Note

Graphs with chromatic polynomial
\[\sum_{l \leq m_0} \binom{l}{m_0 - l} (\lambda)^l \]

Chengfu Yea, Nianzu Lib,*

aDepartment of Mathematics, Qinghai Normal University, Xining, Qinghai 810008, People's Republic of China
bShanghai Second Polytechnic University, 80 Shanxi Bei Lu, Shanghai 200041, People's Republic of China

Received 18 February 2000; received in revised form 24 May 2001; accepted 28 January 2002

Abstract

In this paper, using the properties of chromatic polynomial and adjoint polynomial, we characterize all graphs having chromatic polynomial \[\sum_{l \leq m_0} \binom{l}{m_0 - l} (\lambda)^l \].

\textcopyright 2002 Elsevier Science B.V. All rights reserved.

Keywords: Chromatic polynomial; Adjoint polynomial

1. Introduction

The graphs considered here are finite, undirected and simple. Let \(G \) be a graph and \(P(G, \lambda) \) its chromatic polynomial, \(h(G, x) \) be its adjoint polynomial. Two graphs \(G \) and \(H \) are chromatically equivalent if \(P(G, \lambda) = P(H, \lambda) \), and adjointly equivalent if \(h(G, x) = h(H, x) \). A graph \(G \) is chromatically unique if \(P(G, \lambda) = P(H, \lambda) \) implies that \(H \) is isomorphic to \(G \). Similarly, a graph \(G \) is adjointly unique if \(h(G, x) = h(H, x) \) implies that \(H \) is isomorphic to \(G \). By \(\bar{G} \) we denote the complement of \(G \). It is obvious that a graph \(G \) is chromatically unique if and only if \(\bar{G} \) is adjointly unique.

To compute chromatic polynomial for a given graph is well known, but to determine the graphs with a given chromatic polynomial is not easy. In this paper, using the

* Supported by foundation for University Key Teacher by the Ministry of Education and the National Natural Science Foundation of China (No. 10061003).

* Corresponding author.
properties of adjoint polynomial and the relations of adjoint and chromatical polynomial, we shall give all graphs determined by the polynomial \(\sum_{l \leq m_0} \binom{m}{m_0-1} \lambda^l \).

Let \(G \) be a graph, \(p(G) \) and \(q(G) \) be its order and size, respectively. The symbols \(P_n, C_n \) and \(D_n \) stand for the following graphs of order \(n \): the path, the cycle and the graph obtained by identifying a vertex of \(K_3 \) with one endvertex of \(P_{n-2} \). Let \(T(l_1, l_2, l_3) \), \((l_1 \leq l_2 \leq l_3) \) be a tree with one vertex of degree 3 and three vertices of degree 1 in which the distances from the vertex of degree 3 to the vertices of degree 1 are \(l_1, l_2 \) and \(l_3 \), respectively. Let \(h(G, x) = x^{q(G)} h_1(G, x) \), where \(h_1(G, x) \) is a polynomial with a nonzero constant term.

For convenience, let \(h(G) \) stand for \(h(G, x) \), and \(h_1(G) \) for \(h_1(G, x) \). We will write \(h(l_1, l_2, l_3) \) for \(h(T(l_1, l_2, l_3), x) \), and \(h_1(l_1, l_2, l_3) \) for \(h_1(T(l_1, l_2, l_3), x) \). Let \(\beta(G) \) denote the least root of \(h_1(G) \). The reader may refer to [[5,2]] for all notations and terminology not explained here.

2. Preliminaries

Let \(b_i(G) \) denote the number of ideal subgraphs with \(p-i \) components (see [[5]]), then
\[
P(G, \lambda) = \sum_{i=0}^{p-1} b_i(G) \lambda^{p-i},
\]
where \(p = |V(G)| \) and \((\lambda)^k = \lambda(\lambda - 1) \cdots (\lambda - k + 1) \).

Definition 1 (Liu [[5]]). If \(G \) is a graph with \(p \) vertices, then the polynomial
\[
h(G, x) = \sum_{i=0}^{p-1} b_i(G) x^{p-i}
\]
is called the adjoint polynomial of \(G \).

Definition 2 (Liu [[5]]).
\[
R(G) = \begin{cases}
 b_2(G) - \binom{q(G) - 1}{2} + 1 & \text{if } q(G) > 0, \\
 0 & \text{if } q(G) = 0.
\end{cases}
\]
is said to be the character of a graph \(G \).

