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In this article we present a model for multiparty contracts in which contract conformance

is defined abstractly as a property on traces. A key feature of our model is blame assign-

ment, which means that for a given contract, every breach is attributed to a set of parties.

We show that blame assignment is compositional by defining contract conjunction and

contract disjunction. Moreover, to specify real-world contracts, we introduce the contract

specification language CSL with an operational semantics. We show that each CSL contract

has a counterpart in our trace-based model and from the operational semantics we derive a

run-timemonitor. CSL overcomes limitations of previously proposed formalisms for specify-

ing contracts by supporting: (history sensitive and conditional) commitments, parametrised

contract templates, relative and absolute temporal constraints, potentially infinite contracts,

and in-place arithmetic expressions. Finally, we illustrate the general applicability of CSL by

formalising in CSL various contracts from different domains.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Contracts are legally binding agreements betweenparties and in e-business it is particularly crucial to automatically check

conformance to them, for example for minimising financial penalties. The Aberdeen Group [20,21] has recently identified

contract lifecycle management (CLM) as a key methodology in e-business: CLM is a broad term used to cover the activities

of systematically and efficiently managing contract creation, contract negotiation, contract approval, contract analysis, and

contract execution.Monitoring the execution of contracts constitutes the primary incentive for enterprises to use CLM, since

it enables qualified decision making and makes it possible to issue reminders for upcoming deadlines, which may lead to a

significant decrease of financial loss due to noncompliance:

“[...] the average savings of transactions that are compliant with contracts is 22%.” [20, page 1]

Consequently, several systems that implement the CLM methodology have been deployed. 1 More traditional enterprise

resource planning (ERP) systems such as Microsoft Dynamics NAV [16] and Microsoft Dynamics AX [15] are also used for
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E-mail address: hvitved@diku.dk (T. Hvitved)
1 Examples of such systems include (all URLs retrieved on May 18th 2011):
• Blueridge Software Contract Assistant, http://www.blueridgesoftware.bz.
• CobbleStone Systems ContractInsight, http://www.cobblestonesystems.com.
• Moai CompleteSource Contract Management, http://www.moai.com.
• Ecteon Contraxx, http://www.ecteon.com.
• Emptoris Contract Management Solutions, http://www.emptoris.com.
• Great Minds Software Contract Advantage, http://www.greatminds-software.com.
• IntelliSoft Group IntelliContract, http://www.intellisoftgroup.com.
• Ketera Contract Management, http://www.ketera.com.
• Open Text Contract Management, http://www.opentext.com.
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Fig. 1. A sales contract between a buyer and a seller.

managingbusiness agreements.However, a shortcomingof existingCLMandERPsystems is that contracts aredealtwith inan

ad hocmanner rather than as first-class objects. In fact, the beforementioned studies by the Aberdeen Group [20,21] suggest

the use of a domain-specific language as the basis for automated CLM. Although various authors have proposed domain-

specific languages for representing contracts [2,3,7,9,12,22,26], constructing a widely applicable contract specification

language remains a challenge [19]. One reason is that contracts involve many different aspects like absolute temporal

constraints (as in deadlines), relative temporal constraints (for imposing an ordering on the occurrence of certain actions),

reparation clauses, conditional commitments, different deontic modalities [28] (such as obligations and permissions), and

repetitive patterns. In order to make some of these aspects concrete, consider the contract in Fig. 1, which we will use as a

running example in the remainder of this article. This sample contract involves both obligations (Paragraph 1), permissions

(Paragraph 5), absolute deadlines (Paragraph 1), relative deadlines (Paragraph 3), and reparation activities (Paragraph 4).

Additionally, it involves data dependencies between paragraphs, for example the payment amount in Paragraph 4 depends

on the amount defined in Paragraph 3.

Besides being able to capture the various aspects found in contracts mentioned above, a contract specification language

should also be amenable to automatic analysis. In particular, the language should support run-time monitoring [13] of

contracts, that is reporting of (potential) contract breaches during execution—for instance as the result of passing a deadline

or performing a forbidden action. Furthermore, in case of noncompliance the run-time monitor should be able to assign

blame to one ormore of the parties involved in the contract, rather than simply reporting noncompliancewithout specifying

who is responsible for the breach of contract. Surprisingly, even though run-time monitoring of contracts has been studied

extensively [2,7,9,17,26,31], blame assignment has not been given much attention yet. To the best of our knowledge only

Xu [31] investigates blame assignment though not from the viewpoint of run-time monitoring, but rather from an off-line

viewpoint where blame has to be determined from a set of unfulfilled, dependent commitments.

In this article, we present a contract specification language that targets at naturally formalising andmonitoring contracts.

In particular, contracts formalised in our language can directly be monitored, and in case of noncompliance the monitor

assigns blame to the responsible contract parties. Although our focus is on business contracts, our language is not essentially

restricted to this particular application area.

1.1. Breach of contract and blame assignment

Afirst question that ariseswhendesigning such a contract specification language iswhat constitutes a breach of contract?

Returning to the example contract in Fig. 1, one can think of several scenarioswhich arguably constitute breaches of contract:

(1) Seller fails to deliver to Buyer on time.

(2) Seller delivers on time, Buyer pays first half on delivery, but Buyer does not pay second half on time.

(3) Seller delivers on time, Buyer pays first half on delivery, Buyer does not pay second half on time, and Buyer does not

pay the additional fine on time.

Clearly, the first scenario represents a breach of contract, and Seller is to be blamed for not delivering the goods to Buyer.

In the second scenario, it is less clear, since Buyer has violated Paragraph 3, but depending onwhether the extended deadline

has passed, Buyer may or may not have breached the contract. Finally, in the last scenario it is clear that Buyer has breached

the contract, but it is perhaps less clear whether violating Paragraph 3 or Paragraph 4 (or both) constitutes the breach of

contract.

The approach we take is that of fundamental breaches: a breach of contract takes place only when a violation happens,

fromwhich the contract cannot recover, and fromwhich it therefore does notmake sense to continue executing the contract.

In terms of run-timemonitoring, a breach of contract hence takes place only when it is impossible to complete a conforming

• 8over8 ProCon Contract Management, http://www.8over8.com.
• SAP SAP CLM, http://www.sap.com.
• Procuri TotalContracts, http://www.procuri.com.
• Upside Software UpsideContract, http://www.upsidesoft.com.

http://www.8over8.com
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http://www.procuri.com
http://www.upsidesoft.com
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execution. With this rather informal definition of contract breach, we see that the first scenario constitutes indeed a breach

of contract. Regarding the second scenario, it depends whether Buyer will pay the fine or not, as only neglecting to pay the

fine constitutes a breach of contract. Thus scenario (2) does not yet represent a breach, in contrast to the last scenario (3).

Wedeliberately use the term breach rather than violation in order to distinguish our concept of (fundamental) breach from

the more traditional notion of violation known from standard deontic logic (SDL) with contrary-to-duty obligations [25].

In the context of SDL, it is tempting to encode reparation clauses like the one in Paragraph 4 in the form of a contrary-

to-duty obligation. Yet, with such an encoding there is an implicit agreement that the primary obligation (Paragraph 3)

should be complied with first and foremost, and only complying with the reparation obligation constitutes a violation, even

though—from a contractual point of view—the contract is fulfilled.

A classical example which illustrates the subtle, but important, difference is the “gentle murderer”: do not kill, but if you

kill, kill gently [5]. The gentle murderer is an actual contrary-to-duty obligation, because there is an implicit agreement that

you should not kill—only if you have no other options than killing, then at least you should do so gently.

We argue, however, that contracts should not contain implicit agreements, in particular because parties may have con-

flicting interests. Hence if one party wishes to impose that an obligation be primary, then the only way to do so is bymaking

sure that there is an incentive for the responsible (counter) party to perform the primary obligation, for example by imposing

a penalty for complying only with the reparation obligation. Hence the gentle murderer, as a contract, would be: do not kill,

but if you kill, kill gently and go to jail. Attaching penalties to violations yields new obligations. Violating such an obligation

might result in new obligations until either all obligations are fulfilled or eventually a breach of contract is reached. For the

example, killing non-gently represents a breach of contract. Killing gently and not going to jail also represents a breach of

contract. However, killing gently and going to jail is not a breach of contract. Note that the consequences of breaching the

contract are not specified.

Ideally, blame assignment should be deterministic, that is it should uniquely determine the parties responsible for a

breach. However, not all contracts allow for deterministic blame assignment, as illustrated by the following scenario: if one

paragraph specifies that Alice has to fulfil an obligation by time τ , and another paragraph that Bob has to fulfil another

obligation by the same time τ , and the contract only asks for conformance with one of the paragraphs, then we are in a

delicate situation—who is to blame if neither Alice nor Bob has fulfilled her/his obligation?2 Contracts involving disjunction,

such as this one, lead to nondeterministic blame assignment. In other words, such contracts are ambiguous. For simplicity,

we choose not tomodel them, except in the special caseswhen the same parties are blamed in both subcontracts. Our choice

is also motivated by the fact that such scenarios rarely correspond to real-world contracts.

1.2. Contributions and organisation

We see our main contributions as follows. First, we present an abstract, trace-based model for contracts that has blame

assignment at its core. Furthermore, our model supports modular composition of contracts by contract conjunction and

disjunction. Second, we introduce the contract specification language (CSL) that fits naturally—by means of a mapping—to

our abstract model, and that overcomes many of the limitations of previous specification languages for contracts. Third, we

describe a run-timemonitoring algorithm for CSL specifications obtained as a by-product of the reduction semantics of CSL.

The remainder of this article is structured as follows. In Section 2wepresent our abstract, trace-basedmodel for contracts,

relying on the informal notion of contract breach and blame assignment described above. We show how our model encodes

various high-level aspects, such as obligations, permissions, and reparation clauses without relying on such notions.We also

provide operators for composing contracts and show that they fulfil desirable algebraic properties. In Section 3we introduce

the contract specification language CSL, together with a formal semantics which maps CSL into our abstract, trace-based

contract model. Furthermore, from the small-step, reduction-based semantics of CSL, we derive a run-time monitoring

algorithm. We also demonstrate the applicability of CSL by means of several example contracts. We discuss related work in

Section 4 and we draw conclusions in Section 5. The appendix contains additional proof details.

2. Trace-based contract model

Trace-based contract models have been proposed before [2,11], but unlike our model, those models partition traces into

conforming and nonconforming traces, without taking blame assignment into account. A trace is a sequence of actions that

represent the complete history of actions that have occurred during the execution of a contract. In order to capture real-time

aspects, and not only relative temporality, actions of a trace are timestamped. In this article we ignore how actions are

generated, and neither do we model how parties agree that actions have taken place—the latter would usually involve a

hand-shaking protocol, which is outside the scope of our work. For the purpose of defining contracts, we hence assume a

trace of timestamped actions is given.

2 We leave it to the reader to ponder whether blaming neither of the two, or blaming both of them is acceptable. Our view is that neither option is acceptable.
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2.1. Notation and terminology

Before presenting our contract model, we fix the notation and terminology that we use in the remainder of the text.

Throughout this article, P denotes the set of parties, A the set of actions, and Ts the set of timestamps. The sets P and A can

be finite or infinite but we require that they are both non-empty.We require thatTs is totally ordered by the relation≤, and

that Ts has a least element and that no element in the set is an upper bound, that is for all τ ∈ Ts there is some τ ′ ∈ Ts
such that τ �= τ ′ and τ ≤ τ ′. In the following, for representation issues, we assume that Ts = N.

