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The asymmetric buckling of a shallow initially curved stress-free micro beam subjected to distributed
nonlinear deflection-dependent electrostatic force is studied. In order to highlight the symmetry breaking
phenomenon and the approach to its analysis, the subsidiary simplified problem of a curved beam
attached to a linearly elastic foundation, and subjected to uniformly distributed ‘‘mechanical’’ load, which
is independent of deflections, is addressed first. The analysis is based on a two degrees of freedom
reduced order (RO) model resulting from the Galerkin decomposition with linear undamped eigenmodes
of a straight beam used as the base functions. Simple approximate expressions are derived defining the
geometric parameters of beams for which an asymmetric response bifurcates from the symmetric one.
The necessary criterion establishes the conditions for the appearance of bifurcation points on the unsta-
ble branch of the symmetric limit point buckling curve; the sufficient criterion assures a realistic asym-
metric buckling bifurcating from the stable branches of the curve. It is shown that while the symmetry
breaking conditions are affected by the nonlinearity of the electrostatic force, its influence is less pro-
nounced than in the case of the symmetric snap-through criterion. A comparison between the RO model
results and those obtained by direct numerical analysis shows good agreement between the two and
indicates that the obtained criteria can be used to predict non-symmetric buckling in electrostatically
actuated bistable micro beams.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Initially curved beams (arches) loaded by concentrated or dis-
tributed transverse forces may exhibit bistability, namely, the exis-
tence of two different stable equilibria under the same loading. The
transition between two stable states in these structures is com-
monly referred to as a snap-through buckling. The behavior of
beams liable to the snap-through buckling is well understood
and it is an established topic in structural mechanics (e.g., see Ba-
žant and Cedolin, 1991; Dym, 1974; Seyranian and Elishakoff,
1989; Thompson and Hunt, 1973; Simitses, 1989; Timoshenko,
1961 and references therein. See Chen and Chang (2007), Mallon
et al. (2006), Plaut (2009) and Plaut and Virgin (2009) for some
of the recent contributions). On the most basic level, initially
straight or slightly curved beams do not buckle under a transverse
force, whereas sufficiently curved beams manifest a symmetric
(limit point) snap-through and are bistable in the interval of the
force between the snap-back (release) and snap-through values.
When the initial curvature of the beam is higher than a certain va-
ll rights reserved.

).
lue, the buckling is accompanied by a symmetry breaking and the
appearance of non-symmetric buckling configurations.

Recently, a renewed interest in the mechanics of bistable beams
stimulated additional studies (Das and Batra, 2009a,b; Krylov et al.,
2008, 2011; Ouakad and Younis, 2010; Park and Hah, 2008; Pane
and Asano, 2008; Saif, 2000; Qiu et al., 2004; Zhang et al., 2007)
that were motivated by the progress in fabrication technologies
and by the emerging of new applications in the realm of micro
and nanoelectromechanical systems (MEMS and NEMS). The rea-
son for this interest is twofold. On the one hand, micro and nano
devices incorporating bistable structural elements have clear func-
tional advantages in applications such as switches (Intaraprasonk
and Fan, 2011), sensors (Southworth et al., 2010) and non-volatile
memories (Charlot et al., 2008). On the other hand, over the past
decade, electrostatically actuated initially straight double-clamped
micro beam became a kind of benchmark problem, which was
intensively used for the evaluation of various analytical, numerical
and experimental approaches (see reviews Batra et al., 2007b; Nay-
feh et al., 2003; Rhoads et al., 2008 and references therein). One of
the distinguishing features of such a micro device is that it is
loaded by an electrostatic force, which is a nonlinear function of
the beam’s deflections. For this reason, while being a relatively
simple structure, a micro beam exhibits rich behavior and
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represents a convenient platform for analytical, numerical and
experimental investigation of the abundant nonlinear phenomena
at the microscale, which are rarely encountered or are difficult to
envisage within large scale structures. As an example of this kind
of phenomena, one can mention electrostatic (so-called pull-in)
instability taking place in micro beams and associated with the
softening nonlinearity of the electrostatic forces, which reduces
the effective stiffness of the structure.1

In contrast to straight beams, initially curved electrostatically
actuated double-clamped beams combine both geometric mechan-
ical nonlinearity typical for bistable structures and generic electro-
static softening nonlinearity. As was recently shown by Das and
Batra (2009a), Das and Batra (2009b), Krylov et al. (2008) and
Zhang et al. (2007), these structures may exhibit sequential snap-
through buckling and pull-in instability. Note that the limit point
snap-through and the symmetry breaking criteria for beams sub-
jected to a ‘‘mechanical’’ deflection-independent loading are fully
dictated by the geometry of the beam itself-namely by the ratio be-
tween the initial elevation/curvature of the beam and its thickness
– and is independent on the loading (Dym, 1974; Simitses, 1989).
However, in the case of the electrostatic actuation, the snap-
through behavior is affected by the nonlinearity of the electrostatic
force parameterized by the initial distance between the beam and
the electrode, as reflected in the symmetric (limit-point) snap-
through criterion first obtained in Krylov et al. (2008) for an ini-
tially stress-free bell-shaped beam. It was shown, that in the case
of the electrostatic loading, the snap-through may take place in
beams with lower initial elevation/curvature when compared to
the case of ‘‘mechanical’’ deflection-independent loading.

It should be noted, that while relatively a large body of work
was devoted to the stability and dynamics of straight and curved
micro beams, the number of studies dealing with the non-symmet-
ric buckling of these structures loaded by configuration-dependent
electrostatic forces is limited. Non-symmetric buckling of curved
bell-shaped beams subjected to distributed electrostatic loading
was illustrated in Krylov et al. (2011) by means of the reduced-or-
der and computational models. Symmetry breaking in a similar
structure was analyzed in more details in Das and Batra (2009b)
and was found to have significant influence on the stability bound-
aries of the beam: the snap-through voltage was shown to be lower
than predicted by the symmetric model. Initially straight micro
beams buckled due to pre-stress and then actuated by electrostatic
force engendered by the fringing fields were analyzed numerically
in Krylov et al. (2011) and were shown to exhibit non-symmetric
buckling for sufficiently high values of the initial pre-stress and
consequently curvature. Non-symmetric pull-in configurations of
initially flat annular membranes were considered in Batra et al.
(2007a) and Pelesko et al. (2003), non-symmetric pull-in configu-
rations of annular plates under electrostatic and Casimir forces
were obtained numerically in Batra et al. (2006). However, no sym-
metry-breaking criteria were obtained in all these works.

In this work, we extend the stability analysis of electrostatically
actuated initially curved stress-free micro beams to the non-sym-
metric configurations. Our goal is to highlight the leading phenom-
ena taking place in this type of structure, to investigate the
influence of the device parameters on its stability and to establish
criteria of symmetry breaking. We develop simple approximate
relations between the geometrical parameters of the structure
(thickness, initial elevation and distance between the beam and
the electrode), which should be satisfied in order to obtain the
non-symmetric buckling and find the values of the beam’s deflec-
Electrode

Fig. 1. Model of an initially curved double-clamped beam actuated by distributed
electrostatic force. The dashed line corresponds to the deformed configuration.
Positive directions of the beam’s deflection and of the loading are shown.

1 In large scale structures, the voltage required to initiate this instability is much
larger than the electric breakdown voltage, the influence of the electrostatic force on
the structure’s deflection is not pronounced and the mechanical end electrostatic
problems are decoupled.
tion and of the actuation voltage corresponding to the critical
points. These criteria are in a sense an extension of the well-docu-
mented results obtained for mechanically loaded curved beams
(see Dym, 1974 and Simitses, 1989) to the case of the intrinsic non-
linear electrostatic loading.

