

Discrete Mathematics 259 (2002) 369-381

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

State Note Graphs with chromatic polynomial $\sum_{l \leq m_0} {l \choose m_0 - l} (\lambda)_l \stackrel{\bigstar}{\approx}$

Chengfu Ye^a, Nianzu Li^{b,*}

^aDepartment of Mathematics, Qinghai Normal University, Xining, Qinghai 810008, People's Republic of China ^bShanghai Second Polytechnic University, 80 Shanxi Bei Lu, Shanghai 200041, People's Republic of China

Received 18 February 2000; received in revised form 24 May 2001; accepted 28 January 2002

Abstract

In this paper, using the properties of chromatic polynomial and adjoint polynomial, we characterize all graphs having chromatic polynomial $\sum_{l \leq m_0} {l \choose m_0 - l} (\lambda)_l$. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Chromatic polynomial; Adjoint polynomial

1. Introduction

The graphs considered here are finite, undirected and simple. Let G be a graph and $P(G, \lambda)$ its chromatic polynomial, h(G, x) be its adjoint polynomial. Two graphs G and H are chromatically equivalent if $P(G, \lambda) = P(H, \lambda)$, and adjointly equivalent if h(G, x) = h(H, x). A graph G is chromatically unique if $P(G, \lambda) = P(H, \lambda)$ implies that H is isomorphic to G. Similarly, a graph G is adjointly unique if h(G, x) = h(H, x)implies that H is isomorphic to G. By \overline{G} we denote the complement of G. It is obvious that a graph G is chromatically unique if and only if \overline{G} is adjointly unique.

To compute chromatic polynomial for a given graph is well known, but to determine the graphs with a given chromatic polynomial is not easy. In this paper, using the

 $^{^{\}bigstar}$ Supported by foundation for University Key Teacher by the Ministry of Education and the National Natural Science Foundation of China (No. 10061003).

^{*} Corresponding author.

⁰⁰¹²⁻³⁶⁵X/02/\$ - see front matter C 2002 Elsevier Science B.V. All rights reserved. PII: S0012-365X(02)00592-7

properties of adjoint polynomial and the relations of adjoint and chromatical polynomial, we shall give all graphs determined by the polynomial $\sum_{l \leq m_0} {l \choose m_0 - l} (\lambda)_l$.

Let G be a graph, p(G) and q(G) be its order and size, respectively. The symbols P_n , C_n and D_n stand for the following graphs of order n: the path, the cycle and the graph obtained by identifying a vertex of K_3 with one endvertex of P_{n-2} . Let $T(l_1, l_2, l_3)$, $(l_1 \le l_2 \le l_3)$ be a tree with one vertex of degree 3 and three vertices of degree 1 in which the distances from the vertex of degree 3 to the vertices of degree 1 are l_1 , l_2 and l_3 , respectively. Let $h(G, x) = x^{\alpha(G)}h_1(G, x)$, where $h_1(G, x)$ is a polynomial with a nonzero constant term.

For convenience, let h(G) stand for h(G,x), and $h_1(G)$ for $h_1(G,x)$. We will write $h(l_1, l_2, h_3)$ for $h(T(l_1, l_2, l_3), x)$, and $h_1(l_1, l_2, l_3)$ for $h_1(T(l_1, l_2, l_3), x)$. Let $\beta(G)$ denote the least root of $h_1(G)$. The reader may refer to [[5,2]] for all notations and terminology not explained here.

2. Preliminaries

Let $b_i(G)$ denote the number of ideal subgraphs with p - i components (see [[5]]), then

$$P(\bar{G},\lambda) = \sum_{i=0}^{p-1} b_i(G)(\lambda)_{p-i},$$

where p = |V(G)| and $(\lambda)_k = \lambda(\lambda - 1) \cdots (\lambda - k + 1)$.

Definition 1 (Liu [[5]]). If G is a graph with p vertices, then the polynomial

$$h(G,x) = \sum_{i=0}^{p-1} b_i(G) x^{p-i}$$

is called the adjoint polynomial of G.

Definition 2 (Liu [[5]]).

$$R(G) = \begin{cases} b_2(G) - \binom{q(G) - 1}{2} + 1 & \text{if } q(G) > 0, \\ 0 & \text{if } q(G) = 0. \end{cases}$$

is said to be the character of a graph G.

