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Abstract The basic subiteration method for solving
fluid–structure interaction problems consists of an iterative
process in which the fluid and structure subsystems are alter-
natingly solved, subject to complementary partitions of the
interface conditions. The main advantages of the subiteration
method are its conceptual simplicity and its modularity. The
method has several deficiencies, however, including a lack of
robustness and efficiency. To bypass these deficiencies while
retaining the main advantages of the method, we recently
proposed the Interface-GMRES(R) solution method, which
is based on the combination of subiteration with a Newton–
Krylov approach, in which the Krylov space is restricted
to the interface degrees-of-freedom. In the present work,
we investigate the properties of the Interface-GMRES(R)
method for two distinct fluid–structure interaction problems
with parameter-dependent stability behaviour, viz., the beam
problem and the string problem. The results demonstrate
the efficiency and robustness of the Interface-GMRES(R)
method.
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1 Introduction

Fluid–structure interactions (FSI) are of great relevance in
aerospace, civil and offshore engineering and in biomechan-
ics; see, e.g., Refs. [1,2,22,28–30]. Numerical methods for
the aggregated fluid–structure system typically employ a par-
titioned solution process based on alternating solution of the
fluid and structure subsystems, subject to complementary
partitions of the interface conditions; see, e.g., Ref. [21].
This process, which is often referred to as subiteration, is
then repeated until a preset convergence criterium is satisfied.
Subiteration is a good solver for many problems, but it lacks
robustness for FSI problems with large added-mass effects;
cf. Refs. [7,10,31,32,35]. Moreover, in time-integration pro-
cesses, subiteration is generally assigned to solve a large
sequence of similar problems. Since the method has no mech-
anism to reuse previously generated information, it is to be
considered inefficient.

To overcome these deficiencies, we proposed in [34] a
novel solution method that employs subiteration as a pre-
conditioner to GMRES; see also the proceedings article [18]
for a condensed presentation of the method and [19] for
an error-amplification analysis. The combination of subit-
eration and GMRES requires only negligible computational
resources, because the GMRES acceleration can be confined
to the interface degrees-of-freedom, which is considerably
cheaper than applying GMRES to the aggregated equations
or to the Schur complement; see, e.g., Refs. [11,16]. Thus,
we refer to our method as Interface-GMRES(R), where the
parenthesized R indicates the possibility of reusing Krylov
vectors in subsequent invocations of GMRES. Such reuse
can yield substantial computational savings. Since Interface-
GMRES(R) preserves the modularity of the underlying subit-
eration method, it can easily be implemented in codes which
use subiteration as a solver.
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To place the Interface-GMRES(R) method into context,
we note that investigations into efficient partitioned solu-
tion methods for fluid–structure interaction have also been
presented in Refs. [4,17]. Alternatively, subiteration can for
instance be applied as a smoother in a (space/time) multi-
grid procedure [35]. Further, it is to be remarked that the
Interface-GMRES(R) process can in principle also be com-
bined with subiteration methods based on a Robin-Robin par-
tition of the interface conditions [3]. For a detailed analysis
of the relation between the added mass effects and the sta-
bility and convergence of the subiteration solution method,
we refer to [31]. The Interface-GMRES(R) method can also
be qualified as a Schur–Newton–Krylov approach; see [5] for
an advanced application of this method to aeroelastic and
design-sensitivity analysis.

The Interface-GMRES method admits a re-interpretation
as a Krylov-based vector extrapolation scheme; see [15] and
also [24,25] for earlier work on the equivalence of
Krylov methods and vector extrapolation. Conversely, the
Aitken extrapolation procedure (see, e.g., [15,10]) can be
conceived of as an Interface-GMRES method with a one-
dimensional Krylov subspace. Depending on the interpreta-
tion, the methodologies can differ in certain details, such
as intermediate orthonormalization of search vectors and
combination with underrelaxation to gauge nonlinear effects
and, accordingly, facilitate the solution of the fluid and
structure subsystems. In our experience, however, orthon-
ormalization of the search vectors is indispensable to retain
a well-conditioned least squares problem in the GMRES pro-
cedure, while the combination with underrelaxation signif-
icantly reduces the cost of solving the fluid and structure
subsystems. It is to be remarked that the minimal-residual
property of GMRES ensures that the convergence of the
Interface-GMRES method is monotonous, which is perti-
nent in view of the nonnormality of the subiteration process;
cf. [32].

The objective of the present contribution is to examine
the robustness and efficiency of the Interface-GMRES(R)
method in the setting of more discriminating higher-dimen-
sional problems than the piston problem considered in
[18,34]. In particular, we consider the interaction of an invis-
cid-fluid flow with a beam and a string, respectively. The
essential difference between these problems and the pis-
ton problem in the aforementioned publications is twofold.
Firstly, the interface extends in both space and time, rather
than only time. Consequently, the dimension of the discrete
representation of the interface space is significantly higher.
Secondly, the problems considered in this paper can exhibit
parameter-dependent stability behaviour, e.g., stable behav-
iour can occur for certain parameter settings while unstable
behaviour such as flutter or divergence can occur for other
settings; see [9] for further elaboration of these effects.