In the next section, the problem of an initially curved bell-
shaped stress-free beam under a distributed electrostatic force is
formulated, followed by the development of a reduced order (RO)
model based on the Galerkin decomposition and limited to incor-
porate two-symmetric and non-symmetric-terms. Next, an auxil-
iary problem of a curved beam resting on a linear (i.e, constant,
deflection-independent, stiffness) elastic foundation and loaded
by a ‘‘mechanical’’ force, which is independent on deflections, is
considered and snap-through and symmetry breaking criteria are
obtained. Due to its simplicity, this problem represents a conve-
nient framework allowing simple closed form expressions. Then,
the two-mode RO model of the electrostatically loaded beam is
considered and the stability criteria are obtained along with the
critical values of the deflections and actuation voltages. In the last
section, the approximate results are verified using the numerical
solution of the governing equations of the beam. Main findings of
the work are summarized in the conclusions.

2. Formulation

We consider a flexible initially curved double clamped pris-
matic micro beam of length L having a rectangular cross-section
of width b̂ and thickness d̂ as shown in Fig. 1. The beam is made
of homogeneous isotropic linearly elastic material with Young’s
modulus E. Since the width b̂ of a microbeam is typically larger
than it’s thickness d̂, an effective (plain strain) modulus of elasticityeE ¼ E=ð1� m2Þ is used, where m is Poisson’s ratio. The initial shape
of the beam is described by the function ŵ0ðx̂Þ ¼ ĥz0ðx̂Þ, where ĥ is
the initial elevation of the beam’s central point above it’s ends, and
z0ðx̂Þ is a non dimensional function such that maxx̂2½0;L� ½z0ðx̂Þ� ¼ 1.
The beam is subjected to a distributed electrostatic force provided
by an electrode located at a distance ĝ0 (the gap) from the beam
and extended beyond it’s ends.

We assume that d̂� L; ĥ� L and that the deflections, while
comparable with the thickness of the beam, are small with respect
to the beam’s length. Under these assumptions, the beam’s behav-
ior is described in the framework of the Euler–Bernoulli theory
combined with the shallow arch approximation and is governed
by the following equilibrium equations (Simitses and Hodges,
2006; Villagio, 1997).
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with the homogeneous boundary conditions

ûð0Þ ¼ ûðLÞ ¼ 0 ð3Þ
ŵð0Þ ¼ ŵðLÞ ¼ 0

@ŵ
@x̂
ð0Þ ¼ @ŵ

@x̂
ðLÞ ¼ 0

Here A ¼ b̂d̂ and Iyy ¼ b̂d̂3=12, are the cross-section’s area and the
second moment of area, respectively; ŵðx̂Þ denotes the elevation
of beam’s axis above it’s supports and ûðx̂Þ represents the axial dis-
placement of the beam. In addition, f̂ e is the applied electrostatic
load, approximated by the parallel capacitor formula (note that
the sign is taken to be consistent with Fig. 1).

f̂ e ¼ � �0b̂V2

2 ĝ0 þ ŵð Þ2
ð4Þ

Here �0 ¼ 8:854 F/m is the permittivity of the free space and V is the
voltage difference between the beam and the electrode. Note that
while the influence of the fringing fields on the electrostatic force
acting on the curved beam could be taken into considerations
(e.g., Das and Batra, 2009b), we use Eq. (4) for the sake of simplicity
and transparency of the development.

In accordance with Eq. (1), the axial force is constant along the
beam, hence Eqs. (1) and (2) can be reduced to the following single
equation (e.g., Simitses and Hodges, 2006; Villagio, 1997)
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which is still subjected to the boundary conditions given by the last
two of Eq. (3). In essence, the integral term in Eq. (5) represents the
average of the axial force.

For convenience, we re-write Eqs. (1) and (2) in a non-dimen-
sional form

u0 þ 1
2
ðw0Þ2 � 1

2
ðw00Þ

2
� �0

¼ 0 ð6Þ

wIV �wIV
0 � 2a u0 þ 1

2
ðw0Þ2 � 1

2
ðw00Þ

2
� �

w00 ¼ � b

ð1þwÞ2
ð7Þ

where ðÞ0 denotes derivative with respect to the non-dimensional
coordinate 0 6 x 6 1. The non-dimensional counterpart of Eq. (5) is

wIV �wIV
0 � a

Z 1

0
ðw0Þ2 � ðw00Þ

2
� �

dx w00 ¼ � b

ð1þwÞ2
ð8Þ

The non-dimensional quantities used in Eqs. (6)–(8) are defined in
Table 1.
3. Reduced order model

In order to analyze the snap-through and pull-in behavior of the
beam, a reduced order (RO) model based on the Galerkin decompo-
Table 1
Non-dimensional quantities.

x , x̂=L Coordinate

w , ŵ=ĝ0; w0 , ŵ0=ĝ0 Elevation/initial elevation

h , ĥ=ĝ0
Initial midpoint elevation

d , d̂=ĝ0
Thickness

a , ðĝ2
0AÞ=ð2IyyÞ Stretching parameter

b , ð�0b̂V2L4Þ=ð2ĝ3
0
eEIyyÞ Voltage parameter
sition is constructed. The deformed shape of the beam is approxi-
mated by the series

wðxÞ �
Pn
i¼1

qiuiðxÞ ð9Þ

where qi are the generalized coordinates, and ui are the linear un-
damped eigenmodes of a straight stress free double-clamped beam
and are given by the expression

uiðxÞ ¼ CiðJiðcosðkixÞ � coshðkixÞÞ þ sinðkixÞ � sinhðkixÞÞ ð10Þ

Here Ji ¼ ðcos ki � cosh kiÞ=ðsinh ki þ sin kiÞ; Ci are constants, which
are chosen such that maxx2½0;1�ðuiðxÞÞ ¼ 1; ki ¼ ðxiÞ1=2ðqAL4

=EIÞ1=4

are the frequency parameters, which are related to the eigenfre-
quencies xi of the beam, and are found as solution’s to the fre-
quency equation cos ki cosh ki ¼ 1.

While beams of different initial shapes can be analyzed, we con-
sider a beam of an initial shape that can be represented by the
series

w0ðxÞ ¼
Pn
i¼1

q0iuiðxÞ ð11Þ

Substitution of Eqs. (9) and (11) into Eq. (8), multiplication by uj

and integration in conjunction with the orthogonality of the eigen-
modes, produce a system of coupled nonlinear algebraic equations
(see Krylov et al., 2011)

Bðq� q0Þ þ aðqTSq� qT
0Sq0ÞSq ¼ �bQ ð12Þ

where ð ÞT denotes the matrix transpose, q ¼ fqig and q0 ¼ fq0ig.
The elements of the generalized force vector Q ¼ fQig and of the
matrices B ¼ fbijg and S ¼ fsijg, which are associated with the bend-
ing and stretching stiffness of the beam, respectively, are given by

Qi ¼
Z 1

0

ui

1þ
Pn

j¼1qjujðxÞ
� �2 dx ð13Þ

bij ¼ dij

Z 1

0
u00i u

00
j dx sij ¼

Z 1

0
u0iu

0
jdx ð14Þ

with dij being the Kronecker delta. Note, that since wðxÞ defines the
shape (the elevation) of the beam rather than it’s displacement (see
Fig. 1), we have �1 6 qi.