Lemma 1 (Liu [[5]]). If G has k connected components G_1, G_2, \ldots, G_k , then

$$h(G,x) = \prod_{i=1}^{k} h(G_i.x), \quad R(G) = \sum_{i=1}^{k} R(G_i).$$

Lemma 2 (Liu [[5]]). (1) (Liu [[1]]) $h(P_{2k+1}) = h(C_{k+1})h(P_k)$ ($k \ge 3$),

- (2) (Liu [[4]]) $h_1(C_n) = h_1(1, 1, n-2), h_1(D_n) = h_1(1, 2, n-3),$
- (3) $h(P_2)h(C_6) = h(P_3)h(D_5)$,
- (4) $h(P_2)h(C_9) = h(P_5)h(D_6)$,
- (5) $h(P_2)h(C_{15}) = h(P_5)h(C_5)h(D_7).$

Proof. Conditions (3)-(5) can be directly verified.

Lemma 3 (Liu [[5]]). Let G be a connected graph, then

(1) $R(G) \leq 1$, and the equality holds if and only if $G \cong P_n$ $(n \geq 2)$ or $G \cong K_3$, (2) R(G) = 0 if and only if G is one of the graphs K_1, C_n, D_n and $T(l_1, l_2, l_3)$.

Lemma 4 (Liu [[6]]). Let T be a tree, and $f(T,\mu)$ be the characteristic polynomial of T. If

$$f(T,\mu) = \mu^{\theta(T)} f_1(T,\mu), \quad h(T,x) = x^{\alpha(T)} h_1(T,x)$$

and $x = -\mu^2$, then

$$h_1(T,x) = (-1)^k f_1(T,\mu),$$

where $\theta(T)$ and $\alpha(T)$ are the degrees of the lowest terms of $f(T,\mu)$ and h(T,x), respectively, and k is the number of edges in a maximum matching.

Lemma 5 (Biggs [[1]]). If λ is *m*-fold eigenvalue of tree *T*, then $-\lambda$ is, too.

Lemma 6 (Cvetkovic et al. [[3]]). (1) *The eigenvalues of the T-shape tree* T(1, 1, n-1) *are* 0 *and*

$$2\cos\frac{2i-1}{2n+2}\pi, \quad 1 \le i \le n+1.$$

(2) The eigenvalues of P_n are

$$2\cos\frac{i}{n+1}\pi, \quad 1 \leq i \leq n.$$

Proposition 1. (1) The root-set of $h_1(C_n)$ is

$$\left\{-2\left(1+\cos\frac{2i-1}{n}\,\pi\right)\,\Big|\,1\leqslant i\leqslant \left[\frac{n}{2}\right]\right\}$$

(2) The root-set of $h_1(P_n)$ is

$$\left\{-2\left(1+\cos\frac{2i}{n+1}\pi\right)\left|1\leqslant i\leqslant \left[\frac{n}{2}\right]\right\}\right\}.$$

Proof. (1) Since $h_1(C_n, x) = h_1(1, 1, n-2)$, by Lemma 6, we know that the eigenvalues of T(1, 1, n-2) are 0 and $2\cos((2i-1)/2n)\pi$, $1 \le i \le n$. From Lemmas 2 and 4, we have

$$h_1(C_n, x) = h_1(1, 1, n-2) = (-1)^k f_1(T(1, 1, n-2), \mu),$$

where $x = -\mu^2$ and k is the number of edges in a maximum matching of T(1, 1, n-2). Since the degree of $h_1(C_n)$ equals one-half of the degree of $f_1(T(1, 1, n-2), \mu)$, by Lemma 5, the roots of $f_1(T(1, 1, n-2), \mu)$ are symmetric about the origin. Thus the root of $h_1(C_n)$ is opposite to positive roots of square. By Lemma 6 and the trigonometric formula, we get (1). Similarly, we can show that (2) is true. \Box

Lemma 7 (Wang and Liu [[7]]). (1) For $n \ge 4$, $\beta(D_n) \le \beta(C_n) \le \beta(P_n)$ and equality holds if and only if n = 4,

- (2) (Wang and Liu [[7]]) for $n \ge 4$, $\beta(D_{n+1}) < \beta(D_n)$ and $\beta(C_{n+1}) < \beta(C_n)$; for ≥ 2 , $\beta(P_{n+1}) < \beta(P_n)$,
- (3) for m > 3 and $n \ge 1$, $(h_1(C_m), h_1(P_{2n})) = 1, (m > 3, n \ge 1)$,
- (4) for $m \ge 4$ and $n \ge 1$, $h_1(P_n)$ and $h_1(C_m)$ have no multiple root,
- (5) for $n \ge 4$, $\beta(C_n) > -4$.