We write a finite sequence σ over an alphabet � as 〈σ [0], σ [1], . . . , σ [n − 1]〉, where σ [i] ∈ � denotes the (i + 1)st
letter of σ . Its length is n and denoted by |σ |. In particular, 〈〉 denotes the empty sequence which has length 0. Analogously,

an infinite sequence σ over � is written as 〈σ [0], σ [1], σ [2], . . . 〉 with σ [i] ∈ �, for every i ∈ N. The length of an infinite

sequence σ is |σ | = ∞. We write σ � σ ′ if the sequence σ is a finite prefix of the sequence σ ′, that is if σ is finite and

there is a sequence σ ′′ such that σ ′ = σσ ′′, where σσ ′′ denotes the concatenation of the sequences σ and σ ′′.
An event is a tuple (τ, α), where τ ∈ Ts is a timestamp and α ∈ A an action. We write ts(ε) for the timestamp of an

event ε = (τ, α), that is ts(ε) = τ . A trace σ is a finite or infinite sequence of events where the sequence of timestamps are

(1) increasing, that is ts(σ [i]) ≤ ts(σ [j]) for all i, j ∈ N with i ≤ j < |σ |, and
(2) progressing for infinite traces, that is for all τ ∈ Ts there is some i ∈ N such that ts(σ [i]) ≥ τ whenever |σ | = ∞.

We denote the set of all traces by Tr, and the subset of finite traces by Trfin, that is Trfin = {σ ∈ Tr | |σ | �= ∞}. Trτ
denotes the subset of traces where all timestamps are at least τ , and similarly for Trτfin. For a finite non-empty trace σ , the

timestamp of the last event in σ is denoted by end(σ ), and for the empty trace, we define end(〈〉) = 0.

For a trace σ ∈ Tr and a timestamp τ ∈ Ts, στ denotes the longest prefix of σ with end(στ ) ≤ τ . This prefix exists,

since the properties (1) and (2) ensure that there are only finitely many prefixes σ ′ � σ with end(σ ′) ≤ τ .
Finally, we denote the domain of a (partial) function f by dom(f ), that is dom(f ) is the set of elements a for which f (a)

is defined. For a function f and a set X ⊆ dom(f ), f |X denotes the restriction of f to X .

2.2. Contracts

We capture blame assignment by generalising the outcome of a contract execution from a binary result (conformance or

nonconformance) to verdicts, defined as elements of the set

V = {�} ∪ {(τ, B) | τ ∈ Ts and B is a non-empty finite subset of P},
where � represents contract conformance, that is no one is to be blamed, and (τ, B) represents a breach of contract at time τ
by the parties in B. Whenever |B| > 1 then multiple parties have breached the contract simultaneously. For instance, both

parties of a barter deal may breach the contract if neither hands over the agreed goods.

A contract is defined as a function that maps traces to verdicts:

Definition 1. Let P be a non-empty and finite subset ofP. A contract between parties P, starting at time τ0 ∈ Ts, is a function
c : Trτ0 → V that satisfies the following conditions for all σ ∈ Trτ0 and (τ, B) ∈ V:

if c(σ ) = (τ, B) then B ⊆ P and τ ≥ τ0, (1)

and

if c(σ ) = (τ, B) then c(σ ′) = (τ, B), for all σ ′ ∈ Trτ0 with στ = σ ′
τ . (2)

The contract forwhich all traces are conforming is denoted c�, that is c� is the functionwith c�(σ ) = �, for allσ ∈ Trτ0 .
Thedefinitionentails that contracts aredeterministic, asc is a function. Since traces are consideredcomplete, condition (2)

guarantees that a breach at time τ only depends on what has (and has not) happened up until time τ . Moreover, the verdict

of a contract can only depend on what has happened after the contract started.

Example 1. We illustrate our contract model by representing Paragraph 1 in Fig. 1 as a contract c1 : Trτ0 → V, for a

suitable τ0. As the paragraph only defines an obligation on the party Seller, we define c1 as a contract “between” {Seller}
with

c1(σ ) =
{� if σ [i] = (τ, delivery), for some i ∈ N and τ ∈ Ts with i < |σ | and τ ≤ τd,(

τd, {Seller}) otherwise.

The action delivery represents the delivery of goods to the party Buyer and τd represents the deadline 2011-01-01. Note that
dates like 2011-01-01 can be easily interpreted as non-negative integers by taking for instance the corresponding UNIX time.

It is easy to check that c1 satisfies the properties of Definition 1.
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2.3. Contract conformance on infinite traces

The definition of contracts implicitly includes the crucial requirement that all breaches of contract are associated with a

point in time. From this restriction it follows that contract conformance is not a liveness property [1], such as: Buyer must

deliver the printer to Seller eventually.We see this as a natural restriction, since one of the purposes of formalising contracts

is to run-time monitor their execution, and hence breaches of contract should be detected in finite time—in other words,

every obligation must have a deadline.

The following lemma follows directly from the definition of contracts, because στ is the longest prefix up to time τ of the

trace σ .

Lemma 1. Let c : Trτ0 → V be a contract and let σ be a (finite or infinite) trace. Then c(σ ) = (τ, B) if and only if c(στ ) =
(τ, B).

The previous lemma entails that any nonconforming trace (in particular, any nonconforming infinite trace) has a non-

conforming prefix. However, not all extensions of this prefix need be nonconforming too. Indeed, a nonconforming finite

trace may be extended to a conforming trace (for instance, simply by performing an unfulfilled obligation), even if the time

of the breach coincides with the timestamp of the last event: a contract c may satisfy, for example, c
(〈(τ, α)〉) = (τ, B) and

c
(〈(τ, α), (τ, α′)〉) = �, for some α, α′ ∈ A, τ ∈ Ts, and parties B ⊆ P. Still, any extension of a nonconforming finite trace

after the time of the breach is also nonconforming.

Proposition 2. The set of infinite traces conforming with a contract is a safety property.

Proof. Let c : Trτ0 → V be a contract and let

C = {σ ∈ Trτ0 | σ is infinite and c(σ ) = �}.
We need to show that for any infinite trace σ �∈ C, there is a prefix σ ′ of σ such that for any infinite trace σ ′′ with σ ′ � σ ′′,
it holds that σ ′′ �∈ C.

Let σ �∈ C be an infinite trace. Then c(σ ) = (τ, B) for some τ and B. Let σ ′ be an arbitrary prefix of σ with end(σ ′) > τ ,
and consider an infinite trace σ ′′ with σ ′ � σ ′′. Then, since end(σ ′) > τ , it follows that σ ′′

τ = στ , and consequently

condition (2) yields that c(σ ′′) = (τ, B), hence σ ′′ �∈ C, as required. �

The following lemma shows that “contracts” defined only on finite traces extend uniquely to contracts. In other words,

contracts are uniquely determined by their verdicts on finite traces.

Lemma 3. Let P be a set of parties and c : Trτ0fin → V be a function such that if c(σ ) = (τ, B) then B ⊆ P, τ ≥ τ0, and

c(σ ′) = (τ, B), for all σ ′ ∈ Trτ0fin with στ = σ ′
τ . Then there exists a unique extension c′ : Trτ0 → V of c, that is c = c′|Trτ0fin

,

such that c′ is a contract.

Proof. Let c′ : Trτ0 → V be the function that extends c to infinite traces by

c′(σ ) =
{� if whenever c(σ ′) = (τ, B) and σ ′ � σ then end(σ ′) ≤ τ ,

c(σ ′) otherwise, where σ ′ is the shortest prefix of σ such that c(σ ′) = (τ ′, B′) and end(σ ′) > τ ′,

for any infinite trace σ . We first show that c′ is a contract between parties P starting at time τ0.
First note that c′(σ ) = (τ, B) if and only if there is σ ′ � σ with c(σ ′) = (τ, B) and end(σ ′) > τ , hence property (1)

follows immediately.

We show property (2), namely that if c′(σ ) = (τ, B) for some (finite or infinite) trace and some breach (τ, B), then
c′(σ ′) = (τ, B), for any (finite or infinite) trace σ ′ with σ ′

τ = στ . We can have one of the following cases:

• σ is finite and σ ′ is finite. This case follows directly from the hypotheses of the lemma.
• σ is finite and σ ′ is infinite. Then c′(σ ) = c(σ ) = c(στ ). Let ε be such that σ ′

τ ε � σ ′. We have ts(ε) > τ , hence
end(σ ′

τ ε) > τ . Moreover, c(σ ′
τ ε) = (τ, B) as (σ ′

τ ε)τ = στ . Hence, by definition, c′(σ ′) = (τ, B).
• σ is infinite and σ ′ is finite. By definition of c′, there is σ ′′ � σ such that c(σ ′′) = (τ, B) and end(σ ′′) > τ . Then

c(σ ′′
τ ) = (τ, B). As σ ′

τ = σ ′′
τ , it follows that c(σ ′) = (τ, B).

• σ is infinite and σ ′ is infinite. As in the previous case, there is σ ′′ � σ such that c(σ ′′
τ ) = (τ, B) and end(σ ′′) > τ .

Then σ ′′
τ = στ = σ ′

τ . Let ε be such that σ ′
τ ε � σ ′. As in the second case, we obtain that c′(σ ′) = c(σ ′′

τ ) = (τ, B).

This shows that c′ is a contract between parties P starting at time τ0. We now prove that this extension is unique. Let c′′ be
a contract such that c′′|Trτ0

fin
= c. We show that c′ = c′′. The contracts c′ and c′′ agree on all finite traces by construction,
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so assume for the sake of contradiction that c′(σ ) �= c′′(σ ) for some infinite trace σ . Then either c′(σ ) = (τ, B) or

c′′(σ ) = (τ, B), for some τ and B, so assume that c′(σ ) = (τ, B). Then by Lemma 1we have that c′(στ ) = (τ, B), and since

στ is finite, also c′′(στ ) = (τ, B), and hence again by Lemma 1 we have that c′′(σ ) = (τ, B), which is a contradiction. The

case where c′′(σ ) = (τ, B) is symmetric. �

2.4. Contract composition

By composing contracts, through conjunction and disjunction, new contracts are obtained. Given that a contract assigns

verdicts to traces, defining such compositions amounts to stating how verdicts are composed.

Contract conjunction: This type of composition models the simultaneous commitment to several (sub)contracts. Conjunc-

tion is implicit in paper contracts: typically the involved parties have to conform with all the clauses therein. When some

parties do not conform with some clauses, the resolution of blame assignment is given by the fundamental breach assump-

tion: the earliest breach represents the overall verdict. When breaches of several clauses happen at the same time, then all

breaching parties are to be blamed.

Definition 2. Let ν1, ν2 ∈ V be two verdicts. The verdict conjunction ν1 ∧ ν2 of ν1 and ν2 is given by:

ν1 ∧ ν2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν1 if either ν2 = �,

or ν1 = (τ1, B1), ν2 = (τ2, B2), and τ1 < τ2,

ν2 if either ν1 = �,

or ν1 = (τ1, B1), ν2 = (τ2, B2), and τ1 > τ2,

(τ, B) if ν1 = (τ, B1), ν2 = (τ, B2), and B = B1 ∪ B2.

Definition 3. Let c1 : Trτ0 → V and c2 : Trτ0 → V be two contracts. The conjunction of contracts is defined by

(c1 ∧ c2)(σ ) = c1(σ ) ∧ c2(σ ).

Note that (c1 ∧ c2)(σ ) = � if and only if c1(σ ) = c2(σ ) = �, for any trace σ .

The following lemma confirms the intuition that the conjunction of two contracts is a contract.

