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Abstract

In this paper, using the properties of chromatic polynomial and adjoint polynomial, we char-

acterize all graphs having chromatic polynomial
∑

l6m0

(
l

m0−l

)
(�)l:
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1. Introduction

The graphs considered here are :nite, undirected and simple. Let G be a graph
and P(G; �) its chromatic polynomial, h(G; x) be its adjoint polynomial. Two graphs
G and H are chromatically equivalent if P(G; �)=P(H; �), and adjointly equivalent
if h(G; x)= h(H; x). A graph G is chromatically unique if P(G; �)=P(H; �) implies
that H is isomorphic to G. Similarly, a graph G is adjointly unique if h(G; x)= h(H; x)
implies that H is isomorphic to G. By <G we denote the complement of G. It is obvious
that a graph G is chromatically unique if and only if <G is adjointly unique.
To compute chromatic polynomial for a given graph is well known, but to deter-

mine the graphs with a given chromatic polynomial is not easy. In this paper, using the
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properties of adjoint polynomial and the relations of adjoint and chromatical polyno-

mial, we shall give all graphs determined by the polynomial
∑

l6m0

(
l

m0−l

)
(�)l.

Let G be a graph, p(G) and q(G) be its order and size, respectively. The symbols
Pn; Cn and Dn stand for the following graphs of order n: the path, the cycle and
the graph obtained by identifying a vertex of K3 with one endvertex of Pn−2. Let
T (l1; l2; l3), (l16l26l3) be a tree with one vertex of degree 3 and three vertices
of degree 1 in which the distances from the vertex of degree 3 to the vertices of
degree 1 are l1; l2 and l3, respectively. Let h(G; x)= x�(G)h1(G; x), where h1(G; x) is
a polynomial with a nonzero constant term.
For convenience, let h(G) stand for h(G; x), and h1(G) for h1(G; x). We will write

h(l1; l2; h3) for h(T (l1; l2; l3); x), and h1(l1; l2; l3) for h1(T (l1; l2; l3); x). Let �(G) denote
the least root of h1(G). The reader may refer to [[5,2]] for all notations and terminology
not explained here.

2. Preliminaries

Let bi(G) denote the number of ideal subgraphs with p− i components (see [[5]]),
then

P( <G; �)=
p−1∑
i=0

bi(G)(�)p−i ;

where p= |V (G)| and (�)k = �(� − 1) · · · (� − k + 1).

De�nition 1 (Liu [[5]]). If G is a graph with p vertices, then the polynomial

h(G; x)=
p−1∑
i=0

bi(G)xp−i

is called the adjoint polynomial of G.

De�nition 2 (Liu [[5]]).

R(G)=




b2(G)−
(

q(G)− 1

2

)
+ 1 if q(G)¿0;

0 if q(G)= 0:

is said to be the character of a graph G.

Lemma 1 (Liu [[5]]). If G has k connected components G1; G2; : : : ; Gk , then

h(G; x)=
k∏

i=1

h(Gi:x); R(G)=
k∑

i=1

R(Gi):
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Lemma 2 (Liu [[5]]). (1) (Liu [[1]]) h(P2k+1)= h(Ck+1)h(Pk) (k¿3),

(2) (Liu [[4]]) h1(Cn)= h1(1; 1; n− 2); h1(Dn)= h1(1; 2; n− 3),
(3) h(P2)h(C6)= h(P3)h(D5),
(4) h(P2)h(C9)= h(P5)h(D6),
(5) h(P2)h(C15)= h(P5)h(C5)h(D7).

Proof. Conditions (3)–(5) can be directly veri:ed.

Lemma 3 (Liu [[5]]). Let G be a connected graph, then

(1) R(G)61, and the equality holds if and only if G∼=Pn (n¿2) or G∼=K3,
(2) R(G)= 0 if and only if G is one of the graphs K1; Cn; Dn and T (l1; l2; l3):

Lemma 4 (Liu [[6]]). Let T be a tree, and f(T; �) be the characteristic polynomial
of T . If

f(T; �)= ��(T )f1(T; �); h(T; x)= x�(T )h1(T; x)

and x= − �2, then

h1(T; x)= (−1)kf1(T; �);

where �(T ) and �(T ) are the degrees of the lowest terms of f(T; �) and h(T; x),
respectively, and k is the number of edges in a maximum matching.

Lemma 5 (Biggs [[1]]). If � is m-fold eigenvalue of tree T , then −� is, too.