Proof. By Proposition 1, we have (3)-(5).

Lemma 8 (Cvetkovic et al. [[3]]). Let T be a tree and $\lambda_1(T)$ the maximum eigenvalue of T. Then $\lambda_1(T) < 2$ if and only if

$$T \in \{P_n, T(1, 1, n), T(1, 2, 2), T(1, 2, 3), T(1, 2, 4)\}.$$

Proposition 2. Let T be a tree, then $\beta(T) > -4$ if and only if

 $T \in \{P_n, T(1, 1, n), T(1, 2, 2), T(1, 2, 3), T(1, 2, 4)\}.$

Proof. It follows directly from Lemmas 4 and 8.

Lemma 9 (Zhao et al. [[8]]). (1) Let G be a connected graph such that R(G) = -k and $q(G) \ge p(G) + k - 1$. Then $\beta(G) \le -4$, where k = 1, 2, 3,

(2) Let G be a connected graph such that $k \ge 4$ and R(G) = -k. Then q(G) < p(G) + k - 1.

Lemma 10. (1) $\beta(D_5) = \beta(C_6) = \beta(P_{11}),$

- (2) $\beta(D_6) = \beta(C_9) = \beta(P_{17}),$
- (3) $\beta(D_7) = \beta(C_{15}) = \beta(P_{29}).$

Proof. These are direct results of Lemmas 2 and 7.

Lemma 11 (Liu [[5]]).

$$h(P_n,x) = \sum_{k \leq n} \binom{k}{n-k} x^k.$$

Lemma 12 (Zhao et al. [[8]]). Let $n \ge 2$. Then \overline{P}_n is chromatically unique if and only if n = 3, 5 or $n \ne 4$ is even.

Proposition 3. Let m_0 be odd, then the adjoint equivalent graphs of P_{m_0} can only be

$$rK_1 \cup fK_3 \cup \left(\bigcup_{i=1}^l P_{u_i}\right) \cup \left(\bigcup_{i=1}^m C_{v_i}\right) \cup \left(\bigcup_{i=1}^n T(l_1^{(i)}, l_2^{(i)}, l_3^{(i)})\right) \cup \left(\bigcup_{i\in B} D_i\right),$$

where $f = 0, 1; f + l = 1; r + n \leq f, B \subset \{4, 5, 6, 7\}, and <math>l_1^{(i)} = 1, l_2^{(i)} = 2, l_3^{(i)} \leq 4, or$ $l_1^{(i)} = l_2^{(i)} = 1, i = 1, 2, ..., n.$

Proof. Let $m_i = (m_{i-1} - 1)/2$ (i = 1, 2, ..., k) be positive integers. By Lemma 2(1), it follows that

$$h_1(P_{m_0}) = \prod_{i=1}^{k'} h_1(C_{m_i+1})h_1(P_{m_{k'}}),$$

where if $m_k = 1, 2$, then k' = k - 1, else k' = k.

Let *H* be the adjointly equivalent graph of P_{m_0} , by Lemma 7 we know that $h_1(P_{m_0})$ has no multiple root. Thus $h_1(H)$ at most has one $h_1(K_3)$. So by Lemma 2(2), $h_1(D_{l'}) = h_1(1, 2, l'-3)$. If $l' \ge 8$, by Lemma 7 and Proposition 2 we have that $\beta(D_{l'}) \le -4 < \beta(P_{m_0})$. So $h_1(P_{m_0})$ does not contain $h_1(D_{l'})(l' \ge 8)$. If $G \cong T(l_1, l_2, l_3)$, and $l_1 = 1$, $l_2 = 2, l_3 \ge 5$ or $l_1 \ne 1, l_2 \ne 1, 2$, according to Proposition 2, we know that $h_1(P_{m_0})$ does not include $h_1(G)$. Hence we can assert that

$$H = rK_1 \cup fK_3 \cup \left(\bigcup_{i=1}^l P_{u_i}\right) \cup \left(\bigcup_{i=1}^m C_{v_i}\right) \cup \left(\bigcup_{i=1}^n T(l_1^{(i)}, l_2^{(i)}, l_3^{(i)})\right) \cup \left(\bigcup_{i\in B} D_i\right)$$
$$\cup \left(\bigcup_{i=1}^{s_2} H_i\right) \cup \left(\bigcup_{i=s_2+1}^{s_3} H_i\right) \cup \cdots \cup \left(\bigcup_{i=s_{t-1}+1}^{s_t} H_i\right), \tag{1}$$

where $R(H_i) = -j$ and H_i is connected if $s_{j-1} + 1 \le i \le s_j$, $s_0 = 0$, j = 1, 2, ..., t; $B \subset \{4, 5, 6, 7\}$; $l_1^{(i)} = 1$, $l_2^{(i)} = 2$; $l_3^{(i)} \le 4$ or $l_1^{(i)} = l_2^{(i)} = 1$; f = 0, 1.