For the investigation of the asymmetric snap-through, the RO
model should include at least two terms, the first symmetric and
the first anti-symmetric ones. By setting n ¼ 2 in Eq. (9), and by
using the initial shape corresponding to the fundamental mode
of the straight beam, (i.e. Eq. (11) with n ¼ 1 and q01 ¼ h), the RO
model in Eq. (12) is reduced to the form of two coupled nonlinear
algebraic equations in terms of the general coordinates q1 and q2

b11 q1 � hð Þ þ as2
11 q2

1 � h2
� �

q1 þ as11s22q2
2q1

¼ �b
Z 1

0

u1

1þ q1u1 þ q2u2ð Þ2
dx ð15Þ

b22q2 þ as11s22 q2
1 � h2

� �
q2 þ as2

22q3
2

¼ �b
Z 1

0

u2

1þ q1u1 þ q2u2ð Þ2
dx ð16Þ

where b11 ¼ 198:463; b22 ¼ 1669:859; s11 ¼ 4:878 and s22 ¼
20:218. Note that taking the initial shape of the beam to have the
form of the symmetric first mode with no imperfection, enables
the capture of the symmetry breaking bifurcation points.

Due to the presence of the integral terms, which are associated
with the electrostatic force, Eqs. (15) and (16) cannot be solved in a
closed form. Note that, as typical in electrostatic MEMS, the deflec-
tion-dependent distributed electrostatic force affects the effective
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stiffness of the system, and can be viewed in a sense as an elastic
foundation with a nonlinear negative stiffness parameterized by
voltage (e.g. see Elata and Abu-Salih, 2006; Krylov, 2008). In order
to highlight ideas beyond the approach used for the symmetry
breaking analysis of the electrostatically actuated curved beam
and to illustrate the role of the electrostatic force in the snap-thor-
ough behavior, we first consider a ‘‘mechanical’’ problem of a
curved beam on an elastic foundation with a constant, independent
on the deflections, stiffness. The beam is loaded by a uniformly dis-
tributed, prescribed, deflection-independent force. Note that while
the stability analysis of such a beam was reported by several
authors (e.g., see Simitses and Hodges, 2006 where a beam of a
sinusoidal initial shape was considered), it is presented here in a
general form, for both positive and negative foundations, for the
sake of completeness. In addition, the snap-through and symme-
try-breaking criteria derived in the next section provide an insight
into the results obtained for the case of the electrostatic loading.

4. The case of deflection-independent loading and linearly
elastic foundation

4.1. Reduced order model

We consider an initially curved double-clamped beam on a lin-
early elastic foundation of a constant stiffness k̂, loaded by a uni-
formly distributed deflection-independent force f̂ M (acting in the
negative direction of the z axis, in accordance with Fig. 1). The
equilibrium of the beam is described by the equation

wIV �wIV
0 � a

Z 1

0
ððw0Þ2 � ðw00Þ

2Þdxw00 þ cðw�w0Þ ¼ �bM ð17Þ

where the non-dimensional stiffness parameter, c, and the force
parameter, bM , are defined by the expressions

c ¼ k̂L4eEIyy

bM ¼ f̂ ML4eEIyyĝ0

ð18Þ

and a is specified in Table 1. Here ĝ0, which is preserved for the con-
sistency with the formulation of the electrostatic problem, is taken
to be an arbitrary unit of length. Note that c reflects the relative
stiffness of the foundation with respect to the bending stiffness of
the beam. As the uniform force b in the right hand side of Eq. (17)
is deflection-independent, and the integral is independent on the
spatial coordinate x the deflected shape of the beam can be found
analytically. Since the present case of deflection-independent load-
ing is considered as a subsidiary problem, which is investigated in
order to gain insight and establish a solution approach for the case
of electrostatic loading, where a closed form solution is not avail-
able, we use the Galerkin method for the solution of Eq. (17) for
the sake of consistency.

The reduced order model, Eq. (12), takes the form

ðBþ cMÞðq� q0Þ þ aðqTSq� qT
0Sq0ÞSq ¼ �bMp ð19Þ

where the elements of the generalize force vector p ¼ fpig and of
the diagonal matrix M ¼ ½mij� are given by the expressions

pi ¼
Z 1

0
uidx mij ¼ dij

Z 1

0
uiujdx ð20Þ

The analysis of the symmetric and the non-symmetric responses is
carried out using the two degrees of freedom RO model described
by the two coupled equations

b11þ cm11ð Þ q1�hð Þþas2
11 q2

1�h2
� �

q1þas11s22q2
2q1 ¼�bMp1 ð21Þ

b22þ cm22ð Þq2þas11s22 q2
1�h2

� �
q2þas2

22q3
2 ¼ 0 ð22Þ
where m11 ¼ 0:396; m22 ¼ 0:439 and p1 ¼ 0:523.
One of the advantages of the mechanically loaded beam model

is that it can be treated analytically. The system (21) and (22)
incorporates two cubic equations that, for a given bM , may have
one or three pairs of real solutions ðq1; q2Þ, depending on h. One ob-
serves that Eq. (22) has an unconditional trivial solution q2 ¼ 0,
which is associated with the symmetric deflection of the beam.
The corresponding symmetric equilibrium curve bM ¼ bMðq1Þ is ob-
tained from Eq. (21) where q2 ¼ 0. The second group of solutions,
corresponding to the non-symmetric buckling of the beam, is ob-
tained by excluding the trivial equilibrium q2 ¼ 0 from Eqs. (22)
and by solving the resulting quadratic equation in terms of q2 to
yield

q2 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� cm22 þ b22ð Þ

as2
22

þ
s11 h2 � q2

1

� �
s22

vuut ð23Þ

By substituting q2 ¼ q2ðq1Þ given by Eq. (23) into Eq. (21), we find
bM ¼ bMðq1Þ corresponding to the non-symmetric solutions. The
procedure described above actually corresponds to a displacement
control procedure of which both q2 and bM are expressed in terms
of the prescribed q1. Note that the direct numerical solution of
the system Eqs. (21) and (22) combined with the displacement con-
trol approach (prescribed q1) was also implemented, mainly in or-
der to lay grounds for the solution of the electromechanical
problem, which cannot be solved analytically. The solver for nonlin-
ear algebraic equations, which is a part of the Maple package was
used. The results of the numerical and of analytical solutions were
practically identical.

The results are presented in Fig. 2(a)–(d) where the bifurcation
diagrams for different values of the initial elevation h are shown.
One observes that in the case of two DOF RO model, the equilib-
rium configurations can be presented by three-dimensional curves
(bifurcation diagrams) in the space of q1; q2; b

M (e.g., see Thompson
and Hunt, 1973). The behavior of the beam is typical for curved ar-
ches (e.g., see Simitses and Hodges, 2006). Namely, for small h, the
response is symmetric and without snap-through buckling,
Fig. 2(a). For relatively small (but sufficient to have a snap-
through) h, the response is symmetric and q2 is zero, Fig. 2(b).
However, the equilibrium curve corresponding to the symmetric
response contains two limit points, S and R, which are associated
with the snap-through buckling and the release (snap-back),
respectively. For larger initial elevations, two anti-symmetric re-
sponses with q2 – 0 emerge from the bifurcation points AS and
AR, located on the unstable branch of the symmetric equilibrium
curve, as can be seen in Fig. 2(c). Hereafter we refer to these points
as the bifurcation or symmetry breaking points (the asymmetric
snap-through point (AS) and the asymmetric release point (AR)).
In this scenario, the stability of the beam is still defined by the limit
point (symmetric snap-through and release) buckling as the bifur-
cation points are not reached under quasistatic loading. For even
larger h, the bifurcation points are located on the stable branches
of the symmetric equilibrium curve, Fig. 2(d). In this case, the sta-
bility of the beam is defined by the location of the bifurcation
points since the non-symmetric snap-through and the non-sym-
metric release are reached before the limit point buckling and limit
point release during the quasistatic loading and unloading,
respectively.