Lemma 6 (Cvetkovic et al. [[3]]). (1) The eigenvalues of the T-shape tree T (1; 1; n−
1) are 0 and

2 cos
2i − 1
2n+ 2

�; 16i6n+ 1:

(2) The eigenvalues of Pn are

2 cos
i

n+ 1
�; 16i6n:

Proposition 1. (1) The root-set of h1(Cn) is{
−2
(
1 + cos

2i − 1
n

�
) ∣∣∣16i6

[n
2

]}
:

(2) The root-set of h1(Pn) is{
−2
(
1 + cos

2i
n+ 1

�
) ∣∣∣16i6

[n
2

]}
:
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Proof. (1) Since h1(Cn; x)= h1(1; 1; n−2), by Lemma 6, we know that the eigenvalues
of T (1; 1; n − 2) are 0 and 2 cos((2i − 1)=2n)�; 16i6n. From Lemmas 2 and 4, we
have

h1(Cn; x)= h1(1; 1; n− 2)= (−1)kf1(T (1; 1; n− 2); �);

where x= −�2 and k is the number of edges in a maximum matching of T (1; 1; n−2).
Since the degree of h1(Cn) equals one-half of the degree of f1(T (1; 1; n − 2); �), by
Lemma 5, the roots of f1(T (1; 1; n−2); �) are symmetric about the origin. Thus the root
of h1(Cn) is opposite to positive roots of square. By Lemma 6 and the trigonometric
formula, we get (1). Similarly, we can show that (2) is true.

Lemma 7 (Wang and Liu [[7]]). (1) For n¿4, �(Dn)6�(Cn)6�(Pn) and equality
holds if and only if n=4,

(2) (Wang and Liu [[7]]) for n¿4, �(Dn+1)¡�(Dn) and �(Cn+1)¡�(Cn); for ¿2,
�(Pn+1)¡�(Pn),

(3) for m¿3 and n¿1, (h1(Cm); h1(P2n))= 1; (m¿3; n¿1),
(4) for m¿4 and n¿1, h1(Pn) and h1(Cm) have no multiple root,
(5) for n¿4, �(Cn)¿− 4:

Proof. By Proposition 1, we have (3)–(5).

Lemma 8 (Cvetkovic et al. [[3]]). Let T be a tree and �1(T ) the maximum eigen-
value of T . Then �1(T )¡2 if and only if

T ∈{Pn; T (1; 1; n); T (1; 2; 2); T (1; 2; 3); T (1; 2; 4)}:

Proposition 2. Let T be a tree, then �(T )¿− 4 if and only if

T ∈{Pn; T (1; 1; n); T (1; 2; 2); T (1; 2; 3); T (1; 2; 4)}:

Proof. It follows directly from Lemmas 4 and 8.

Lemma 9 (Zhao et al. [[8]]). (1) Let G be a connected graph such that R(G)= − k
and q(G)¿p(G) + k − 1. Then �(G)6− 4, where k =1; 2; 3,

(2) Let G be a connected graph such that k¿4 and R(G)= − k. Then q(G)¡
p(G) + k − 1:

Lemma 10. (1) �(D5)= �(C6)= �(P11),

(2) �(D6)= �(C9)= �(P17),
(3) �(D7)= �(C15)= �(P29).
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Proof. These are direct results of Lemmas 2 and 7.

Lemma 11 (Liu [[5]]).

h(Pn; x)=
∑
k6n

(
k

n− k

)
xk :

Lemma 12 (Zhao et al. [[8]]). Let n¿2. Then <Pn is chromatically unique if and only
if n=3; 5 or n �=4 is even.

Proposition 3. Let m0 be odd, then the adjoint equivalent graphs of Pm0 can only
be

rK1∪fK3∪
(

l⋃
i=1

Pui

)
∪
(

m⋃
i=1

Cvi

)
∪
(

n⋃
i=1

T (l(i)1 ; l(i)2 ; l(i)3 )

)
∪
(⋃

i∈B

Di

)
;

where f=0; 1; f + l=1; r + n6f, B⊂{4; 5; 6; 7}, and l(i)1 = 1; l(i)2 = 2; l(i)3 64, or
l(i)1 = l(i)2 = 1; i=1; 2; : : : ; n:

Proof. Let mi =(mi−1 − 1)=2 (i=1; 2; : : : ; k) be positive integers. By Lemma 2(1), it
follows that

h1(Pm0 ) =
k′∏
i=1

h1(Cmi+1)h1(Pmk′ );

where if mk =1; 2, then k ′ = k − 1, else k ′ = k.
Let H be the adjointly equivalent graph of Pm0 , by Lemma 7 we know that h1(Pm0 )

has no multiple root. Thus h1(H) at most has one h1(K3). So by Lemma 2(2),
h1(Dl′)= h1(1; 2; l′−3). If l′¿8, by Lemma 7 and Proposition 2 we have that �(Dl′)6
−4¡�(Pm0 ). So h1(Pm0 ) does not contain h1(Dl′)(l′¿8). If G∼=T (l1; l2; l3), and l1 = 1;
l2 = 2; l3¿5 or l1 �=1, l2 �=1, 2, according to Proposition 2, we know that h1(Pm0 ) does
not include h1(G). Hence we can assert that

H = rK1∪fK3∪
(

l⋃
i=1

Pui

)
∪
(

m⋃
i=1

Cvi

)
∪
(

n⋃
i=1

T (l(i)1 ; l(i)2 ; l(i)3 )

)
∪
(⋃

i∈B

Di

)

∪
(

s2⋃
i=1

Hi

)
∪
(

s3⋃
i=s2+1

Hi

)
∪ · · · ∪


 st⋃

i=st−1+1

Hi


 ; (1)

where R(Hi)=−j and Hi is connected if sj−1 + 16i6sj, s0 = 0; j=1; 2; : : : ; t; B⊂
{4; 5; 6; 7}; l(i)1 = 1; l(i)2 = 2; l(i)3 64 or l(i)1 = l(i)2 = 1; f=0; 1.
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By Lemma 1, it follows that

R(H) =fR(K3) +
l∑

i=1

R(Pui) +
m∑

i=1

R(Cvi) +
n∑

i=1

R(T (l(i)1 ; l(i)2 ; l(i)3 ))

+
∑
i∈B

R(Di) +
st∑

i=1

R(Hi):

From Lemma 3,

st∑
i=1

R(Hi)= 1− l− f;
st∑

i=1

|R(Hi)|= l+ f − 1:

From (1), we know that

q(H) =fq(K3) +
l∑

i=1

q(Pui) +
m∑

i=1

q(Cvi) +
n∑

i=1

q(T (l(i)1 ; l(i)2 ; l(i)3 ))

+
∑
i∈B

q(Di) +
st∑

i=1

q(Hi):

Since �(Hi)¿�(Pm0 )¿− 4 and Hi (16i6st) is connected, by Lemma 9 we have

q(Hi)6p(Hi) + |R(Hi)| − 2; 16i6st :

So, we can get that

q(H)6fp(K3) +
l∑

i=1

p(Pui) +
m∑

i=1

p(Cvi) +
n∑

i=1

p(T (l(i)1 ; l(i)2 ; l(i)3 ))

+
∑
i∈B

p(Di) +
st∑

i=1

(p(Hi) + |R(Hi)| − 2)− l− n

= p(H)− 2st − r − n+ f − 1

and

q(H)= q(Pm0 ) =p(Pm0 )− 1=p(H)− 1:

Thus 2st + r + n6f; f=0; 1. Clearly, st =0. Recalling

st∑
i=1

|R(Hi)|= l+ f − 1;

we get that f + l=1 and r + n6f. Hence Proposition 3 holds.
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Proposition 4. Let m0 be odd. If

h1(Pm0 ) = h1(Pn)
m∏

i=1

h1(Cvi)
∏
i∈B

h1(Di); and B⊂{4; 5; 6; 7} (2)

or

h1(Pm0 ) = h1(P4)
m∏

i=1

h1(Cvi)
∏
i∈B

h1(Di)h1(1; 1; l3); and B⊂{4; 5; 6; 7}; (3)

then 5; 6; 7 =∈B.

