Note

Structure of 3-infix–outfix maximal codes

Dong Yang Longa,*, Jian Mab, Duanning Zhoub

aDepartment of Computer Science, Lingnan College, Zhongshan University, Guangzhou 510275, China
bDepartment of Information Systems, City University of Hong Kong, Kowloon, Hong Kong

Received February 1996
Communicated by M. Ito

Abstract

This paper proves that a 3-infix–outfix code is a maximal code if and only if it is a group code, or equivalently, if and only if, it is a full uniform code. Thus, the structure for 3-infix–outfix code being a maximal code can be completely determined.

\textbf{Keywords:} n-prefix-suffix; n-infix–outfix; Group codes; Uniform codes

1. Introduction

Which characteristics does a code C possess when the syntactic monoid $\text{syn}(C^*)$ of the star closure C^* of C is a group? This is an unsolved open problem proposed by Schützenberger in [12]. We call a code C a group code if the $\text{syn}(C^*)$ is a group. Schützenberger characterized the structure of finite group codes and proved that C is a group code if and only if C is a full uniform code [1, 12]. Few properties of infinite group codes are known so far. In [7, 8, 10], the structure of certain infinite codes which are group codes was characterized. By introducing the concept of n-infix–outfix codes, additional properties of some group codes different from that in [7, 8] are given in [9]. It also shows that any finite 3-infix–outfix code is maximal if and only if it is a group code, or equivalently, if and only if it is a full uniform code. The proof of this result relies on the finiteness of the code. Therefore, the following problem is proposed in [9]: Is there an infinite 3-infix–outfix code which is a maximal code? This paper is a continuation of [9]. We answer the above problem and completely determine the structure of a 3-infix–outfix code which is a maximal code. Since the class of infix or

* Corresponding author.

0304-3975/97/$17.00 \copyright$ 1997—Elsevier Science B.V. All rights reserved

PII S0304-3975(97)00097-2
outfix codes is properly contained in the class of 3-infix–outfix codes [9], the result of this paper is a generalization of main results in [7].

This paper first introduces the relevant concepts and notations. Detailed definitions can be found in [1, 5, 4, 11].

Let \(A \) be a finite alphabet. \(A^* \) denotes the free monoid generated by \(A \) and \(A^+ = A^* \setminus \{1\} \) where 1 is the empty word over \(A \). An element and a subset of \(A^* \) is said to be a word and a language over \(A \), respectively. For \(x \in A^* \), \(|x| \) denotes the length of \(A \).

A language \(L \subseteq A^* \), associates its principal congruence \(P_L \) and its syntactic monoid \(\text{syn}(L) = A^*/P_L \), where

\[
L \ni [w] \iff ((\forall x, y \in A^*) xy y \in L \iff xy \in L).
\]

By \([w]\) we denote the \(P_L \)-class of \(w \), i.e., \([w] = \{ x \in A^* \mid x \equiv w(P_L) \} \).

A language \(C \subseteq A^* \) is said to be a code over \(A \) if the submonoid \(C^* \) of \(A^* \) is freely generated by \(C \). A language \(C \subseteq A^* \) is said to be a prefix code if \(CA^+ \cap C = \emptyset \). A language \(C \subseteq A^* \) is said to be a suffix code if \(A^+ C \cap C = \emptyset \). A language \(C \subseteq A^* \) is called a bifix (or biprefix) if it is both a prefix code and a suffix code. If we use the notation "\(\Theta \)" to represent some class of codes, we say that the code \(C \) is a maximal \(\Theta \) code if and only if for any \(\Theta \) code \(D \) over \(A \), \(D \supseteq C \) implies \(D = C \). We say that the code \(C \) is a \(\Theta \) maximal code if and only if \(C \) is both \(\Theta \) and maximal in the class of all codes over \(A \). A code \(C \) is said to be an infix code if \((\forall u, v, x \in A^*) xu v \in C \iff uxv \in C \). A code \(C \) is said to be an outfix code if \((\forall u, v, x \in A^*) uv, u x v \in C \iff x = 1 \). A language \(L \) over \(A \) is said to be reflective if \((\forall x, y \in A^*) xw y \in L \iff x y \in L \). A language \(L \subseteq A^* \) is called an \(n \)-infix–outfix code if every subset of at most \(n \) elements of \(L \) is an infix code or an outfix code. By \(\preceq_p, \preceq_s, \preceq_i, \preceq_o \), we denote the prefix, suffix, infix, and outfix relations on \(A^* \), respectively [4]. By \(P(A), S(A), B(A), I(A), O(A), \) and \(IO_0(A) \) we denote the classes of the prefix, suffix, bifix, infix, outfix, and \(n \)-infix–outfix codes over \(A \), respectively. From [9, 6], we have \(I(A) \subset IO_2(A) \subset B(A), O(A) \subset IO_2(A) \subset B(A) \), \(I(A) \cup O(A) = \cdots = IO_5(A) = IO_3(A) \subset IO_3 \subset IO_2(A) \). For simplicity, this paper assumes that \(A \) is the least alphabet for a code, i.e., let \(C \) be a code over \(A \), then \(A^* a A^* \cap C \neq \emptyset \) for every \(a \in A \).