Lemma4. Let c1 : Trτ0 → V and c2 : Trτ0 → V be two contracts between parties P1 and P2, respectively. Then the composition

c1 ∧ c2 : Trτ0 → V is a contract between parties P1 ∪ P2.

Proof. Property (1) follows immediately from the definition of verdict conjunction, so we need to prove property (2).

Suppose that (c1 ∧ c2)(σ ) = (τ, B) and σ ′ is such that σ ′
τ = στ . We can have one of the following cases:

• c1(σ ) = �. Then c2(σ ) = (τ, B) and it follows that c2(σ ′) = (τ, B).
If c1(σ ′) = � then clearly (c1 ∧ c2)(σ ′) = (τ, B). Suppose that c1(σ ′) = (τ ′, B′) for some (τ ′, B′) �= (τ, B). If
τ ′ ≤ τ then σ ′

τ ′ � σ ′
τ � σ and hence c1(σ ) = (τ ′, B′)—contradiction. Hence τ ′ > τ . Since (τ, B)∧ (τ ′, B′) = (τ, B)

it follows that (c1 ∧ c2)(σ ) = (τ, B).
• c2(σ ) = �. This case is symmetric to the previous one.
• c1(σ ) = (τ1, B1) and c2(σ ) = (τ2, B2) such that (τ1, B1) ∧ (τ2, B2) = (τ, B). We then have c1(σ ′) = (τ1, B1) and

c1(σ ′) = (τ2, B2). Hence (c1 ∧ c2)(σ ′) = (τ, B). �

Example 2. Continuing Example 1, the first part of Paragraph 3 in Fig. 1 (that is “Buyer agrees to pay for the goods half upon

receipt”) can be represented by the contract c3 between {Buyer}, where

c3(σ ) =
{� if D = ∅, or if D �= ∅ and σ [j] = (τ1, payment1) for some j with i1 < j < |σ |,
(τ1, {Buyer}) otherwise,

with D = {i | σ [i] = (τ, delivery), 0 ≤ i < |σ |, τ ≤ τd}, i1 = min(D), and τ1 = ts(σ [i1]). Furthermore, the action

payment1 represents the first half payment to the Seller, and i1 (τ1) is the index (timestamp) that represents the receipt

time of the first delivery, assuming that delivery time and receipt time coincide.

The second part of Paragraph 3 (that is “Buyer agrees to pay […] the remainder within 30 days of delivery”) can be

encoded by the contract c′
3 between {Buyer}, where

c′
3(σ ) =

{� if D = ∅, or if D �= ∅ and σ [j] = (τ, payment2) for some i1 < j < |σ | and τ ≤ τ ′
1,

(τ ′
1, {Buyer}) otherwise,
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with τ ′
1 = τ1 + 30 (we assume that the time unit is 1 day), and the action payment2 represents the second half payment to

the Seller.

Using the previous lemma, Paragraph 3 of Fig. 1 is represented by the contract c3 ∧ c′
3 between {Buyer}.

Contract disjunction: This type of composition models the situation where fulfilling only one of the clauses of a contract

is sufficient to fulfil the entire contract. Unlike conjunction, the case when all clauses are breached is problematic, as each

of the clauses is individually an option. To be able to give an answer in this case, we take a global view: all involved parties

are at any time aware of the contract execution status. Thus, those parties responsible for the latest breach are to blame for

the overall failure, because they should have fulfilled their obligations after knowing that other options are not available

anymore. Still, when breaches happen at the same time, there is no other way than to choose nondeterministically between

the breaches. Note that blaming the parties altogether is not a better alternative, as then the nondeterminism would be

hidden somewhere else: the cause of the overall failure could be any of the causes of the individual breaches.

It is not a surprise that the treatment of disjunction ismore complicated, since disjunction is inherently nondeterministic.

Nevertheless, in the special case where all clauses stipulate commitments on the same contract participant, disjunction

corresponds to a choice that said participant has. In this case it is clear who is to blame when all clauses are breached.

Definition 4. Let ν1, ν2 ∈ V be two verdicts such that if ν1 = (τ, B1) and ν2 = (τ, B2) then B1 = B2. The verdict disjunction

ν1 ∨ ν2 of ν1 and ν2 is given by:

ν1 ∨ ν2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

� if ν1 = � or ν2 = �,

(τ1, B1) if ν1 = (τ1, B1), ν2 = (τ2, B2) and τ1 > τ2,

(τ2, B2) if ν1 = (τ1, B1), ν2 = (τ2, B2) and τ1 < τ2,

(τ, B) if ν1 = ν2 = (τ, B).

Two contracts c1 and c2 have unique blame assignment if for all traces σ , whenever c1(σ ) = (τ, B1) and c2(σ ) = (τ, B2),
then B1 = B2.

Definition 5. Let c1 : Trτ0 → V and c2 : Trτ0 → V be two contracts with unique blame assignment. The disjunction of

contracts c1 and c2 is defined by

(c1 ∨ c2)(σ ) = c1(σ ) ∨ c2(σ ).

Note that (c1 ∨ c2)(σ ) = � if and only if c1(σ ) = � or c2(σ ) = �, for any σ ∈ Trτ0 .
The following lemma confirms the intuition that the disjunction of two contracts is a contract.

Lemma 5. Let c1 : Trτ0 → V and c2 : Trτ0 → V be two contracts with unique blame assignment, between parties P1 and P2,

respectively. Then the composition c1 ∨ c2 : Trτ0 → V is a contract between parties P1 ∪ P2.

Proof. Property (1) follows immediately from thedefinition of verdict disjunction, soweneed to proveproperty (2). Suppose

that (c1 ∨ c2)(σ ) = (τ, B) and σ ′ is such that σ ′
τ = στ . We can have one of the following cases:

• c1(σ ) = (τ, B) and c2(σ ) = (τ2, B2) with τ2 < τ . It follows that c1(σ ′) = (τ, B) and c2(στ2) = (τ2, B2). As
στ2 � στ � σ ′, we have c2(σ ′) = (τ2, B2). Hence (c1 ∨ c2)(σ ) = (τ, B).

• c2(σ ) = (τ, B) and c1(σ ) = (τ1, B1) with τ1 < τ . This case is symmetric to the previous one.
• c1(σ ) = (τ, B) and c2(σ ) = (τ, B). We then have c1(σ ′) = (τ, B) and c1(σ ′) = (τ, B). Hence (c1 ∨ c2)(σ ′) =

(τ, B). �

Example 3. Continuing Example 2, the second part of Paragraph 4 in Fig. 1 (that is “an additional fine of 10% has to be paid

within 14 days”) can be encoded by the contract c4 between {Buyer}:

c4(σ ) =
{� if D = ∅, or if D �= ∅ and σ [j] = (τ, payment′2) for some i1 < j < |σ | and τ ≤ τ ′′

1 ,

(τ ′′
1 , {Buyer}) otherwise,

where τ ′′
1 = τ1 + 44 and the action payment′2 represents the payment of the second half together with the 10% fine by

Buyer. (Note that the confusion with regard to the reference for the 10% computation would have to be solved at a different

level—when defining payment′2 concretely.)

As, for all traces, the contracts c′
3 and c4 only blame Buyer, the previous lemma ensures that c′

3 ∨ c4 is a well-defined

contract. The first four paragraphs are thus represented by the contract c1 ∧ (c3 ∧ (c′
3 ∨ c4)) between {Buyer, Seller}. (We

note that Paragraph 2 of Fig. 1 is encoded implicitly in the encoding of the other paragraphs.)
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Algebraic properties of contract composition: The following lemma shows that the conjunction and disjunction operators on

verdicts enjoy the expected algebraic properties, like commutativity, associativity, and distributivity.

Lemma 6. Let ν, ν1, ν2, ν3, ν
′
1, ν

′
2, ν

′
3 be verdicts such that if ν

′
i = (τ, Bi) and ν′

j = (τ, Bj) then Bi = Bj, for any i, j ∈ {1, 2, 3}.
Then the following equalities hold:

ν1 ∧ ν2 = ν2 ∧ ν1 (Commutativity)

ν′
1 ∨ ν′

2 = ν′
2 ∨ ν′

1 (Commutativity)

ν1 ∧ (ν2 ∧ ν3) = (ν1 ∧ ν2) ∧ ν3 (Associativity)

ν′
1 ∨ (ν′

2 ∨ ν′
3) = (ν′

1 ∨ ν′
2) ∨ ν′

3 (Associativity)

ν′
1 ∨ (ν′

1 ∧ ν′
2) = ν′

1 (Absorption)

ν′
1 ∧ (ν′

1 ∨ ν′
2) = ν′

1 (Absorption)

ν′
1 ∨ (ν′

2 ∧ ν′
3) = (ν′

1 ∨ ν′
2) ∧ (ν′

1 ∨ ν′
3) (Distributivity)

ν1 ∧ (ν′
2 ∨ ν′

3) = (ν1 ∧ ν′
2) ∨ (ν1 ∧ ν′

3) (Distributivity)

� ∧ ν = ν ∧ � = ν (Unit)

� ∨ ν = ν ∨ � = � (Unit)

Proof. These equalities follow directly from Definitions 2 and 4. �

These algebraic properties are easily lifted from verdicts to contracts, which allows us to perform algebraic, meaning-

preserving rewritings of contracts.

Corollary 7. Let C be a set of contracts that is closed under contract conjunction and disjunction, c� ∈ C, and for all c1, c2 ∈ C,

the contracts c1 and c2 have unique blame assignment. Then (C, ∨, ∧) is a distributive lattice with unit element c�.

We recall that the idempotency equalities c∧c = c and c∨c = c, that hold for any contract c, follow from the absorption

equalities. We also note that the equalities that only concern conjunction hold for arbitrary contracts.

2.5. Run-time monitoring

Thecontractmodelpresentedaboveconsiders complete traces,whichareeitherfiniteor infinite, and there isnorestriction

as to whether the verdict of a contract can be computed or not. For run-time monitoring, however, traces are always partial

and finite, and it should be possible to compute verdicts at run-time. We consequently define, abstractly, what constitutes

run-time monitoring for the contract model, using a conventional many-valued semantics [13].

The output of a run-time monitor is an element of the union of the sets V< = {ν< | ν ∈ V} for < ∈ {!, ?}, where ν!
is a final verdict, and ν? is a potential verdict. Final verdicts are output when all extensions of the current partial trace have

the same verdict. In other words, the verdict on the complete trace, whatever this would be, is uniquely determined by (the

verdict on) the partial trace; there is hence no need to perform further monitoring. In contrast, potential verdicts are output

when the verdicts on extensions of the current partial trace differ. Of course, if the current trace is a complete trace (in this

case no more events occur), then the potential verdict is the actual verdict on this trace.

Definition 6. Let c : Trτ0 → V be a contract between parties P. A run-time monitor for c is a computable function

mon : Trτ0fin → V! ∪ V? that satisfies

mon(σ ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�! if c(σ ′) = � for all σ ′ with σ � σ ′,
(τ, B)! if c(σ ′) = (τ, B) for all σ ′ with σ � σ ′,
�? if c(σ ) = � and c(σ ′) �= � for some σ � σ ′,
(τ, B)? if c(σ ) = (τ, B) and c(σ ′) �= (τ, B) for some σ � σ ′.

Note that, in case of a potential breach, that is if mon(σ ) = (τ, B)? then condition (2) of Definition 1 guarantees that

end(σ ) ≤ τ , hence (τ, B)? is always an indication of a future—but avoidable—breach.