Lemma 1 (Liu [[5]]). If \(G \) has \(k \) connected components \(G_1, G_2, \ldots, G_k \), then
\[
h(G, x) = \prod_{i=1}^{k} h(G_i, x), \quad R(G) = \sum_{i=1}^{k} R(G_i).
\]
Lemma 2 (Liu [[5]]). (1) (Liu [[1]]) \(h(P_{2k+1}) = h(C_{k+1})h(P_k) \) \((k \geq 3) \),

(2) (Liu [[4]]) \(h_1(C_n) = h_1(1, 1, n - 2), \) \(h_1(D_n) = h_1(1, 2, n - 3) \),

(3) \(h(P_2)h(C_0) = h(P_3)h(D_5) \),

(4) \(h(P_2)h(C_0) = h(P_3)h(D_6) \),

(5) \(h(P_2)h(C_{15}) = h(P_5)h(C_5)h(D_7) \).

Proof. Conditions (3)–(5) can be directly verified.

Lemma 3 (Liu [[5]]). Let \(G \) be a connected graph, then

(1) \(R(G) \leq 1 \), and the equality holds if and only if \(G \cong P_n \) \((n \geq 2) \) or \(G \cong K_3 \),

(2) \(R(G) = 0 \) if and only if \(G \) is one of the graphs \(K_1, C_n, D_n \) and \(T(l_1, l_2, l_3) \).

Lemma 4 (Liu [[6]]). Let \(T \) be a tree, and \(f(T, \mu) \) be the characteristic polynomial of \(T \). If

\[
f(T, \mu) = \mu^{\theta(T)} f_1(T, \mu), \quad h(T, x) = x^{\alpha(T)} h_1(T, x)
\]

and \(x = -\mu^2 \), then

\[
h_1(T, x) = (-1)^k f_1(T, \mu),
\]

where \(\theta(T) \) and \(\alpha(T) \) are the degrees of the lowest terms of \(f(T, \mu) \) and \(h(T, x) \), respectively, and \(k \) is the number of edges in a maximum matching.

Lemma 5 (Biggs [[1]]). If \(\lambda \) is \(m \)-fold eigenvalue of tree \(T \), then \(-\lambda \) is, too.

Lemma 6 (Cvetkovic et al. [[3]]). (1) The eigenvalues of the T-shape tree \(T(1, 1, n - 1) \) are 0 and

\[
2 \cos \frac{2i - 1}{2n+2} \pi, \quad 1 \leq i \leq n + 1.
\]

(2) The eigenvalues of \(P_n \) are

\[
2 \cos \frac{i}{n+1} \pi, \quad 1 \leq i \leq n.
\]

Proposition 1. (1) The root-set of \(h_1(C_n) \) is

\[
\left\{-2 \left(1 + \cos \frac{2i - 1}{n} \pi\right) \mid 1 \leq i \leq \left[\frac{n}{2}\right]\right\}.
\]

(2) The root-set of \(h_1(P_n) \) is

\[
\left\{-2 \left(1 + \cos \frac{2i}{n + 1} \pi\right) \mid 1 \leq i \leq \left[\frac{n}{2}\right]\right\}.
\]
Proof. (1) Since \(h_1(C_n,x) = h_1(1,1,n-2) \), by Lemma 6, we know that the eigenvalues of \(T(1,1,n-2) \) are 0 and \(2 \cos((2i-1)/2n)\pi, 1 \leq i \leq n \). From Lemmas 2 and 4, we have

\[
h_1(C_n,x) = h_1(1,1,n-2) = (-1)^{k} f_1(T(1,1,n-2),\mu),
\]

where \(x = -\mu^2 \) and \(k \) is the number of edges in a maximum matching of \(T(1,1,n-2) \). Since the degree of \(h_1(C_n) \) equals one-half of the degree of \(f_1(T(1,1,n-2),\mu) \), by Lemma 5, the roots of \(f_1(T(1,1,n-2),\mu) \) are symmetric about the origin. Thus the root of \(h_1(C_n) \) is opposite to positive roots of square. By Lemma 6 and the trigonometric formula, we get (1). Similarly, we can show that (2) is true. □

Lemma 7 (Wang and Liu [[7]]). (1) For \(n \geq 4 \), \(\beta(D_n) \leq \beta(C_n) \leq \beta(P_n) \) and equality holds if and only if \(n = 4 \),

(2) (Wang and Liu [[7]]) for \(n \geq 4 \), \(\beta(D_{n+1}) < \beta(D_n) \) and \(\beta(C_{n+1}) < \beta(C_n) \); for \(n \geq 4 \), \(\beta(P_{n+1}) < \beta(P_n) \).