One may conclude, that several buckling criteria can be estab-
lished. The first one defines the minimal initial elevation necessary
for the appearance of the limit points. The second is associated
with the non-critical non-symmetric buckling emerging from the
unstable symmetric branch of the equilibrium curve. Finally, the
third one defines the threshold criterion sufficient for the appear-
ance of the critical symmetry breaking, when the non-symmetric



Fig. 2. Bifurcation diagram of the mechanically loaded beam on a linear elastic foundation (two DOF RO model, Eqs. (21) and (22)) for d ¼ 0:2; c ¼ 10 and different initial
elevations: (a) h ¼ 0:225 (b) h ¼ 0:315 (c) h ¼ 0:36 (d) h ¼ 0:45. Points S and R represent the symmetric snap-through and release limit points, respectively; points AS and AR
represent the bifurcation points of the asymmetric snap-through and release, respectively.
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snap-through takes place under a loading smaller than that corre-
sponding to the limit-point value (e.g., see Simitses and Hodges,
2006 and Simitses, 1989).

4.2. Snap-through criteria

In the case of the mechanically loaded beam and linearly elastic
foundation, the symmetry breaking criterion can be obtained di-
rectly from Eq. (23), by requiring that the expression under the
square root is positive (i.e., that two real non-symmetric solutions
of Eq. (22) exist). However, this approach is unapplicable in the
case of the electrostatic loading when the generalized force ap-
pears in an integral form (see Eq. (13)). Since the bifurcation points
are located on the equilibrium curve corresponding to the symmet-
ric deflection (i.e, to q2 ¼ 0), we linearize Eqs. (21) and (22) around
q2 ¼ 0 and obtain

b11 þ cm11ð Þ q1 � hð Þ þ as2
11 q2

1 � h2
� �

q1 ¼ �bMp1 ð24Þ

b22 þ cm22 þ as11s22 q2
1 � h2

� �� �
q2 ¼ 0 ð25Þ

The first of Eq. (24), which is independent on q2, describes the sym-
metric response of the beam, and is identical to a single degree of
freedom model. The location of the limit points, which are the
extremal points of the equilibrium curve bM ¼ bMðq1Þ (see Eq.
(24)), can be found from the condition dbM=dq1 ¼ 0, which leads
to the equation

3as2
11q2

1 þ b11 þ cm11 � as2
11h2 ¼ 0 ð26Þ

and corresponds to the appearance of an inflection point on the
equilibrium curve. By solving Eq. (26) in terms of q1, we obtain
the values qS and qR corresponding to the limit point snap-through
and release

qS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

3
� b11 þ cm11

3as2
11

s
qR ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

3
� b11 þ cm11

3as2
11

s
ð27Þ
By requiring that both roots of Eq. (26) are real, i.e., that the expres-
sion under the square root in Eq. (27) is positive, we obtain the min-
imal value of the initial elevation, which is required for the
appearance of the snap-through buckling

h P
1

s11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b11 þ cm11

a

r
ð28Þ

Note that when h has the critical value given by Eq. (28), we have
qS ¼ qR ¼ 0 and the inflection point of the equilibrium curve corre-
sponds to the straight configuration of the deformed beam. The
dimensional counterpart of Eq. (28) for the case of a beam of rect-
angular cross-section, when a ¼ 6=d2, is

ĥ

d̂
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b11

6s2
11

þ 2m11k̂L4

s2
11
eEb̂d̂3

vuut ð29Þ

One observes that the presence of a positive elastic foundation in-
creases the value of ĥ=d̂, which is required for bistability. Note also
that in the absence of the elastic foundation, i.e., for k ¼ 0, Eq. (29)
yields ĥ=d̂ P 1:179 (see Krylov et al., 2008).

By requiring that Eq. (25) has a non-trivial solution q2 – 0,
namely that the expression in the parentheses is zero, we find
the values of q1 corresponding to the location of the bifurcation
points on the symmetric equilibrium curve

qAS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � b22 þ cm22

as11s22

s
qAR ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � b22 þ cm22

as11s22

s
ð30Þ

Then, by requiring that both qAS and qAR are real, i.e., Eq. (25) has
two real roots in terms of q1, we obtain the necessary condition
for the appearance of the non-symmetric response

h P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 þ cm22

as11s22

s
ð31Þ

or, in the dimensional form (for beams of rectangular cross-section
when a ¼ 6=d2)
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ĥ

d̂
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22

6s11s22
þ 2m22k̂L4

s11s22
eEb̂d̂3

s
ð32Þ

One observes that when h reaches the limiting value given by
Eq. (31), qAS ¼ qAR ¼ 0, such that the two coinciding bifurcation
points correspond to the straight configuration of the deformed
beam. In the absence of an elastic foundation we have
ĥ=d̂ P 1:680. Similarly to the limit point snap-through criterion,
Eq. (29), the presence of the elastic foundation increases the min-
imal value of ĥ=d̂ required for the appearance of the non-symmet-
ric buckling.

When the initial elevation of the beam exceeds the minimal va-
lue given by the criterion (32), the beam may manifest a non-sym-
metric buckling. However, the non-symmetric solutions emerge
from the bifurcation points AS and AR, which are located on the
unstable branches of the equilibrium curve and cannot be reached
under the quasi static loading. The non-symmetric buckling be-
comes critical when the bifurcation occurs on the stable branch
of the symmetric response curve given by Eq. (24). In order to de-
fine the sufficient condition for the critical (i.e., taking place under
a loading smaller than that corresponding to the limit point)
non-symmetric buckling, the relative position of the bifurcation
points, AS and AR, with respect to the limit points, S and R, is
examined.

Fig. 3 shows the values of q1 corresponding to the limit points
qS; qR, Eq. (27), and to the bifurcation points, qAS; qAR, Eq. (30), as a
function of the initial elevation, for beams of rectangular cross-sec-
tion with specific values of d ¼ 0:2 and c ¼ 10. Since the non-sym-
metric buckling is critical when qAS 6 qS, the threshold criterion for
the non-symmetric response is derived by requiring qS ¼ qAS

(where qS and qAS are given by Eqs. (27) and (30), respectively). This
results in the following sufficient condition for the critical non-
symmetric bifurcation (note that since all the critical points are lo-
cated symmetrically with respect to q1 ¼ 0, by requiring qAR ¼ qR

the same criterion is obtained)

h P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 b22 þ cm22ð Þ

2as11s22
� b11 þ cm11

2as2
11

s
ð33Þ
Fig. 3. Location of the critical points of the mechanically loaded beam with
rectangular cross-section attached to an elastic foundation for d ¼ 0:2; c ¼ 10 and
varying h. The dashed line represents the limit points of the buckling diagram given
by Eq. (27) and corresponding to the symmetric snap through (points S) and the
symmetric release (points R). The solid line represents bifurcation points of the
asymmetric snap-through (points AS) and asymmetric release (points AR) given by
Eq. (30). Points Ts and Tr represent the threshold of the critical asymmetric snap-
through and release points, respectively, where the bifurcation points coincide with
the limit points.
The dimensional form of Eq. (33) is

ĥ

d̂
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22

4s11s22
� b11

12s2
11

þ k̂L4bEb̂d̂3

m11

s2
11

þ 3m22

s11s22

� �s
ð34Þ

Note that in the absence of the elastic foundation, the non-symmet-
ric bifurcation occurs when ĥ=d̂ > 1:88.

