

Discrete Mathematics 259 (2002) 369 – 381

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

Note Graphs with chromatic polynomial $\sum_{l\leqslant m_0}$ $\begin{pmatrix} & & l \\ & & l \end{pmatrix}$ m_0-l $\Big)$ $(\lambda)_l$ $\stackrel{\leftrightarrow}{\sim}$

Chengfu Ye^a, Nianzu Li^{b,*}

^a*Department of Mathematics, Qinghai Normal University, Xining, Qinghai 810008, People's Republic of China* ^b*Shanghai Second Polytechnic University, 80 Shanxi Bei Lu, Shanghai 200041, People's Republic of China*

Received 18 February 2000; received in revised form 24 May 2001; accepted 28 January 2002

Abstract

In this paper, using the properties of chromatic polynomial and adjoint polynomial, we characterize all graphs having chromatic polynomial $\sum_{l \le m_0} {l \choose m_0 - l} (\lambda)_l$. c 2002 Elsevier Science B.V. All rights reserved.

Keywords: Chromatic polynomial; Adjoint polynomial

1. Introduction

The graphs considered here are finite, undirected and simple. Let G be a graph and $P(G, \lambda)$ its chromatic polynomial, $h(G, x)$ be its adjoint polynomial. Two graphs G and H are *chromatically equivalent* if $P(G, \lambda) = P(H, \lambda)$, and *adjointly equivalent* if $h(G, x) = h(H, x)$. A graph G is *chromatically unique* if $P(G, \lambda) = P(H, \lambda)$ implies that H is isomorphic to G. Similarly, a graph G is *adjointly unique* if $h(G, x) = h(H, x)$ implies that H is isomorphic to G. By \bar{G} we denote the complement of G. It is obvious that a graph G is chromatically unique if and only if \bar{G} is adjointly unique.

To compute chromatic polynomial for a given graph is well known, but to determine the graphs with a given chromatic polynomial is not easy. In this paper, using the

 $\dot{\mathbb{R}}$ Supported by foundation for University Key Teacher by the Ministry of Education and the National Natural Science Foundation of China (No. 10061003).

[∗] Corresponding author.

⁰⁰¹²⁻³⁶⁵X/02/\$ - see front matter \odot 2002 Elsevier Science B.V. All rights reserved. PII: S 0012-365X(02)00592-7

properties of adjoint polynomial and the relations of adjoint and chromatical polynomial, we shall give all graphs determined by the polynomial $\sum_{l \le m_0} {l \choose m_0 - l}$ $(\lambda)_l$.

Let G be a graph, $p(G)$ and $q(G)$ be its order and size, respectively. The symbols P_n , C_n and D_n stand for the following graphs of order n: the path, the cycle and the graph obtained by identifying a vertex of K_3 with one endvertex of P_{n-2} . Let $T(l_1, l_2, l_3)$, $(l_1 \le l_2 \le l_3)$ be a tree with one vertex of degree 3 and three vertices of degree 1 in which the distances from the vertex of degree 3 to the vertices of degree 1 are l_1 , l_2 and l_3 , respectively. Let $h(G,x) = x^{\alpha(G)}h_1(G,x)$, where $h_1(G,x)$ is a polynomial with a nonzero constant term.

For convenience, let $h(G)$ stand for $h(G,x)$, and $h_1(G)$ for $h_1(G,x)$. We will write $h(l_1, l_2, h_3)$ for $h(T(l_1, l_2, l_3), x)$, and $h_1(l_1, l_2, l_3)$ for $h_1(T(l_1, l_2, l_3), x)$. Let $\beta(G)$ denote the least root of $h_1(G)$. The reader may refer to [[\[5,2\]](#page-12-0)] for all notations and terminology not explained here.

2. Preliminaries

Let $b_i(G)$ denote the number of ideal subgraphs with $p - i$ components (see [[\[5\]](#page-12-0)]), then

$$
P(\bar{G},\lambda) = \sum_{i=0}^{p-1} b_i(G)(\lambda)_{p-i},
$$

where $p = |V(G)|$ and $(\lambda)_k = \lambda(\lambda - 1) \cdots (\lambda - k + 1)$.

Definition 1 (Liu [[\[5\]](#page-12-0)]). If G is a graph with p vertices, then the polynomial

$$
h(G, x) = \sum_{i=0}^{p-1} b_i(G) x^{p-i}
$$

is called *the adjoint polynomial* of G.

Definition 2 (Liu $\lfloor \lceil 5 \rceil$).

$$
R(G) = \begin{cases} b_2(G) - \binom{q(G) - 1}{2} + 1 & \text{if } q(G) > 0, \\ 0 & \text{if } q(G) = 0. \end{cases}
$$

is said to be *the character of a graph* G.