To study the convergence behaviour of Interface-
GMRES(R) in a systematic way, we explore first the physi-
cal parameter space of the respective fluid–structure systems
and we determine for which parameter settings the system is
unstable, and which type of instability it exhibits. Next, we
assess the convergence behaviour of Interface-GMRES(R)
for representative settings of the physical and discretization
parameters. We investigate the relation between the conver-
gence behaviour of Interface-GMRES(R) and the stability of
the problem. Numerical results are provided that demonstrate
the performance and versatility of the Interface-GMRES(R)
solution method.

This paper is organized as follows. Section 2 contains a
statement of the beam and the string FSI problem. Section 3
concisely reviews the Interface-GMRES(R) solution method.
In Sect. 4 we present numerical results for the beam and the
string problem. Section 5 contains concluding remarks.

2 Problem statement

2.1 The beam FSI problem

Below, we present a concise description of the beam problem,
for an elaboration we refer to Ref. [23]. The upper side of the
beam is exposed to an airstream, and its lower side to a cav-
ity with still air; see Fig. 1 for an illustration. The motion of
the structure is described by the beam equation. Let x, y and
t be spatial and temporal coordinates, respectively, α(x, t)
the y-coordinate position of the fluid–structure interface and
L the length of the beam. The mathematical formulation of
the fluid–structure system comprises the Euler equations on
�α := {(x, y, t) : −∞ < x < ∞;α(x, t) < y < ∞; 0 <

t < T } in connection with the beam equation at the interface
�α := {(x, y, t) : 0 < x < L; y = α(x, t); 0 < t < T }. We
consider the Euler equations in conservative form:

Fig. 1 Illustration of the beam FSI problem (interface region expanded
for clarity)
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∂u
∂t
+ ∂f(u)

∂x
+ ∂g(u)

∂y
= 0, (x, y, t) ∈ �α, (1a)

with

u :=

⎛
⎜⎜⎝

ρ

ρu
ρv

E

⎞
⎟⎟⎠ , f(u) :=

⎛
⎜⎜⎝

ρu
ρu2 + p(u)

ρuv

(p(u)+ E)u

⎞
⎟⎟⎠ ,

g(u) :=

⎛
⎜⎜⎝

ρv

ρuv

ρv2 + p(u)

(p(u)+ E)v

⎞
⎟⎟⎠ ,

p(u) := (γ − 1)

(
E − 1

2
ρ(u2 + v2)

)
, (1b)

and γ = 1.4. In Eq. (1b), ρ, u, v, E and p denote the density,
the x- and y-component of the velocity, the total energy and
the pressure of the fluid, respectively.

Equation (1) must be supplemented with appropriate ini-
tial and boundary conditions. On ∂�α\�α these are pre-
scribed by

u(x, y, 0) = u0(x, y), −∞ < x <∞,

α(x, 0) < y <∞, (2a)

(ρv)(x, 0, t) = 0, x < 0, x > L , 0 < t < T, (2b)

with u0(x, y) the given initial conditions. Condition (2b)
translates into the impermeability condition of the rigid wall.
Moreover, ‘farfield boundary conditions’ are imposed for
x →±∞ and for y →∞. The interface conditions, i.e., the
conditions on �α , are specified below.

The governing equation for the beam is:

M
∂2z

∂t2 + D
∂4z

∂x4 = −π + β, 0 < x < L , 0 < t < T,

(3)

where z designates the beam displacement from its equi-
librium position, and the constants M, D ∈ R+ denote the
mass and the bending stiffness of the beam, respectively. The
right-hand member of Eq. (3) is the forcing term which is
composed of the traction π exerted by the fluid on the struc-
ture through the interface, and the constant pressure β in the
cavity underneath the beam. The cavity pressure is equal to
the freestream pressure. Eq. (3) is subject to the initial and
boundary conditions

z(x, 0) = z0(x),
∂z

∂t
(x, 0) = ż0(x), 0 < x < L , (4a)

z(0, t) = z(L , t) = 0,
∂z

∂x
(0, t) = ∂z

∂x
(L , t) = 0,

0 < t < T, (4b)

with z0(x), ż0(x) the given initial conditions. The boundary
conditions (4b) state that the beam is clamped on both sides.

The Euler equations and the beam equation are connected
at the interface �α by the kinematic conditions

(ρv)|�α = ρ|�α

∂α

∂t
(x, t)

+(ρu)|�α

∂α

∂x
(x, t), 0 < x < L , 0 < t < T,

(5a)

α(x, t) = z(x, t), 0 < x < L , 0 < t < T,

(5b)

and the dynamic condition

p(u|�α ) = π(x, t), 0 < x < L , 0 < t < T . (5c)

The condition (5a) constitutes a ‘slip’ boundary condition,
which translates into the tangency of the flow to the
moving beam and renders the interface impermeable. The
condition (5b) identifies the interface position and the beam
position. The condition (5c) implies equilibrium of the forces
exerted on the interface by the fluid and the structure. Note
that the interface conditions are imposed on the moving
boundary �α .

Upon suitable non-dimensionalization, we can identify the
following dimensionless parameters that govern the behav-
iour of the beam fluid–structure system:

λ = LC−1
0

M1/2L2 D−1/2 , μ = ρ0 L

M
, Ma = V0

C0
, (6)

where C0 denotes the speed of sound, ρ0 is the reference den-
sity and V0 is the freestream velocity. The parameter λ can
be identified as the ratio of characteristic time scales of the
fluid and the structure, the parameter μ constitutes the ratio
of characteristic fluid mass to characteristic structure mass,
and the parameter Ma is the Mach number.