2. A structure theorem

The two following lemmas directly follow from the definitions.

Lemma 1. Let \(C \subseteq A^* \) be a prefix code. Then \(C \) is a maximal prefix code if and only if \(A^* = CA^* \cup C(A^+)^{-1} \) where \(C(A^+)^{-1} = \{ x \in A^* \mid C \cap x A^+ \neq \emptyset \} \). Let \(C \subseteq A^* \) be a suffix code. Then \(C \) is a maximal suffix code if and only if \(A^* - CA^* \cup (A^+)^{-1} C \) where \((A^+)^{-1} C = \{ x \in A^* \mid C \cap A^+ x \neq \emptyset \} \).

Lemma 2. Let \(C \subseteq A^* \) be a 3-infix–outfix code and a maximal code. Then \(C \) must be a maximal prefix code and a maximal suffix code.
Theorem 1. Let $\mathcal{C} \subseteq A^*$ be a 3-infix-outfix code and a maximal code. If there exist $c_1, c_2 (\neq c_1) \in \mathcal{C}$ such that $c_1 \leq c_2$, i.e., $c_2 = uc_1 v$, for some $u, v \in A^+$, then $A^{\mid c_1 \mid} C \subseteq C$.

Proof. Since a 3-infix-outfix code is a bifix code, it suffices to show that $uc_1 A^{\mid c_1 \mid} C \subseteq C$.

Let $v = a_m a_{m-1} \ldots a_1, a_i \in A, 1 \leq i \leq m$. The claim can be proved by induction on m which is the length of the word v.

(i) First we verify that $uc_1 a_m a_{m-1} \ldots a_2 a_1 \subseteq C$. Suppose there is $b \subseteq A$, such that,

$$uc_1 a_m a_{m-1} \ldots a_2 b \notin C.$$

We show that this implies the existence of infinite sequences

$$y_1, y_2, \ldots \in A^*, \ d_1, d_2, \ldots \in A \ \text{and} \ b_0, b_1, b_2, \ldots \in A$$

such that, for $i = 0, 1, \ldots$,

$$w_i = uc_1 a_m a_{m-1} \ldots a_2 b y_i d_1 y_2 d_2 \ldots y_i d_i b_i \in C,$$

no prefix of

$$w'_i = uc_1 a_m a_{m-1} \ldots a_2 b y_i d_1 y_2 d_2 \ldots y_i d_i a_1$$

is in C, and

$$b_i \notin \{b_0, b_1, \ldots, b_{i-1}\}.$$

As A is finite, this last statement results in a contradiction. To construct the sequences, we proceed by recursion.

For $i = 0$, let $b_0 = a_1$. Clearly,

$$b_i \notin \{b_j \mid 0 \leq j < i\} = \emptyset.$$

Moreover, $w_0 = uc_1 a_m a_{m-1} \ldots a_2 a_1 = c_2 \in C$ and

$$w'_0 = uc_1 a_m a_{m-1} \ldots a_2 b a_1.$$

Since $c_1 \leq c_2 \omega_n w'_0$, it follows that $w'_0 \notin C$. As C is a prefix code, no proper prefix of w_0 is in C. According to the assumption, it follows that no prefix of w'_0 is in C.