(3) for \(m > 3 \) and \(n \geq 1 \), \((h_1(C_m), h_1(P_{2n})) = 1, (m > 3, n \geq 1) \),

(4) for \(m \geq 4 \) and \(n \geq 1 \), \(h_1(P_n) \) and \(h_1(C_m) \) have no multiple root,

(5) for \(n \geq 4 \), \(\beta(C_n) > -4 \).

Proof. By Proposition 1, we have (3)–(5).

Lemma 8 (Cvetkovic et al. [[3]]). Let \(T \) be a tree and \(\lambda_1(T) \) the maximum eigenvalue of \(T \). Then \(\lambda_1(T) < 2 \) if and only if

\[
T \in \{P_n, T(1,1,n), T(1,2,2), T(1,2,3), T(1,2,4)\}.
\]

Proposition 2. Let \(T \) be a tree, then \(\beta(T) > -4 \) if and only if

\[
T \in \{P_n, T(1,1,n), T(1,2,2), T(1,2,3), T(1,2,4)\}.
\]

Proof. It follows directly from Lemmas 4 and 8.

Lemma 9 (Zhao et al. [[8]]). (1) Let \(G \) be a connected graph such that \(R(G) = -k \) and \(q(G) \geq p(G) + k - 1 \). Then \(\beta(G) \leq -4 \), where \(k = 1,2,3 \),

(2) Let \(G \) be a connected graph such that \(k \geq 4 \) and \(R(G) = -k \). Then \(q(G) < p(G) + k - 1 \).

Lemma 10. (1) \(\beta(D_3) = \beta(C_6) = \beta(P_{11}) \),

(2) \(\beta(D_6) = \beta(C_6) = \beta(P_{17}) \),

(3) \(\beta(D_7) = \beta(C_{15}) = \beta(P_{20}) \).
Proof. These are direct results of Lemmas 2 and 7.

Lemma 11 (Liu [[5]]).

\[h(P_n, x) = \sum_{k \leq n} \left(\binom{n}{k} x^k \right) \]

Lemma 12 (Zhao et al. [[8]]). Let \(n \geq 2 \). Then \(\bar{P}_n \) is chromatically unique if and only if \(n = 3, 5 \) or \(n \neq 4 \) is even.

Proposition 3. Let \(m_0 \) be odd, then the adjoint equivalent graphs of \(P_{m_0} \) can only be

\[rK_1 \cup fK_3 \cup \left(\bigcup_{i=1}^{l} P_i \right) \cup \left(\bigcup_{j=1}^{m} C_i \right) \cup \left(\bigcup_{l=1}^{n} \mathbb{T}(l_1^{(i)}, l_2^{(i)}, l_3^{(i)}) \right) \cup \left(\bigcup_{i \in B} D_i \right), \]

where \(f = 0, 1; \ f + l = 1; \ r + n \leq f, \ B \subset \{4, 5, 6, 7\}, \) and \(l_1^{(i)} = 1, l_2^{(i)} = 2, l_3^{(i)} \leq 4, \) or \(l_1^{(i)} = l_2^{(i)} = 1, \ i = 1, 2, \ldots, n. \)

Proof. Let \(m_i = (m_i - 1)/2 \) \((i = 1, 2, \ldots, k)\) be positive integers. By Lemma 2(1), it follows that

\[h_1(P_{m_0}) = \prod_{i=1}^{k'} h_1(C_{m_i+1})h_1(P_{m_i}), \]

where if \(m_k = 1, 2, \) then \(k' = k = 1, \) else \(k' = k. \)

Let \(H \) be the adjoinly equivalent graph of \(P_{m_0}, \) by Lemma 7 we know that \(h_1(P_{m_0}) \) has no multiple root. Thus \(h_1(H) \) at most has one \(h_1(K_3) \). So by Lemma 2(2), \(h_1(D_{l'}) = h_1(1, 2, l' - 3). \) If \(l' \geq 8, \) by Lemma 7 and Proposition 2 we have that \(\beta(D_{l'}) \leq -4 < \beta(P_{m_0}). \) So \(h_1(P_{m_0}) \) does not contain \(h_1(D_{l'})(l' \geq 8). \) If \(G \cong T(l_1, l_2, l_3), \) and \(l_1 = 1, l_2 = 2, l_3 \geq 5 or l_1 \neq 1, l_2 \neq 1, 2, \) according to Proposition 2, we know that \(h_1(P_{m_0}) \) does not include \(h_1(G). \) Hence we can assert that