2.2 The string FSI problem

Below, we present a concise description of the string FSI
problem, for an elaboration we refer to Ref. [12]. The upper
side of the string is exposed to an airstream, and its lower
side to a cavity with still air. The problem setup corresponds
to the one of the beam problem depicted in Fig. 1 with the
beam replaced by a string and boundary conditions that are
appropriate for a string which will be discussed below. The
motion of the structure is described by the one-dimensional
string equation. The mathematical formulation of the fluid–
structure system comprises the Euler equations in connection
with the string equation at the interface. Since the statement
of the fluid subproblem and interface conditions is identical
to the one for the beam problem (cf. Sect. 2.1), they will
be omitted for brevity. The structure subproblem is specified
below.
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The equation governing the motion of the string is

M
∂2z

∂t2 − S
∂2z

∂x2 = −π + β, 0 < x < L , 0 < t < T,

(7)

where z is the string displacement from its equilibrium
position, and the constants M, S, L ∈ R+ denote the mass
per unit length, the tension and the length of the string, respec-
tively.

The right-hand member of Eq. (7) is the forcing term
which is composed of the traction π exerted by the fluid on
the structure through the interface, and the constant pressure
β in the cavity underneath the string. The cavity pressure is
equal to the freestream pressure.

Equation (7) is subject to the initial and boundary condi-
tions

z(x, 0) = z0(x),
∂z

∂t
(x, 0) = ż0(x), 0 < x < L , (8a)

z(0, t) = z(L , t) = 0, 0 < t < T, (8b)

with z0(x), ż0(x) the given initial conditions.
In contrast to the beam, the string does not provide any

resistance to bending and, hence, its interaction with the fluid
can be expected to be significantly different from that of
the beam. Note also the different boundary conditions for
the string and the beam, Eqs. (8b) and (4b), respectively.

Upon suitable non-dimensionalization, we can identify the
following dimensionless parameters that govern the behav-
iour of the string fluid–structure system:

η = LC−1
0

M1/2L S−1/2 , μ = ρ0 L

M
, Ma = V0

C0
. (9)

The parameter η can be identified as the ratio of character-
istic time scales of the fluid and the structure, the parameter
μ constitutes the ratio of characteristic fluid mass to char-
acteristic structure mass, and the parameter Ma is the Mach
number. Note that the characteristic system parameters of
the string and the beam problem are defined in essentially
the same way; compare Eqs. (9) and (6).

A characteristic property of the string and the beam FSI
problem is their ability to exhibit parameter-dependent stabil-
ity behaviour. That is, the fluid–structure system can display
instabilities such as flutter and divergence for certain param-
eter settings, whereas other parameter settings yield stable
behaviour; cf. Ref. [9]. Instability of the fluid–structure sys-
tem is a property that is shared by many FSI problems and
that is of significant practical importance. Since flutter and
divergence can induce the failure of the structure, the analy-
sis and prediction of such instabilities play a crucial role in
engineering design. For instance, in aerospace engineering,
flutter and divergence impose constraints on the allowable
operating conditions of aircraft. Hence, they need to be con-
trolled by an adequate design; see, e.g., Ref. [8].

3 The Interface-GMRES(R) solution method

For self-containedness, we review in this section the Inter-
face-GMRES(R) method that was recently proposed in [34]
and analysed in [19]. Since the Interface-GMRES(R) method
builds on the customary subiteration method, we first recall
the subiteration method.

3.1 The subiteration method

The interconnection between the state variables and their
domain of definition complicates the numerical treatment of
fluid–structure interaction problems. This complication can
be bypassed through an iterative solution procedure often
referred to as subiteration: Given an initial approximation
z0(x, t), for j = 1, 2, . . . repeat until convergence

(S1) Solve the kinematic condition: find α j such that
α j (x, t) = z j−1(x, t).

(S2) Solve the fluid on �α j subject to u3(x, α j , t) =
u1(x, α j , t)

∂α j
∂t (x, t)+u2(x, α j , t)

∂α j
∂x (x, t) on �α j to

obtain u j .
(S3) Solve the dynamic condition: find π j such that

π j (x, t) = p(u j (x, α j (x, t), t)).
(S4) Solve the structure problem with right member

−π j (x, t)+ β to obtain z j (x, t).

This procedure obviates the simultaneous treatment of fluid
and structure. Each iteration in the subiteration procedure can
be conceived of as a mapping z j �→ z j+1 = C z j . Accord-
ingly, subiteration essentially constitutes a fixed-point itera-
tion method. Momentarily assuming C to be linear in order to
facilitate the exposition, the subiteration process is formally
stable if the spectral radius of C is smaller than unity. How-
ever, despite formal stability, transient divergence can occur
for large fluid-to-structure mass ratios or large time steps.
This non-monotonous convergence behaviour is caused by
nonnormality of the operator (cf. [32]) and it can lead to fail-
ure of the iterative method even if the spectral radius of the
operator is less than 1. Such transient divergence compro-
mises the robustness of the subiteration method.