Lemma 1 (Liu [[\[5\]](#page-12-0)]). *If* G has k connected components G_1, G_2, \ldots, G_k , then

$$
h(G, x) = \prod_{i=1}^{k} h(G_i x), \quad R(G) = \sum_{i=1}^{k} R(G_i).
$$

Lemma 2 (Liu [[\[5\]](#page-12-0)]). (1) (Liu [[\[1\]](#page-12-0)]) $h(P_{2k+1}) = h(C_{k+1})h(P_k)$ ($k \ge 3$),

- (2) (Liu [[\[4\]](#page-12-0)]) $h_1(C_n) = h_1(1, 1, n-2), h_1(D_n) = h_1(1, 2, n-3),$
- (3) $h(P_2)h(C_6) = h(P_3)h(D_5)$,
- (4) $h(P_2)h(C_9) = h(P_5)h(D_6)$,
- (5) $h(P_2)h(C_{15}) = h(P_5)h(C_5)h(D_7)$.

Proof. Conditions $(3)-(5)$ $(3)-(5)$ $(3)-(5)$ can be directly verified.

Lemma 3 (Liu [[\[5\]](#page-12-0)]). *Let* G *be a connected graph*, *then*

(1) $R(G) \le 1$, *and the equality holds if and only if* $G \cong P_n$ (n ≥ 2) *or* $G \cong K_3$, (2) $R(G) = 0$ *if and only if* G *is one of the graphs* K_1, C_n, D_n *and* $T(l_1, l_2, l_3)$.

Lemma 4 (Liu [[\[6\]](#page-12-0)]). Let T be a tree, and $f(T, \mu)$ be the characteristic polynomial *of* T. *If*

$$
f(T, \mu) = \mu^{\theta(T)} f_1(T, \mu), \quad h(T, x) = x^{\alpha(T)} h_1(T, x)
$$

and $x = -\mu^2$ *, then*

$$
h_1(T, x) = (-1)^k f_1(T, \mu),
$$

where $\theta(T)$ *and* $\alpha(T)$ *are the degrees of the lowest terms of* $f(T, \mu)$ *and* $h(T, x)$, *respectively*, *and* k *is the number of edges in a maximum matching.*

Lemma 5 (Biggs [[\[1\]](#page-12-0)]). *If* λ *is m-fold eigenvalue of tree* T *, then* $-\lambda$ *is, too.*

Lemma 6 (Cvetkovic et al. [[\[3\]](#page-12-0)]). (1) *The eigenvalues of the T-shape tree* $T(1,1,n-$ 1) *are* 0 *and*

$$
2\cos\frac{2i-1}{2n+2}\pi, \quad 1\leq i\leq n+1.
$$

(2) *The eigenvalues of* P_n *are*

$$
2\cos\frac{i}{n+1}\pi, \quad 1\leq i\leq n.
$$

Proposition 1. (1) *The root-set of* $h_1(C_n)$ *is*

$$
\left\{-2\left(1+\cos\frac{2i-1}{n}\,\pi\right)\,\Big|\,1\leqslant i\leqslant\left[\frac{n}{2}\right]\right\}.
$$

(2) *The root-set of* $h_1(P_n)$ *is*

$$
\left\{-2\left(1+\cos\frac{2i}{n+1}\,\pi\right)\,\Big|\,1\leq i\leq\left[\frac{n}{2}\right]\right\}.
$$

Proof. (1) Since $h_1(C_n, x) = h_1(1, 1, n-2)$, by Lemma [6,](#page-2-0) we know that the eigenvalues of $T(1, 1, n-2)$ $T(1, 1, n-2)$ $T(1, 1, n-2)$ are 0 and $2\cos((2i-1)/2n)\pi$, $1 \le i \le n$. From Lemmas 2 and [4,](#page-2-0) we have

$$
h_1(C_n, x) = h_1(1, 1, n-2) = (-1)^k f_1(T(1, 1, n-2), \mu),
$$

where $x = -\mu^2$ and k is the number of edges in a maximum matching of $T(1, 1, n-2)$. Since the degree of $h_1(C_n)$ equals one-half of the degree of $f_1(T(1, 1, n-2), \mu)$, by Lemma [5,](#page-2-0) the roots of $f_1(T(1, 1, n-2), \mu)$ are symmetric about the origin. Thus the root of $h_1(C_n)$ is opposite to positive roots of square. By Lemma 6 and the trigonometric formula, we get [\(1\)](#page-2-0). Similarly, we can show that [\(2\)](#page-6-0) is true. \square

Lemma 7 (Wang and Liu [[\[7\]](#page-12-0)]). (1) *For* $n \geq 4$, $\beta(D_n) \leq \beta(C_n) \leq \beta(P_n)$ *and equality holds if and only if* $n = 4$,

- (2) (Wang and Liu [[\[7\]](#page-12-0)]) *for* $n \ge 4$, $\beta(D_{n+1}) < \beta(D_n)$ *and* $\beta(C_{n+1}) < \beta(C_n)$; *for* ≥ 2 , $\beta(P_{n+1}) < \beta(P_n)$,
- (3) *for* $m > 3$ *and* $n \ge 1$, $(h_1(C_m), h_1(P_{2n})) = 1$, $(m > 3, n \ge 1)$,
- (4) *for* $m \ge 4$ *and* $n \ge 1$, $h_1(P_n)$ *and* $h_1(C_m)$ *have no multiple root*,
- (5) *for* $n \ge 4$, $\beta(C_n) > -4$.