\[H = rK_1 \cup fK_3 \cup \left(\bigcup_{i=1}^{l} P_i \right) \cup \left(\bigcup_{j=1}^{m} C_i \right) \cup \left(\bigcup_{l=1}^{n} \mathbb{T}(l_1^{(i)}, l_2^{(i)}, l_3^{(i)}) \right) \cup \left(\bigcup_{i \in B} D_i \right) \]

\[\cup \left(\bigcup_{i=1}^{s_2} H_i \right) \cup \left(\bigcup_{i=s_2+1}^{s_1} H_i \right) \cup \cdots \cup \left(\bigcup_{i=s_{t-1}+1}^{s_t} H_i \right), \]

where \(R(H_i) = -j \) and \(H_i \) is connected if \(s_j - 1 + 1 \leq i \leq s_j, \) \(s_0 = 0, \) \(j = 1, 2, \ldots, t; \) \(B \subset \{4, 5, 6, 7\}; \) \(l_1^{(i)} = 1, l_2^{(i)} = 2; \) \(l_3^{(i)} \leq 4 \) or \(l_1^{(i)} = l_2^{(i)} = 1; \) \(f = 0, 1. \)
By Lemma 1, it follows that

\[R(H) = f R(K_3) + \sum_{i=1}^{l} R(P_{n_i}) + \sum_{i=1}^{m} R(C_{v_i}) + \sum_{i=1}^{n} R(T(l_1^{(i)}, l_2^{(i)}, l_3^{(i)})) \]

\[+ \sum_{i \in B} R(D_i) + \sum_{i=1}^{s_l} R(H_i). \]

From Lemma 3,

\[\sum_{i=1}^{s_l} R(H_i) = 1 - l - f, \quad \sum_{i=1}^{s_l} |R(H_i)| = l + f - 1. \]

From (1), we know that

\[q(H) = f q(K_3) + \sum_{i=1}^{l} q(P_{n_i}) + \sum_{i=1}^{m} q(C_{v_i}) + \sum_{i=1}^{n} q(T(l_1^{(i)}, l_2^{(i)}, l_3^{(i)})) \]

\[+ \sum_{i \in B} q(D_i) + \sum_{i=1}^{s_l} q(H_i). \]

Since \(\beta(H_i) \geq \beta(P_{m_0}) > -4 \) and \(H_i \ (1 \leq i \leq s_l) \) is connected, by Lemma 9 we have

\[q(H_i) \leq p(H_i) + |R(H_i)| - 2, \quad 1 \leq i \leq s_l. \]

So, we can get that

\[q(H) \leq f p(K_3) + \sum_{i=1}^{l} p(P_{n_i}) + \sum_{i=1}^{m} p(C_{v_i}) + \sum_{i=1}^{n} p(T(l_1^{(i)}, l_2^{(i)}, l_3^{(i)})) \]

\[+ \sum_{i \in B} p(D_i) + \sum_{i=1}^{s_l} (p(H_i) + |R(H_i)| - 2) - l - n \]

\[= p(H) - 2s_l - r - n + f - 1 \]

and

\[q(H) = q(P_{m_0}) = p(P_{m_0}) - 1 = p(H) - 1. \]

Thus \(2s_l + r + n \leq f, \quad f = 0, 1 \). Clearly, \(s_l = 0 \). Recalling

\[\sum_{i=1}^{s_l} |R(H_i)| = l + f - 1, \]

we get that \(f + l = 1 \) and \(r + n \leq f \). Hence Proposition 3 holds. \(\square \)
Proposition 4. Let m_0 be odd. If
\[h_1(P_{m_0}) = h_1(P_n) \prod_{i=1}^{m} h_1(C_{v_i}) \prod_{i \in B} h_1(D_i); \quad \text{and} \quad B \subset \{4, 5, 6, 7\} \] (2)
or
\[h_1(P_{m_0}) = h_1(P_4) \prod_{i=1}^{m} h_1(C_{v_i}) \prod_{i \in B} h_1(D_i) h_1(1, 1, l_3), \quad \text{and} \quad B \subset \{4, 5, 6, 7\}, \] (3)
then $5, 6, 7 \notin B$.

Proof. Let $m_i = (m_{i-1} - 1)/2$ ($i = 1, 2, \ldots, k$) be positive integers. We need only prove the fact that $h_1(D_i)$ cannot divide $h_1(P_{m_0})$ for $i = 5, 6, 7$. We prove the fact by induction on m_0.

We first show that $h_1(D_7)$ cannot divide $h_1(P_{m_0})$.