3.2 The Interface-GMRES(R) method

The Interface-GMRES(R) method essentially constitutes a
(Jacobian-free) Newton–Krylov method [6,14] applied to the
interface degrees-of-freedom. To cast the nonlinear fixed-
point problem in a form that is suitable for Newton–Krylov
methods, we reformulate it as Rz = 0 with R := C −I the
residual operator. Correspondingly, the residual of an iterate
zi is ri := Rzi = (C − I )zi = zi+1 − zi . For a given
initial guess z0, Newton’s method generates a sequence of
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approximate solutions according to

z0 ← z0 + z′0 = z0 −R ′−1Rz0, (10)

with R ′ = ∂R/∂z and z′0 a perturbation around the lineari-
zation state z0. Each Newton step requires the solution of a
linear problem of the form

Rz0 +R ′z′0 = 0. (11)

Substituting into (11) the ansatz z′0 ∈ Km := span{z j −
z0} j=m

j=1 with Km the Krylov space associated with (11) and
using a finite-difference approximation, we obtain

Rz0 +R ′
⎛
⎝

j=m∑
j=1

α j (z j − z0)

⎞
⎠

= r0+
j=m∑
j=1

α j (r j − r0)+O

⎛
⎜⎝

∥∥∥∥∥∥
j=m∑
j=1

α j (z j−z0)

∥∥∥∥∥∥

2
⎞
⎟⎠=0.

(12)

The coefficients α j for the redefinition z0 ← z0+∑ j=m
j=1 α j

(z j − z0) are determined by solving (12) in a least-squares
sense:

ᾱ = arg min

∥∥∥∥∥∥
r0 +

j=m∑
j=1

α j (r j − r0)

∥∥∥∥∥∥
2

,

ξ :=
∥∥∥∥∥∥

r0 +
j=m∑
j=1

ᾱ j (r j − r0)

∥∥∥∥∥∥
2

, (13)

with ξ the norm of the residual of the linear problem. The
latter represents an estimate for the norm of the residual of
the nonlinear problem.

The minimal-residual property of GMRES implies that the
subiteration residuals form an upper bound for the GMRES
residuals and that, in contrast to the subiteration iterates, the
GMRES iterates must form a non-increasing sequence. How-
ever, this implies faster Newton–Krylov convergence only
for problems which are sufficiently linear. For strongly non-
linear problems, the inherent linearization in the Newton–
Krylov method can hamper convergence.

Provided with an initial approximation z0(x, t),
Algorithm 1 summarizes the Interface-GMRES method,
endowed with Gram-Schmidt orthonormalization (lines
6a–f) and underrelaxation with an appropriate constant ν

(line 6e). The former improves the robustness by avoiding
ill-conditioning of the least-squares problem, while the latter
facilitates the solution of the (nonlinear) fluid and structure
subsystems in the subiteration process and enables the combi-
nation of GMRES with subiteration, even if subiteration itself
is unstable. The fluid solution can be extracted from the sub-
iteration process on line 1 or 13. The convergence tolerances
for the nonlinear and the linear problem are denoted by ε0

and ε1, respectively. To improve the computational efficiency,
we apply a relative tolerance ε1 = κ‖ri‖ with ri the residual
in the current Newton step i and κ < 1 an appropriate scalar.
This choice is motivated by the fact that it is not meaningful
to pursue a very precise solution of the linear problem if the
nonlinear problem is still far from its solution. In contrast to
methods which apply GMRES to the aggregated equations or
to the Schur complement, see Refs. [11,16], the method pre-
sented here is confined to the interface degrees-of-freedom
and, therefore, the storage requirements for the Krylov space
and the computational expense for the solution of the least-
squares problem (13) are much lower. Accordingly, we refer
to this solution method as Interface-GMRES.

1: i = 0; z1 = C z0; r0 = z1 − z0
2: while ‖ri‖ > ε0 do
3: j = 0; ξ = ‖ri‖
4: while ξ > ε1 do
5: j = j + 1
6: z′j = z j − z0
7: z j+1 = C z j
8: r ′j = (z j+1 − z j )− ri

9: ᾱ = arg min‖ri +∑k= j
k=1 αkr ′k‖

10: ξ = ‖ri +∑k= j
k=1 ᾱkr ′k‖

11: end while
12: z0 = z0 +∑k= j

k=1 ᾱk z′k
13: i = i + 1; z1 = C z0; ri = z1 − z0
14: end while

6a: z′j = z j − z0
6b: for k = 1, . . . , j − 1 do
6c: z′j = z′j − z′k(z′j · z′k)/‖z′k‖2
6d: end for
6e: z′j = νz′j /‖z′j‖
6f: z j = z0 + z′j

1: i = 0; j = 0; z1 = C z0; r0 = z1 − z0

3a: ᾱ = arg min‖ri +∑k= j
k=1 αkr ′k‖

3b: ξ = ‖ri +∑k= j
k=1 ᾱkr ′k‖

3c: z j+1 = z1

Algorithm 1: The Interface-GMRES(R) method for solv-
ing C z = z; the basic algorithm (top), modifications to
enable Gram-Schmidt orthonormalization and underrelax-
ation (center) and modifications to enable reuse of Krylov
vectors within a time step (bottom).

Reuse of Krylov vectors only requires minor modifica-
tions; see Algorithm 1. The inner loop then augments instead
of overwrites the available spaces Km and Rm . Depending on
the reduction of the updated nonlinear residual in Rm , Km is
further augmented or another Newton update is carried out.