Now consider $i > 0$ and suppose the sequences have been constructed up to step $i-1$. No prefix of w'_{i-1} is in C by construction. As C is maximal, by Lemmas 1 and 2, there exist $x_i \in A^*$ and $b_i \in A$ such that $w_i = w'_{i-1} x_i b_i$; let $y_i \in A^*$ and $d_i \in A$, such that $y_i d_i = a_1 x_i$. The w_i has the required form. Suppose, $b_i = b_j$ for some $j < i$, we have $c_1 \leq_i w'_j \omega_n w'_0$, it contradicts the assumption. Thus,

$$b_j \notin \{b_0, \ldots, b_{j-1}\}.$$

In particular, for $j = 0$, one finds that $w'_j \notin C$. As C is a prefix code, no proper prefix of w'_j is in C. This implies that no prefix of w'_j is in C.

It is a contradiction since i is unbounded and A is finite. Therefore, $uc_1 a_m a_{m-1} \ldots a_2 a_1 \subseteq C$.

(ii) Next, we verify that

\[uca_1a_2a_3\ldots a_k+1 \subseteq C, \text{ for } 0 \leq k \leq m - 1. \]

For \(k = 0 \), by (i), clearly,

\[uca_1a_2a_3\ldots a_k+1 \subseteq C. \]

Now consider \(k \) and suppose the conclusion has been true for \(k - 1 \). Suppose there are \(b, e_1, e_2, \ldots, e_k \in A \) such that,

\[uca_1a_2a_3\ldots a_k+1 \subseteq C. \]

Now consider

\[uca_1a_2a_3\ldots a_k+1b_k+1a_k\ldots a_1. \]

As \(c_1 \leq c_2 = uca_1a_2a_3\ldots a_k+2ba_k+1a_k\ldots a_1, \) thus

\[uca_1a_2a_3\ldots a_k+1b_k+1a_k\ldots a_1 \notin C. \]

By the assumption, it is easy to see that no prefix of

\[uca_1a_2a_3\ldots a_k+1b_k+1a_k\ldots a_1 \]

is in \(C \). Otherwise, it is a proper prefix of the words in

\[uca_1a_2a_3\ldots a_k+1a_k^{k+1} \subseteq C \]

or we deduce that

\[uca_1a_2a_3\ldots a_k+2bAk^{k+1} \subseteq C. \]

Therefore,

\[uca_1a_2a_3\ldots a_k+2ba_k+1a_k\ldots a_1 \]

Let \(a_k \ldots a_1x_1 = y_1e_1^1 \ldots e_k^1 \) for some \(y_1 \in A^*, e_1^1, \ldots, e_k^1 \in A \), then

\[uca_1a_2a_3\ldots a_k+2ba_k+1y_1e_1^1 \ldots e_k^1b_1 \in C, \]

moreover, \(e_k^1 \neq a_{k+1} \). Otherwise, by

\[uca_1a_2a_3\ldots a_k+2ba_k+1y_1a_{k+1}e_1^1 \ldots e_k^1b_1 \in C \]

and the assumption,

\[uca_1a_2a_3\ldots a_k+2ba_k+1y_1a_{k+1}a_k^{k+1} \subseteq C. \]

Since

\[c_1 \leq; uca_1a_2a_3\ldots a_k+1a_1 \omega_2uca_1a_2a_3\ldots a_k+2ba_k+1y_1a_{k+1}a_k^{k+1} \]

this is a contradiction with \(C \) being a 3-infix–outfix code. Again consider

\[uca_1a_2a_3\ldots a_k+2ba_k+1y_1a_{k+1}a_k^{k+1} \]

By the assumption and

\[uca_1a_2a_3\ldots a_k+2ba_k+1y_1e_1^1 \ldots e_k^1b_1 \in C, \]

we obtain that no proper prefix of

\[uca_1a_2a_3\ldots a_k+2ba_k+1y_1a_{k+1}a_k^{k+1} \]

is in \(C \). Therefore, by Lemmas 1 and 2, there exist \(y_2 \in A^*, b_2, e_1^2, \ldots, e_k^2 \in A \) such that,

\[uca_1a_2a_3\ldots a_k+2ba_k+1y_1a_{k+1}y_2e_1^2 \ldots e_k^2b_2 \in C, \]

moreover, \(e_k^2 \neq a_{k+1}, e_1^2 \). Repeating the above procedures, there are