If $m_0 < 29$, by Lemma 10 we see that $h_1(D_7)$ cannot divide $h_1(P_{m_0})$. If $m_0 = 29$, assume $h_1(D_7) | h_1(P_{29})$. Since $h_1(P_{m_0})$ is without multiple root, by Lemma 2 and (2), we have
\[h_1(P_5) h_1(C_5) h_1(P_{14}) h_1(C_{15}) = h_1(P_5) h_1(C_5) h_1(D_7) h_1(P_n) \prod_{i=1}^{m} h_1(C_{v_i}) \prod_{i \in B'} h_1(D_i), \]
where $B' = B \setminus \{7\}$.

We denote by β(left) the minimum root of the left-hand side and by β(right) the minimum root of the right-hand side. Since
\[h_1(P_2) h_1(C_{15}) = h_1(P_3) h_1(C_5) h_1(D_7), \]
then
\[h_1(P_5) h_1(C_5) h_1(P_{14}) = h_1(P_2) h_1(P_n) \prod_{i=1}^{m} h_1(C_{v_i}) \prod_{i \in B'} h_1(D_i), \]
where β(left) $\in \{\beta(D_4), \beta(D_5), \beta(D_6)\}$.

According to Lemma 4, the roots of $h_1(C_m)$ and $h_1(P_n)$ are real numbers, then β(right) $\neq \beta(\bigcup_{i=1}^{m} C_{v_i})$. So $\beta(P_{14}) = \beta(P_n)$ and $n = 14$. Eliminating $h_1(P_{14})$ from both sides of the above equality, we get that
\[h_1(P_5) h_1(C_5) = h_1(P_2) \prod_{i=1}^{m} h_1(C_{v_i}) \prod_{i \in B'} h_1(D_i). \]

So, β(left) $\in \{\beta(D_4), \beta(D_5), \beta(D_6)\}$ and there exists v_i such that $\beta(C_5) = \beta(C_{v_i})$. We may assume $v_1 = 5$, then
\[h_1(P_5) = h_1(P_2) \prod_{i=2}^{m} h_1(C_{v_i}) \prod_{i \in B'} h_1(D_i). \]
But then we have $\beta(\text{left}) = \beta(P_5) = -3$ and $\beta(\text{right}) = \beta(D_6 \bigcup_{i=2}^{m} C_{v_i})$. However, this is a contradiction because $\beta(D_6) = \beta(P_{17}) < \beta(P_5)$ and $\beta(C_{v_i}) \neq \beta(P_5)$ for every $v_i \geq 4$. So when $m_0 = 29$, $h_1(D_7)$ cannot divide $h_1(P_{m_0})$.

We assume for the moment that $29 < k \leq m_0$, then $h_1(D_7)$ cannot divide $h_1(P_k)$.

If $k = m_0$, by the conduction of proposition and Lemma 2(1), we have $B \subset \{4, 5, 6, 7\}$ such that

$$h_1(C_{m_i+1})h_1(P_{m_i}) = h_1(P_n) \prod_{i=1}^{m_0} h_1(C_{v_i}) \prod_{i \in B} h_1(D_i),$$

then $\beta(\text{left}) = \beta(C_{m_i+1})$. Since there is $n < m_0$ such that $\beta(P_n) \neq \beta(P_{m_0})$ and $m_0 > 29$, by Lemma 2, 7, we know that

$$\beta(\text{right}) < \beta(P_{29}) = \beta(C_{15}) \leq \beta \left(\bigcup_{i \in B} D_i \right).$$

Thus, from $\prod_{i=1}^{m_0} h_1(C_{v_i})$ we can get $\beta(\text{right})$.

Similar to $m_0 = 29$, we may assume that $C_{m_i+1} \simeq C_{v_1}$. In this case, we have

$$h_1(P_{m_i}) = h_1(P_n) \prod_{i=2}^{m} h_1(C_{v_i}) \prod_{i \in B} h_1(D_i).$$

If m_1 is odd, by the induction hypothesis, we know $7 \notin B$.

If m_1 is even, since $m_1 \geq 14$, we know P_{m_1} is adjointly unique by Lemma 12, so $7 \notin B$. Similarly, we can show that $5, 6 \notin B$ in (2).

Suppose $l_3 > 1$. Since $h_1(1, 1, l_3) = h_1(C_{l_3+2})$, we know that (3) equals (2).