In addition to reuse within a single time step, reuse is
also possible within subsequent time steps. In the latter case,
the available spaces K and R are transferred from one time
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interval to the next. Such reuse can substantially increase the
efficiency of the method; however, it comes at the expense of
robustness and therefore has to be exercised with some cau-
tion. We refer to the Interface-GMRES method with reuse as
Interface-GMRESR. Finally, let us remark that the Interface-
GMRES(R) solution method is generic and that it is easily
implemented in existing codes which use subiteration as a
solver.

4 Numerical experiments

To demonstrate the versatility of the Interface-GMRES(R)
method, we assess its convergence behaviour on the beam
and the string FSI problem in Sects. 4.2 and 4.4, respectively.
In particular, we investigate the effect of physical instability
due to flutter and divergence on Interface-GMRES(R) con-
vergence and on the effectiveness of reuse of the Krylov
space. For reference purposes, we include comparisons with
standard subiteration.

4.1 Experimental setup of the beam FSI problem

We consider the beam problem stated in Sect. 2.1. The
infinite-dimensional domain with x → ±∞ and y →∞ is
truncated. In the x-direction inflow and outflow fluid bound-
ary conditions are prescribed with the flow going from left
to the right, and in the y-direction the domain is bounded by
a solid wall at a distance of one from the beam. The distance
of the solid wall to the beam is sufficiently large to ensure
that the wall does not significantly influence the solution and
the convergence behaviour of the solution methods.

We use initial conditions for the beam according to its first
mode shape. The initial conditions for the fluid are deter-
mined as the steady-state solution of the flow over a beam
that is deflected according to its first mode shape. The system
parameters are given in Table 1, where τ denotes the length
of the solution time interval. With Ma = 1.5, the flow is
supersonic.

The fluid–structure system is discretized by the space/time
finite-element method with piecewise-polynomial basis func-
tions that are discontinuous in time and continuous in space;
see also Refs. [26,27] for the space/time finite-element
method for problems with moving boundaries. As basis func-
tions for the structure discretization we use Legendre

Table 1 System parameters for the beam FSI problem (∗ indicates a
variable parameter)

Case λ μ Ma τ

I 0.25 ∗ 1.5 0.05

II ∗ 10 1.5 0.05

polynomials, and enforce C1-continuity in space by means
of Lagrange multipliers. The basis functions for the fluid are
of modal type in conformity with Ref. [13, ch.3].

The time-discontinuous Galerkin discretization implies
that displacement and velocity of the structure are discontin-
uous from one time slab to the next. However, since the fluid-
boundary representation assumes a continuous displacement,
the discontinuity in the structure displacement needs to be
controlled. To render the discontinuity in the structure dis-
placement and velocity negligible, we use polynomials of
sufficiently high order for the approximation of the struc-
ture. It is to be remarked that the considered discretization
does not maintain the conservation properties at the fluid–
structure interface; cf. Refs. [20,33]. To render the error per-
taining to the lack of conservation negligible, we choose a
discretization for fluid and structure that is sufficiently fine.

The discretization parameters are given in Table 2, where
the polynomial degree of the approximation spaces asso-
ciated with u, α, z and π are, respectively, (Px

U
, P y

U
, Pt

U
),

(Px
A
, Pt

A
), (Px

Z
, Pt

Z
) and (Px

P
, Pt

P
), and the number of ele-

ments, N , is denoted accordingly. The number of elements
in the x-direction is specified over the length of the beam. The
discretization time step is equal to the length of the solution
time interval. The discretization is sufficiently fine to ensure
that the results are essentially mesh independent.

In each time slab, we provide an initial approximation of
the structure displacement based on a linear extrapolation of
the initial conditions according to

z0(x, t) = z0(x)+ ż0(x)t, 0 ≤ x ≤ L , 0 ≤ t ≤ τ.

(14)

We set the convergence tolerance to ε0 = 10−4‖r0‖, i.e.,
we require a reduction of the initial residual by four orders of
magnitude. In addition, we specify for the Newton–Krylov
method the tolerance for the GMRES iteration according to
ε1 = 10−1‖ri‖, i.e., we use a relative tolerance for the con-
vergence in the inner loop of the acceleration; cf. Sect. 3.2.
Moreover, the underrelaxation parameter is set to
ν = 10−2‖r0‖ for the Interface-GMRES method with reuse
and to ν = 10−2‖ri‖ for the method without reuse.

4.2 Numerical results for the beam FSI problem

In the first test case, we study the convergence of the Inter-
face-GMRES(R) method and subiteration for three distinct

Table 2 Discretization parameters for the beam and the string FSI
problems

NU NA NZ NP PU PA PZ PP

(16, 24, 1) (16, 1) (16, 1) (16, 1) (2, 2, 2) (1, 1) (6, 6) (2, 2)
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Fig. 2 Beam FSI problem, test
case I: space/time displacement
of the beam (colour bars) for
system parameters according to
Table 1 and μ = 1 (left), μ = 50
(center) and μ = 100 (right)

settings of the problem with parameters as given in Table 1,
case I and μ = 1,50,100. We remark that the added mass
and the spectral radius of the subiteration-operator deriva-
tive scale with μ; see also Ref. [32].