By Lemma 1, it follows that

$$R(H) = fR(K_3) + \sum_{i=1}^{l} R(P_{u_i}) + \sum_{i=1}^{m} R(C_{v_i}) + \sum_{i=1}^{n} R(T(l_1^{(i)}, l_2^{(i)}, l_3^{(i)})) + \sum_{i\in B} R(D_i) + \sum_{i=1}^{s_t} R(H_i).$$

From Lemma 3,

$$\sum_{i=1}^{s_t} R(H_i) = 1 - l - f, \quad \sum_{i=1}^{s_t} |R(H_i)| = l + f - 1.$$

From (1), we know that

$$q(H) = fq(K_3) + \sum_{i=1}^{l} q(P_{u_i}) + \sum_{i=1}^{m} q(C_{v_i}) + \sum_{i=1}^{n} q(T(l_1^{(i)}, l_2^{(i)}, l_3^{(i)})) + \sum_{i\in B} q(D_i) + \sum_{i=1}^{s_t} q(H_i).$$

Since $\beta(H_i) \ge \beta(P_{m_0}) > -4$ and H_i $(1 \le i \le s_i)$ is connected, by Lemma 9 we have

$$q(H_i) \leq p(H_i) + |R(H_i)| - 2, \quad 1 \leq i \leq s_i.$$

So, we can get that

$$q(H) \leq fp(K_3) + \sum_{i=1}^{l} p(P_{u_i}) + \sum_{i=1}^{m} p(C_{v_i}) + \sum_{i=1}^{n} p(T(l_1^{(i)}, l_2^{(i)}, l_3^{(i)}))$$
$$+ \sum_{i \in B} p(D_i) + \sum_{i=1}^{s_t} (p(H_i) + |R(H_i)| - 2) - l - n$$
$$= p(H) - 2s_t - r - n + f - 1$$

and

$$q(H) = q(P_{m_0}) = p(P_{m_0}) - 1 = p(H) - 1.$$

Thus $2s_t + r + n \leq f$, f = 0, 1. Clearly, $s_t = 0$. Recalling

$$\sum_{i=1}^{s_l} |R(H_i)| = l + f - 1,$$

we get that f + l = 1 and $r + n \leq f$. Hence Proposition 3 holds. \Box

374

Proposition 4. Let m_0 be odd. If

$$h_1(P_{m_0}) = h_1(P_n) \prod_{i=1}^m h_1(C_{v_i}) \prod_{i \in B} h_1(D_i); \quad and \quad B \subset \{4, 5, 6, 7\}$$
(2)

or

$$h_1(P_{m_0}) = h_1(P_4) \prod_{i=1}^m h_1(C_{v_i}) \prod_{i \in B} h_1(D_i) h_1(1, 1, l_3), \quad and \quad B \subset \{4, 5, 6, 7\}, \quad (3)$$

then 5, 6, $7 \notin B$.

Proof. Let $m_i = (m_{i-1} - 1)/2$ (i = 1, 2, ..., k) be positive integers. We need only prove the fact that $h_1(D_i)$ cannot divide $h_1(P_{m_0})$ for i = 5, 6, 7. We prove the fact by induction on m_0 .

We first show that $h_1(D_7)$ cannot divide $h_1(P_{m_0})$.

If $m_0 < 29$, by Lemma 10 we see that $h_1(D_7)$ cannot divide $h_1(P_{m_0})$. If $m_0 = 29$, assume $h_1(D_7)|h_1(P_{29})$. Since $h_1(P_{m_0})$ is without multiple root, by Lemma 2 and (2), we have

$$h_1(P_5)h_1(C_5)h_1(P_{14})h_1(C_{15}) = h_1(P_5)h_1(C_5)h_1(D_7)h_1(P_n)\prod_{i=1}^m h_1(C_{v_i})\prod_{i\in B'} h_1(D_i),$$

where $B' = B - \{7\}$.