\[y_1, y_2, \ldots \in A^*, e_1^i, e_2^i, \ldots, e_k^i \in A, i \geq 1, \text{ and } b_0, b_1, b_2, \ldots \in A \]
such that
\[uc_1 a_m a_{m-1} \ldots a_k b a_{k+1} y_1 e_1 \ldots e_k b_j \in C, \]
\[uc_1 a_m a_{m-1} \ldots a_k b a_{k+1} y_1 a_{k+1} y_2 e_2 \ldots e_k b_2 \in C, \]
\[uc_1 a_m a_{m-1} \ldots a_k b a_{k+1} y_1 a_{k+1} y_2 a_{k+1} y_3 e_3 \ldots e_k b_3 \in C, \]
\[\vdots \]
\[uc_1 a_m a_{m-1} \ldots a_k b a_{k+1} y_1 a_{k+1} y_2 a_{k+1} y_3 e_3 \ldots e_k b_j \in C. \]

Moreover, \(e'_i \notin \{ a_{k+i}, e_1, \ldots, e_i^{(-1)} \}, \ i \geq 1. \)

It is a contradiction since \(i \) is unbounded and \(A \) is finite. Therefore,
\[uc_1 a_m a_{m-1} \ldots a_k b a_{k+1} \in C. \]

In particular, \(k = m - 1, \ uc_1 A^m \subseteq C, \ uc_1 A^{|r|} \subseteq C. \) By the duality and \(uc_1 A^{|r|} \subseteq C. \) we get
\[A^{|n|} \subseteq c_1 A^{|r|} \subseteq C. \]

This completes the proof of Theorem 1. \(\Box \)

Theorem 2. Let \(C \subseteq A^* \) be a 3-infix–outfix code and a maximal code. Then there exists a positive integer \(n \) such that \(a^n \in C \) for all \(a \in A \).

Proof. Assume that \(C \) is an outfix code, by \([4]\) or \([7]\), then \(C = A^n \) for some \(n \). Thus, the conclusion is obvious. Now, we suppose that \(C \) is not an outfix code, there exist \(c_1, c_2, \ldots, c_2 \neq c_1 \) such that \(c_1 c_2 c_2 \in C \), i.e., there exist \(u, v, x \in A^+ \) such that \(c_1 = uv, c_2 = uxv \).

We first prove that, for every \(a \in A \), there exists \(m \) such that \(a^m \in C \). Suppose that \(a^l \notin C \) for all \(l \), then we obtain the following contradiction. As \(C \) is a 3-infix–outfix code and \(c_1 c_2 c_1 A^\ast \cap C = \emptyset \). Now we consider \(c_1 c_2 \). Since \(c_1 c_2 \notin C \cup C(A^+) \), by Lemma 1, \(c_1 c_2 \in C A^+ \). Therefore, there exists \(x_1 \in A^+ \) which is a proper prefix of \(c_1 \), such that \(ax_1 \in C \). Similarly, consider \(a^2 c_1, a^3 c_1, \ldots, a^n c_1, m \geq 2 \). We get that \(a^2 c_1, a^3 c_1, \ldots, a^n c_1 \in C A^+ \). Hence, there exist \(x_2, x_3, \ldots, x_m \), they are the proper prefixes of \(c_1 \), such that \(a^i x_2, a^i x_3, \ldots, a^i x_m \in C \). Since \(|c_1| \) is finite, there exist \(x_i, x_j \) such that \(a^i x_i, a^i x_j \in C \) and \(i \neq j \). This is a contradiction with \(C \) being a bifix code. Therefore, for every \(a \in A \), there is \(m \) such that \(a^m \in C \). Now let \(a \neq b \in A \), \(a^p, b^q \in C \). We show that \(p = q \). If \(p > q \) then we deduce a contradiction. Consider \(a^{p-1} b^q \). As \(C \) is a bifix code, \(a^{p-1} b^q \in C \). By Lemmas 1 and 2, \(a^{p-1} b^q \in C A^+ \cup C(A^+)^{-1} \). If \(a^{p-1} b^q \in C(A^+)^{-1} \), there exists \(y \in A^+ \) such that \(a^{p-1} b^q y \notin C \). According to Theorem 1, \(b^q \notin a^{p-1} b^q y \). But \(b^q \) is the proper suffix of a word in \(a^{p-1} b^q A^{|r|} \), this is impossible. Thus, \(a^{p-1} b^q \notin C(A^+)^{-1} \). Similarly, consider \(a^{p-2} b^q, a^{p-3} b^q, \ldots, a^2 b^q, a b^q \). Then \(a^{p-2} b^q, a^{p-3} b^q, \ldots, a^2 b^q, a b^q \in C A^+ \). There exist \(l \leq l_{p-1}, l_{p-2}, \ldots, l_2, l_1 \leq q - 1 \) such that
\[a^{p-1} b^{l_{p-1}}, a^{p-2} b^{l_{p-2}}, a^{p-3} b^{l_{p-3}}, \ldots, a^2 b^{l_2}, a b^{l_1} \in C. \]
As C is a bifix code, $l_s \neq l_t$ for $1 \leq s \neq t \leq p - 1$. Therefore, $p - 1 \leq q - 1$, $p \leq q$, a contradiction. Hence, there exists a common n such that $a^n \in C$. □