Figure 2 plots the displacement of the beam in space/time.
For all considered settings, the oscillation of the structure
attenuates with time, indicating that the fluid–structure sys-
tem is stable. Moreover, it is apparent that the beam deflection
is downwind according to the direction of the flow. The con-
vergence behaviour of the Newton–Krylov method with and
without reuse and of the subiteration method is displayed in
Fig. 3 for time steps 1 and 50 for exemplification. In addition,
we plot in Figs. 4 and 5 the dimension of the Krylov space
and the cumulative number of iterations versus the time-step
counter, respectively. The cumulative number of iterations
specifies the total number of iterations required for conver-
gence up to and including the time step under consideration.
Figure 3 illustrates that if reuse is applied, initially most iter-
ations of the Newton–Krylov method are spent on generating
the Krylov space. However, in subsequent time steps, increas-
ingly fewer Krylov vectors need to be added to the space due
to reuse; see also Fig. 4. This results in a decreasing num-
ber of iterations per time step and manifests in the gradu-
ally changing slope of the cumulative-iteration-count curve;
see Fig. 5. In contrast, the number of iterations required by
subiteration hardly changes in subsequent time steps. We
infer from these results that reuse can render the Newton–
Krylov method computationally cheaper than subiteration
even under conditions that are favorable for the convergence
of subiteration; see Figs. 3 (left) and 5 (left) with μ = 1. Sub-
iteration convergence deteriorates significantly with increas-
ing μ, in contrast to Newton–Krylov convergence. Hence,
a discrepancy in computational cost for larger μ emanates.
For μ = 100, subiteration diverges. Note that the Newton–
Krylov method attains convergence despite the instability of
the underlying subiteration method.

For reference, we have included in Figs. 3 and 5 the results
for the Newton–Krylov method without reuse of the Krylov

space. A comparison to the method with reuse clearly dem-
onstrates the significant savings in computational cost that
can be obtained by reusing the Krylov space.

To put our results into context, we remark that for an
initial amplitude of the beam deflection of approximately
10−4 the system behaviour is close to linear. Preliminary
studies indicate that for nonlinear system behaviour corre-
sponding to larger initial amplitudes the performance of the
Newton–Krylov method degrades only moderately. More-
over, we remark that our results are in good agreement with
the results obtained on the piston model problem; cf. [18,34].

In the second test case, we investigate the effect of physical
instability on convergence and on the effectiveness of reusing
the Krylov space. To this end, we consider the fluid–structure
system with parameters according to Table 1, case II and two
representative settings of λ, viz., λ = 0.1 and λ = 0.25. The
discretization parameters are specified in Table 2.

Figure 6 plots the numerical solution of the beam dis-
placement in space/time for the unstable system (left fig-
ure) and the stable system (right). Whereas for λ = 0.1 the
oscillation amplifies which indicates flutter, for λ = 0.25
the oscillation attenuates, indicating stability of the fluid–
structure system. Figure 7 (left) plots the cumulative
number of iterations versus the time-step counter for the
Newton–Krylov method and for subiteration as a reference.
In addition, Fig. 7 (right) plots the dimension of the Kry-
lov space versus the time-step counter. We remark that these
figures plot up to a time step of n = 200 corresponding to
computational time t = 10, whereas Fig. 6 plots only up to
n = 100 (t = 5). Note that the instability becomes increas-
ingly pronounced with time. Figure 7 (left) displays a slight
change in slope of the cumulative-iteration-count curve of the
Newton–Krylov method with reuse for the unstable system
setting. To explain this change in slope, we consider the
evolution of the Krylov-space dimension plotted in Fig. 7
(right). The figure exhibits that, after the initial construc-
tion of a sufficiently large Krylov space, the dimension of
the space remains essentially constant up to a time step of

123



24 Comput Mech (2011) 47:17–29

Fig. 3 Beam FSI problem, test
case I: residual reduction in the
L2 norm versus iteration number
in time steps 1 (top) and 50
(bottom) for the Newton–Krylov
method with reuse (continuous
line) and without reuse (dashed
line) and for subiteration
(dotted line); residual estimates
and true residuals of the
Newton–Krylov method are
indicated by open circle and
open square, respectively, and
residuals of subiteration by open
triangle; μ = 1 (left), μ = 50
(center) and μ = 100 (right).
y axis in log10-scale
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Fig. 4 Beam FSI problem, test
case I: dimension of the Krylov
space versus the time-step
counter for the Newton–Krylov
method with reuse in subsequent
time steps; μ = 1 (left), μ = 50
(center) and μ = 100 (right)
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Fig. 5 Beam FSI problem, test
case I: cumulative number of
iterations versus the time-step
counter for the Newton–Krylov
method with reuse (continuous
line) and without reuse (dashed
line) and for subiteration
(dotted line); μ = 1 (left),
μ = 50 (center) and μ = 100
(right)
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approximately 100. Henceforth, the dimension of the Kry-
lov space further increases in the case of the unstable system,
which means that additional Krylov vectors need to be added
to the space to attain convergence. This indicates a mild deg-
radation in the effectiveness of the reused Krylov space which
can be attributed to the significant change in the solution
induced by flutter. However, this effect appears to be minor

in that reuse remains beneficial and renders Newton–Krylov
convergence faster than subiteration convergence; see Fig. 7
(left).