Fig. 3 suggests that it is not necessary to calculate the roots of
Eq. (25) or its discriminant in a closed form in order to obtain the
criterion (31). Namely, by calculating the derivative of Eq. (25) with
respect to q1 one finds that dh=dq1 ¼ 0 at q1 ¼ 0. Next, by express-
ing h in terms of q1 from Eq. (25) and then setting q1 ¼ 0 one obtains
(31). This approach will be used for the analysis of the beam subject
to the nonlinear electrostatic loading where closed form solutions
of Eqs. (15) and (16) are not available. Similarly, by expressing h2

in terms of q1 from Eq. (26), equating it to h2 from Eq. (25), and
solving the resulting equation in terms of q1 we obtain

q1 ¼ �
1ffiffiffiffiffiffi

2a
p

s11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 þ cm22ð Þ s11

s22
� b11

r
ð35Þ

which defines the location of the two critical bifurcation points
(Fig. 3) in terms of c and a. By substituting the expression for q1 gi-
ven by Eq. (35) back into Eq. (25), and solving it in terms of h, one
obtains (33). In the case of a beam with a rectangular cross section
we obtain

q1

d
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 þ cm22

3s11s22
� b11

3s2
11

s
ð36Þ

This equation indicates that the bifurcation threshold points are lo-
cated symmetrically with respect to q1 ¼ 0 and that their location
depends linearly on d.

The graphical representations of all the three criteria – Eqs. (28),
(31) and (33) are combined in Fig. 4. The curves separate the re-
gions where the different buckling behavior-monotonous force–
deflection characteristic, symmetric limit point buckling, noncriti-
cal and critical non-symmetric bifurcations-takes place. Analysis of
the criteria Eqs. (28), (31), (33) and Fig. 4 shows, that the presence
of the elastic foundation affects the buckling behavior and in-
creases the value of the initial elevation required for the appear-
ance of the corresponding buckling (see Simitses and Hodges,
2006). In the case of a negative foundation, the influence of which
can be considered to be equivalent to that of the distributed elec-
trostatic force (e.g. see Elata and Abu-Salih, 2006; Krylov, 2008) the
critical values of h decrease and the structure is more prone to the
limit point and non-symmetric buckling. The criteria for the case of
a negative foundation can be obtained directly from Eqs. (28), (31)
and (33) by changing the sign of the elastic foundation parameter
c.

By considering the snap-through criteria, Eqs. (28), (31) and
(33) and Fig. 4 one observes that in the case of a negative elastic
foundation the limit point and non-symmetric buckling are possi-
ble even in the case of an initially straight beam. The physical
meaning of these instabilities is related to the fact that the pres-
ence of a negative elastic foundation, which can be viewed as an
actuator, introduces an additional instability mechanism. For
example, in the case of a straight beam, the critical value c ¼
�b11=m11 of the elastic foundation parameter (such that the
expression under the square root in Eq. (28) becomes negative
and the solid line in Fig. 4 crosses the axis h=d ¼ 0) corresponds
to the symmetric, fundamental mode, limit point buckling of the
beam. The value c ¼ �b22=m22 (see Eq. (31) and the dotted line
in Fig. 4) is associated with the second, non-symmetric bifurcation
mode of an initially straight beam on a negative elastic foundation.
Note that this scenario can be realized by actuating the straight
beam by two electrodes symmetrically located at two sides of it



Fig. 4. The dependence of the relative critical initial elevations on the elastic foundation parameter as given by the three criteria in Eqs. (28) (solid line), (31) (doted line) and
(33) (dashed line) (for a square crosssection). (b) A focus on the region of moderate foundation’s stiffness given in (a). Typical responses in regions 1, 2, 3 and 4 are shown by
Fig. 2(a), (b), (c) and (d), respectively.
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(e.g. see Elata and Abu-Salih, 2006; Krylov, 2007; Krylov, 2008). In
the case of a positive foundation, the non-symmetric buckling is
possible if the stiffness of the foundation is high with respect to
the bending stiffness of the beam. It follows from considering of
Eqs. (28), (31) and (33) that all three curves cross at the same point
at c ¼ ðm11s22 �m22s11Þ=ðb22s11 � b11s22Þ. Note that in the case of
the elastic foundation with high positive stiffness the contribution
of the high-symmetric and non-symmetric-buckling modes should
be taken into consideration and the two DOF model could be inad-
equate. Since we are interested in the analysis of electrostatically
actuated beams where the influence of the initial curvature is dom-
inant and the elastic foundation is actually negative, the analysis of
the case of the elastic foundation with high stiffness is out of the
scope of this work. A focus on the region corresponding to the
moderate positive and negative c is shown in Fig. 4(b).

To summarize this section, one may conclude that the presence
of a linear elastic foundation affects the buckling behavior of the
beam as reflected in both the limit point snap-through and the
symmetry breaking criteria. Based on these results, one may expect
that the distributed nonlinear displacement-dependent force may
have a similar influence on the symmetry breaking of the beam
as will be demonstrated in the next section.
5. Electrostatic loading

In the case of the electrostatic loading, Eqs. (15) and (16) corre-
sponding to the two DOF model, cannot be solved in a closed form
due to the presence of the integral terms, which are associated
with the electrostatic force. For this reason, three-dimensional
bifurcation diagrams, mapping all the stable and unstable equilib-
rium configurations in the q1; q2; b space are built numerically.
First, the voltage parameter b is expressed in terms of q1; q2 using
each of Eqs. (15) and (16). Equilibrating these expressions, we ob-
tain a nonlinear algebraic equation F q1; q2ð Þ ¼ 0, which implicitly
relates q1 and q2. By prescribing the values of q1 (displacement
control), we solve the equation F q1; q2ð Þ ¼ 0 numerically, using
the solver for nonlinear algebraic equations incorporated into the
Maple package, and obtain q2 ¼ q2ðq1Þ. The integrals are evaluated
numerically. Finally, the values of the voltage parameter b, corre-
sponding to the symmetric and non-symmetric branches of the
bifurcation diagram are obtained by substituting the values of q1

and q2ðq1Þ back into Eq. (15).
The result is presented in Fig. 5, which is the counterpart of

Fig. 2, illustrating the response of a mechanically loaded beam on
a linearly elastic foundation. The expected similarity between the
figures implies that the criteria for the symmetric snap-through
and both non-critical (necessary condition) and critical (sufficient
condition) bifurcations should be defined also in the case of the
electrostatic loading. However, in contrast to the case of the
mechanical, deflection-independent loading, the presence of the
nonlinear electrostatic force results in the appearance of an addi-
tional limit point on the bifurcation diagram (point PI), so-called
pull-in instability (see Das and Batra, 2009a; Krylov et al., 2008;
Zhang et al., 2007).