We now give the structure theorem for 3-infix–outfix codes that are maximal codes. The three following Lemmas were given in [7].

Lemma 3 (Long, [7, Lemma 3]). Let C be a code over A. If $\text{syn}(C^*)$ is a group, then C is a maximal prefix code and a maximal suffix code.

Lemma 4 (Long, [7, Corollary 5]). Let C be a code over A. If C^* is reflective, then $\text{syn}(C^*)$ is a group.

Lemma 5 (Long, [7, Lemma 6]). Let C be a code over A. Then C is a full uniform code if and only if C and C^* are reflective.

Theorem 3. Let $C \subseteq A^*$ be a 3-infix–outfix code. Then the following conditions are equivalent:

1. C is a maximal code;
2. C is a maximal prefix code;
3. C is a full uniform code, $C = A^n$ for some n;
4. C is a group code, $\text{syn}(C^*)$ is a group;
5. $\text{syn}(C^*)$ is a cyclic group of order n for some n;
6. C^* is reflective, $uv \in C^*$ implies $vu \in C^*$.

Proof. By the definitions, we get $(1) \Rightarrow (2)$, $(3) \Rightarrow (5)$, $(5) \Rightarrow (4)$; By Lemmas 3, 4, and 5, we obtain $(4) \Rightarrow (1)$, $(6) \Rightarrow (4)$, $(3) \Rightarrow (6)$. Therefore, it suffices to prove that $(2) \Rightarrow (3)$. Then we can get $(4) \Rightarrow (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (5) \Rightarrow (4)$, $(6) \Rightarrow (4) \Rightarrow (3) \Rightarrow (6)$.

By Theorem 2, there exists a positive integer n such that $a^n \in C$ for every $a \in A$. By induction on i, we shall prove that: For all $a, a_1, a_2, \ldots, a_i \in A$, $1 \leq i \leq n - 1$, the following words are in C:

\[
\begin{align*}
a^{n-i}a_1a_2\ldots a_{i-1}a_i, \\
a^{n-(i+1)}a_1a_2\ldots a_{i-1}a_i^2, a^{n-(i+1)}a_1a_2\ldots a_{i-1}a_i, \\
a^{n-(i+2)}a_1a_2\ldots a_{i-1}a_i^3, a^{n-(i+2)}a_1a_2\ldots a_{i-1}a_i^2, a^{n-(i+2)}a_1a_2\ldots a_{i-1}a_i, \\
\vdots \\
a^n_i a_1a_2\ldots a_{i-1}a_i^{n-i}, a^n_i a_1a_2\ldots a_{i-1}a_i^{n-(i+2)}, \ldots, a^n_i a_1\ldots a_{i-1}a_i^{n-(i+1)}, \\
a_1a_2\ldots a_{i-1}a_i^{n-i}, a_1a_2\ldots a_{i-1}a_i^{n-(i+2)}, \ldots, a_1\ldots a_{i-1}a_i^{n-i}.
\end{align*}
\]