The definition expresses both impartiality and anticipation [13]. Impartiality means that a final verdict is only output if

the partial trace cannot be extended into a complete trace with a different verdict. Formally,

if mon(σ ) = ν! then c(σ ′) = ν for all σ ′ with σ � σ ′.
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Fig. 2. The grammar of CSL. f ∈ F ranges over template names, x, y, z ∈ V range over variables, k ∈ K ranges over action kinds, and v ∈ ⋃
t∈T �t� ranges over

values. Furthermore, < ∈ {+, −, ∗, /,∧} and ≺∈ {<, =}.

Anticipation is the reverse of impartiality. It means that inevitable—possibly future—verdicts are output as early as possible,

that is a potential verdict is only output if it is possible to reach a different verdict. Formally,

if c(σ ′) = ν for all σ ′ with σ � σ ′ then mon(σ ) = ν!.

Anticipation can be relaxed, for instance by allowing final breaches to be output only when the time of breach has been

reached, but impartiality is a crucial requirement for run-time monitoring which cannot be relaxed.

Example 4. Consider the contract c1 ∧ (c3 ∧ (c′
3 ∨ c4)) between {Buyer, Seller} from Example 3, and the following events:

ε1 = (2011-01-01, delivery), ε2 = (2011-01-02, delivery),

ε3 = (2011-01-01, payment1), ε4 = (2011-01-10, payment2),

ε5 = (2011-02-10, payment′2).

The output of an associated run-time monitor on the following sample traces is as follows:

mon
(〈〉) = (2011-01-01, {Seller})?,

mon
(〈ε2〉) = (2011-01-01, {Seller})!,

mon
(〈ε1〉) = (2011-01-01, {Buyer})?,

mon
(〈ε1, ε3〉) = (2011-02-14, {Buyer})?,

mon
(〈ε1, ε3, ε4〉) = mon

(〈ε1, ε3, ε5〉) = �!.

3. A contract specification language

The previous section provided a semantic account for compositional contracts. However, it is cumbersome to specify

contracts directly in the abstractmodel, aswe have seen in Examples 1–3. Thuswe propose a contract specification language,

CSL, which enables succinct, syntactic representation of real-world contracts in a human-readable form, and which has a

formal semantics in terms of the abstract contract model. The primary target of CSL is business contracts, but rather than

fixing the set of actions to for instance payments and deliveries, we parametrise the language with respect to a signature,

which can be thought of as the vocabulary used in a contract.

Formally, a signature is a triple S = (K, ar, T ), where K is a finite set of action kinds with associated arities and types,

ar : K → T ∗, where T is a finite set of types. The domain of a type t is denoted by �t�, and we assume that T contains the

basic types Bool, Int, Time, and Party, with the corresponding domains �Bool� = {false, true}, �Int� = Z, �Time� = Ts,
and �Party� = P, respectively. Signatures provide structure to actions, and we consequently redefine the set of actions,

with respect to a given signature, as follows: A = {k(�v) | k ∈ K, ar(k) = 〈t1, . . . , tn〉, and �v ∈ �t1� × · · · × �tn�}. Fur-
thermore, we assume an infinite set of variables V , ranged over by x, y, z, and an infinite set of template names F , ranged

over by f .

3.1. CSL syntax

The grammar of CSL is presented in Fig. 2. In what follows, we describe informally each construct of the language.

Theatomicexpressionsof CSL arevaluesv ∈ �t�of some type t andvariables. From integer values andvariables, arithmetic

and Boolean expressions are formed by using arithmetic operators, equalities, and inequalities. We note in particular that “/”
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denotes integer division and the specification needs to take into account the possible loss in precision with regard to real

division. Abusing language, a deadline expression actually represents an interval of integers, as explained shortly.

ACSL specification s is a set of templatedefinitions togetherwith abody c andanabsolutepoint in time τ ,whichdefines the

starting time of the contract. Templates can be instantiated in the body of the specification. Mutual recursion is allowed and

it enables potentially infinite contract executions. The parameters of a template are values �x and parties �y. Value parameters

are dynamic, that is they can be instantiated with values from earlier events, whereas party parameters are static, that is all

parties are fixed before the contract is started, and they do not change over time.

Clauses describe the normative content of contracts. The bodies of CSL specifications and of template definitions are

clauses. All deadlines that occur in clauses are relative to unspecified reference points which are given by the starting time

of the specification and by the time of event occurrences. Thus, these relative deadlines are only lifted to absolute deadlines

when the CSL specification is executed. The only atomic clause is fulfilment, which represents the clause that is always

fulfilled.

Fully instantiated obligation clauses have the form

〈p〉 k(�x) where e due after n1 within n2 remaining z then c,

which should be read:

Party p is responsible that (but need not be in charge of) an action of kind k satisfying condition e takes place. This

action should happen after n1 time units, but within n2 time units thereafter. If these requirements are satisfied, then the

continuation clause c determines any further obligations.

The variables of the vector �x are bound to the parameters of the action, and their scope is e and c. The variable z is bound to

the remainder of the deadline: if the deadline is for instance after 2 within 5 and the action takes place 4 time units after

the reference point, then z is bound to (2 + 5) − 4 = 3. The scope of z is c only. All deadlines in the continuation c are

relative to the time of the action.

External choices are similar to obligation clauses, but they contain an alternative continuation branch which becomes

active if the deadline passes. For this reason, external choices have no responsible party parameter, since no one has to be

blamed in case the deadline expires.

The clause if e then c1 else c2 represents an internal choice, where the branching condition e can be computed directly

without having to wait for external input (that is for events). The clauses c1 and c2 and c1 or c2 represent clause conjunction

and disjunction, respectively. Finally, f (�e1)〈�e2〉 is instantiation of template f , where �e1 are value parameters and �e2 are party
parameters.

We use standard syntactic sugar such as e1 ∨ e2 for ¬(¬e1 ∧ ¬e2), e1 ≤ e2 for (e1 < e2) ∨ (e1 = e2), and e1 �= e2 for

¬(e1 = e2). Also, we omit continuations and else branches if they are fulfilment, we omit the after part of a deadline if it

is 0, we write immediately forwithin 0, and we omit the remaining part if it is not used. Finally, we use abbreviations like

30D to denote the value representing an amount of time of 30 days, that is the integer 30 ∗ 24 ∗ 60 ∗ 60, assuming that the

time unit is of 1 s.

In terms of deonticmodalities [28], itmay seem that CSL only supports obligations, and not permissions and prohibitions.

However, permissions in a contractual context are only of interest if they entail new obligations (on counter parties). Hence

wemodel permissions as external choices that trigger new obligations, as illustrated in the following example. Prohibitions

can also be modelled as external choices, where the consequence is an unfullfilable obligation on the party who performed

the prohibited action, as we shall see in Section 3.7, where we provide further examples.

Example 5. Fig. 3 shows the specification in CSL of the sales contract in Fig. 1. The formalisation assumes a signature that

includes the action kinds {Deliver, Payment, Return} ⊆ K, with types ar(Deliver) = ar(Return) = 〈Party, Party, String〉
and ar(Payment) = 〈Party, Party, Int〉. The domain of String is the set of all strings, and the two parties of each action

kind represent the sender and receiver, respectively. The example disambiguates the informal contract: the 10% fine is cal-

culated with respect to half of the total price, and Buyer is only entitled to return the goods if the first half is paid upon

delivery. A different disambiguation could be given by another CSL specification. Note also how we encode the permission

to return the goods as an external choice which has the consequence that Seller has to pay the original amount back to

Buyer.

3.2. CSL type system

We equip CSL with a type system. For this purpose, we define different typing judgments over an implicit signature

S = (K, ar, T ). Before presenting the typing judgments, we introduce some notation. We write f : A ⇀fin B for a partial

function f from A to Bwith a finite domain. Furthermore, f [a �→ b] denotes the functionwhichmaps a to b and behaves like f

on all other input. We write f [�a �→ �b] for f [a1 �→ b1] · · · [an �→ bn], for vectors �a = (a1, . . . , an) and �b = (b1, . . . , bn).
Finally, we write A ⊆fin B to say that A ⊆ B and A is finite.
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Fig. 3. A CSL specification of a sales contract between a buyer and a seller.

Fig. 4. Typing judgments for expressions e, party expressions e′ , and deadline expressions d.

Our typing judgments use the following typing environments:

	 ⊆fin V (Party typing environment)


 : V ⇀fin T (Variable typing environment)

� : F ⇀fin T ∗ × N (Template typing environment)

The typing environment for parties 	 keeps track of parametrised parties (such as the parameter buyer of the template sale

in Fig. 3), and the typing environment for values 
 keeps track of parametrised values and their type (such as the parameter

goods of the template sale in Fig. 3). The typing environment for clause templates � associates with each template name

the types of its parameters and the number of party parameters. Also, we use the meta-types Deadline, Clause〈P〉, and
Contract〈P〉, parametrised by a finite set of parties P ⊆fin P, to represent the type of deadlines, clauses involving parties P,

and contracts involving parties P, respectively.

The typing judgments for expressions
 � e : t, for party expressions (that is the expressions determining responsibility

in obligations) 	 � e′ : P, and for deadline expressions 
 � d : Deadline are presented in Fig. 4. The typing rules for

expressions are standard, but we require that the denominator of a division expression be known statically in order to avoid

division by zero. The typing rules for party expressions 	 � e′ : P are used to determine the parties that are involved in a

given clause.

The typing rules for clauses �, 	, 
 � c : Clause〈P〉, for template definitions � � D, and for full CSL specifications

� s : Contract〈P〉 are presented in Fig. 5. A derivation �, 	, 
 � c : Clause〈P〉 intuitively means that in template

environment � and variable environment 
, c is a clause in which only parties P and parametrised parties 	 can be

blamed for a breach of contract. The typing rule for clause disjunction, c1 or c2, uses this invariant to check that at most one

party can breach either c1 or c2, which guarantees that verdict disjunction is well-defined. The typing rules for obligations

and external choices illustrate the scope of the bound variables �x and z.
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Fig. 5. Typing judgments for CSL clauses c, template definitions D, and specifications s.

The typing rule for template definitions � � D requires that the body of each definition contains no “hard coded”

parties, that is it may only contain variables, but not values of type Party. The restriction is strictly speaking not necessary,

however we consider it best practice not to have hard coded parties inside template definitions, and we therefore rule out

this possibility. We furthermore allow party parameters to be used in the scope of ordinary expressions; see the definition

of 
i, and the body of the template sale in Fig. 3 for an example.

An expression e is well-typed in the variable typing environment 
, if there is a type t such that 
 � e : t. Similarly, a

deadline expression d is well-typed in the variable typing environment 
, if 
 � d : Deadline. A clause c involving parties P

is well-typed in the variable environment
, party environment	, and template environment�, if�, 	, 
 � c : Clause〈P〉.
A specification s involving parties P is well-typed, if � s : Contract〈P〉. We say simply that a CSL construct is well-typed, if

there are appropriate environments and involved parties within which the construct is well-typed.

Lastly, we remark that the type systempresented here is declarative, that is checkingwhether CSL specifications arewell-

typed cannot be directly implemented based on the given typing rules. This is because of the rule for template definitions, for

which one has to guess the types of value parameters. An actual implementationwill either rely on explicit type annotations

of template parameters or perform type inference. While we treat neither approaches formally here, we note that explicit

type annotations will immediately give rise to an algorithmic type system.

3.3. Well-formed specifications

Unfolding of template definitions need not always terminate—even for well-typed specifications—as illustrated in the

following example:

s� = letrec f()〈〉 = f()〈〉 in f()〈〉 starting 2011-01-01
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Fig. 6. Evaluation of expressions and deadline expressions.

We avoid such ill-formed specifications by considering only specifications that satisfy a certain syntactic criterion that we

introduce next.