Proof. Let mi =(mi−1− 1)=2 (i=1; 2; : : : ; k) be positive integers. We need only prove
the fact that h1(Di) cannot divide h1(Pm0 ) for i=5; 6; 7. We prove the fact by induction
on m0.
We :rst show that h1(D7) cannot divide h1(Pm0 ).
If m0¡29, by Lemma 10 we see that h1(D7) cannot divide h1(Pm0 ). If m0 = 29,

assume h1(D7)|h1(P29). Since h1(Pm0 ) is without multiple root, by Lemma 2 and (2),
we have

h1(P5)h1(C5)h1(P14)h1(C15)= h1(P5)h1(C5)h1(D7)h1(Pn)
m∏

i=1

h1(Cvi)
∏
i∈B′

h1(Di);

where B′ =B − {7}.
We denote by �(left) the minimum root of the left-hand side and by �(right) the

minimum root of the right-hand side. Since

h1(P2)h1(C15)= h1(P5)h1(C5)h1(D7);

then

h1(P5)h1(C5)h1(P14)= h1(P2)h1(Pn)
m∏

i=1

h1(Cvi)
∏
i∈B′

h1(Di);

where �(left)= �(P14) =∈{�(D4); �(D5); �(D6)}:
According to Lemma 4, the roots of h1(Cm) and h1(Pn) are real numbers, then

�(right) �=�(
⋃m

i=1 Cvi). So �(P14)= �(Pn) and n=14. Eliminating h1(P14) from both
sides of the above equality, we get that

h1(P5)h1(C5)= h1(P2)
m∏

i=1

h1(Cvi)
∏
i∈B′

h1(Di):

So, �(left)= �(C5) <∈{�(D4); �(D5), �(D6)} and there exists vi such that �(C5)= �(Cvi).
We may assume v1 = 5, then

h1(P5)= h1(P2)
m∏

i=2

h1(Cvi)
∏
i∈B′

h1(Di):
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But then we have �(left)= �(P5)= − 3 and �(right)= �(D6
⋃m

i=2 Cvi). However, this
is a contradiction because �(D6)= �(P17)¡�(P5) and �(Cvi) �=�(P5) for every vi¿4.
So when m0 = 29, h1(D7) cannot divide h1(Pm0 ).
We assume for the moment that 29¡k6m0, then h1(D7) cannot divide h1(Pk).
If k =m0, by the conduction of proposition and Lemma 2(1), we have B⊂{4; 5; 6; 7}

such that

h1(Cm1+1)h1(Pm1 ) = h1(Pn)
m∏

i=1

h1(Cvi)
∏
i∈B

h1(Di);

then �(left)= �(Cm1+1). Since there is n¡m0 such that �(Pn) �=�(Pm0 ) and m0¿29, by
Lemma 2, 7, we know that

�(right)¡�(P29)= �(C15)6�

(⋃
i∈B

Di

)
:

Thus, from
∏m

i=1 h1(Cvi) we can get �(right).
Similar to m0 = 29, we may assume that Cm1+1

∼=Cv1 . In this case, we have

h1(Pm1 ) = h1(Pn)
m∏

i=2

h1(Cvi)
∏
i∈B

h1(Di):

If m1 is odd, by the induction hypothesis, we know 7 =∈B.
If m1 is even, since m1¿14, we know Pm1 is adjointly unique by Lemma 12, so

7 =∈B. Similarly, we can show that 5; 6 =∈B in (2).
Suppose l3¿1. Since h1(1; 1; l3)= h1(Cl3+2), we know that (3) equals (2).
If l3 = 1, then

h1(Pm0 ) = (x + 3)h1(P4)
m∏

i=1

h1(Cvi)
∏
i∈B

h1(Di):

Note that h1(P5)= h1(P2)(x + 3). Similar to the proof of (2), we can show that
5; 6; 7 =∈B in (3).

3. Main results and proofs

Theorem 1. Let m0 be a positive integer. Then the graph G has chromatic polynomial
of the form

∑
l6m0

(
l

m0 − l

)
(�)l
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if and only if G satis=es one of the following:

(a) For even m0¿4, either <G∼=Pm0 or else <G∼=K1∪K3.
(b) For odd m0 with mi =(mi−1 − 1)=2 a positive integer for i=1; 2; : : : ; k, either

<G∼=Pm0 or else

(i) <G∈{K1∪K3
⋃k

i=1 Cmi+1; K3
⋃k

i �=j Cmi+1∪T (1; 1; mj − 1), Pmj

⋃j
i=1 Cmi+1 (j=

1; 2; : : : ; k)} if mk =4,
(ii) <G∈{Pmj

⋃j
i=1 Cmi+1; (j=1; 2; : : : ; k)} if mk �=4 is even,

(iii) <G∈{P3∪D4
⋃k−2

i=1 Cmi+1; Pmj

⋃j
i=1 Cmi+1 (j=1; 2; : : : ; k − 1)} if mk =1.