(i) For $i = 1$, we verify that $a^{n-1}a_1, a^{n-2}a_1^2, \ldots, a_1^{n-1}$ are in C. By the assumption, $a^n_i a_1^i \in C$. Consider $a^{n-1}a_1^i, a^{n-2}a_1^2, \ldots, a_1^{n-1}$. According to Theorem 1, $a^n_i a_1^i, a^{n-2}a_1^2, \ldots, a_1^{n-1} \notin C \cup C(A^+)^{-1}$, thus they are in CA^+. Therefore, there exist $1_{n-1}^1, 1_{n-2}^1, \ldots,$
\(l_1, l_2 \) such that
\[
a^{n-1}a_{l_1-1}^{l_1}, a_{l_1}^{n-2}a_{l_1-2}, \ldots, a_{l_1}^{l_1} \in C.
\]

As \(C \) is a bifix code, \(1 \leq l_1 \neq l_2 \leq n-1 \), for \(1 \leq s \neq t \leq n-1 \). Again \(C \) is a 3-infix–outfix code, then \(l_1 \neq 1 \). Otherwise, we have \(a_{l_1}^{l_1} \leq \ a_{l_1}^{l_1}a_{l_1}^{l_1-n}a_{l_1}^{l_1-n}a_{l_1}^{l_1-n} \). This is impossible. Similarly, we have \(l_1, l_2, \ldots, l_{n-2} \neq 1 \). Hence, \(l_{n-1} = 1 \). If \(l_1 = 2 \), then \(a_{l_1}^{l_1} \leq \ a_{l_1}^{l_1-n}a_{l_1}^{l_1-n}a_{l_1}^{l_1-n}a_{l_1}^{l_1-n} \); this contradicts with \(C \) being a 3-infix–outfix code. Therefore, \(l_1 \neq 2 \). Similarly, \(l_2 \neq 2, \ldots, l_{n-3} \neq 2, l_{n-2} = 2 \). Repeating the above procedures, we have that \(l_{n-3} = 3, \ldots, l_2 = n-2, l_1 = n-1 \), therefore,
\[
a^{n-1}a_{1}^{n-2}a_{1}^{2}, \ldots, a_{1}^{n-2}a_{1}^{2}, a_{1}^{n-1} \in C.
\]

(ii) Suppose that the conclusion is true for \(i = k \). For all \(a, a_1, a_2, \ldots, a_k \in A \), the following words are in \(C \):
\[
a^{n-k}a_1a_2 \ldots a_{k-1}a_k,
\]
\[
a^{n-(k+1)}a_1a_2 \ldots a_{k-1}a_k^{k+1}, a_{n-(k+1)}a_1a_2 \ldots a_{k-1}a_k^{2},
\]
\[
a^{n-(k+2)}a_1a_2 \ldots a_{k-1}a_k^{2}, a_{n-(k+2)}a_1a_2 \ldots a_{k-1}a_k^{3}, a_{n-(k+2)}a_1a_2 \ldots a_{k-1}a_k.
\]
\[\vdots\]
\[
a^{2}a_1a_2 \ldots a_{k-1}a_k^{n-k+1}, a_{n-k+1}a_1a_2 \ldots a_{n-k+1}a_k^{n-k+2}, \ldots, a_{n-k+1}a_1a_2 \ldots a_{n-k+1}a_k.
\]
\[
a_{1}a_1 \ldots a_{k-1}a_{k-1}^{n-k}, a_1a_2 \ldots a_{k-1}a_{k-1}^{n-k}a_{k-1}a_1 \ldots a_{k-1}a_{k-1}^{n-k}a_{k-1}a_{k-1}.
\]

By the assumption, we prove that the conclusion is true for \(i = k + 1 \). Consider the following words:
\[
a^{n-(k+1)}a_1a_2 \ldots a_{k-1}a_k^{n-k},
\]
\[
a^{n-(k+2)}a_1a_2 \ldots a_{k-1}a_k^{n-k+1}a_{n-(k+2)}a_1a_2 \ldots a_{k-1}a_k^{2},
\]
\[
a^{n-(k+3)}a_1 \ldots a_{k-1}a_k^{n-k}, a_{n-(k+3)}a_1 \ldots a_{k-1}a_k^{2}a_{k-1}^{n-k}, a_{n-(k+3)}a_1 \ldots a_{k-1}a_k^{3}a_{k-1}^{n-k+1},
\]
\[\vdots\]
\[
a^{2}a_1 \ldots a_{k-1}a_k^{n-k+1}, a^{2}a_1 \ldots a_{k-1}a_k^{n-k}a_{k-1}^{2}a_{k-1}^{n-k+1}, \ldots, a^{2}a_1a_2 \ldots a_{k-1}a_k^{n-k+2}a_{k-1}^{2}a_{k-1}^{n-k+1},
\]
\[
a_{1}a_1 \ldots a_{k-1}a_{k-1}^{n-k+1}, a_1a_2 \ldots a_{k-1}a_{k-1}^{n-k}a_{k-1}a_1 \ldots a_{k-1}a_{k-1}^{n-k}a_{k-1}^{2}a_{k-1}^{n-k+1}.
\]