Given a clause c, we recursively define the immediate subclauses of c as follows:

Sub(c) = {c} ∪

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Sub(c2) if c = if k(�x) where e due d remaining z then c1 else c2,

Sub(c1) ∪ Sub(c2) if c = c1 and c2,

Sub(c1) ∪ Sub(c2) if c = c1 or c2,

Sub(c1) ∪ Sub(c2) if c = if e then c1 else c2,

∅ otherwise.

Given a set of template definitions D, we let FD denote the names of the templates defined in D. The immediate unfolding

relation ⇒D on FD is defined as follows: f ⇒D g if and only if there is a subclause g(�e1)〈�e2〉 ∈ Sub(cf ) where cf is such

that (f (�x)〈�y〉 = cf ) ∈ D. Intuitively, ⇒D represents a dependency relation between templates, where f ⇒D g means

that the unfolding of f requires an immediate unfolding of g. The definition of immediate subclauses reflects this intuition.

For instance, in the continuation clause c1 of an obligation, the templates in c1 are not immediately instantiated—they are

instantiated only after the obligation is fulfilled.

We say that a specification s is well-formed with parties P, if s involving parties P is well-typed and the immediate

unfolding relation on the template names of s is acyclic. By requiring that the unfolding relation be acyclic, we avoid exactly

those cases where the unfolding of a template f requires a series of immediate unfoldings leading to an unfolding of f itself.

Note that the specification given in Fig. 3 is well-formed, while the above specification s� is not.

3.4. CSL semantics

We now present the operational semantics for CSL, which is used to define the mapping of CSL specifications to abstract

contracts, and which gives rise to a run-time monitoring algorithm as well. Inspired by Andersen et al. [2], we define a

reduction semantics, which has the advantage that residual obligations, after an event has taken place, can be seen directly

by inspecting the reduced term.More generally it follows that any analysis applicable to initial CSL specificationswill also be

applicable at any givenpoint in time, since running CSL specifications are conceptually nodifferent from initial specifications.

We first define the evaluation of well-typed expressions e ⇓ v and well-typed deadline expressions d ⇓τ (τ1, τ2) in

Fig. 6, using standard derivation rules. The timestamp τ in the rule for deadlines is the time with respect to which relative

deadlines are calculated. It represents the starting time of the specification or the time of its last update, which equals the

time of the last event occurrence. The following lemma shows the expected correspondence between the typing rules and

the evaluation rules for (deadline) expressions.

Lemma 8. Let e be an expression, d be a deadline expression, and t be a type. If ∅ � e : t, then there is a unique v ∈ �t� such

that e ⇓ v. If ∅ � d : Deadline, then for any τ ∈ Ts, there are unique τ1, τ2 ∈ Z with d ⇓τ (τ1, τ2).

Proof. For the first claim, existence follows by induction on the derivation of ∅ � e : t, while uniqueness follows by

structural induction on e. The last claim follows immediately from the first one. �
During reductions, variables are instantiated with values in expressions and clauses. Since party parameters do not

depend on event data, we use two kinds of (applications of) substitutions, namely substitutions of value parameters and

substitutions of party parameters. Formally, a (value) substitution is an element of the setV ⇀fin

⋃
t∈T �t�. A party substitution

is a substitution having P as the codomain. Hence, party substitutions are special cases of value substitutions.
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Fig. 7. Substitution of value parameters into expressions e[θ], deadline expressions d[θ], and clauses c[θ]; and substitution of party parameters into clauses c〈θ〉.

In Fig. 7, we define two types of applications of substitutions to CSL constructs: substitutions of value parameters in

(deadline) expressions and clauses, denoted e[θ ], d[θ ], and c[θ ], respectively, where θ is a substitution; and substitution of

party parameters in clauses, denoted c〈θ〉, where θ is a party substitution. We write c[v/x] for the application on clause c

of the substitution that maps x to v. Also, c[�v/�x] = c[v1/x1] . . . [vn/xn] for vectors �v = (v1, . . . , vn) and �x = (x1, . . . , xn).
Finally, we abuse notation by interpreting vectors of variables as sets in Fig. 7.

The following lemma shows that the substitutions defined in Fig. 7 fulfil the expected properties with respect to the type

system. Moreover, party parameters are typed using relevance typing [23], that is parametrised parties are used at least once

in the body of a template definition.

Lemma 9. Consider a well-typed expression 
 � e : t, a well-typed deadline expression 
 � d : Deadline, and a well-typed

clause �, 	, 
 � c : Clause〈P〉. For any substitution θ such that θ(x) ∈ �
(x)� for all x ∈ dom(θ) ∩ dom(
), it holds that


′ � e[θ ] : t,

′ � d[θ ] : Deadline,

�, 	, 
′ � c[θ ] : Clause〈P〉,
where 
′ = 
|dom(
)\ dom(θ). Moreover, for any party substitution θ , it holds that

�, 	\ dom(θ), 
 � c〈θ〉 : Clause〈P ∪ {p | θ(x) = p, x ∈ dom(	) ∩ dom(θ)}〉.
Proof. The first typing judgment (that is 
′ � e[θ ] : t) follows easily by induction on the typing derivation 
 � e : t,

and the second judgment then follows immediately. The third judgment follows by induction on the typing derivation

�, 	, 
 � c : Clause〈P〉, and the same goes for the fourth judgment. �
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Fig. 8. Reduction semantics for CSL clauses c and specifications s.

The reduction semantics for well-formed specifications is presented in Fig. 8. The reduction relation for clauses has the

form D, τ � c
ε−→ c, where D is a set of template definitions, τ is the time of the last update to the contract (initially the

starting time), c is the clause to reduce, ε is the event that takes place, and c is the residue. A residue c is either a clause,

representing the remaining obligations, or a breach of contract.

The second, third, and fourth rules describe the three different situations for obligations: (1) either the event fulfils the

obligation, and the residue is determined by the continuation clause; or (2) the event does not fulfil the obligation bymissing

the deadline, in which case a breach of contract takes place; or (3) the event does not fulfil the obligation, but nor does it

violate the deadline, so the obligation—with updated deadlines—remains the residue. The three rules for external choice are
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similar, except that in the second case the residue is determined by the alternative branch of the choice, rather than a breach

of contract.

It follows from the operational semantics that a clause can only be breached by missing a deadline, and the time of

breach is determined by the deadline itself. However, we need to take into account that deadlines may be negative, in

which case we define the time of breach as the time of the last update. Similarly, we need to take negative deadlines into

account for external choices. Note that in the rules, clauses are fully instantiated, that is they have no free variables (for the

straightforward definition of free variables): the type system guarantees that well-typed clauses are fully instantiated, as

we shall see shortly.

The semantics of clause conjunction and clause disjunction use lifted versions of the corresponding verdict compositions,

which are defined by:

c1 � c2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c1 and c2 if c1 = c1 and c2 = c2,

(τ1, B1) if c1 = (τ1, B1) and c2 = c2,

(τ2, B2) if c2 = (τ2, B2) and c1 = c1,

(τ1, B1) ∧ (τ2, B2) if c1 = (τ1, B1) and c2 = (τ2, B2)

and

c1 � c2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c1 or c2 if c1 = c1 and c2 = c2,

c1 if c1 = c1 and c2 = (τ2, B2),

c2 if c2 = c2 and c1 = (τ1, B1),

(τ1, B1) ∨ (τ2, B2) if c1 = (τ1, B1) and c2 = (τ2, B2).

The reduction semantics is lifted to specifications s
ε−→ s, where the residue s is either a residual specification or a breach

of contract. Note that the time of the last update (that is event) is recorded in the residual specification.

The following theorem shows that the semantics satisfies type preservation [24]. Moreover, the set of parties in the typing

of the residual specification may decrease, matching the intuition that parties may become free of obligations during the

execution of a contract.

Theorem 10. Let s be a well-formed specification involving parties P and s′ be a specification. If s
ε−→ s′ then s′ is a well-formed

specification involving parties P′, for some P′ ⊆ P.

Proof. The proof is deferred to page 93. The proof is by induction on the typing derivation. �

The following theoremshows that the semantics also satisfies theprogress property [24], that iswell-formed specifications

never get stuck.

Theorem 11. Let s be a well-formed specification with parties P and starting time τ0. Then for any event ε with ts(ε) ≥ τ0 there

is a unique residue s such that s
ε−→ s. Furthermore, whenever s = (τ, B) then τ0 ≤ τ ≤ ts(ε) and B ⊆ P.

Proof. The proof is deferred to page 96. The proof is by nested induction on the structure of the immediate unfolding relation

and the step derivation. �

3.5. Mapping CSL specifications to contracts

The reduction semantics presented in Section 3.4 is event-driven: at the occurrence of an event, a specification reduces

to either a breach of contract or a residual specification. However, the absence of events is also significant, because it may

imply that the contract execution is considered finished and no more events are produced. In this case a verdict needs to be

associatedwith the residual specification. Formally, we associate the verdict ν with a specification s if� s ↓ ν can be derived

using the derivation rules of Fig. 9. For any well-formed specification s, there exists a unique verdict ν associated with s.

We can now associate a verdict with a specification and an event trace by running the specification on the trace: at each

step the specification is reduced on the current event, until either a breach occurs or there are nomore events, in which case

we check if the residual specification is fulfilled according to the relation in Fig. 9. Formally, the function �s� : Trτ0 → V
where τ0 is the start time of s, is defined on finite traces inductively by:

�s�(σ ) =
⎧⎪⎪⎨
⎪⎪⎩
ν if σ = 〈〉 and � s ↓ ν,

(τ, B) if σ = εσ ′ and s
ε−→ (τ, B),

�s′�(σ ′) if σ = εσ ′ and s
ε−→ s′,

and on infinite traces by the (unique) extension in Lemma 3.
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Fig. 9. Verdict ν associated with specification s.

The following theorem shows that CSL specifications indeed represent contracts in the sense of Definition 1.

Theorem 12. Let s be awell-formed specificationwith parties P and start time τ0. Then �s� is a contract between parties P starting

at time τ0.

Proof. Theproof isdeferred topage97. Theproof followsby inductionon the lengthof the traceusingTheorems10and11. �

Corollary 13. Let s = letrec D in c starting τ be a well-formed specification. Then

�s� =
⎧⎪⎨
⎪⎩
c� if c = fulfilment,

�s1� ∧ �s2� if c = c1 and c2,

�s1� ∨ �s2� if c = c1 or c2,

where si = letrec D in ci starting τ .

Proof. For finite traces the proofs follow by induction on the trace length, similar to the proof of Theorem 12. For infinite

traces the results then follow from the uniqueness result of Lemma 3. �

The theorem and its corollary show that CSL enjoys the principles underpinning the contract model defined in Section 2,

that is deterministic blame assignment and compositionality. Moreover, the algebraic properties stated in Corollary 7 carry

over to CSL.

3.6. Monitoring CSL specifications

The reduction semantics presented above gives rise to an incremental run-time monitoring algorithm for CSL specifica-

tions. The main ingredient of the monitor is the function mon : S × Trτ0fin → (V! ∪ V?) × S defined by

mon(s, σ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(ν?, s) if σ = 〈〉 and � s ↓ ν,

(ν!, s′) if σ = σ ′ε and mon(s, σ ′) = (ν!, s′),
((τ, B)!, s′) if σ = σ ′ε and mon(s, σ ′) = (ν?, s

′) and s′ ε−→ (τ, B),

(ν?, s
′′) if σ = σ ′ε and mon(s, σ ′) = (ν′

?, s
′) and s′ ε−→ s′′ and � s′′ ↓ ν,

where S is the set of all well-formed CSL specifications.