Proof. Su>ciency: If P( <G; �)=
∑p−1

i=1 bi(G)(�)p−i, then h(G; x)=
∑p−1

i=1 bi(G)xp−i.
Since h(P4)= h(K1∪K3); h(C4)= h(D4) and h(1; 1; l)= h(Cl+2∪K1), by Lemma 2(1)
and Lemma 11 suMciency is obvious.
Necessity: We need only prove that the adjointly equivalent graphs of Pm0 belong

to the class of graphs described in this theorem.
If m0 �=4 is an even, by Lemma 12, obviously conclusion holds.
If m0 = 4, we can directly prove that K1∪K3 is only adjoint equivalent graph of P4.
If m0 is odd, by Proposition 3, the adjointly set of Pm0 is

rK1∪fK3∪
(

l⋃
i=1

Pui

)
∪
(

m⋃
i=1

Cvi

)
∪
(

n⋃
i=1

T (l(i)1 ; l(i)2 ; l(i)3 )

)
∪
(⋃

i∈B

Di

)
;

where f=0; 1;f + l=1; r + n6f; l(i)1 = l(i)2 = 1 or l(i)1 = 1; l(i)2 = 2; l(i)3 64; B⊂{4; 5;
6; 7}.
We discuss each case in the following.
Case 1: f=1; l=0; r=1 and n=0. Then

H∼=K1∪K3∪
(

m⋃
i=1

Cvi

)
∪
(⋃

i∈B

Di

)
:

By Proposition 4, we get B⊂{4}. Since h1(H)= h1(Pm0 ) and h1(K1∪K3)= h1(P4), we
have

k∏
i=1

h1(Cmi+1)h1(Pmk )= h1(P4)
m∏

i=1

h1(Cvi)
∏
i∈B

h1(Di) (mk =2N ) (4)

or
k−1∏
i=1

h1(Cmi+1)h1(Pmk−1 ) = h1(P4)
m∏

i=1

h1(Cvi)
∏
i∈B

h1(Di) (mk =1; 2): (5)

In (4) and (5),

�(left)= �(Cm1+1); �(right)= �

((
m⋃

i=1

Cvi

)
∪
(⋃

i∈B

Di

))
:
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If �(right)= �(C4)= �(D4), then (4) does not hold. From (5) we get k =2; m2 = 1
and h1(P3)= h1(P4), which is a contradiction. Hence �(right)= �(

⋃m
i=1 Cvi). Suppose

�(right)= �(Cv1 ), by symmetry, we have that Cm1+1
∼=Cv1 . Clearly, m1 + 1= v1. Elim-

inating h1(Cm1+1) from both sides of (4) and (5), we obtain that

k∏
i=2

h1(Cmi+1)h1(Pmk )= h1(P4)
m∏

i=2

h1(Cvi)
∏
i∈B

h1(Di) (mk =2N )

or

k−1∏
i=2

h1(Cmi+1)h1(Pmk−1 ) = h1(P4)
m∏

i=2

h1(Cvi)
∏
i∈B

h1(Di) (mk =1; 2) :

Next we continue to proceed this step, there is i=2; 3; : : : ; k or i=2; 3; : : : ; k − 1
such that mi + 1= vi. So

h1(Pmk )= h1(P4)
m∏

i=k+1

h1(Cvi)
∏
i∈B

h1(Di) (mk =2N )

or

h1(Pmk−1 ) = h1(P4)
m∏

i=k

h1(Cvi)
∏
i∈B

h1(Di) (mk =1; 2):

Since mk−1 = 3; 5 or mk is an even number greater than or equal to 4, by Lemma 12,
we have that mk =4;

⋃m
i=1 Cvi

∼= ⋃k
i=1 Cmi+1 and |B|=0. Hence,

H∼=K1∪K3∪
(

k⋃
i=1

Cmi+1

)
:

Case 2: f=1; l=0, r=0 and n=1. So

H∼=K3∪
(

m⋃
i=1

Cvi

)
∪
(⋃

i∈B

Di

)
∪T (l(1)1 ; l(1)2 ; l(1)3 ):