By the assumption and Theorem 1, \(a^{n-(k+1)}a_1 \ldots a_{k-1}a_k^{n-k+1}a^{n-k+1} \cap C = \emptyset \). Otherwise, \(a_{k+1}^{n-k+1} \) and \(a^{n-(k+1)}a_1 \ldots a_{k-1}a_k^{n-k+1}y \in C, a_{k+1}^{n-k+1} \) must be a proper suffix of a word in \(C \). This is impossible. Again by the assumption, no proper prefix of \(a^{n-(k+1)}a_1 \ldots a_{k-1}a_k^{n-k+1} \) is in \(C \), thus, \(a^{n-(k+1)}a_1 \ldots a_{k-1}a_k^{n-k+1} \notin C \cup C(A^{+})^{-1}, a^{n-(k+1)}a_1 \ldots a_{k-1}a_k^{n-k+1} \in CA^{+} \).
Therefore, there exist some positive integers:

\[l_{n-(k+1)}, l_{n-(k+2)}, \ldots, l_{2}, l_{1}, \]
\[l_{n-(k+2)}, l_{n-(k+3)}, \ldots, l_{2}, l_{1}, \]
\[l_{n-(k+3)}, l_{n-(k+4)}, \ldots, l_{2}, l_{1}, \]
\[\vdots \]
\[l_{n-(k+3)}, l_{n-(k+3)}, l_{1}, \]
\[l_{2}, l_{n-(k+2)}, l_{1}, \]
\[l_{n-(k+1)}, l_{1}, \]

such that the following words are in C:

\[a^{n-(k+1)}a_{1}a_{2} \ldots a_{k-1}a_{k}a_{k+1}, \]
\[a^{n-(k+2)}a_{1}a_{2}a_{3} \ldots a_{k-1}a_{k}a_{k+1}, \]
\[a^{n-(k+3)}a_{1}a_{2} \ldots a_{k-1}a_{k}a_{k+1}, \]
\[\vdots \]
\[a_{1}a_{2} \ldots a_{k-1}a_{k}a_{k+1}, a_{1}a_{2}a_{3} \ldots a_{k-1}a_{k}a_{k+1}, \]

According to the choice of the above words, \(l_{p} \neq l_{q}, 1 \leq p \neq q \leq n - (k + 1) \). By the assumption, for all \(a, a_{1}, a_{2}, \ldots, a_{k} \in A \),

\[a_{1} \ldots a_{k-1}a_{k}^{n-k}, a_{1}a_{2} \ldots a_{k-2}a_{k-1}^{n-(k+1)}, a_{1}a_{2}a_{3} \ldots a_{k-3}a_{k-2}^{n-(k+2)}, \ldots, a_{1}a_{2} \ldots a_{k-1}a_{k}^{n-k} \in C. \]

Then,

\[1 \leq l_{n-(k+1)}, l_{n-(k+2)}, \ldots, l_{2}, l_{1} \leq n - (k + 1). \]