If $l_3 = 1$, then

$$h_1(P_{m_0}) = (x + 3) h_1(P_4) \prod_{i=1}^{m} h_1(C_{v_i}) \prod_{i \in B} h_1(D_i).$$

Note that $h_1(P_5) = h_1(P_2)(x + 3)$. Similar to the proof of (2), we can show that $5, 6, 7 \notin B$ in (3). □

3. Main results and proofs

Theorem 1. Let m_0 be a positive integer. Then the graph G has chromatic polynomial of the form

$$\sum_{l \leq m_0} \binom{l}{m_0 - l} (x)_l.$$
if and only if G satisfies one of the following:

(a) For even $m_0 \geq 4$, either $\tilde{G} \cong P_{m_0}$ or else $\tilde{G} \cong K_1 \cup K_3$.
(b) For odd m_0 with $m_i = (m_i - 1)/2$ a positive integer for $i = 1, 2, \ldots, k$, either $\tilde{G} \cong P_{m_0}$ or else

(i) $\tilde{G} \in \{K_1 \cup K_3 \cup \bigcup_{j=1}^{k} C_{m_1+1}, K_3 \cup \bigcup_{j \neq j}^{k} C_{m_1+1} \cup T(1, 1, m_j - 1), P_{m_j} \cup \bigcup_{i=1}^{l} C_{m_i+1} \mid j = 1, 2, \ldots, k\}$ if $m_k = 4$,
(ii) $\tilde{G} \in \{P_{m_j} \cup \bigcup_{j=1}^{l} C_{m_i+1}, (j = 1, 2, \ldots, k)\}$ if $m_k \neq 4$ is even,
(iii) $\tilde{G} \in \{P_3 \cup D_4 \cup \bigcup_{j=1}^{k-2} C_{m_1+1}, P_{m_j} \cup \bigcup_{i=1}^{l} C_{m_i+1} \mid j = 1, 2, \ldots, k - 1\}$, if $m_k = 1$.

Proof. Sufficiency: If $P(\tilde{G}, \lambda) = \sum_{i=1}^{p-1} b_i(G)(\lambda)^{p-i}$, then $h(G, x) = \sum_{i=1}^{p-1} b_i(G)x^{p-i}$.

Since $h(P_4) = h(K_1 \cup K_3)$, $h(C_4) = h(D_4)$ and $h(1, 1, l) = h(C_{l+2} \cup K_1)$, by Lemma 2(1) and Lemma 11 sufficiency is obvious.

Necessity: We need only prove that the adjointly equivalent graphs of P_{m_0} belong to the class of graphs described in this theorem.

If $m_0 \neq 4$ is an even, by Lemma 12, obviously conclusion holds.

If $m_0 = 4$, we can directly prove that $K_1 \cup K_3$ is only adjoint equivalent graph of P_4.

If m_0 is odd, by Proposition 3, the adjointly set of P_{m_0} is

$$rK_1 \cup fK_3 \cup \left(\bigcup_{i=1}^{l} P_{n_i} \right) \cup \left(\bigcup_{i=1}^{m} C_{v_i} \right) \cup \left(\bigcup_{i=1}^{n} T(l^{(i)}_1, l^{(i)}_2, l^{(i)}_3) \right) \cup \left(\bigcup_{i \in B} D_i \right),$$

where $f = 0, 1; f + l = 1; r + n \leq f; l^{(i)}_1 = l^{(i)}_2 = 1$ or $l^{(i)}_1 = 1, l^{(i)}_2 = 2, l^{(i)}_3 \leq 4, B \subset \{4, 5, 6, 7\}$.

We discuss each case in the following.

Case 1: $f = 1, l = 0, r = 1$ and $n = 0$. Then

$$H \cong K_1 \cup K_3 \cup \left(\bigcup_{i=1}^{m} C_{v_i} \right) \cup \left(\bigcup_{i \in B} D_i \right).$$

By Proposition 4, we get $B \subset \{4\}$. Since $h_1(H) = h_1(P_{m_0})$ and $h_1(K_1 \cup K_3) = h_1(P_4)$, we have

$$\prod_{i=1}^{k} h_1(C_{m_i+1})h_1(P_{m_i}) = h_1(P_4) \prod_{i=1}^{m} h_1(C_{v_i}) \prod_{i \in B} h_1(D_i) \quad (m_k = 2N) \quad (4)$$

or

$$\prod_{i=1}^{k-1} h_1(C_{m_i+1})h_1(P_{m_k-1}) = h_1(P_4) \prod_{i=1}^{m} h_1(C_{v_i}) \prod_{i \in B} h_1(D_i) \quad (m_k = 1, 2). \quad (5)$$