5.1. Snap-through criteria

In accordance with Fig. 5 and similarly to the case of the
mechanically loaded beam, the branches of the bifurcation dia-
gram corresponding to the non-symmetric configurations of the
electrostatically loaded beam emerge from the equilibrium path
representing the symmetric response. Hence, in order to find the
position of the bifurcation points on the symmetric branch we first
linearize Eqs. (15) and (16) around the path q2 ¼ 0. Taking into ac-
count that the following integrals vanishZ 1

0

u1u2

1þ q1u1ð Þ3
dx ¼ 0

Z 1

0

u2

1þ q1u1ð Þ2
dx ¼ 0 ð37Þ

we obtain

b11 q1 � hð Þ þ as2
11 q2

1 � h2
� �

q1 þ bI1ðq1Þ ¼ 0 ð38Þ

b22 þ as11s22 q2
1 � h2

� �
� 2bI2ðq1Þ

� �
q2 ¼ 0 ð39Þ

where

I1ðq1Þ ¼
Z 1

0

u1

1þ q1u1ð Þ2
dx I2ðq1Þ ¼

Z 1

0

u2
2

1þ q1u1ð Þ3
dx ð40Þ

Eq. (38) is independent on q2 and is identical to Eq. (19) with
n ¼ 1, it is to say, it corresponds to the single DOF model and de-
scribes the symmetric response of the beam. By expressing b in
terms of q1 using Eq. (38), differentiating it with respect to q1

and taking into account that I1 > 0 for q1 > �1, we obtain the
equation

as2
11q2

1ðI3q1 � 3I1Þ þ ðI3q1 � I1Þðb11 � as2
11h2Þ � b11I3h ¼ 0 ð41Þ

whose roots qS; qR; qPI correspond to the symmetric snap-through,
symmetric release and pull-in points of the bifurcation diagram,
respectively. Here I3 ¼ dI1=dq1. The dependence between the loca-
tion of the roots qS; qR; qPI of Eq. (41) and the initial elevation of



Fig. 5. Bifurcation diagram of the electrostatically loaded beam (two DOF RO model, Eqs. (15) and (16)) for d ¼ 0:2 and different initial elevations elevations: (a) h ¼ 1, (b)
h ¼ 0:3, (c) h ¼ 0:332, (d) h ¼ 0:386. Point S and R are the snap-through and release limit points; points AS and AR are the bifurcation points of the snap-through and release
and point PI is the pull-in point.
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the beam, h, (for a prescribed value of a) is shown in Fig. 6(a) and (b)
for two values of d. The corresponding critical values of the voltage
parameter are shown in Fig. 6(c) and (d).

In order to obtain the symmetric snap-through criterion, we
note that Eq. (41) is quadratic in h and can be solved to obtain
hðq1Þ. The minimum of hðq1Þ is found (for a given a which is con-
sidered as a parameter) by solving numerically dhðq1Þ=dq1 ¼ 0.
This yields the value of q1 (which depends solely on a) correspond-
ing to the minimum of the curve h ¼ hðq1Þ on Fig. 6. The snap-
through criterion, namely, the minimal value of h required to have
the snap-through, can be obtained by substituting this value of q1

back into the solution hðq1Þ of Eq. (41). The dependence of the ratio
h=d on the relative thickness d ¼ d̂=g0 of a beam of a rectangular
cross section (when a ¼ 6=d2) is shown by solid line No. 1 in Fig. 7.

Fig. 6 indicates that the minimum of the curve h ¼ hðq1Þ defin-
ing the necessary condition of the symmetric snap-through is
located at small (but not zero, in contrast to the case of a mechan-
ical force, Eqs. (27) and (28)) q1. This suggests that an approxima-
tion for the snap-through criterion can be obtained by replacing
the curve h ¼ hðq1Þ in the vicinity of q1 ¼ 0 by a simple polynomial
(quadratic) expression and consequently, the derivative dh=dq1 by
a linear function. Hence, we linearize the derivative dh=dq1, solve it
in terms of q1, substitute the result back into the dependence
h ¼ hðq1Þ (obtained from Eq. (41)) and then expand it into Taylor
series up to quadratic order. As a result, we obtain the simple
approximation for the symmetric snap-through criterion

h
d
>

ffiffiffiffiffiffiffiffiffi
b11

6s2
11

s
1�m11

p1

ffiffiffiffiffiffiffiffiffi
b11

6s2
11

s
d

 !
ð42Þ

Note that Eq. (42) is in excellent agreement with the approximate

symmetric snap-through criterion first obtained in Krylov et al.

(2008) using a different approach. Note also that the valueffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b11=6s2

11

q
is the value corresponding to the case of a curved beam
under uniform deflection-independent loading. For the base func-
tions adopted in this work, we obtain

h
d
> 1:179� 1:054d ð43Þ

Consider now the criteria for the non-symmetric snap-through.
By expressing b in terms of q1 using Eq. (38) and by substituting
this expression into Eq. (39), we obtain that the eigenvalue prob-
lem (39) has a non-trivial solution when the following equation
is satisfied

2I2 q1 � hð Þ b11 þ as2
11q1ðq1 þ hÞ

� �
þ I1 b22 � as11s22ðq2

1 � h2Þ
� �

¼ 0

ð44Þ

The roots of Eq. (44) define the location of the bifurcation points
along the equilibrium path corresponding to the symmetric re-
sponse. The location of these points depends on two geometric
parameters of the beam, namely a (and therefore d) and h and is
shown by the solid lines in Fig. 6. One observes that two non sym-
metric bifurcation criteria can be formulated. The first defines the
condition required for the appearance of the bifurcation (the neces-
sary condition) whereas the second defines the geometrical require-
ments for the appearance of bifurcation point on the stable branch
of the symmetric response (the sufficient condition). Recall that in
the last case the bifurcation is critical in the sense that the non-
symmetric buckling takes place at values of the loading that are
smaller than those corresponding to the symmetric limit point
snap-through buckling. Note also that in contrast to the snap-
through and bifurcation points, which appear only when the initial
elevation is higher than certain value, the presence of the electro-
static pull-in instability is unconditional.

The necessary condition is obtained using Eq. (44), which corre-
sponds to the bifurcation points, shown by the dashed lines in
Fig. 6. Note that due to the presence of the integrals I1 and I2, Eq.
(44) is not polynomial as in the case of the linearly elastic



Fig. 6. (a), (b) Location of the critical points of the electrostatically loaded beam with rectangular cross-section and (c), (d) corresponding critical values of the voltage
parameter for: (a) (c) d ¼ 0:1 and (b) (d) d ¼ 0:2 and varying h. The dashed lines represent the limit points of the buckling diagram given by Eq. (41) and corresponding to the
symmetric snap through (point S), the symmetric release (point R) and the pull-in (point PI). The solid lines represent bifurcation points of the asymmetric snap-through
(point AS) and asymmetric release (point AR) given by Eq. (44). Points Ts and Tr represent the threshold of the critical asymmetric snap-through and release points,
respectively, where the bifurcation points coincide with the limit points.

Fig. 7. Phase diagram of the symmetrical and non-symmetrical snap-through
criteria. The black solid lines represent the criteria for the electrostatically loaded
beam, and the dashed gray lines represent the criteria for a mechanically loaded
beam. Solid line No. 1 is the necessary criterion given by Eq. (43); line 2 represents
the necessary condition for the appearance of an asymmetrical snap-through given
by Eq. (45); lines 3 and 4 corresponds to the sufficient conditions for the snap-
through and release bifurcation points respectively given by Eqs. (47) & (48),
respectively.
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foundation (see Eq. (26)), and cannot be solved in a closed form.
However, this equation is quadratic in h. Hence, the non-critical
bifurcation criteria is obtained by finding the minimum of the
curve h ¼ hðq1Þ extracted from Eq. (44) (with a considered to be
a parameter), following the approach used for the derivation of
the symmetric snap-through criterion from Eq. (39). As a result
we obtain, for a given a and therefore for a given relative thickness
of the beam d ¼ d̂=g0, the value of the initial elevation h ¼ ĥ=g0 re-
quired for the appearance of the non-symmetric bifurcation. We
emphasize that, similarly to the symmetric buckling, the influence
of the nonlinear electrostatic force on the symmetry breaking cri-
terion manifests itself through the dependence of the result on
the electrostatic gap g0. The curve h=d as a function of d is shown
by solid line No. 2 in Fig. 7.