The monitor is invoked whenever an event occurs, provided that the monitor has not already output a final verdict.

Between invocations, it only needs to remember the previous result, that is in order to process the event ε, after the events σ
have happened, we only need the previous result mon(s, σ ) in order to compute the new result mon(s, σε).
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The function mon is not a run-timemonitor in the sense of Definition 6. However, it is very close to one, as shown by the

following theorem, which follows directly from Theorem 12.

Theorem 14. Let s be a specification with starting time τ0. The function mon is computable and for any trace σ ∈ Trτ0fin verdict

ν<, and residual specification s′, with mon(s, σ ) = (ν<, s
′), it holds that

(1) if ν< = (τ, B)! then �s�(σ ′) = (τ, B) for all σ ′ with σ � σ ′,
(2) if ν< = �? then �s�(σ ) = �, and

(3) if ν< = (τ, B)? then �s�(σ ) = (τ, B) and τ ≥ end(σ ).

The result above shows thatour run-timemonitor satisfies impartiality (1), however it doesnot always satisfy anticipation.

For instance, if the body of a specification is fulfilment, then our monitor always outputs �?, even if anticipation requires

that it outputs �!. Building a run-time monitor which guarantees anticipation is hard, because the expression language can

“hide” anticipated verdicts. Consider for instance the clauses

c1 = 〈p〉 k(x) where e due d remaining z then c,

c2 = if k(x) where e due d remaining z then c else fulfilment,

where e is someexpression forwhich e[v/x] ⇓ false for all values v, for instance e = x > 0∧x < 0. The contract represented

by c1 is always breached, while the one represented by c2 is never breached. Hence, in order to guarantee anticipation, one

first needs to decide satisfiability for the expression language.

Example 6. We demonstrate the reduction semantics and run-time monitor using the CSL specification in Fig. 3. As in

Example 4, we consider the trace 〈ε1, ε3, ε4〉, where the events are as in the example, except that they use concrete actions

instead of abstract actions:

ε1 = (2011-01-01,Deliver(Seller, Buyer, “Laser printer”)),

ε3 = (2011-01-01, Payment(Buyer, Seller, 100)),

ε4 = (2011-01-10, Payment(Buyer, Seller, 100)).

We first define the specifications si, with i ∈ {0, 1, 2, 3}:
si = letrec sale(deliveryDeadline, goods, payment)〈buyer, seller〉 = c in ci[θ ] starting 2011-01-01

where θ(deliveryDeadline) = 0, θ(goods) = “Laser printer”, θ(payment) = 200, θ(buyer) = Buyer, θ(seller) = Seller, and

c0 = sale(0, “Laser printer”, 200)〈Buyer, Seller〉
c = 〈seller〉 Deliver(s,r,g)where s = seller ∧ r = buyer ∧ g = goods due within deliveryDeadline then c1

c1 = 〈buyer〉 Payment(s,r,a)where s = buyer ∧ r = seller ∧ a = payment/2 due immediately then c2

c2 = (〈buyer〉 Payment(s,r,a)where s = buyer ∧ r = seller ∧ a = payment/2 due within 30D

or

〈buyer〉 Payment(s,r,a)where s = buyer ∧ r = seller ∧ a = (payment/2) ∗ 110/100 due within 14D after 30D)

and

if Return(s,r,g)where s = buyer ∧ r = seller ∧ g = goods due within 14D

then

〈seller〉 Payment(s,r,a)where s= seller ∧ r= buyer ∧ a= payment due within 7D

c3 = if Return(s,r,g) where s = buyer ∧ r = seller ∧ g = goods due after −9Dwithin 5D

then

〈seller〉 Payment(s,r,a)where s = seller ∧ r = buyer ∧ a = payment due within 7D

The specification in Fig. 3 equals s0. We have s0
ε1−→ s1

ε3−→ s2
ε4−→ s3. Note that the relative deadline in c3 for returning the

goods is shifted with regard to the corresponding relative deadline in c2, due to the passing of time. The incremental output

of the monitor on the trace 〈ε1, ε3, ε4〉 is as follows:

mon(s0, 〈〉) = ((2011-01-01, {Seller})?, s0),
mon(s0, 〈ε1〉) = ((2011-01-01, {Buyer})?, s1),

mon(s0, 〈ε1, ε3〉) = ((2011-02-14, {Buyer})?, s2),
mon(s0, 〈ε1, ε3, ε4〉) = (�?, s3).

Finally, remark that on all traces, except the last one, the value of mon coincides with the value of the run-time monitor of

Definition 4.
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Fig. 10. A non-disclosure agreement (paper version top, CSL version bottom).

3.7. Contract examples

We have seen one example of a realistic contract specified in CSL, namely the sales contract in Fig. 1. The example

illustrates how dependencies between paragraphs are realised as continuation clauses, how obligations and permissions are

represented, and how contract disjunction enables choices. In this section we provide further specification examples, which

illustrate prohibitions, potentially infinite contracts, linear treatment of events (as in linear logic [6]), and a more involved

application of arithmetic expressions.

Prohibitions: Prohibitions are not built-in to CSL, yet it is possible to express prohibitions using external choices and obliga-

tions. Consider thenon-disclosure agreement in Fig. 10 (top). The agreement is formalised in Fig. 10 (bottom), using a signature

that includes the action kinds {Disclose,Unfulfillable} ⊆ K, with types ar(Disclose) = 〈Party〉 and ar(Unfulfillable) = 〈〉.
We use the action kind Unfulfillable to point out that the corresponding obligation cannot be fulfilled. Besides the technique

for encoding prohibitions, the example illustrates an important point, namely that we do not model how parties agree that

events have taken place. In the agreement above, a dispute is more likely to involve proving (or disproving) disclosure of

information, rather than interpreting whether disclosing information is allowed or not.

Lease agreement: The next example is a lease agreement presented in Fig. 11 (top). The contract is formalised in Fig. 11 (bot-

tom), using a signature that includes the action kinds {Payment, ReqTermination, Provide} ⊆ K, with types ar(Payment) =
〈Party, Party, Int〉, ar(ReqTermination) = 〈Party〉, and ar(Provide) = 〈Party, Party, String, Int〉. We assume that the ex-

pression language has been extended with a function for calculating the minimum of two integers.

The example demonstrates how recursive template definitions enable potentially infinite contracts: each lease period is

guaranteed to be executed at least 6 times, but there is no a priori upper bound on the number of iterations. The example also

illustrates the usage of the remaining construct, which is needed in order to determine the start of the next lease period,

when one of the parties requests a termination.

Master sales agreement: Next we consider a master sales agreement in Fig. 12 (top). The contract is formalised in Fig. 12

(bottom), using a signature that includes the action kinds {Request, IssueInvoice,Deliver, Payment} ⊆ K, with types

ar(Request) = 〈Party, Party, Int, String〉, ar(IssueInvoice) = 〈Party, Party, Int〉, ar(Deliver) = 〈Party, Party, Int, String,
Int〉, and ar(Payment) = 〈Party, Party, Int, Int〉. We assume that the expression language has been extended with a function

for calculating the maximum of two integers.

The encoding illustrates the usage of multiple template definitions and that deadlines can be calculated dynamically

based on previous events. Moreover, the action kinds pertaining to each individual sale contain identifiers that are needed

in order to distinguish potentially identical payments, deliveries, or invoices when there are simultaneous orders.

Instalment sale: The last contract we consider is an instalment sale in Fig. 13 (top). For simplicity, we have only included

the payment part of the contract, and not sellers obligation to deliver goods. The CSL formalisation is presented in Fig. 13

(bottom), and it shows a more involved application of in-place arithmetic expressions, namely calculation of the remaining

balance after each instalment has been payed. Note that contract termination not only depends on the initial 24 months

period, but that the contract may end earlier, in case the remaining balance is fully payed.

4. Related work

Formal specification of contracts and automatic reasoning about contracts has drawn interest from a wide variety of

research areas within computer science, going back to the late eighties with the pioneering work by Lee [12]. Contract

formalisms typically fall into three categories: (deontic) logic based formalisms [9,12,26], event-condition-action based

formalisms [7,14], and trace based formalisms [2,11]. The logic based approaches mainly focus on declarative specification

of contracts, and on (meta) reasoning, such as decidability of the logic. On the other hand, the event-condition-action and

trace based models focus mainly on contract execution. The latter approach takes a more extensional view of contracts,

that is contracts are denoted by the set of traces they accept. Other approaches to contract modelling include combinator
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Fig. 11. A lease agreement (paper version top, CSL version bottom).

libraries [22], defeasible reasoning [8,10,27], commitment graphs, that is graph theoretic representations of responsibility

between parties [31,32], finite state machines [17], and more informal frameworks [3,4,18,29]. Common to all approaches

is the goal of modelling (electronic) contracts in general, except for Peyton-Jones and Eber [22], Andersen et al. [2], and Tan

and Thoen [27] who specifically consider financial contracts, commercial contracts, and trade contracts, respectively.

Existing contract frameworks tend to focus either on contract executionmodels [17,18,31,32], or on concrete specification

languages [2–4,7,9,10,12,22,26,27], rather than considering both an abstract semantic model and a specification language.

Consequently, these frameworks either lack a language for specifying contracts, or they lack an operational interpretation—

with the exception of [2,26], who however do not characterise contracts abstractly in terms of their semantic models. In

contrast, we consider both an abstract execution model and a specification language. Besides giving a formal operational

interpretation to specifications, this makes it possible to consider different specification languages for different contract

domains, and still compare their semantics in terms of the abstract model. Moreover, by mapping a specification language

into our model, deterministic blame assignment is guaranteed, algebraic properties of conjunction and disjunction follow

automatically, and run-time monitoring has a well-defined meaning.

Compared with the previous contract execution models [17,18,31,32], our abstract contract model relies on fewer high-

level concepts. For instance, the existing models rely on concepts such as deadlines [31,32], deontic modalities [17] and

logical formulae [18], which are all definable within our model.

Comparedwith thepreviouscontract specification languages [2–4,7,9,10,12,22,26,27], oursmainlydistinguishes itself by

incorporating deterministic blame assignment. Besides, existing languages all fall short of other important features. History

sensitive commitments, that is commitments which depend on what has happened in the past, are only supported in few

languages [2,9]. History sensitivity is typically not supported because actions aremodelled as propositional variables, hence

actions cannot carry values. Only the language of Andersen et al. [2] has support for (recursive) contract templates; we have

adapted their construction to CSL. Furthermore, potentially infinite contracts are only supported in few languages [2,12,26].

Finally, some languages lack absolute temporal constraints [8,10,26], and instead consider only relative temporal constraints.

The importance of monitoring contracts is widely recognised [2,7,9,17,26,31,32], yet few authors provide a formal,

operational semantics for contract execution [2,26]. Such a semantics is a prerequisite for showing that a monitor achieves

its goals. Furthermore, deterministic blame assignment is crucial for run-time monitoring, a feature which—to the best

of our knowledge—has only previously been recognised by Xu and Jeusfeld [32]. However, Xu and Jeusfeld only consider
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Fig. 12. Master sales agreement (paper version top, CSL version bottom).

monitoring and blame assignment for their particular specification language, while we also define these notions in a general

and abstract setting.

Compositional specification of contracts is traditionally obtained by means of conjunction and disjunction [2,9,22,26].

Besides, Andersen et al. [2] present a language which supports linear conjunction [6]. Despite the fact that compositionality

of contracts has previously been considered, there has been no previous treatment of the effect of compositionality on blame

assignment, and in particular on how disjunctions involving different parties may give rise to nondeterminism.