In (4) and (5),

$$\beta(\text{left}) = \beta(C_{m_1+1}), \quad \beta(\text{right}) = \beta \left(\left(\bigcup_{i=1}^{m} C_{v_i} \right) \cup \left(\bigcup_{i \in B} D_i \right) \right).$$
If $\beta(\text{right}) = \beta(C_4) = \beta(D_4)$, then (4) does not hold. From (5) we get $k = 2, m_2 = 1$ and $h_1(P_3) = h_1(P_4)$, which is a contradiction. Hence $\beta(\text{right}) = \beta(\bigcup_{i=1}^{m} C_i)$. Suppose $\beta(\text{right}) = \beta(C_{v_1})$, by symmetry, we have that $C_{v_1+1} \cong C_{v_1}$. Clearly, $m_1 + 1 = v_1$. Eliminating $h_1(C_{m_1+1})$ from both sides of (4) and (5), we obtain that

$$\prod_{i=2}^{k} h_1(C_{m_{i+1}})h_1(P_{m_i}) = h_1(P_4) \prod_{i=2}^{m} h_1(C_{v_i}) \prod_{i \in B} h_1(D_i) \quad (m_k = 2N)$$

or

$$\prod_{i=2}^{k-1} h_1(C_{m_{i+1}})h_1(P_{m_{i-1}}) = h_1(P_4) \prod_{i=2}^{m} h_1(C_{v_i}) \prod_{i \in B} h_1(D_i) \quad (m_k = 1, 2).$$

Next we continue to proceed this step, there is $i = 2, 3, \ldots, k$ or $i = 2, 3, \ldots, k - 1$ such that $m_i + 1 = v_i$. So

$$h_1(P_{m_k}) = h_1(P_4) \prod_{i=k+1}^{m} h_1(C_{v_i}) \prod_{i \in B} h_1(D_i) \quad (m_k = 2N)$$

or

$$h_1(P_{m_{k-1}}) = h_1(P_4) \prod_{i=k}^{m} h_1(C_{v_i}) \prod_{i \in B} h_1(D_i) \quad (m_k = 1, 2).$$

Since $m_{k-1} = 3, 5$ or m_k is an even number greater than or equal to 4, by Lemma 12, we have that $m_k = 4, \bigcup_{i=1}^{m} C_{v_i} \cong \bigcup_{i=1}^{m} C_{v_{m+1}}$ and $|B| = 0$. Hence,

$$H \cong K_1 \cup K_3 \cup \left(\bigcup_{i=1}^{k} C_{m_{i+1}} \right).$$

Case 2: $f = 1, \quad l = 0, \quad r = 0$ and $n = 1$. So

$$H \cong K_3 \cup \left(\bigcup_{i=1}^{m} C_{v_i} \right) \cup \left(\bigcup_{i \in B} D_i \right) \cup T(l_1^{(1)}, l_2^{(1)}, l_3^{(1)}).$$

From Propositions 2 and 4, it is clear that $B \subset \{4\}$ and $l_1^{(1)} = 1, l_2^{(1)} = 2$ and $l_3^{(1)} \leq 4$. We replace $l_3^{(1)}$ by l_3. For $h_1(1, 2, l_3) = h_1(D_{h_3+3})$, we have that $h_1(P_{m_0})$ has no multiple root. So,

$$h_1(P_{m_0}) = h_1(P_4) \prod_{i=1}^{m} h_1(C_{v_i}) h(1, 1, l_3) \prod_{i \in B'} h_1(D_i),$$

where $B' \subset \{4\}$.

Suppose $l_3 \geq 2$. Since $h_1(1, 1, l_3) = h_1(C_{l_3+2})$, similar to case 1, there are $i, j = 1, 2, \ldots, k; \quad i \neq j$ such that

$$v_i = m_i + 1, \quad l_3 = m_j - 1.$$
So

\[m_k = 4, \quad |B| = 0, \]

namely, there is a \(j = 1, 2, \ldots, k \) with

\[H \cong K_3 \cup \left(\bigcup_{i \neq j}^k C_{m_i+1} \right) \cup T(1, 1, m_j - 1). \]

Suppose \(l_3 = 1 \). For \(h_1(1, 1, 1) = x + 3 \), similar to the discussion of (4) and (5), there is \(m_k = 2N \) such that

\[h_1(P_{m_k}) = (x + 3)h_1(P_4) \prod_{i \in A} h_1(C_{v_i}) \prod_{i \in B} h_1(D_i) \]

or \(m_k = 1, 2 \) such that

\[h_1(P_{m_k-1}) = (x + 3)h_1(P_4) \prod_{i \in A} h_1(C_{v_i}) \prod_{i \in B} h_1(D_i), \]

where \(A \subset \{1, 2, \ldots, m\} \), \(B \subset \{4\} \). When \(m_k = 4 \), the formula above is false. When \(m_k = 1, 2 \) or \(m_k = 2l > 4 \), both formulae above contradict Lemma 12.