Similarly to the approach used for the approximation of the
symmetric snap-through criterion, we linearize the equation
dh=dq1 ¼ 0 for small q1 (see Fig. 6), solve it in terms of q1 and ob-
tain the approximation for the necessary criterion of the non-sym-
metric snap-through

h
d
>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22

6s11s22

s
1� b11m22
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or, for the adopted base functions,

h
d
> 1:680� 0:312d ð46Þ
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In order to formulate the sufficient conditions for the non-symmet-
ric snap-through and non-symmetric release, the points of intersec-
tion between the curve corresponding to the limit points and the
curve associated with the points of bifurcation (threshold points
Ts and Tr on Fig. 6) have to be found. This is achieved by extracting
from both Eqs. (44) and (41) an expression for hðq1;aÞ. Equalization
of these two expressions results in an implicit relation between a
and the beam’s midpoint elevations q1 corresponding to the thresh-
old points. For a given a, the numerical solution of this equation
provides two values of q1, which, when substituted back into the
solution hðq1;aÞ of Eq. (44) or (41) yield the threshold values of h
which are sufficient for the appearance of the critical non-symmet-
ric snap-through and non-symmetric release. The dependence be-
tween these values of h and the thickness of the beam d is shown
by lines 3, 4 in Fig. 7.

It is worth noting, that in contrast to the case of the mechanical
deflection-independent loading, in the case of the electrostatic
force, the location q1ðdÞ of the points corresponding to the critical
non-symmetric snap-through and non-symmetric release is not
symmetric with respect to q1 ¼ 0. Consequently, two different suf-
ficient criteria should be formulated: one for the critical non-sym-
metric snap-through and another for the critical non-symmetric
release. The validity of the present analysis for high values of d
and h, namely for setups in which the electrode is placed closer
to the beam, is in question. This is due to the possible presence
of higher modes of buckling, which become emanate when the dis-
tance between the electrode and the beam’s edges is very small in
relation to the distance between the electrode and the beam’s cen-
ter. This phenomenon was observed in Krylov and Seretensky
(2006) for a membrane, which can be considered a special reduc-
tion of the present problem. Looping behavior of the electrostati-
cally loaded curved beam of relatively high initial elevations was
illustrated numerically in Das and Batra (2009b).

Since the sufficient criterion for the symmetry breaking cannot
be obtained in a closed form, simple approximate expression
describing the dependence between the h=d ratio and d were ob-
tained by fitting the numerically obtained values using polynomial
fits

h
d
> 1:881þ 0:154d� 0:585d2 þ 0:539d3 � 0:189d4

ðsufficient snap — throughÞ ð47Þ

h
d
> 1:881þ 0:089dþ 0:746d4 � 2:065d5 þ 2:117d6

ðsufficient releaseÞ ð48Þ

Fig. 7 reveals that the necessary condition, which is above the
symmetric snap-through condition, is a lower-bound criterion for
bifurcation. As for a certain range of d, the sufficient snap-through
condition is below the sufficient release condition, suggesting that
an asymmetric snap-through followed by a symmetric release can
occur. The dependency of the criteria on d, namely on the stiffness
of the system as defined by both the thickness of the beam and the
gap, is qualitatively similar to the behavior of a curved beam on an
elastic substrate subjected to mechanical load, which was analyti-
cally investigated in the previous section.

5.2. Numerical validation

The limit point snap-through and symmetry breaking criteria
obtained in the previous section were developed using an approx-
imate two degrees of freedom RO model. In order to validate the
applicability of these criteria and estimate their accuracy, Eqs. (6)
and (7) governing the behavior of the beam were solved numeri-
cally. Two different tools were used for this purpose: the boundary
value problem solver, which is a part of the MAPLE package Maple-
soft (2011) and a collocation-based boundary value problem solver
bvp4c implemented in MATLAB (see Shampine et al., 2011). Note
that it was chosen to solve the system of Eqs. (6) and (7) instead
of the single integro-differential Eq. (8), which is less convenient
for the direct numerical solution (numerical solutions of Eqs. (6)
and (8) is discussed in more details in Krylov et al. (2008) and Kry-
lov et al. (2011)).

Since we are interested in the analysis of the symmetry break-
ing in the structures under investigation, the initial configuration
of the beams was taken to incorporate a small initial imperfection.
The initial shape of the beams was taken to be a combination of the
first, symmetric, and the second, anti-symmetric, vibrational
modes of a straight beam

w0ðxÞ ¼ hu1ðxÞ þ du2ðxÞ ð49Þ

with d being the amplitude of the imperfection. A value of
d ¼ d̂=g0 ¼ 0:001 was used in all the calculations.

First, the accuracy of the two DOF RO model was estimated. The
comparison between the RO model and the numerical solution is
illustrated in Fig. 8 where the dependence between the midpoint
deflection of the beam and the applied voltage is shown. In the
framework of the force control approach, which reflects an actual
typical physical experiment (Krylov et al., 2011; Zhang et al.,
2007), the voltage applied to the electrode was prescribed and
was increased incrementally and the deflected shape of the beam
was found at each increment. Note that only stable branches of
the response curve can be tracked by this approach. In order to
get as close as possible to the limit or bifurcation points character-
ized by the decreasing slope of the response curve, smaller load
increments were used in the vicinity of the critical points.

Fig. 8 shows that for the adopted parameters of the beam
(which are consistent with the realistic values used in the experi-
ments of Krylov et al. (2008)), the two DOF RO model provides a
reasonable accuracy. The RO model accuracy slightly decreases
with the increasing voltage parameter. Specifically, a relative error
of 0.01% in the critical voltage was observed at the snap-through
point of the beam with d = 0.2 and h = 0.332, Fig. 8(a); errors of
4.1% and 8.1% in the critical voltages were obtained at the bifurca-
tion and the pull-in points, respectively, of the beam with d = 0.2
and h = 0.386, Fig. 8(b). Note that errors of the same magnitude
were reported in Krylov et al. (2008).

In order to quantify the level of the asymmetry of the deformed
shape of the beam, we introduce an asymmetry measure based on
the internal product between the deformed configuration of the
beam and the second (anti-symmetric) base function u2

I ¼
Z 1

0
ðw�w0Þu2dx ð50Þ

which increases as the asymmetry increases. A comparison be-
tween the orthogonality at the point suspected to be a limit snap-
through of beam (a), IðSÞ, and the orthogonality at the point sus-
pected to be a bifurcation snap-through of beam (b), IðASÞ, reveals
that the latter is 3.8 times larger than the first. Similarly, IðARÞ at
the bifurcation release point of beam (b) is 3 times larger than IðRÞ

at the limit release point of beam (a). This assists the above identi-
fication of the various critical points.