Proof. By Proposition [1,](#page-1-0) we have $(3)-(5)$ $(3)-(5)$ $(3)-(5)$.

Lemma 8 (Cvetkovic et al. [[\[3\]](#page-12-0)]). Let T be a tree and $\lambda_1(T)$ the maximum eigen*value of* T. Then $\lambda_1(T) < 2$ *if and only if*

$$
T \in \{P_n, T(1,1,n), T(1,2,2), T(1,2,3), T(1,2,4)\}.
$$

Proposition 2. Let T be a tree, then $\beta(T) > -4$ if and only if

 $T \in \{P_n, T(1, 1, n), T(1, 2, 2), T(1, 2, 3), T(1, 2, 4)\}.$

Proof. It follows directly from Lemmas [4](#page-2-0) and 8.

Lemma 9 (Zhao et al. [[\[8\]](#page-12-0)]). (1) Let G be a connected graph such that $R(G) = -k$ *and* $q(G) \geq p(G) + k - 1$. *Then* $\beta(G) \leq -4$, *where* $k = 1, 2, 3$,

(2) Let G be a connected graph such that $k \geq 4$ and $R(G) = -k$. Then $q(G) <$ $p(G) + k - 1.$

Lemma 10. (1) $\beta(D_5) = \beta(C_6) = \beta(P_{11}),$

- (2) $\beta(D_6) = \beta(C_9) = \beta(P_{17}),$
- (3) $\beta(D_7) = \beta(C_{15}) = \beta(P_{29})$.

Proof. These are direct results of Lemmas [2](#page-1-0) and [7.](#page-3-0)

Lemma 11 (Liu $[[5]]$ $[[5]]$ $[[5]]$).

$$
h(P_n,x)=\sum_{k\leq n}\binom{k}{n-k}x^k.
$$

Lemma 12 (Zhao et al. [[\[8\]](#page-12-0)]). Let $n \ge 2$. Then \overline{P}_n is chromatically unique if and only *if* $n = 3, 5$ *or* $n \neq 4$ *is even.*

Proposition 3. Let m_0 be odd, then the adjoint equivalent graphs of P_{m_0} can only *be*

$$
rK_1\cup fK_3\cup\left(\bigcup_{i=1}^l P_{u_i}\right)\cup\left(\bigcup_{i=1}^m C_{v_i}\right)\cup\left(\bigcup_{i=1}^n T(I_1^{(i)},I_2^{(i)},I_3^{(i)})\right)\cup\left(\bigcup_{i\in B} D_i\right),
$$

where $f = 0, 1$; $f + l = 1$; $r + n \le f$, $B \subset \{4, 5, 6, 7\}$, *and* $l_1^{(i)} = 1, l_2^{(i)} = 2, l_3^{(i)} \le 4$, *or* $l_1^{(i)} = l_2^{(i)} = 1, i = 1, 2, ..., n.$

Proof. Let $m_i = (m_{i-1} - 1)/2$ $(i = 1, 2, ..., k)$ be positive integers. By Lemma [2\(](#page-1-0)1), it follows that

$$
h_1(P_{m_0})=\prod_{i=1}^{k'}h_1(C_{m_i+1})h_1(P_{m_{k'}}),
$$

where if $m_k = 1, 2$, then $k' = k - 1$, else $k' = k$.

Let H be the adjointly equivalent graph of P_{m_0} , by Lemma [7](#page-3-0) we know that $h_1(P_{m_0})$ has no multiple root. Thus $h_1(H)$ at most has one $h_1(K_3)$. So by Lemma [2\(](#page-1-0)2), $h_1(D_{l'}) = h_1(1, 2, l'-3)$ $h_1(D_{l'}) = h_1(1, 2, l'-3)$ $h_1(D_{l'}) = h_1(1, 2, l'-3)$. If $l' \ge 8$, by Lemma [7](#page-3-0) and Proposition 2 we have that $\beta(D_{l'}) \le$ $-4 < \beta(P_{m_0})$. So $h_1(P_{m_0})$ does not contain $h_1(D_{l'})$ (l' ≥ 8). If $G \cong T(l_1, l_2, l_3)$, and $l_1 = 1$, $l_2 = 2, l_3 \geq 5$ $l_2 = 2, l_3 \geq 5$ $l_2 = 2, l_3 \geq 5$ or $l_1 \neq 1, l_2 \neq 1, 2$, according to Proposition 2, we know that $h_1(P_{m_0})$ does not include $h_1(G)$. Hence we can assert that