Case 3: \(f = 1 \), \(l = 0 \), \(r = 0 \) and \(n = 0 \). There is \(B \subset \{4\} \) such that

\[H \cong K_3 \cup \left(\bigcup_{i = 1}^m C_{v_i} \right) \cup \left(\bigcup_{i \in B} D_i \right). \]

Since \(|V(H)| = |E(H)| \) and \(|V(P_{m_k})| \neq |E(P_{m_k})| \), we know that \(H \) and \(P_{m_k} \) are not adjointly equivalent, this is a contradiction.

Case 4: \(f = 0 \), \(l = 1 \) and \(n = r = 0 \). There is \(B \subset \{4, 5, 6, 7\} \) such that

\[H \cong P_u \cup \left(\bigcup_{i = 1}^m C_{v_i} \right) \cup \left(\bigcup_{i \in B} D_i \right). \]

Here set \(u_1 = u \), by Proposition 4, we know that \(B \subset \{4\} \). Thus

\[\prod_{i = 1}^k h_1(C_{m_i+1})h_1(P_{m_k}) = h_1(P_u) \prod_{i \in A} h_1(C_{v_i}) \prod_{i \in B} h_1(D_i) \quad (m_k = 2N) \quad (6) \]

and

\[\prod_{i = 1}^k h_1(C_{m_i+1})h_1(P_{m_k-1}) = h_1(P_u) \prod_{i = 1}^m h_1(C_{v_i}) \prod_{i \in B} h_1(D_i) \quad (m_k = 1, 2). \quad (7) \]

In (6), by Lemma 7(3), we have

\[\left(\prod_{i = 1}^m h_1(C_{v_i}) \prod_{i \in B} h_1(D_i), h_1(P_{m_k}) \right) = 1, \]
thus \(h_1(P_{m_k}) \mid h_1(P_u) \). If \(u \) is an even, for the same reason, we have that \(h_1(P_{m_k}) \mid h_1(P_u) \), so \(u = m_k \). If we eliminate \(h_1(P_{m_k}) \) from both sides of (6), there is \(B \subset \{4\} \) with

\[
\prod_{i=1}^{k} h_1(C_{m_i+1}) = \prod_{i=1}^{m} h_1(C_{v_i}) \prod_{i \in B} h_1(D_i).
\]

Since \(m_k \geq 4 \), comparing the least roots of both sides, in the above formula, we get that \(|B| = 0 \) and there is a \(j = 1, 2, \ldots, k \) such that

\[
H \cong P_j \cup \left(\bigcup_{i=1}^{j} C_{m_i+1} \right).
\]

If \(u \) is odd, by Lemma 2(1), we have \(u = 3, 5 \) by symmetry. If \(u = 3 \), similar to (4), we have

\[
h_1(P_{m_k}) = h_1(P_3) \prod_{i \in A} h_1(C_{v_i}) \prod_{i \in B} h_1(D_i), \quad A \subset \{1, 2, \ldots, m\}.
\]

This contradicts Lemma 12.

A similar contradiction occurs when \(u = 5 \).

In (7), according to three cases, we have that \(u \) is even, \(u = 3 \) and \(5 \). Similar to the discussion of (5), we can show that

\[
h_1(P_{m_{k-1}}) = h_1(P_u) \prod_{i \in A} h_1(C_{v_i}) \prod_{i \in B'} h_1(D_i),
\]

where \(B' \subset B, A \subset \{1, 2, \ldots, m\} \). By Lemma 12, we know \(|A| = 0, |B'| = 0 \) and there is \(u = 3 \) with \(m_k = 1 \), \(u = 5 \) with \(m_k = 2 \). Namely, if \(m_k = 1 \), then

\[
H \cong P_j \cup \left(\bigcup_{i=1}^{j} C_{m_i+1} \right) \quad (j = 1, 2, \ldots, k-1),
\]

or

\[
H \cong P_3 \cup D_4 \cup \left(\bigcup_{i=1}^{k-2} C_{m_i+1} \right).
\]

If \(m_k = 2 \), then

\[
H \cong P_j \cup \left(\bigcup_{i=1}^{j} C_{m_i+1} \right) \quad (j = 1, 2, \ldots, k-1).
\]

The proof is completed. \(\square \)
References