Summarizing, the test cases show that the Interface-
GMRES method is much more efficient than subiteration
separately. Settings corresponding to a relatively weak cou-
pling in the FSI problem, e.g. due to small μ, are favorable for
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Fig. 6 Beam FSI problem, test
case II: space/time displacement
of the beam (colour
bars)—solution computed with
system parameters according to
Table 1 with λ = 0.1 (left) and
λ = 0.25 (right)
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Fig. 7 Beam FSI problem, test case II: cumulative number of iterations
versus the time-step counter for the Newton–Krylov method with reuse
in subsequent time steps (open square) and without reuse (open circle)
and for subiteration (open triangle) (left), and dimension of the Krylov

space versus the time-step counter for the Newton–Krylov method with
reuse (right); system parameters according to Table 1 with λ = 0.1
(continuous line) and λ = 0.25 (dashed line)

the subiteration method. For such settings, the convergence
behaviour of subiteration and Interface-GMRES is compara-
ble. For larger μ and, accordingly, a stronger coupling, Inter-
face-GMRES converges much faster than subiteration. Even
if the coupling is so strong that the subiteration method sep-
arately diverges, the Interface-GMRES method still displays
adequate convergence behaviour. Moreover, if the reuse
option is exercised, then the Interface-GMRESR method con-
verges in just a few iterations, independent of the strength of
the coupling.

4.3 Experimental setup of the string FSI problem

To further validate the Interface-GMRES method, we
consider the string problem from Sect. 2.2. The infinite-
dimensional domain is truncated in the same manner as for
the beam FSI problem; cf. Sect. 4.1.

We use initial conditions for the string corresponding to its
first mode shape and an amplitude of 10−4. The initial condi-
tions for the fluid are determined as the steady-state solution
of the flow for this initial configuration. It is to be noted
that, in contrast to the beam problem, for the string problem

Table 3 System parameters for the string FSI problem

Case η μ Ma τ

I 1.0 0.01 1.2 0.05

II 1.0 1.0 0.5 0.05

III 0.53 1.0 1.1 0.05

we shall apply a geometric linearization. This implies that
the fluid domain remains undeformed. The fluid velocity at
the interface, however, is determined by the velocity of the
structure in accordance with the kinematic interface condi-
tion (5a). The reason for this geometric linearization is that
we employ a discontinuous Galerkin method for the string,
which would otherwise impose a discontinuous deformation
of the fluid domain. Let us remark, however, that the effect
of such a geometric linearization is in general small.

The system parameters for three representative types of
behaviour of the string fluid–structure system are given in
Table 3. We remark that these settings are conservative in the
sense that they are favorable for the subiteration method on
account of the small fluid-to-structure mass ratio μ.
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The fluid–structure system is discretized by the space/time
finite-element method with piecewise-polynomial basis func-
tions. The discretization method for the fluid equations is
identical to the one used for the beam problem; cf. Sect. 4.1.
For the discretization of the one-dimensional string we use
a space/time discontinuous Galerkin method. This choice
is motivated by the fact that the string is represented by
the second-order wave equation (7), which is of hyperbolic
type. To obtain the discontinuous Galerkin formulation, we
recast Eq. (7) into a first-order hyperbolic system in terms of
us = ∂z/∂t and vs = ∂z/∂x . The displacement of the string
z can then be obtained by integration of us . The aggregated
system for (us, vs, z) is discretized in space/time by means of
the discontinuous Galerkin method with Legendre polynomi-
als as basis functions. Neighbouring elements are connected

by inter-element fluxes that are determined from the solution
of the Riemann problem on inter-element boundaries. For
details of the structure discretization we refer to Ref. [12].
The discretization parameters for the string problem for test
cases I-III are taken to be identical to the ones for the beam
problem given in Table 2.

To provide an initial approximation for the iterative solu-
tion procedure, in each time slab, the structure displacement
is initialized with the solution of the previous time slab. We
set the convergence tolerance to ε0 = 10−4‖r0‖. In addition,
we specify for the Newton–Krylov method the tolerance for
the GMRES iteration according to ε1 = 10−1‖ri‖. More-
over, the underrelaxation parameter is set to ν = ‖r0‖ for the
Newton–Krylov method with reuse and to ν = ‖ri‖ for the
method without reuse.

Fig. 8 String FSI problem:
space/time displacement of the
string; test case I exhibiting a
stable solution (left), case II
exhibiting divergence (center)
and case III exhibiting flutter
(right)

Fig. 9 String FSI problem, test
cases I–III: residual reduction in
the L2 norm versus iteration
number for the Newton–Krylov
method with reuse (continuous
line) and without reuse (dashed
line) and for subiteration
(dotted line); residual estimates
and true residuals of the
Newton–Krylov method are
indicated by open circle and
open square, respectively, and
residuals of subiteration by open
triangle; time steps 1 (top) and
50 (bottom) for test cases I (left)
and II (center), and time steps 1
(top) and 30 (bottom) for case
III (right)
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Fig. 10 String FSI problem,
test cases I–III: dimension of the
Krylov space versus the
time-step counter for the
Newton–Krylov method with
reuse in subsequent time steps;
test case I (left), case II (center)
and case III (right)
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Fig. 11 String FSI problem,
test cases I–III: cumulative
number of iterations versus the
time-step counter for the
Newton–Krylov method with
reuse (continuous line) and
without reuse (dashed line) and
for subiteration (dotted line);
test case I (left), case II (center)
and case III (right)
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4.4 Numerical results for the string FSI problem