From Propositions 2 and 4, it is clear that B⊂{4} and l(1)1 = 1; l(1)2 = 2 and l(1)3 64. We
replace l(1)3 by l3. For h1(1; 2; l3)= h1(Dl3+3), we have that h1(Pm0 ) has no multiple
root. So,

h1(Pm0 ) = h1(P4)
m∏

i=1

h1(Cvi)h(1; 1; l3)
∏
i∈B′

h1(Di);

where B′⊂{4}.
Suppose l3¿2. Since h1(1; 1; l3)= h1(Cl3+2), similar to case 1, there are i; j=

1; 2; : : : ; k; i �=j such that

vi =mi + 1; l3 =mj − 1:
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So

mk =4; |B|=0;

namely, there is a j=1; 2; : : : ; k with

H∼=K3∪

 k⋃

i �=j

Cmi+1


 ∪T (1; 1; mj − 1):

Suppose l3 = 1. For h1(1; 1; 1)= x+3, similar to the discussion of (4) and (5), there
is mk =2N such that

h1(Pmk )= (x + 3)h1(P4)
∏
i∈A

h1(Cvi)
∏
i∈B

h1(Di)

or mk =1; 2 such that

h1(Pmk−1 ) = (x + 3)h1(P4)
∏
i∈A

h1(Cvi)
∏
i∈B

h1(Di);

where A⊂{1; 2; : : : ; m}; B⊂{4}. When mk =4, the formula above is false. When mk =
1; 2 or mk =2l¿4, both formulae above contradict Lemma 12.
Case 3: f=1; l=0; r=0 and n=0. There is B⊂{4} such that

H∼=K3∪
(

m⋃
i=1

Cvi

)
∪
(⋃

i∈B

Di

)
:

Since |V (H)|= |E(H)| and |V (Pm0 )| �= |E(Pm0 )|, we know that H and Pm0 are not ad-
jointly equivalent, this is a contradiction.
Case 4: f=0; l=1 and n= r=0. There is B⊂{4; 5; 6; 7} such that

H∼=Pu∪
(

m⋃
i=1

Cvi

)
∪
(⋃

i∈B

Di

)
:

Here set u1 = u, by Proposition 4, we know that B⊂{4}. Thus
k∏

i=1

h1(Cmi+1)h1(Pmk )= h1(Pu)
m∏

i=1

h1(Cvi)
∏
i∈B

h1(Di) (mk =2N ) (6)

and
k∏

i=1

h1(Cmi+1)h1(Pmk−1 ) = h1(Pu)
m∏

i=1

h1(Cvi)
∏
i∈B

h1(Di) (mk =1; 2): (7)

In (6), by Lemma 7(3), we have(
m∏

i=1

h1(Cvi)
∏
i∈B

h1(Di); h1(Pmk )

)
=1;



380 C. Ye, N. Li /Discrete Mathematics 259 (2002) 369–381

thus h1(Pmk ) | h1(Pu). If u is an even, for the same reason, we have that h1(Pmk ) | h1(Pu),
so u=mk . If we eliminate h1(Pmk ) from both sides of (6), there is B⊂{4} with

k∏
i=1

h1(Cmi+1)=
m∏

i=1

h1(Cvi)
∏
i∈B

h1(Di):

Since mk¿4, comparing the least roots of both sides, in the above formula, we get
that |B|=0 and there is a j=1; 2; : : : ; k such that

H∼=Pmj ∪
( j⋃

i=1

Cmi+1

)
:

If u is odd, by Lemma 2(1), we have u=3; 5 by symmetry. If u=3, similar to (4),
we have

h1(Pmk )= h1(P3)
∏
i∈A

h1(Cvi)
∏
i∈B

h1(Di); A⊂{1; 2; : : : ; m}:

This contradicts Lemma 12.
A similar contradiction occurs when u=5.
In (7), according to three cases, we have that u is even, u=3 and 5. Similar to the

discussion of (5), we can show that

h1(Pmk−1 ) = h1(Pu)
∏
i∈A

h1(Cvi)
∏
i∈B′

h1(Di);

where B′⊆B; A⊆{1; 2; : : : ; m}. By Lemma 12, we know |A|=0; |B′|=0 and there is
u=3 with mk =1, u=5 with mk =2. Namely, if mk =1, then

H∼=Pmj ∪
( j⋃

i=1

Cmi+1

)
(j=1; 2; : : : ; k − 1);

or

H∼=P3∪D4∪
(

k−2⋃
i=1

Cmi+1

)
:

If mk =2, then

H∼=Pmj ∪
( j⋃

i=1

Cmi+1

)
(j=1; 2; : : : ; k − 1):

The proof is completed.
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