Standard deontic logic (SDL) [28]—the logic of obligations, permissions, and prohibitions—has inspired existing contract

formalisms [9,12,26] due to the appealing similarities with concepts from contracts. Yet the possible worlds semantics [30]

of deontic logic lacks an operational interpretation, which in our view makes SDL inappropriate as a basis for formalising

contracts. To alleviate this weakness, Prisacariu and Schneider [26] consider a restricted form of deontic modalities with

ought-to-do rather than ought-to-be, meaning that deontic modalities are only to specify what should happen (“Seller ought

to deliver”), and not what should be the general state of affairs (“It ought to be the case that Seller delivers”). The restriction

to ought-to-do statements gives rise to an alternative μ-calculus semantics based on actions. We also restrict contracts to

ought-to-do statements.

It has beenargued that contrary-to-dutyobligations [25]—also a SDL related concept—are crucial for contracts aswell [3,9,

18,26].Althoughwerecognise the importanceof reparationactivities incontracts,we insteadconsider themordinarychoices,

rather than choices with an implicit agreement to conform first and foremost with primary objectives. In consideration

hereof, we avoid the philosophical considerations of contrary-to-duty [9,25], and the treatment of intermediate violations

generated by failing to comply with primary objectives.

5. Conclusions

In this article we have presented a novel, trace-based model for multiparty contracts with blame assignment. We have

illustrated that high-level contract concepts such as obligations, deadlines, and reparation clauses are representable within

our model. This shows that our model is well-suited for representing real-world contracts. For the purpose of writing
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Fig. 13. Instalment sale (paper version top, CSL version bottom).

contracts, we have given a contract specification language, which enjoys the principle of blame assignment by inheritance

from the abstract model, and which is amenable to incremental run-time monitoring.

We plan to use CSL in case studies to further evaluate its applicability for formalising contracts and monitoring their

executions. Here, we expect that the expression language of CSL needs to be extended, while hopefully the clause language

does not require additions. The extensions to the expression language should be straightforward.

A restriction in our model is that blame is deterministically assigned to contract parties in case of breach of contract.

Although deterministic blame assignment is a desired feature, not all real-world contracts have this feature. In future work,

we plan to extend ourmodel such that verdicts can be nondeterministically associated with traces. Such an extension is also

motivated by the objective for obtaining less restrictive operators for composing contracts.

Futurework also includes contract analysis. Such an analysis can be based on our abstract contractmodel or on the reduc-

tion semantics of CSL. For instance, an immediately implementable online analysis based on the reduction semantics is to

simulate theoutcomeofpossible futureevents. Togetherwith the informationonwho is responsible for anevent, this isuseful

to avoid a breach of contract and to issue reminders of deadlines. The monitoring algorithm partly does this already by out-

putting potential breaches which represent upcoming deadlines. A further goal of such an online analysis is to monitor con-

tract execution with full anticipation. However, in order to effectively perform suchmonitoring of CSL specifications, it may

be necessary to restrict oneself to fragments of CSL. Other contract analyses are (1) satisfiability, that is whether a contract

can be fulfilled at all, (2) satisfiabilitywith respect to a particular party, that iswhether a party can avoid breaching a contract

inwhich it is involved, (3) contract valuation, that iswhat is the expected value of a contract for a given party, and (4) contract

entailment, that is whether fulfilling a contract entails the fulfilment of another contract. The last analysis has applications

for instance in checking contract conformance with regulations, when regulations are themselves formalised as contracts.
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Appendix A. Additional proof details

Proof of Theorem 10. Assume that s is well-formed with parties P, that is � s : Contract〈P〉 and the unfolding relation

on the template names of s is acyclic. Assume furthermore that s
ε−→ s′, where s = letrec D in c starting τ . Then s′ =
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letrec D in c′ starting ts(ε), for some clause c′, where D, τ � c
ε−→ c′. We need to show that s′ is well-formed with parties

P′ ⊆ P, which amounts to showing that � s′ : Contract〈P′〉 as the templates of s and s′ are identical. Since s is well-typed,

we have that� � D and�, ∅, ∅ � c : Clause〈P〉, so it suffices to show that�, ∅, ∅ � c′ : Clause〈P′〉 for some P′ ⊆ P, again

since the templates do not change. We hence need to show:

If D, τ � c
ε−→ c′ and �, ∅, ∅ � c : Clause〈P〉 then �, ∅, ∅ � c′ : Clause〈P′〉 for some P′ ⊆ P.

The proof is by induction on the derivation of D, τ � c
ε−→ c′. We do a case split on the last derivation rule:

• The last rule is:

D, τ � fulfilment
ε−→ fulfilment

This case is trivial. (Note that P = P′ = ∅.)• The last rule is:

e[�v/�x] ⇓ true d ⇓τ (τ1, τ2) τ1 ≤ τ ′ ≤ τ2

D, τ � 〈p〉 k(�x) where e due d remaining z then c1
(τ ′,k(�v))−−−−−→ c1[�v/�x, τ2 − τ ′/z]

The typing derivation for c has the form


′ = [�x �→ ar(k)]

2 = 
′[z �→ Int]

∅ � p : {p}

′ � e : Bool

∅ � d : Deadline
(a)︷ ︸︸ ︷

�, ∅, 
2 � c1 : Clause〈P2〉
�, ∅, ∅ � 〈p〉 k(�x) where e due d remaining z then c1 : Clause〈{p} ∪ P2〉

It then follows from (a) and Lemma 9 that �, ∅, ∅ � c1[�v/�x, τ2 − τ ′/z] : Clause〈P2〉, as required. (Note also that P2 ⊆
{p} ∪ P2.)

• The last rule is:

d ⇓τ (τ1, τ2) τ ′ ≤ τ2 τ ′ < τ1 ∨ k′ �= k ∨ e[�v/�x] ⇓ false d′ = after τ1 − τ ′ within τ2 − τ1

D, τ � 〈p〉 k(�x) where e due d remaining z then c1
(τ ′,k′(�v))−−−−−−→

〈p〉 k(�x) where e due d′ remaining z then c1

We only need to show that ∅ � d′ : Deadline, which follows immediately.• The last rule is

e[�v/�x] ⇓ true d ⇓τ (τ1, τ2) τ1 ≤ τ ′ ≤ τ2

D, τ � if k(�x) where e due d remaining z then c1 else c2
(τ ′,k(�v))−−−−−→ c1[�v/�x, τ2 − τ ′/z]

This case is similar to the second case.• The last rule is:

d ⇓τ (τ1, τ2) τ ′ > τ2

(a)︷ ︸︸ ︷
D,max(τ, τ2) � c2

(τ ′,k′(�v))−−−−−−→ c′

D, τ � if k(�x) where e due d remaining z then c1 else c2
(τ ′,k′(�v))−−−−−−→ c′

The typing derivation for c has the form


′ = [�x �→ ar(k)]

1 = 
′[z �→ Int]


′ � e : Bool
∅ � d : Deadline

(b)︷ ︸︸ ︷
�, ∅, ∅ � c2 : Clause〈P2〉
�, ∅, 
1 � c1 : Clause〈P1〉

�, ∅, ∅ � if k(�x) where e due d remaining z then c1 else c2 : Clause〈P1 ∪ P2〉
So the result follows from the induction hypothesis applied to (a) and (b), and from the fact that P2 ⊆ P1 ∪ P2.
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• The last rule is:

d ⇓τ (τ1, τ2) τ ′ ≤ τ2 τ ′ < τ1 ∨ k′ �= k ∨ e[�v/�x] ⇓ false d′ = after τ1 − τ ′ within τ2 − τ1

D, τ � if k(�x) where e due d remaining z then c1 else c2
(τ ′,k′(�v))−−−−−−→

if k(�x) where e due d′ remaining z then c1 else c2

This case is similar to the third case.• The last rule is:

(a)︷ ︸︸ ︷
D, τ � c1

ε−→ c′1

(b)︷ ︸︸ ︷
D, τ � c2

ε−→ c′2
D, τ � c1 and c2

ε−→ c′1 and c′2
The typing derivation for c has the form

(c)︷ ︸︸ ︷
�, ∅, ∅ � c1 : Clause〈P1〉

(d)︷ ︸︸ ︷
�, ∅, ∅ � c2 : Clause〈P2〉

�, ∅, ∅ � c1 and c2 : Clause〈P1 ∪ P2〉
So it follows from the induction hypothesis applied to (a) and (c) on one hand, and (b) and (d) on the other hand,

that �, ∅, ∅ � c′1 : Clause〈P′
1〉 and �, ∅, ∅ � c′2 : Clause〈P′

2〉 with P′
1 ⊆ P1 and P′

2 ⊆ P2. Hence it follows that

�, ∅, ∅ � c′1 and c′2 : Clause〈P′
1 ∪ P′

2〉 as required.• The last rule is:

D, τ � c1
ε−→ c′1 D, τ � c2

ε−→ c′2
D, τ � c1 or c2

ε−→ c′1 or c′2
This case is similar to the previous case.• The last rule is:

e ⇓ true

(a)︷ ︸︸ ︷
D, τ � c1

ε−→ c′1
D, τ � if e then c1 else c2

ε−→ c′1
The typing derivation for c has the form

∅ � e : Bool
(b)︷ ︸︸ ︷

�, ∅, ∅ � c1 : Clause〈P1〉 �, ∅, ∅ � c2 : Clause〈P2〉
�, ∅, ∅ � if e then c1 else c2 : Clause〈P1 ∪ P2〉

So it follows fromthe inductionhypothesis applied to (a) and (b) that�, ∅, ∅ � c′1 : Clause〈P′
1〉withP′

1 ⊆ P1 ⊆ P1∪P2
as required.• The last rule is:

e ⇓ false D, τ � c2
ε−→ c′2

D, τ � if e then c1 else c2
ε−→ c′2

This case is similar to the previous case.• The last rule is:

�e ⇓ �v (f (�x)〈�y〉 = c′) ∈ D

(a)︷ ︸︸ ︷
D, τ � c′[�v/�x, �p/�y]〈�p/�y〉 ε−→ c′′

D, τ � f (�e)〈�p〉 ε−→ c′′
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The typing derivation for c has the form

�(f ) = (〈t1, . . . , tm〉, n)
(b)︷ ︸︸ ︷

∀i ∈ {1, . . . ,m}.∅ � ei : ti ∀i ∈ {1, . . . , n}.∅ � pi : {pi}
�, ∅, ∅ � f (e1, . . . , em)〈p1, . . . , pn〉 : Clause〈{p1, . . . , pn}〉

and it follows from � � D that �, �y, [�x �→ �t, �y �→ −−→
Party] � c′ : Clause〈∅〉. It then follows from Lemma 8 and (b)

that vi ∈ �ti� for i = 1, . . . ,m, and hence via Lemma 9 that �, ∅, ∅ � c′[�v/�x, �p/�y]〈�p/�y〉 : Clause〈{p1, . . . , pn}〉. But
then the result follows from the induction hypothesis applied to (a). �

We need the following two auxiliary lemmas in order to prove Theorem 11.

Lemma 15. Assume that Sub(c) = {c1, . . . , cn}, for clauses c, c1, . . . , cn. Then Sub(c[θ ]) = {c1[θ ], . . . , c2[θ ]} for all

substitutions θ .

Proof. The proof follows by straightforward structural induction on c. �

Lemma 16. Let c be a well-typed clause �, ∅, ∅ � c : Clause〈P〉. Then �, ∅, ∅ � c′ : Clause〈P′〉 for all c′ ∈ Sub(c) with

P′ ⊆ P.