$$
H = rK_1 \cup fK_3 \cup \left(\bigcup_{i=1}^l P_{u_i}\right) \cup \left(\bigcup_{i=1}^m C_{v_i}\right) \cup \left(\bigcup_{i=1}^n T(I_1^{(i)}, I_2^{(i)}, I_3^{(i)})\right) \cup \left(\bigcup_{i \in B} D_i\right)
$$

$$
\cup \left(\bigcup_{i=1}^{s_2} H_i\right) \cup \left(\bigcup_{i=s_2+1}^{s_3} H_i\right) \cup \cdots \cup \left(\bigcup_{i=s_{t-1}+1}^{s_t} H_i\right),\tag{1}
$$

where $R(H_i) = -j$ and H_i is connected if $s_{i-1} + 1 \le i \le s_i$, $s_0 = 0$, $j = 1, 2, \ldots, t; B \subset$ $\{4, 5, 6, 7\}; l_1^{(i)} = 1, l_2^{(i)} = 2; l_3^{(i)} \leq 4 \text{ or } l_1^{(i)} = l_2^{(i)} = 1; f = 0, 1.$

By Lemma [1,](#page-1-0) it follows that

$$
R(H) = fR(K_3) + \sum_{i=1}^{l} R(P_{u_i}) + \sum_{i=1}^{m} R(C_{v_i}) + \sum_{i=1}^{n} R(T(I_1^{(i)}, I_2^{(i)}, I_3^{(i)})) + \sum_{i \in B} R(D_i) + \sum_{i=1}^{s_i} R(H_i).
$$

From Lemma [3,](#page-2-0)

$$
\sum_{i=1}^{s_t} R(H_i) = 1 - l - f, \quad \sum_{i=1}^{s_t} |R(H_i)| = l + f - 1.
$$

From [\(1\)](#page-2-0), we know that

$$
q(H) = f q(K_3) + \sum_{i=1}^{l} q(P_{u_i}) + \sum_{i=1}^{m} q(C_{v_i}) + \sum_{i=1}^{n} q(T(I_1^{(i)}, I_2^{(i)}, I_3^{(i)})) + \sum_{i \in B} q(D_i) + \sum_{i=1}^{s_i} q(H_i).
$$

Since $\beta(H_i) \geq \beta(P_{m_0}) > -4$ and H_i ($1 \leq i \leq s_t$) is connected, by Lemma [9](#page-3-0) we have

$$
q(H_i) \leqslant p(H_i) + |R(H_i)| - 2, \quad 1 \leqslant i \leqslant s_t.
$$

So, we can get that

$$
q(H) \leq f p(K_3) + \sum_{i=1}^{l} p(P_{u_i}) + \sum_{i=1}^{m} p(C_{v_i}) + \sum_{i=1}^{n} p(T(I_1^{(i)}, I_2^{(i)}, I_3^{(i)}))
$$

+
$$
\sum_{i \in B} p(D_i) + \sum_{i=1}^{s_i} (p(H_i) + |R(H_i)| - 2) - l - n
$$

=
$$
p(H) - 2s_t - r - n + f - 1
$$

and

$$
q(H) = q(P_{m_0}) = p(P_{m_0}) - 1 = p(H) - 1.
$$

Thus $2s_t + r + n \le f$, $f = 0, 1$. Clearly, $s_t = 0$. Recalling

$$
\sum_{i=1}^{s_i} |R(H_i)| = l + f - 1,
$$

we get that $f + l = 1$ and $r + n \le f$. Hence Proposition [3](#page-2-0) holds. \Box

Proposition 4. Let m_0 be odd. If

$$
h_1(P_{m_0}) = h_1(P_n) \prod_{i=1}^m h_1(C_{v_i}) \prod_{i \in B} h_1(D_i); \quad and \quad B \subset \{4, 5, 6, 7\}
$$
 (2)

or

$$
h_1(P_{m_0})=h_1(P_4)\prod_{i=1}^m h_1(C_{v_i})\prod_{i\in B}h_1(D_i)h_1(1,1,l_3), \text{ and } B\subset\{4,5,6,7\},
$$
 (3)

then $5, 6, 7 \notin B$.

Proof. Let $m_i = (m_{i-1} - 1)/2$ $(i = 1, 2, \ldots, k)$ be positive integers. We need only prove the fact that $h_1(D_i)$ cannot divide $h_1(P_{m_0})$ for $i = 5, 6, 7$. We prove the fact by induction on m_0 .

We first show that $h_1(D_7)$ cannot divide $h_1(P_{m_0})$.