We denote by $\beta(\text{left})$ the minimum root of the left-hand side and by $\beta(\text{right})$ the minimum root of the right-hand side. Since

$$h_1(P_2)h_1(C_{15}) = h_1(P_5)h_1(C_5)h_1(D_7),$$

then

$$h_1(P_5)h_1(C_5)h_1(P_{14}) = h_1(P_2)h_1(P_n)\prod_{i=1}^m h_1(C_{v_i})\prod_{i\in B'} h_1(D_i),$$

where $\beta(\text{left}) = \beta(P_{14}) \notin \{\beta(D_4), \beta(D_5), \beta(D_6)\}.$

According to Lemma 4, the roots of $h_1(C_m)$ and $h_1(P_n)$ are real numbers, then $\beta(\text{right}) \neq \beta(\bigcup_{i=1}^m C_{v_i})$. So $\beta(P_{14}) = \beta(P_n)$ and n = 14. Eliminating $h_1(P_{14})$ from both sides of the above equality, we get that

$$h_1(P_5)h_1(C_5) = h_1(P_2)\prod_{i=1}^m h_1(C_{v_i})\prod_{i\in B'} h_1(D_i).$$

So, $\beta(\text{left}) = \beta(C_5) \in \{\beta(D_4), \beta(D_5), \beta(D_6)\}$ and there exists v_i such that $\beta(C_5) = \beta(C_{v_i})$. We may assume $v_1 = 5$, then

$$h_1(P_5) = h_1(P_2) \prod_{i=2}^m h_1(C_{v_i}) \prod_{i \in B'} h_1(D_i).$$

375

But then we have $\beta(\text{left}) = \beta(P_5) = -3$ and $\beta(\text{right}) = \beta(D_6 \bigcup_{i=2}^m C_{v_i})$. However, this is a contradiction because $\beta(D_6) = \beta(P_{17}) < \beta(P_5)$ and $\beta(C_{v_i}) \neq \beta(P_5)$ for every $v_i \ge 4$. So when $m_0 = 29$, $h_1(D_7)$ cannot divide $h_1(P_{m_0})$.

We assume for the moment that $29 < k \leq m_0$, then $h_1(D_7)$ cannot divide $h_1(P_k)$.

If $k = m_0$, by the conduction of proposition and Lemma 2(1), we have $B \subset \{4, 5, 6, 7\}$ such that

$$h_1(C_{m_1+1})h_1(P_{m_1}) = h_1(P_n)\prod_{i=1}^m h_1(C_{v_i})\prod_{i\in B} h_1(D_i),$$

then $\beta(\text{left}) = \beta(C_{m_1+1})$. Since there is $n < m_0$ such that $\beta(P_n) \neq \beta(P_{m_0})$ and $m_0 > 29$, by Lemma 2, 7, we know that

$$\beta(\operatorname{right}) < \beta(P_{29}) = \beta(C_{15}) \leq \beta\left(\bigcup_{i \in B} D_i\right).$$

Thus, from $\prod_{i=1}^{m} h_1(C_{v_i})$ we can get β (right).

Similar to $m_0 = 29$, we may assume that $C_{m_1+1} \cong C_{v_1}$. In this case, we have

$$h_1(P_{m_1}) = h_1(P_n) \prod_{i=2}^m h_1(C_{v_i}) \prod_{i \in B} h_1(D_i).$$

If m_1 is odd, by the induction hypothesis, we know $7 \notin B$.

If m_1 is even, since $m_1 > 14$, we know P_{m_1} is adjointly unique by Lemma 12, so $7 \notin B$. Similarly, we can show that $5, 6 \notin B$ in (2).

Suppose $l_3 > 1$. Since $h_1(1, 1, l_3) = h_1(C_{l_3+2})$, we know that (3) equals (2). If $l_3 = 1$, then

$$h_1(P_{m_0}) = (x+3)h_1(P_4)\prod_{i=1}^m h_1(C_{v_i})\prod_{i\in B} h_1(D_i)$$

Note that $h_1(P_5) = h_1(P_2)(x+3)$. Similar to the proof of (2), we can show that 5, 6, 7 $\notin B$ in (3). \Box

3. Main results and proofs

Theorem 1. Let m_0 be a positive integer. Then the graph *G* has chromatic polynomial of the form

$$\sum_{l\leqslant m_0}\binom{l}{m_0-l}(\lambda)_l$$

376

if and only if G satisfies one of the following:

- (a) For even $m_0 \ge 4$, either $\overline{G} \cong P_{m_0}$ or else $\overline{G} \cong K_1 \cup K_3$.
- (b) For odd m_0 with $m_i = (m_{i-1} 1)/2$ a positive integer for i = 1, 2, ..., k, either $\overline{G} \cong P_{m_0}$ or else
 - (i) $\bar{G} \in \{K_1 \cup K_3 \bigcup_{i=1}^k C_{m_i+1}, K_3 \bigcup_{i \neq j}^k C_{m_i+1} \cup T(1, 1, m_j 1), P_{m_j} \bigcup_{i=1}^j C_{m_i+1} \ (j = 1, 2, \dots, k)\}$ if $m_k = 4$, (ii) $\bar{G} \in \{P_{m_i} \bigcup_{i=1}^j C_{m_i+1}, \ (j = 1, 2, \dots, k)\}$ if $m_k \neq 4$ is even,

(iii)
$$\bar{G} \in \{P_3 \cup D_4 \bigcup_{i=1}^{k-2} C_{m_i+1}, P_{m_j} \bigcup_{i=1}^{j} C_{m_i+1} \ (j=1,2,\ldots,k-1)\}$$
 if $m_k = 1$.

Proof. Sufficiency: If $P(\bar{G}, \lambda) = \sum_{i=1}^{p-1} b_i(G)(\lambda)_{p-i}$, then $h(G, x) = \sum_{i=1}^{p-1} b_i(G)x^{p-i}$. Since $h(P_4) = h(K_1 \cup K_3)$, $h(C_4) = h(D_4)$ and $h(1, 1, l) = h(C_{l+2} \cup K_1)$, by Lemma 2(1) and Lemma 11 sufficiency is obvious.

Necessity: We need only prove that the adjointly equivalent graphs of P_{m_0} belong to the class of graphs described in this theorem.

If $m_0 \neq 4$ is an even, by Lemma 12, obviously conclusion holds.

If $m_0 = 4$, we can directly prove that $K_1 \cup K_3$ is only adjoint equivalent graph of P_4 . If m_0 is odd, by Proposition 3, the adjointly set of P_{m_0} is

$$rK_1 \cup fK_3 \cup \left(\bigcup_{i=1}^l P_{u_i}\right) \cup \left(\bigcup_{i=1}^m C_{v_i}\right) \cup \left(\bigcup_{i=1}^n T(l_1^{(i)}, l_2^{(i)}, l_3^{(i)})\right) \cup \left(\bigcup_{i\in B} D_i\right),$$

where $f = 0, 1; f + l = 1; r + n \le f; l_1^{(i)} = l_2^{(i)} = 1$ or $l_1^{(i)} = 1, l_2^{(i)} = 2, l_3^{(i)} \le 4, B \subset \{4, 5, 6, 7\}.$

We discuss each case in the following.

Case 1: f = 1, l = 0, r = 1 and n = 0. Then

$$H \cong K_1 \cup K_3 \cup \left(\bigcup_{i=1}^m C_{v_i}\right) \cup \left(\bigcup_{i\in B} D_i\right).$$

By Proposition 4, we get $B \subset \{4\}$. Since $h_1(H) = h_1(P_{m_0})$ and $h_1(K_1 \cup K_3) = h_1(P_4)$, we have

$$\prod_{i=1}^{k} h_1(C_{m_i+1})h_1(P_{m_k}) = h_1(P_4) \prod_{i=1}^{m} h_1(C_{v_i}) \prod_{i \in B} h_1(D_i) \quad (m_k = 2N)$$
(4)

or

$$\prod_{i=1}^{k-1} h_1(C_{m_i+1})h_1(P_{m_{k-1}}) = h_1(P_4) \prod_{i=1}^m h_1(C_{v_i}) \prod_{i \in B} h_1(D_i) \quad (m_k = 1, 2).$$
(5)

In (4) and (5),

$$\beta(\text{left}) = \beta(C_{m_1+1}), \quad \beta(\text{right}) = \beta\left(\left(\bigcup_{i=1}^m C_{v_i}\right) \cup \left(\bigcup_{i \in B} D_i\right)\right).$$