We consider three parameter settings for the string problem;
see Table 3. The displacement of the string in space/time is
displayed in Fig. 8 for the three cases under consideration.
Whereas Fig. 8 (left) shows a displacement that decays with
time, indicating stability of the fluid–structure system, Fig. 8
(center and right) displays a solution whose amplitude grows
with time, indicating instability of the fluid–structure sys-
tem. Figure 8 (center) displays a diverging solution. Let us
remark that for a specific range of subsonic Mach numbers,
the occurrence of divergence can be explained by Bernoulli’s
theorem, as the pressure force can be larger than the retraction
force by the longitudinal tension in the string. Figure 8 (right)
shows an oscillatory solution with growing amplitude, indi-
cating flutter. In anticipation of subsequent plots, we remark
that for the flutter case the computation fails in time step 34
(t = 1.7) in the solution of the fluid subsystem. This failure
can be attributed to the amplifying oscillatory flutter solu-
tion that induces large velocities at the fluid boundary, which
eventually leads to failure of the fluid solver.

The convergence behaviour of the Newton–Krylov
method with and without reuse and of subiteration is dis-
played in Fig. 9 for time steps 1 and 50 for test cases I and
II and for time steps 1 and 30 for test case III for exemplifi-
cation. In addition, we plot in Figs. 10 and 11, respectively,
the dimension of the Krylov space for the Newton–Krylov
method with reuse and the cumulative number of iterations
versus the time-step counter.

Figures 9 and 11 demonstrate that the improvement in
efficiency that can be gained by reuse is not restricted to sta-
ble fluid–structure systems only but also applies to systems
undergoing divergence or flutter. In the case of flutter, the

Newton–Krylov method with reuse exhibits ‘jumps’ between
the residual estimate and the actual nonlinear residual; see
Fig. 9 (bottom right). This disparity between estimate and
actual residual indicates a mild degradation in the effective-
ness of the reused Krylov space that can be attributed to the
significant change in the solution induced by flutter. Never-
theless, reuse remains beneficial and renders Newton–Krylov
convergence faster than subiteration convergence; see Figs. 9
(bottom right) and 11 (right). This observation is consistent
with the results obtained for the beam problem. In the case of
divergence, and at variance with flutter, the Newton–Krylov
method with reuse does not exhibit a significant discrep-
ancy between the residual estimates and the true residuals;
see Fig. 9 (center). Moreover, Fig. 11 shows that the reduc-
tion in cost obtained by reusing the Krylov space is more
pronounced in the case of divergence than for flutter. This
indicates that a monotonically diverging solution is more
amenable to reuse than an oscillatory flutter solution. Pre-
sumably this is connected with the number of modes that
participate in the unstable behaviour, as all such modes must
eventually be incorporated in the Krylov space.

Figure 11 shows that for the considered cases subiter-
ation is computationally cheaper than the Newton–Krylov
method without reuse. However, with reuse, the Newton–
Krylov method is computationally more efficient than subit-
eration. We remark that for a system behaviour that is close to
linear on account of the small initial string-deflection ampli-
tude of 10−4, savings in the number of Newton iterations
are possible by using a more stringent value for the relative
tolerance ε1. Moreover, let us emphasize that the chosen sys-
tem parameters are favorable for subiteration, on account of
the small mass ratio and small time step. For larger mass
ratios and time steps, the convergence behaviour of the sub-
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iteration method deteriorates and the effectiveness of the
Newton–Krylov method becomes more pronounced; see
Ref. [34] and also Sect. 4.2.

A comparison of the results for the beam and the string FSI
problem conveys that the required dimension for the Krylov
space is in general higher for the string problem than for
the beam problem; compare Figs. 10 and 4. This phenome-
non can be explained by the fact that the eigenvalues of the
structural operator increase more rapidly for the beam than
for the string. Accordingly, to achieve a certain prescribed
residual reduction, the Krylov space for the beam needs to
contain fewer vectors than for the string. Nevertheless, the
Interface-GMRESR method provides adequate convergence
behaviour also for the string problem.

5 Conclusions

In this paper we assessed the convergence behaviour of the
Interface-GMRES(R) solution method for FSI problems on
two prototypical model problems, viz., the beam and the
string FSI problem. These model problems exhibit parame-
ter-dependent stability behaviour, admitting instabilities such
as flutter and divergence.

Our numerical experiments demonstrate that the Interface-
GMRES method is much more robust than the subiteration
method separately. Moreover, Interface-GMRES(R) gener-
ally converges faster, especially for the (R) version with reuse
of the Krylov space. If the fluid–structure coupling is weak,
e.g. for small fluid-to-structure mass ratios, the Interface-
GMRES method without reuse can be slightly less efficient
than the subiteration method, on account of the inherent lin-
earization in the Interface-GMRES method which is absent
in the subiteration method. For strongly-coupled problems,
the Interface-GMRES method clearly outperforms the sub-
iteration method. Moreover, the Interface-GMRES method
even converges in cases where the underlying subiteration
method diverges, e.g. for large fluid-to-structure mass ratios.

Our results indicate that physical instability in the form of
flutter can induce a mild degradation of the effectiveness of
reuse of the Krylov space. However, this degradation appears
to be minor and we observed a beneficial effect of reuse in
all considered cases. Moreover, the degradation appears to
be less pronounced for divergence-type instabilities than for
flutter-type instabilities.
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