If $m_0 < 29$, by Lemma [10](#page-3-0) we see that $h_1(D_7)$ cannot divide $h_1(P_{m_0})$. If $m_0 = 29$, assume $h_1(D_7)|h_1(P_{29})$ $h_1(D_7)|h_1(P_{29})$ $h_1(D_7)|h_1(P_{29})$. Since $h_1(P_{m_0})$ is without multiple root, by Lemma 2 and (2), we have

$$
h_1(P_5)h_1(C_5)h_1(P_{14})h_1(C_{15})=h_1(P_5)h_1(C_5)h_1(D_7)h_1(P_n)\prod_{i=1}^m h_1(C_{v_i})\prod_{i\in B'}h_1(D_i),
$$

where $B' = B - \{7\}$.

We denote by β (left) the minimum root of the left-hand side and by β (right) the minimum root of the right-hand side. Since

$$
h_1(P_2)h_1(C_{15})=h_1(P_5)h_1(C_5)h_1(D_7),
$$

then

$$
h_1(P_5)h_1(C_5)h_1(P_{14})=h_1(P_2)h_1(P_n)\prod_{i=1}^m h_1(C_{v_i})\prod_{i\in B'}h_1(D_i),
$$

where $\beta(\text{left}) = \beta(P_{14}) \notin {\beta(D_4), \beta(D_5), \beta(D_6)}.$

According to Lemma [4,](#page-2-0) the roots of $h_1(C_m)$ and $h_1(P_n)$ are real numbers, then β (right) $\neq \beta$ ($\bigcup_{i=1}^{m} C_{v_i}$). So $\beta(P_{14}) = \beta(P_n)$ and $n = 14$. Eliminating $h_1(P_{14})$ from both sides of the above equality, we get that

$$
h_1(P_5)h_1(C_5) = h_1(P_2) \prod_{i=1}^m h_1(C_{v_i}) \prod_{i \in B'} h_1(D_i).
$$

So, $\beta(\text{left}) = \beta(C_5) \bar{\epsilon} {\beta(D_4), \beta(D_5), \beta(D_6)}$ and there exists v_i such that $\beta(C_5) = \beta(C_{v_i})$. We may assume $v_1 = 5$, then

$$
h_1(P_5) = h_1(P_2) \prod_{i=2}^m h_1(C_{v_i}) \prod_{i \in B'} h_1(D_i).
$$

But then we have $\beta(\text{left}) = \beta(P_5) = -3$ and $\beta(\text{right}) = \beta(D_6 \bigcup_{i=2}^m C_{v_i})$. However, this is a contradiction because $\beta(D_6) = \beta(P_{17}) < \beta(P_5)$ and $\beta(C_{v_i}) \neq \beta(P_5)$ for every $v_i \geq 4$. So when $m_0 = 29$, $h_1(D_7)$ cannot divide $h_1(P_{m_0})$.

We assume for the moment that $29 < k \le m_0$, then $h_1(D_7)$ cannot divide $h_1(P_k)$.

If $k = m_0$, by the conduction of proposition and Lemma [2\(](#page-1-0)1), we have $B \subset \{4, 5, 6, 7\}$ such that

$$
h_1(C_{m_1+1})h_1(P_{m_1})=h_1(P_n)\prod_{i=1}^m h_1(C_{v_i})\prod_{i\in B} h_1(D_i),
$$

then $\beta(\text{left}) = \beta(C_{m_1+1})$. Since there is $n < m_0$ such that $\beta(P_n) \neq \beta(P_{m_0})$ and $m_0 > 29$, by Lemma [2,](#page-1-0) [7,](#page-3-0) we know that

$$
\beta(\text{right}) < \beta(P_{29}) = \beta(C_{15}) \leq \beta\left(\bigcup_{i \in B} D_i\right).
$$

Thus, from $\prod_{i=1}^{m} h_1(C_{v_i})$ we can get β (right).

Similar to $m_0 = 29$, we may assume that $C_{m_1+1} \cong C_{v_1}$. In this case, we have

$$
h_1(P_{m_1})=h_1(P_n)\prod_{i=2}^m h_1(C_{v_i})\prod_{i\in B} h_1(D_i).
$$

If m_1 is odd, by the induction hypothesis, we know $7 \notin B$.

If m_1 is even, since $m_1 > 14$, we know P_{m_1} is adjointly unique by Lemma [12,](#page-4-0) so 7∉B. Similarly, we can show that 5,6∉B in [\(2\)](#page-6-0).