In addition, a displacement control procedure was used to track
both stable and unstable responses together with the correspond-
ing shapes of the deformed beam. In the framework of this ap-
proach, the problem was considered as a multipoint boundary
value problem (Shampine et al., 2011). The deflection of the mid-
point of the beam was prescribed along with the continuity condi-
tions at this point (and without enforcing the symmetry at the
midpoint). The voltage parameter and the deformed shape of the



Fig. 8. Buckling diagram (wM-midpoint elevation) for beams with d ¼ 0:2 and (a) h = 0.332 (b) h ¼ 0:386. Results of the RO model (black lines) and the force control numerical
analysis (gray lines) are shown.

Fig. 9. (a), (c), (e) Bifurcation diagrams (wM-midpoint elevation) and (b), (d), (f) the
corresponding snapshots of the deformed shape of the beam during the loading for
d ¼ 0:2 and different initial elevations of the beam: (a), (b) h ¼ 0:3 (region 2 in
Fig. 7); (c), (d) h ¼ 0:34 (region 3 in Fig. 7); (e), (f) h ¼ 0:39 (region 4 in Fig. 7).
Dashed line corresponds to the solution obtained under the symmetry conditions
enforced at the midpoint.
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beam were found by means of a relaxation procedure using the sol-
ver bvp4c implemented in MATLAB used by Krylov et al. (2011)
(see Bochobza-Degani et al., 2002 for the case of initially straight
beam and the symmetric response). Note that while the displace-
ment control approach adopted in this work may have a limited
applicability for the analysis of the beams with higher initial eleva-
tions or larger relative thickness d̂=g0 where the contribution of
higher symmetric modes may lead to looping behavior (Das and
Batra, 2009b, see also Krylov and Seretensky, 2006 for the case of
an elastic string), it is suitable for the analysis of beams of rela-
tively small initial elevations. To ensure that the contribution of
the higher modes is not pronounced for the considered configura-
tions of the beam, the results obtained by the displacement control
were compared with the results of the force control analysis, which
describes the actual behavior of the beam up to the first instability
point. An excellent agreement between the two approaches was
observed.

The results for beams of three different initial elevations are
shown in Fig. 9. Note that in order to highlight the correspondence
between the points on the equilibrium curve of the beam and its
deformed configurations, rotated plots of the voltage-deflection
dependence are shown. The initial elevations of the beams were
chosen in such a way that they fall within three different regions
of the phase diagram (the initial elevation h vs. the beam’s thick-
ness d, Fig. 7) defining the buckling behavior. The initial shape of
the beam included a small imperfection such that it is given by
two terms of Eq. (11) with q02 ¼ 0:001h. As the point defining
the geometric properties of the beam is placed above the snap-
through criterion and below the necessary condition for bifurca-
tion, region 2 in Fig. 7, the beam manifests the symmetric limit
point snap-through buckling, Fig. 9(a). The beam with parameters
corresponding to region 3 on Fig. 7, placed above the necessary and
bellow the sufficient conditions of the symmetry breaking, exhibits
a non-symmetric buckling with bifurcation points that are located
on the unstable branch of the symmetric curve, Fig. 9(b). Fig. 9(c)
illustrates the response of the beam with an initial elevation which
is above the sufficient condition of the symmetry breaking, region
4 in Fig. 7. A non-symmetric response is clearly observed in this
case.

Finally, we compare the location of the snap-through, release
and pull-in points extracted from the direct numerical analysis
(combined with the force control approach) with the values pro-
vided by the two DOF RO model, Fig. 6. The result of this compar-
ison, performed for beams of different initial elevations, is shown
in Fig. 10. Note that starting from a certain elevation h the (sym-
metric and non-symmetric) snap-through voltage becomes higher
than the pull-in value (Krylov et al., 2008). In this case the pull-in
and release configurations cannot be described using the force con-
trol algorithm and only the configurations corresponding to the
snap-through points can be obtained. Fig. 10 indicates that the
approximate and numerical values are in a good agreement. The
deviation of the snap-through points from the curve corresponding
to the symmetric response is clearly observed. One may conclude
therefore that the approximate criteria obtained in this work can



Fig. 10. Location of the midpoint of the beam corresponding to the snap-through,
release and pull-in points and extracted via the numerical force control analysis
(circles) for a beam of d ¼ 0:2. Dashed line depicts the limit-points and the solid line
depicts the bifurcation points resulting from the ROM Eqs. (41) and (44),
respectively.
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be used for the prediction of the symmetry breaking in electrostat-
ically actuated curved micro beams.
6. Conclusions

In this work, the non-symmetric buckling of an initially curved
beam loaded by a nonlinear, configuration dependent, electrostatic
force was analyzed. The initial curved shape of the beam is pro-
vided by fabrication rather than by a pre-buckling and the beam
is initially stress-free. The approximate reduced order model of
the beam was built by means of Galerkin decomposition with lin-
ear undamped eigenmodes of an associated straight beam as base
functions. Then, the criterion of a symmetric limit point snap-
through buckling along with the criteria for a non-symmetric
buckling were developed using the RO model limited to two-one
symmetric and one skew-symmetric – DOF. The verification of
the obtained results, using direct numerical solutions of the differ-
ential equations governing the beam’s behavior, indicates that the
established criteria can be used for the prediction of the symmetry
breaking in electrostatically actuated curved micro beams with
satisfactory accuracy.

Since the bifurcation points associated with the non-symmetric
buckling may be located on stable or unstable branches of the sym-
metric equilibrium curve, depending on the beam’s geometry
parameters, two symmetry breaking criteria were established.
The necessary non-symmetric buckling criterion provides the con-
ditions required for the appearance of non-symmetric solutions
which may emerge from points located on an unstable branch of
the symmetric buckling path. In such a case, these non-symmetric
configurations are not realized under quasi static force control
loading, as in actual physical experiment, and the bifurcation con-
ditions are not critical in a sense that the instability collapse takes
place through the limit-point snap-through mechanism. In con-
trast, the sufficient symmetry breaking criterion establishes the
condition for the critical non-symmetric buckling, when the bifur-
cation takes place at loading and deflection smaller than the limit-
point snap-through buckling values.

In contrast to the case of mechanical, deflection independent
loading, the nonlinearity of the electrostatic force, parameterized
by the relative distance between the beam and the electrode, has
a significant influence on both the symmetric and the non-sym-
metric buckling criteria. Specifically, the minimal values of the ini-
tial curvature/initial midpoint elevation of the beam required for
the appearance of the instabilities are lower than in the mechanical
case and the electrostatically loaded beams are more prone to the
limit point and non-symmetric buckling. Note that each one of the
criteria coincides with its mechanical counterpart when the dis-
tance between the beam and the electrode is large enough (com-
pared to the beam’s height and the critical values of the
displacements) and when the nonlinearity of the electrostatic force
is not pronounced. However, it was found that the symmetry
breaking criteria are less affected by the electrostatic force when
compared to the limit-point snap-through conditions. Conse-
quently, for practical purposes, the common mechanical criterion
can be used for the prediction of the critical non-symmetric buck-
ling of electrostatically actuated shallow micro beams.

It is worth noting, that the results presented in this work are ob-
tained for shallow beams with moderate initial elevations for
which the distance between the beam and the electrode is not
too small. When the distance between the beam and the electrode
is comparable or smaller than the initial elevation of the beam (and
therefore the critical snap-through and bifurcation values of the
displacements), the contribution of the terms of the RO model
associated with higher symmetric and non-symmetric base func-
tions could be significant and the results obtained using the two
DOF model could be inaccurate. The analysis of the behavior of
deep beams is planned as a part of our future research.
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