If $\beta(\operatorname{right}) = \beta(C_4) = \beta(D_4)$, then (4) does not hold. From (5) we get $k = 2, m_2 = 1$ and $h_1(P_3) = h_1(P_4)$, which is a contradiction. Hence $\beta(\operatorname{right}) = \beta(\bigcup_{i=1}^m C_{v_i})$. Suppose $\beta(\operatorname{right}) = \beta(C_{v_1})$, by symmetry, we have that $C_{m_1+1} \cong C_{v_1}$. Clearly, $m_1 + 1 = v_1$. Eliminating $h_1(C_{m_1+1})$ from both sides of (4) and (5), we obtain that

$$\prod_{i=2}^{k} h_1(C_{m_i+1})h_1(P_{m_k}) = h_1(P_4) \prod_{i=2}^{m} h_1(C_{v_i}) \prod_{i \in B} h_1(D_i) \quad (m_k = 2N)$$

or

$$\prod_{k=2}^{m-1} h_1(C_{m_i+1})h_1(P_{m_{k-1}}) = h_1(P_4) \prod_{i=2}^m h_1(C_{v_i}) \prod_{i \in B} h_1(D_i) \quad (m_k = 1, 2).$$

Next we continue to proceed this step, there is i = 2, 3, ..., k or i = 2, 3, ..., k - 1 such that $m_i + 1 = v_i$. So

$$h_1(P_{m_k}) = h_1(P_4) \prod_{i=k+1}^m h_1(C_{v_i}) \prod_{i \in B} h_1(D_i) \quad (m_k = 2N)$$

or

$$h_1(P_{m_{k-1}}) = h_1(P_4) \prod_{i=k}^m h_1(C_{v_i}) \prod_{i \in B} h_1(D_i) \quad (m_k = 1, 2).$$

Since $m_{k-1} = 3, 5$ or m_k is an even number greater than or equal to 4, by Lemma 12, we have that $m_k = 4, \bigcup_{i=1}^m C_{v_i} \cong \bigcup_{i=1}^k C_{m_i+1}$ and |B| = 0. Hence,

$$H\cong K_1\cup K_3\cup\left(\bigcup_{i=1}^k C_{m_i+1}\right).$$

Case 2: f = 1, l = 0, r = 0 and n = 1. So

$$H \cong K_3 \cup \left(\bigcup_{i=1}^m C_{v_i}\right) \cup \left(\bigcup_{i \in B} D_i\right) \cup T(l_1^{(1)}, l_2^{(1)}, l_3^{(1)}).$$

From Propositions 2 and 4, it is clear that $B \subset \{4\}$ and $l_1^{(1)} = 1$, $l_2^{(1)} = 2$ and $l_3^{(1)} \leq 4$. We replace $l_3^{(1)}$ by l_3 . For $h_1(1, 2, l_3) = h_1(D_{l_3+3})$, we have that $h_1(P_{m_0})$ has no multiple root. So,

$$h_1(P_{m_0}) = h_1(P_4) \prod_{i=1}^m h_1(C_{v_i})h(1,1,l_3) \prod_{i \in B'} h_1(D_i),$$

where $B' \subset \{4\}$.

Suppose $l_3 \ge 2$. Since $h_1(1, 1, l_3) = h_1(C_{l_3+2})$, similar to case 1, there are i, j = 1, 2, ..., k; $i \ne j$ such that

$$v_i = m_i + 1, \quad l_3 = m_j - 1.$$

So

$$m_k=4, \quad |B|=0,$$

namely, there is a $j = 1, 2, \ldots, k$ with

$$H \cong K_3 \cup \left(\bigcup_{i\neq j}^k C_{m_i+1}\right) \cup T(1,1,m_j-1).$$

Suppose $l_3 = 1$. For $h_1(1, 1, 1) = x + 3$, similar to the discussion of (4) and (5), there is $m_k = 2N$ such that

$$h_1(P_{m_k}) = (x+3)h_1(P_4)\prod_{i\in A}h_1(C_{v_i})\prod_{i\in B}h_1(D_i)$$

or $m_k = 1, 2$ such that

$$h_1(P_{m_{k-1}}) = (x+3)h_1(P_4)\prod_{i\in A}h_1(C_{v_i})\prod_{i\in B}h_1(D_i),$$

where $A \subset \{1, 2, ..., m\}, B \subset \{4\}$. When $m_k = 4$, the formula above is false. When $m_k = 1, 2$ or $m_k = 2l > 4$, both formulae above contradict Lemma 12.

Case 3: f = 1, l = 0, r = 0 and n = 0. There is $B \subset \{4\}$ such that

$$H \cong K_3 \cup \left(\bigcup_{i=1}^m C_{v_i}\right) \cup \left(\bigcup_{i\in B} D_i\right).$$

Since |V(H)| = |E(H)| and $|V(P_{m_0})| \neq |E(P_{m_0})|$, we know that H and P_{m_0} are not adjointly equivalent, this is a contradiction.