Suppose $l_3 > 1$. Since $h_1(1, 1, l_3) = h_1(C_{l_3+2})$, we know that [\(3\)](#page-6-0) equals [\(2\)](#page-6-0). If $l_3 = 1$, then

$$
h_1(P_{m_0})=(x+3)h_1(P_4)\prod_{i=1}^m h_1(C_{v_i})\prod_{i\in B}h_1(D_i).
$$

Note that $h_1(P_5) = h_1(P_2)(x + 3)$. Similar to the proof of [\(2\)](#page-6-0), we can show that 5, 6, 7 \notin B in [\(3\)](#page-6-0). \Box

3. Main results and proofs

Theorem 1. *Let* m⁰ *be a positive integer. Then the graph* G *has chromatic polynomial of the form*

$$
\sum_{l\leqslant m_0}\binom{l}{m_0-l}(\lambda)_l
$$

if and only if G satisfies one of the following:

- (a) *For even* $m_0 \geq 4$, *either* $\bar{G} \cong P_{m_0}$ *or else* $\bar{G} \cong K_1 \cup K_3$.
- (b) *For odd* m_0 *with* $m_i = (m_{i-1} 1)/2$ *a positive integer for* $i = 1, 2, \ldots, k$, *either* $\bar{G} \cong P_{m_0}$ *or else*
	- (i) $\bar{G} \in \{K_1 \cup K_3 \cup_{i=1}^k C_{m_i+1}, K_3 \cup_{i \neq j}^k C_{m_i+1} \cup T(1, 1, m_j 1), P_{m_j} \cup_{i=1}^j C_{m_i+1} (j =$ $1, 2,..., k)$ *if* $m_k = 4$, (ii) $\bar{G} \in \{P_{m_j} \bigcup_{i=1}^j C_{m_i+1}, (j=1,2,\ldots,k)\}$ *if* $m_k \neq 4$ *is even*,

(iii)
$$
\bar{G} \in \{P_3 \cup D_4 \cup_{i=1}^{k-2} C_{m_i+1}, P_{m_j} \cup_{i=1}^{j} C_{m_i+1} \ (j=1,2,\ldots,k-1)\} \ \text{if} \ m_k=1.
$$

Proof. Sufficiency: If $P(\bar{G}, \lambda) = \sum_{i=1}^{p-1} b_i(G)(\lambda)_{p-i}$, then $h(G, x) = \sum_{i=1}^{p-1} b_i(G)x^{p-i}$. Since $h(P_4) = h(K_1 \cup K_3)$, $h(C_4) = h(D_4)$ and $h(1, 1, l) = h(C_{l+2} \cup K_1)$, by Lemma [2\(](#page-1-0)1) and Lemma [11](#page-4-0) sufficiency is obvious.

Necessity: We need only prove that the adjointly equivalent graphs of P_{m_0} belong to the class of graphs described in this theorem.

If $m_0 \neq 4$ is an even, by Lemma [12,](#page-4-0) obviously conclusion holds.

If $m_0 = 4$, we can directly prove that $K_1 \cup K_3$ is only adjoint equivalent graph of P_4 . If m_0 is odd, by Proposition [3,](#page-2-0) the adjointly set of P_{m_0} is

$$
rK_1\cup fK_3\cup\left(\bigcup_{i=1}^l P_{u_i}\right)\cup\left(\bigcup_{i=1}^m C_{v_i}\right)\cup\left(\bigcup_{i=1}^n T(I_1^{(i)},I_2^{(i)},I_3^{(i)})\right)\cup\left(\bigcup_{i\in B} D_i\right),
$$

where $f = 0, 1; f + l = 1; r + n \le f; l_1^{(i)} = l_2^{(i)} = 1$ or $l_1^{(i)} = 1, l_2^{(i)} = 2, l_3^{(i)} \le 4, B \subset \{4, 5,$ $6, 7$.

We discuss each case in the following.

Case 1: $f = 1, l = 0, r = 1$ and $n = 0$. Then

$$
H \cong K_1 \cup K_3 \cup \left(\bigcup_{i=1}^m C_{v_i} \right) \cup \left(\bigcup_{i \in B} D_i \right).
$$

By Proposition [4,](#page-2-0) we get $B \subset \{4\}$. Since $h_1(H) = h_1(P_{m_0})$ and $h_1(K_1 \cup K_3) = h_1(P_4)$, we have

$$
\prod_{i=1}^{k} h_1(C_{m_i+1})h_1(P_{m_k}) = h_1(P_4) \prod_{i=1}^{m} h_1(C_{v_i}) \prod_{i \in B} h_1(D_i) \quad (m_k = 2N)
$$
\n(4)

or

$$
\prod_{i=1}^{k-1} h_1(C_{m_i+1})h_1(P_{m_{k-1}}) = h_1(P_4) \prod_{i=1}^{m} h_1(C_{v_i}) \prod_{i \in B} h_1(D_i) \quad (m_k = 1, 2). \tag{5}
$$

In (4) and (5) ,

$$
\beta(\text{left}) = \beta(C_{m_1+1}), \quad \beta(\text{right}) = \beta\left(\left(\bigcup_{i=1}^m C_{v_i}\right) \cup \left(\bigcup_{i \in B} D_i\right)\right).
$$

