homeomorphic to D^{n-1} and $r_{n+2}(\partial \triangle_{0,1}^{n+2}(1/2)) = r_{n+2}(\triangle_{1}^{n+2})$.

Proof. For $i = 1, 2, \ldots, n+1$, we define the homeomorphism $f_i : \triangle_i^{n+2} \to \triangle_{0,1}^{n+2}(1/2)$ by $f_i(x_1, x_2, \ldots, x_{i+1}, \ldots, x_n) = (x_1, x_2, \ldots, x_i, x_{i+2}, \ldots, x_n)$. Since $f_i(\triangle_i^{n+2}(r_n(\triangle_{1}^{n+2}(x))) \cap \triangle_{0,1}^{n+2}(1/2)) = \triangle_{0,1}^{n+2}(1/2)$ for each $x \in \triangle_{1}^{n+2}$, f_i induces the homeomorphism $F_i : \triangle_i^{n+2} \to D^{n-1}$.

To prove the latter part, it suffices to show that $r_{n+2}(\triangle_{1}^{n+2}) = r_{n+2}(\triangle_{j}^{n+2})$ for any $i, j = 1, \ldots, n+1$ with $i < j$. Let $x = (x_1, \ldots, x_{n+2}) \in \triangle_{1}^{n+2}$. Define

$$x_k' = \begin{cases} x_k & \text{if } 1 \leq k \leq i, \\ x_{k+1} & \text{if } i+1 \leq k \leq j-1, \\ x_{j+1} & \text{if } k = j, j+1, \\ x_k & \text{if } j+2 \leq k \leq n+2, \end{cases}$$

and $x' = (x_1', \ldots, x_{n+2}') \in \triangle_{j}^{n+2}$. Since $r_{n+2}(x) = r_{n+2}(x')$, $r_{n+2}(\triangle_{1}^{n+2}) \subseteq r_{n+2}(\triangle_{j}^{n+2})$. Similarly, we can show that $r_{n+2}(\triangle_{1}^{n+2}) \subseteq r_{n+2}(\triangle_{j}^{n+2})$. □

By Lemma 6.2, $D^{n-1} = D^n \setminus r_{n+2}(\triangle_{1}^{n+2})$ and $D^0 \subseteq D^1 \subseteq \cdots \subseteq D^n$.

Lemma 6.3. For each point $z \in r_{n+1}(\triangle_{n}^{n+1}) \subseteq D^{n-1} \subseteq D^n$, there exists an arbitrarily small neighborhood in D^n which is homeomorphic to T_{n+1}^{n+1}.

Proof. Let U be a neighborhood of z in D^n. By Lemma 6.2, for every $i = 1, \ldots, n+1$ there exists $x_i' = (x_1', \ldots, x_{n+2}') \in \triangle_{n+2}$ such that $z = r_{n+2}(x_i')$ for each $i = 1, \ldots, n+1$, $x_j' = x_j$ if and only if $(j, j') = (i, i+1)$. There exists a closed neighborhood V_i of x_i' in \triangle_{i}^{n+2} which is homeomorphic to an $(n-1)$-cell such that for every $y \in V_i$, $y_j = y_j'$ if and only if $(j, j') = (i, i+1)$, and $r_{n+2}(V_i) = r_{n+2}(V_i')$ for any $i, i' = 1, \ldots, n+2$. By Lemma 2.4, there exists a closed neighborhood W_i of x_i' in $\triangle_{i}^{n+2}(1/2)$ which is homeomorphic to an n-cell such that $W_i \cap W_i' = \emptyset$ whenever $i \neq i'$, every $r_{n+2}(W_i)$ is homeomorphic to an n-cell in U, $\triangle_{i}^{n+2} \cap W_i \subset V_i$, and $r_{n+2}(W_i') \cap W_i = r_{n+2}(W_i') \cap V_i$ is homeomorphic to an $(n-1)$-cell for any $i, i' = 1, \ldots, n+1$. Thus, $W = \bigcup_{i=1}^{n+1} r_{n+2}(W_i)$ is a neighborhood of z in U which is homeomorphic to T_{n+1}. □

Followings are obtained by more general results in [6, Lemmas 4.2 and 4.3]. However our setting is simpler, we are giving direct proofs.
Theorem 6.4. $S^3(n)$ is not an n-manifold for each $n \in \mathbb{N}$ with $n \geq 4$.

Proof. By Lemma 6.3, some point in D^{n-2} has a small neighborhood which is homeomorphic to T_n^{n-2}. Thus, some point in $c(\Sigma D^{n-2})$ has a small neighborhood which is homeomorphic to T_n^{n-1}. Since $n \geq 4$, by Theorem 3.4, $S^3(n)$ is not an n-manifold. \qed

Let X be an n-dimensional compact metric space. By $S(X)$ we denote the set of all points at which X fails to be a topological n-manifold. It is clear that $S(S^3(n)) \subset S^3(n) \setminus r_n(\Delta^n)$. In [2, Remark 3.6] it is pointed out that $S(\Sigma D^3)$ is homeomorphic to the 3-sphere S^3.