Case 4: f = 0, l = 1 and n = r = 0. There is $B \subset \{4, 5, 6, 7\}$ such that

$$H\cong P_u\cup\left(\bigcup_{i=1}^m C_{v_i}\right)\cup\left(\bigcup_{i\in B} D_i\right).$$

Here set $u_1 = u$, by Proposition 4, we know that $B \subset \{4\}$. Thus

$$\prod_{i=1}^{k} h_1(C_{m_i+1})h_1(P_{m_k}) = h_1(P_u) \prod_{i=1}^{m} h_1(C_{v_i}) \prod_{i \in B} h_1(D_i) \quad (m_k = 2N)$$
(6)

and

$$\prod_{i=1}^{k} h_1(C_{m_i+1})h_1(P_{m_{k-1}}) = h_1(P_u) \prod_{i=1}^{m} h_1(C_{v_i}) \prod_{i \in B} h_1(D_i) \quad (m_k = 1, 2).$$
(7)

In (6), by Lemma 7(3), we have

$$\left(\prod_{i=1}^{m} h_1(C_{v_i}) \prod_{i \in B} h_1(D_i), h_1(P_{m_k})\right) = 1,$$

thus $h_1(P_{m_k}) | h_1(P_u)$. If u is an even, for the same reason, we have that $h_1(P_{m_k}) | h_1(P_u)$, so $u = m_k$. If we eliminate $h_1(P_{m_k})$ from both sides of (6), there is $B \subset \{4\}$ with

$$\prod_{i=1}^{k} h_1(C_{m_i+1}) = \prod_{i=1}^{m} h_1(C_{v_i}) \prod_{i \in B} h_1(D_i).$$

Since $m_k \ge 4$, comparing the least roots of both sides, in the above formula, we get that |B| = 0 and there is a j = 1, 2, ..., k such that

$$H\cong P_{m_j}\cup\left(\bigcup_{i=1}^j C_{m_i+1}\right).$$

If u is odd, by Lemma 2(1), we have u = 3,5 by symmetry. If u = 3, similar to (4), we have

$$h_1(P_{m_k}) = h_1(P_3) \prod_{i \in A} h_1(C_{v_i}) \prod_{i \in B} h_1(D_i), \quad A \subset \{1, 2, \dots, m\}.$$

This contradicts Lemma 12.

A similar contradiction occurs when u = 5.

In (7), according to three cases, we have that u is even, u = 3 and 5. Similar to the discussion of (5), we can show that

$$h_1(P_{m_{k-1}}) = h_1(P_u) \prod_{i \in A} h_1(C_{v_i}) \prod_{i \in B'} h_1(D_i),$$

where $B' \subseteq B$, $A \subseteq \{1, 2, ..., m\}$. By Lemma 12, we know |A| = 0, |B'| = 0 and there is u = 3 with $m_k = 1$, u = 5 with $m_k = 2$. Namely, if $m_k = 1$, then

$$H \cong P_{m_j} \cup \left(\bigcup_{i=1}^{j} C_{m_i+1}\right) (j=1,2,\ldots,k-1),$$

or

$$H\cong P_3\cup D_4\cup\left(\bigcup_{i=1}^{k-2}C_{m_i+1}\right).$$

If $m_k = 2$, then

$$H \cong P_{m_j} \cup \left(\bigcup_{i=1}^{j} C_{m_i+1}\right) (j=1,2,\ldots,k-1).$$

The proof is completed. \Box

References

- [1] N. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, 1993, pp. 52-53.
- [2] J.A. Bond, U.S.R. Murty, Graph Theory with Application, 1976.
- [3] D. Cvetkovic, M. Doob, H. Sachs, Spectra of Graphs, Academic Press, New York, 1980, pp. 72-79.
- [4] R. Liu, Chromatic uniqueness of the complements of certain trees, Appl. Math. (1996) (complement) 170–173.
- [5] R. Liu, Adjoint polynomials and chromatically unique graphs, Discrete Math. 172 (1997) 85-92.
- [6] R. Liu, About irreducible T-shape trees, J. Qinghai Junior Teachers' College 2 (1997) 3-6.
- [7] S. Wang, R. Liu, Chromatic uniqueness of cycle and complement of D_n , Math. Res. Comment, 18(2) (1998) 296.
- [8] H. Zhao, B. Huo, R. Liu, Chromaticity of the complements of paths, J. Math. Study. 33(4) (2000) 345-353.