If β (right) = β (C₄) = β (D₄), then [\(4\)](#page-8-0) does not hold. From [\(5\)](#page-8-0) we get $k = 2, m_2 = 1$ and $h_1(P_3) = h_1(P_4)$, which is a contradiction. Hence $\beta(\text{right}) = \beta(\bigcup_{i=1}^m C_{v_i})$. Suppose β (right) = β (C_{v₁}), by symmetry, we have that $C_{m_1+1} \cong C_{v_1}$. Clearly, $m_1 + 1 = v_1$. Eliminating $h_1(C_{m_1+1})$ from both sides of [\(4\)](#page-8-0) and [\(5\)](#page-8-0), we obtain that

$$
\prod_{i=2}^k h_1(C_{m_i+1})h_1(P_{m_k}) = h_1(P_4) \prod_{i=2}^m h_1(C_{v_i}) \prod_{i \in B} h_1(D_i) \quad (m_k = 2N)
$$

or

$$
\prod_{i=2}^{k-1} h_1(C_{m_i+1})h_1(P_{m_{k-1}}) = h_1(P_4) \prod_{i=2}^m h_1(C_{v_i}) \prod_{i \in B} h_1(D_i) \quad (m_k = 1, 2).
$$

Next we continue to proceed this step, there is $i = 2, 3, \ldots, k$ or $i = 2, 3, \ldots, k - 1$ such that $m_i + 1 = v_i$. So

$$
h_1(P_{m_k}) = h_1(P_4) \prod_{i=k+1}^m h_1(C_{v_i}) \prod_{i \in B} h_1(D_i) \quad (m_k = 2N)
$$

or

$$
h_1(P_{m_{k-1}})=h_1(P_4)\prod_{i=k}^m h_1(C_{v_i})\prod_{i\in B}h_1(D_i) \quad (m_k=1,2).
$$

Since $m_{k-1} = 3, 5$ or m_k is an even number greater than or equal to 4, by Lemma 12, we have that $m_k = 4, \bigcup_{i=1}^m C_{v_i} \cong \bigcup_{i=1}^k C_{m_i+1}$ and $|B| = 0$. Hence,

$$
H \cong K_1 \cup K_3 \cup \left(\bigcup_{i=1}^k C_{m_i+1} \right).
$$

Case 2: $f = 1$, $l = 0$, $r = 0$ and $n = 1$. So

$$
H \cong K_3 \cup \left(\bigcup_{i=1}^m C_{v_i} \right) \cup \left(\bigcup_{i \in B} D_i \right) \cup T(I_1^{(1)}, I_2^{(1)}, I_3^{(1)}).
$$

From Propositions [2](#page-1-0) and [4,](#page-2-0) it is clear that $B \subset \{4\}$ and $l_1^{(1)} = 1, l_2^{(1)} = 2$ and $l_3^{(1)} \le 4$. We replace $l_3^{(1)}$ by l_3 . For $h_1(1,2, l_3) = h_1(D_{l_3+3})$, we have that $h_1(P_{m_0})$ has no multiple root. So,

$$
h_1(P_{m_0})=h_1(P_4)\prod_{i=1}^m h_1(C_{v_i})h(1,1,l_3)\prod_{i\in B'}h_1(D_i),
$$

where $B' \subset \{4\}.$

Suppose $l_3 \geq 2$. Since $h_1(1, 1, l_3) = h_1(C_{l_3+2})$, similar to case 1, there are $i, j =$ $1, 2, \ldots, k; i \neq j$ such that

$$
v_i = m_i + 1, \quad l_3 = m_j - 1.
$$

So

$$
m_k=4, \quad |B|=0,
$$

namely, there is a $j = 1, 2, \dots, k$ with

$$
H \cong K_3 \cup \left(\bigcup_{i \neq j}^k C_{m_i+1}\right) \cup T(1,1,m_j-1).
$$

Suppose $l_3 = 1$. For $h_1(1, 1, 1) = x + 3$, similar to the discussion of [\(4\)](#page-8-0) and [\(5\)](#page-8-0), there is $m_k = 2N$ such that

$$
h_1(P_{m_k}) = (x+3)h_1(P_4) \prod_{i \in A} h_1(C_{v_i}) \prod_{i \in B} h_1(D_i)
$$

or $m_k = 1, 2$ such that

$$
h_1(P_{m_{k-1}})=(x+3)h_1(P_4)\prod_{i\in A}h_1(C_{v_i})\prod_{i\in B}h_1(D_i),
$$

where $A \subset \{1, 2, ..., m\}$, $B \subset \{4\}$. When $m_k = 4$, the formula above is false. When $m_k =$ 1,2 or $m_k = 2l > 4$, both formulae above contradict Lemma [12.](#page-4-0)

Case 3: $f = 1$, $l = 0$, $r = 0$ and $n = 0$. There is $B \subset \{4\}$ such that

$$
H \cong K_3 \cup \left(\bigcup_{i=1}^m C_{v_i} \right) \cup \left(\bigcup_{i \in B} D_i \right).
$$

Since $|V(H)| = |E(H)|$ and $|V(P_{m_0})| \neq |E(P_{m_0})|$, we know that H and P_{m_0} are not adjointly equivalent, this is a contradiction.