Otherwise, if \(l_{n-(k+i)} \geq n - k \) then \(a^{n-(k+i)}a_{1}a_{2} \ldots a_{k-1}a_{k}a_{k+1}^{l_{n-(k+i)}} \in C \) and a proper suffix of \(a^{n-(k+i)}a_{1}a_{2} \ldots a_{k-1}a_{k}a_{k+1}^{l_{n-(k+i)}} \) with the \(n \) length is in \(C \). It is a contradiction. Similarly,

\[1 \leq l_{n-(k+2)}, l_{n-(k+3)}, \ldots, l_{2}, l_{1} \leq n - (k + 2), \]
\[1 \leq l_{n-(k+3)}, l_{n-(k+4)}, \ldots, l_{2}, l_{1} \leq n - (k + 3), \]
\[\vdots \]
If \(l_1^1 = 1 \), then
\[
\begin{align*}
aa_1a_2 \ldots a_{k-1}a_k a_{k+1} &\leq a^{n-(k+1)}a_1a_2 \ldots a_{k-1}a_k a_{k+1}, \\
aa_1a_2 \ldots a_{k-1}a_k a_{k-1}(o_o)aa_1a_2 \ldots a_{k-1}a_k a_{k+1} &\leq a^{n-(k+1)}a_1a_2 \ldots a_{k-1}a_k a_{k+1}.
\end{align*}
\]
This contradicts with \(C \) being a 3-infix–outfix code. Thus, \(l_1^1 \neq 1 \). Similarly, \(l_1^2 \neq 1, l_1^3 \neq 1, \ldots, l_1^{n-(k+2)} \neq 1 \), therefore, \(l_1^{n-(k+1)} = 1 \). Repeating the above procedures, we get
\[
\begin{align*}
l_1^{n-(k+1)} - 1, l_2^{n-(k+2)} - 1, \ldots, l_{n-(k+1)}^{n-(k+1)} &= 1, \\
l_1^{n-(k+2)} - 1, l_2^{n-(k+3)} - 1, \ldots, l_{n-(k-2)}^{n-(k+2)} &= 2, \\
l_1^{n-(k+3)} - 1, l_2^{n-(k+4)} - 1, \ldots, l_{n-(k+3)}^{n-(k+3)} &= 3, \\
&\vdots \\
l_1^n - 1, l_2^n - 1, l_3^n - 1 &= n - (k + 2), \\
l_1^n - 1, l_2^n - 1, l_3^n - 1 &= n - (k + 1).
\end{align*}
\]
Thus, the following words are in \(C \):
\[
\begin{align*}
a^{n-(k+1)}a_1a_2 \ldots a_{k-1}a_k a_{k+1}, \\
a^{n-(k+2)}a_1a_2 \ldots a_{k-1}a_k a_{k+1}^2 a_{k+1}, a^{n-(k+2)}a_1a_2 \ldots a_{k-1}a_k a_{k+1}^2 a_{k+1}, \\
a^{n-(k+3)}a_1a_2 \ldots a_{k-1}a_k a_{k+1}^2 a_{k+1}, a^{n-(k+3)}a_1a_2 \ldots a_{k-1}a_k a_{k+1}^2 a_{k+1}, \\
&\vdots \\
a^{n-(k+2)}a_1a_2 \ldots a_{k-1}a_k a_{k+1}^2 a_{k+1}, a^{n-(k+3)}a_1a_2 \ldots a_{k-1}a_k a_{k+1}^2 a_{k+1}, a^{n-(k+2)}a_1a_2 \ldots a_{k-1}a_k a_{k+1}^2 a_{k+1}, \\
a^{n-(k+1)}a_1a_2 \ldots a_{k-1}a_k a_{k+1}^2 a_{k+1}, a^{n-(k+1)}a_1a_2 \ldots a_{k-1}a_k a_{k+1}^2 a_{k+1}, a^{n-(k+1)}a_1a_2 \ldots a_{k-1}a_k a_{k+1}^2 a_{k+1}.
\end{align*}
\]
This proves that the conclusion is true for \(i = k + 1 \).

Combining (i) and (ii), we obtain that for all \(a, a_1, a_2, \ldots, a_l \in A, 1 \leq i \leq n - 1, a^{n-i} a_1 \ldots a_i \in C \). In particular, taking \(i = n - 1 \), one has \(aa_1 \ldots a_{n-1} \in C \). \(A^n \subseteq C \). As \(C \) is a maximal code, \(C = A^n \). This completes the proof of Theorem 3. \(\square \)

According to Theorem 3, we have

Corollary 1. There exist no infinite maximal codes which are 3-infix–outfix.
Corollary 2. There exists no maximal code which is 3-infix–outfix but neither infix nor outfix.

Acknowledgements

The authors would like to thank the anonymous referees who helped in revising the paper. Thanks are also due to Professor Masami Ito for his valuable suggestions and kind help.

References