Corollary 6.5.

$S(S^3(4)) = S^3(4) \setminus r_n(\Delta^3) = \{r_4(x_1, x_2, x_3, x_4) : |\{x_1, x_2, x_3, x_4\}| \leq 3\}.$

Proof. Let $0 < t < 1/2$ and $D^3 = \Delta^3_1(t)$ by Theorem 3.4. It is clear that $D^3 \supset D^4 = \{r_4(x_1, x_2, x_3, x_4) : (x_1, x_2, x_3, x_4) \in \Delta^4_1(t), |\{x_1, x_2, x_3, x_4\}| = 2, 3\}$ and $z \in D^3 \subset D^2$ has small neighborhood in D^2 which is homeomorphic to T^2_3. By Theorem 3.4, $S^3(\Sigma D^3) = S^3(\Sigma D^2) = \{r_4(x_1, x_2, x_3, x_4) : (x_1, x_2, x_3, x_4) \in \Delta^4_1(t), 1 \leq |\{x_1, x_2, x_3, x_4\}| \leq 3\}$. By Theorem 3.4, $S^3(\Sigma D^3) = \{r_4(x_1, x_2, x_3, x_4) : (x_1, x_2, x_3, x_4) \notin \Delta^3(1/2), 1 \leq |\{x_1, x_2, x_3, x_4\}| \leq 3\}$. There exists a homeomorphism $h : S^3 \to S^3$ such that $\beta_3(h(x + x) = h(x + h(q_4(\Delta^3(1/2)))) \subset S^3(4) \setminus r_4(\Delta^3(1/2))$. Let $H : S^3(4) \to S^3(4)$ be the homeomorphism induced by $h \times x \times h \times x : T^4 \to T^4$ such that $H \circ r_4(\Delta^3(1/2)) \subset S^3(4) \setminus r_4(\Delta^3(1/2))$. Hence, $S(S^3(4)) = \{r_4(x_1, x_2, x_3, x_4) : |\{x_1, x_2, x_3, x_4\}| \leq 3\}. \quad \square$

7. Application: On the embedding in $S^3(n)$

Theorem 7.1. For every $n \in \mathbb{N}$ with $n \geq 4$ there exists no embedding from an orientable closed n-dimensional topological manifold into $S^3(n)$.

Proof. On the contrary, assume that there exists an embedding i from an orientable closed n-dimensional topological manifold M into $S^3(n)$.

Suppose n is even. By Theorem 4.2, the n-th cohomology group $H^n(S^3(n))$ of $S^3(n)$ is zero. Since $S^3(n)$ is an n-dimensional CW-complex, $H^{n+1}(S^3(n), i(M)) = 0$. From the exact sequence

$$\cdots \to H^n(S^3(n)) \to H^n(i(M)) \to H^{n+1}(S^3(n), i(M)) \to \cdots$$

of the cohomology groups, we have a contradiction.

Suppose n is odd. For every $x \in \Delta^3_n$ there exist a small open neighborhood U of x in Δ^3_n and a strong deformation retraction $r : \Delta^3_n \times U \to \Delta^3_n \setminus \Delta^3_n$. By Lemma 2.4, for every $x \in \Delta^3_n$ there exist a small open neighborhood V of $r_n(x)$ in Δ^3_n and a strong deformation retraction $R : S^3(n) \setminus V \to S^3(n) \setminus r_n(\Delta^3_n)$. Suppose $i(M) \neq S^3(n)$. Since $r_n(\Delta^3_n)$ is open dune $S^3(1)$, there exist $x \in \Delta^3_n$, a small open neighborhood V of $r_n(x)$ in Δ^3_n and $i(M)$ and a strong deformation retraction $R : S^3(n) \setminus V \to S^3(n) \setminus r_n(\Delta^3_n)$. Since $S^3(n) \setminus r_n(\Delta^3_n)$ is an $(n-1)$-dimensional CW-complex, $H^n(S^3(n) \setminus V) = H^{n+1}(S^3(n), i(M)) = 0$. From the exact sequence

$$\cdots \to H^n(S^3(n) \setminus V) \to H^n(i(M)) \to H^{n+1}(S^3(n) \setminus V, i(M)) \to \cdots$$

of the cohomology groups, we see that $i(M) = S^3(n)$, but, by Theorem 6.4, we have a contradiction. \qed

Corollary 7.2. Let $n \in \mathbb{N}$. Then there exists an embedding from the n-sphere $S^3(n)$ into $S^3(n)$ if and only if $n = 1, 3$.

References