Case 4: $f = 0, l = 1$ and $n = r = 0$. There is $B \subset \{4, 5, 6, 7\}$ such that

$$
H \cong P_u \cup \left(\bigcup_{i=1}^m C_{v_i}\right) \cup \left(\bigcup_{i \in B} D_i\right).
$$

Here set $u_1 = u$, by Proposition [4,](#page-2-0) we know that $B \subset \{4\}$. Thus

$$
\prod_{i=1}^{k} h_1(C_{m_i+1})h_1(P_{m_k}) = h_1(P_u) \prod_{i=1}^{m} h_1(C_{v_i}) \prod_{i \in B} h_1(D_i) \quad (m_k = 2N)
$$
 (6)

and

$$
\prod_{i=1}^k h_1(C_{m_i+1})h_1(P_{m_{k-1}}) = h_1(P_u) \prod_{i=1}^m h_1(C_{v_i}) \prod_{i \in B} h_1(D_i) \quad (m_k = 1, 2). \tag{7}
$$

In (6) , by Lemma [7\(](#page-3-0)3), we have

$$
\left(\prod_{i=1}^m h_1(C_{v_i})\prod_{i\in B} h_1(D_i), h_1(P_{m_k})\right)=1,
$$

thus $h_1(P_{m_k}) | h_1(P_u)$. If u is an even, for the same reason, we have that $h_1(P_{m_k}) | h_1(P_u)$, so $u = m_k$. If we eliminate $h_1(P_{m_k})$ from both sides of [\(6\)](#page-10-0), there is $B \subset \{4\}$ with

$$
\prod_{i=1}^k h_1(C_{m_i+1}) = \prod_{i=1}^m h_1(C_{v_i}) \prod_{i \in B} h_1(D_i).
$$

Since $m_k \geq 4$, comparing the least roots of both sides, in the above formula, we get that $|B| = 0$ and there is a $j = 1, 2, \dots, k$ such that

$$
H \cong P_{m_j} \cup \left(\bigcup_{i=1}^j C_{m_i+1} \right).
$$

If u is odd, by Lemma [2\(](#page-1-0)1), we have $u = 3.5$ by symmetry. If $u = 3$, similar to [\(4\)](#page-8-0), we have

$$
h_1(P_{m_k}) = h_1(P_3) \prod_{i \in A} h_1(C_{v_i}) \prod_{i \in B} h_1(D_i), \quad A \subset \{1, 2, ..., m\}.
$$

This contradicts Lemma [12.](#page-4-0)

A similar contradiction occurs when $u = 5$.

In [\(7\)](#page-10-0), according to three cases, we have that u is even, $u = 3$ and 5. Similar to the discussion of (5) , we can show that

$$
h_1(P_{m_{k-1}})=h_1(P_u)\prod_{i\in A}h_1(C_{v_i})\prod_{i\in B'}h_1(D_i),
$$

where $B' \subseteq B$, $A \subseteq \{1, 2, ..., m\}$. By Lemma [12,](#page-4-0) we know $|A| = 0$, $|B'| = 0$ and there is $u = 3$ with $m_k = 1$, $u = 5$ with $m_k = 2$. Namely, if $m_k = 1$, then

$$
H \cong P_{m_j} \cup \left(\bigcup_{i=1}^j C_{m_i+1} \right) \ (j=1,2,\ldots,k-1),
$$

or

$$
H \cong P_3 \cup D_4 \cup \left(\bigcup_{i=1}^{k-2} C_{m_i+1} \right).
$$

If $m_k = 2$, then

$$
H \cong P_{m_j} \cup \left(\bigcup_{i=1}^j C_{m_i+1} \right) (j=1,2,\ldots,k-1).
$$

The proof is completed. \square

References

- [1] N. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, 1993, pp. 52–53.
- [2] J.A. Bond, U.S.R. Murty, Graph Theory with Application, 1976.
- [3] D. Cvetkovic, M. Doob, H. Sachs, Spectra of Graphs, Academic Press, New York, 1980, pp. 72–79.
- [4] R. Liu, Chromatic uniqueness of the complements of certain trees, Appl. Math. (1996) (complement) 170–173.
- [5] R. Liu, Adjoint polynomials and chromatically unique graphs, Discrete Math. 172 (1997) 85–92.
- [6] R. Liu, About irreducible T-shape trees, J. Qinghai Junior Teachers' College 2 (1997) 3–6.
- [7] S. Wang, R. Liu, Chromatic uniqueness of cycle and complement of D_n , Math. Res. Comment, 18(2) (1998) 296.
- [8] H. Zhao, B. Huo, R. Liu, Chromaticity of the complements of paths, J. Math. Study. 33(4) (2000) 345–353.