Proof. The proof follows by straightforward structural induction on c (or, equivalently by induction on the typing derivation

of �, ∅, ∅ � c : Clause〈P〉). �

Proof of Theorem 11. We start with a needed definition. We say that a substitution θ is type-preserving with regard to a

variable environment 
, if dom(θ) = dom(
) and θ(x) ∈ �
(x)�, for any x ∈ dom(θ).
Let s = letrec D in c0 starting τ0 and assume that s is well-formed with parties P. That is ⇒D is an acyclic relation,

� � D, and �, ∅, ∅ � c0 : Clause〈P〉 for some template environment �.

Assume D = {(f (�x)〈�y〉 = cf ) | f ∈ FD} and let CD = {cf | f ∈ FD}. We associate with c0 a new template name f0 �∈ FD,

and let F ′
D = FD ∪ {f0} and cf0 = c0. We extend the relation ⇒D from FD to F ′

D as expected: f0 ⇒D g if and only if there is

a subclause g(�e1)〈�e2〉 ∈ Sub(c0). Note that by definition there is no g ∈ F ′
D such that g ⇒D f0. Hence the extended relation

⇒D is still acyclic. And, as ⇒D is finite, ⇒D is well-founded.

We let Pf = ∅ for any f ∈ FD and Pf0 = P. As� � D, there are environments	f ,
f such that�, 	f , 
f � cf : Clause〈Pf 〉
for all f ∈ F ′

D, with 	f0 = ∅ and 
f0 = ∅. We will show the following claim:

Claim: For any f ∈ F ′
D, for any clause c = c′[θ ]〈θ ′〉, where c′ ∈ Sub(cf ), θ

′ is a party substitution with dom(θ ′) = 	f ,

and θ is a type-preserving substitution with regard to 
f , the following statement holds:

For any event ε with ts(ε) ≥ τ0 there is a unique residue c such that D, τ0 � c
ε−→ c. Moreover, if c = (τ, B), then

τ0 ≤ τ ≤ ts(ε) and B ⊆ Pf ∪ rng(θ ′).

Note that the result of the theorem then follows from the claim applied to f0, the clause c0, and empty (party) substitutions

θ and θ ′.
We proceed by a nested inductive argument: an (outer) well-founded induction on f and an (inner) structural induction

on the clause c.

The following observation will be used in the proof: since �, 	f , 
f � cf : Clause〈Pf 〉 it follows from Lemma 9 that

�, ∅, ∅ � cf [θ ]〈θ ′〉 : Clause〈Pf ∪ rng(θ ′)〉. Hence from Lemmas 15 and 16 it follows that �, ∅, ∅ � c : Clause〈P′〉 with

P′ ⊆ Pf ∪ rng(θ ′), so we may assume in each case that c is well-typed and closed.

• c = fulfilment. (This is a base case for the inner induction.) The claim clearly holds in this case.
• c = 〈p〉 k(�x) where e due d remaining z then c1. Suppose ε = (τ ′, k′(�v)) for some τ ′ ≥ τ0 and some action k′(�v).

As c is well-typed, it follows from Lemma 8 that there is a unique Boolean value b and timestamps τ1, τ2 such that

e[�v/�x] ⇓ b and d ⇓τ0 (τ1, τ2). We distinguish three cases:

– k = k′, b = true, and τ1 ≤ τ ′ ≤ τ2. Then take c = c[�v/�x, τ2 − τ ′/z].
– τ ′ > τ2. Take c = (max(τ0, τ2), {p}). Clearly, τ0 ≤ max(τ0, τ2) ≤ τ ′. And, by the observation above, we know

that �, ∅, ∅ � c : Clause〈P′〉, where P′ ⊆ Pf ∪ rng(θ ′), hence p ∈ Pf ∪ rng(θ ′).
– τ ′ ≤ τ2 and also k �= k′, b = false, or τ ′ < τ1. Then take c = 〈p〉 k(�x) where e due d′ remaining z then c with

d′ = after τ1 − τ ′ within τ2 − τ1.
In all three cases the residue c satisfies the claim.

• c = if k(�x) where e due d remaining z then c1 else c2. Suppose that ε = (τ ′, k′(�v)) for some τ ′ ≥ τ0 and some

action k′(�v). As c is well-typed, it follows from Lemma 8 that there is a unique Boolean value b and timestamps τ1, τ2
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such that e[�v/�x] ⇓ b and d ⇓τ0 (τ1, τ2). As for obligations, we distinguish the same three cases, only the following

one having a different treatment:

– τ ′ > τ2. By the definition of immediate subclauses, we have that c2 ∈ Sub(cf ), hence by the inner induction

hypothesison c2 there is auniqueresiduec such thatD,max(τ0, τ2) � c2
ε−→ c, and ifc = (τ, B) thenmax(τ0, τ2) ≤

τ ≤ ts(ε) and B ⊆ P. Clearly, the residue c satisfies the claim.
• c = c1 and c2. By the definition of immediate subclauses, we have that c1, c2 ∈ Sub(cf ), hence by the inner induction

hypothesis on c1 and c2 we obtain that there are unique residues c1 and c2 such that D, τ0 � c1
ε−→ c1 and D, τ0 �

c2
ε−→ c2. Moreover, if c1 = (τ1, B1) then τ0 ≤ τ1 ≤ ts(ε) and B1 ⊆ P, and if c2 = (τ2, B2) then τ0 ≤ τ2 ≤ ts(ε) and

B2 ⊆ P.

Let c = c1 � c2. If c1 = (τ1, B1) and c2 = (τ2, B2), then it follows from the definition of verdict conjunction that

τ0 ≤ τ ≤ ts(ε) and B ⊆ P, where c = (τ, B) = (τ1, B1) ∧ (τ2, B2). In the other cases (that is c1 or c2 or both being

clauses) the residue c clearly satisfies the claim.

• c = c1 or c2. This case is similar to the previous one, but in the case where D, τ0 � c1
ε−→ (τ1, B1) and D, τ0 � c2

ε−→
(τ2, B2), we utilise the fact that s is well-formed to conclude that B1 = B2 = {p}, for some p (due to the typing rule

for clause disjunctions), which guarantees that the verdict disjunction (τ1, B1) ∨ (τ2, B2) is well-defined.
• c = if e then c1 else c2. As c is well-typed, it follows from Lemma 8 that there is a unique Boolean value b such

that e ⇓ b. By the definition of immediate subclauses, we have that c1, c2 ∈ Sub(cf ), hence by the inner induction

hypothesis on c1 if b = true and on c2 otherwise, the claim follows directly.
• c = g(�e)〈�p〉. As c is well-typed, it follows from Lemma 8 that there are unique values �v such that �e ⇓ �v. Moreover, by

hypothesis the clause c is the instantiation of an immediate subclause g(�e1)〈�e2〉 of cf . By the definition of⇒D, we have

that f ⇒D g. This, together with [�v/�x, �p/�y] being a type-preserving substitution with regard to 
g (Lemma 8) and

〈�p/�y〉 being a party substitution, allows us to apply the outer induction hypothesis on cg[�v/�x, �p/�y]〈�p/�y〉. The claim

then follows directly. �

We need the following auxiliary lemma in order to prove Theorem 12.

Lemma 17. Let s be a well-formed specification. Then there exists a unique verdict ν such that � s ↓ ν . Moreover, for a breach

(τ, B), we have � s ↓ (τ, B) if and only if s
ε−→ (τ, B), for all events ε with ts(ε) > τ .

Proof. Existence follows by a nested inductive argument similar to, but much simpler than the proof of Theorem 11.

Uniqueness follows by straightforward structural induction on c, where s = letrec D in c starting τ . The left to right

implication of the second part of the lemma follows by induction on the derivation of � s ↓ (τ, B), while the other

implication follows by induction on the derivation of s
ε−→ (τ, B). �

Proof of Theorem 12. Let s = letrec D in c starting τ0 be a well-formed specification with parties P. We then need to show

that �s� is a contract between P starting at time τ0. That is we need to show that �s� is a function from Trτ0 to V, and that it

satisfies conditions (1) and (2) of Definition 1.

We first prove by induction on the length of the finite trace σ that: �s�(σ ) is well-defined, that is it exists and it is unique,

and if �s�(σ ) = (τ, B) then B ⊆ P, �s�(στ ) = (τ, B), and τ ≥ τ0.
Base case: σ = 〈〉. In this case it follows from Lemma 17 that there is a unique verdict ν such that � s ↓ ν , and hence

�s�(σ ) = ν . So assume now that �s�(σ ) = (τ, B). Then since στ = σ we also have that �s�(στ ) = (τ, B). Lastly, it follows

from Lemma 17 that s
ε−→ (τ, B), for any event ε with ts(ε) > max(τ, τ0), and hence from Theorem 11 we have that B ⊆ P

and τ ≥ τ0 as required.

Inductive case: σ = εσ ′. As s is well-formed and ts(ε) ≥ τ0, it follows from the progress property (Theorem 11) that

there is a unique residue s such that s
ε−→ s.

• If s = (τ, B) then, also from Theorem 11, we have that B ⊆ P and τ0 ≤ τ ≤ ts(ε). Now, if ts(ε) = τ then στ = εσ ′
τ

so it follows immediately that �s�(στ ) = (τ, B). So assume that ts(ε) > τ . It then follows from Lemma 17 that

� s ↓ (τ, B) and hence �s�(στ ) = (τ, B) as required.
• If s = s′ then, by the type-preservation property (Theorem 10), s′ is also well-formed with parties P′ ⊆ P and s′ has

starting time ts(ε). We have that �s�(σ ) = �s′�(σ ′), so it then follows from the induction hypothesis that �s′�(σ ′) is
well-defined and if �s′�(σ ′) = (τ, B) then B ⊆ P′ ⊆ P, �s′�(σ ′

τ ) = (τ, B), and τ0 ≤ ts(ε) ≤ τ .
Now if �s�(σ ) = (τ, B) then �s�(εσ ′) = �s′�(σ ′) = (τ, B) and hence by the above �s′�(σ ′

τ ) = (τ, B)with τ ≥ ts(ε).
But then στ = εσ ′

τ , and hence by definition �s�(στ ) = �s′�(σ ′
τ ) = (τ, B) as required.

We now show that if �s�(σ ) = (τ, B) for some finite trace σ and breach (τ, B), then �s�(σ ′) = (τ, B), for any finite

trace σ ′ with σ ′
τ = στ . Let σ

′ be a trace with σ ′
τ = στ . As shown above, we have �s�(στ ) = (τ, B). The proof is by induction

on the length of στ :
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Base case: στ = 〈〉. Now σ ′
τ = 〈〉, so either σ ′ = 〈〉 or σ ′ = εσ ′′, for some ε and σ ′′ with ts(ε) > τ . In the first case the

result follows immediately, and in the second case we have that � s ↓ (τ, B), hence by Lemma 17 we have that s
ε−→ (τ, B)

from which the result follows.

Inductive case: στ = εσ ′′. Now σ ′ = εσ ′′′ with σ ′′ = σ ′′′
τ , and �s�(στ ) = (τ, B) can happen in two ways:

• s
ε−→ (τ, B): In this case we have by definition that �s�(σ ′) = �s�(εσ ′′′) = (τ, B).

• s
ε−→ s′ and �s′�(σ ′′) = (τ, B): In this case we have by definition that �s�(σ ′) = �s′�(σ ′′′), and hence the result follows

from the induction hypothesis as σ ′′ = σ ′′′
τ .

We have now proved that the restriction of �s� on finite traces satisfies the hypotheses of Lemma 3. We can thus apply

the lemma and obtain that �s� is a contract as per Definition 1. �
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