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Let (K, @) be a primitive CM-type with [K: O] = 2n (for definitions and 
previous results see Section 1.1). Fix n, and consider the collection 
s(n) = {Rank(@)}, where Rank(@) counts the number of independent 
translates of Qi under the Galois action and (K, @) ranges over all primitive 
types. The smallest element of S(n), denoted by B(n), is referred to as the 
sharp lower bound for the rank in dimension n. As was brought to the 
author’s attention by Ribet, bounds on B(n) of the form p + 1, for p a 
prime dividing n, follow directly from the proof of Ribet’s Nondegeneracy 
Theorem [21]. This is recorded as Theorem 1.4. Ribet’s method also gives 
bounds of the form 2q for q a prime with q2 dividing n, as is observed in 
Theorem 1.12. When combined with the author’s constructions of Abelian 
varieties in [S, 91, we obtain the precise value of B(n) for many values of n 
(Corollaries 1.5 to 1.8 and 1.13). 

We recall that these constructions use the analytic method of Weil and 
Shimura, together with new results on the reflex field from an investigation 
suggested to the author by Shim’ura. The interest of the rank comes from 
the theory of complex multiplication. If A is an Abelian variety of CM-type 
(K, @), then the Kubota Rank of A is Rank (@), and controls properties of 
the classfields constructed from A as in Kubota [ 161 and Ribet [20]. This 
is connected with the fact that the rank of @ is also the dimension of the 
Mumford-Tate group of A, and with the relation of this group to the I-adic 
representations of A, as in Serre [24, 251. 

The main body of the paper contains results that provide information on 
S(n). The main result, Theorem 2.5, asserts that when n is odd there is a 
computable subset S,‘,,,(n) of S(n) that accounts for the ranks of many 
CM-types on most CM-fields. More precisely, let K, be the maximal totally 
real subfield of K, and Kg be the Galois closure of K,. We consider the per- 
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mutation group G, determined by K, (e.g., by the action of the Galois 
group on the roots of the polynomial of a primitive generator of K,,). Then 
our condition on K is that G, must have a solvable subgroup that is 
transitive. Refinements in the group-theoretic methods of [8] lead to the 
observation that the computable case, where the CM-field is solvable and 
contains an imaginary quadratic subfield, gives most of the information 
when n is odd, since we may use the action of certain solvable transitive 
subgroups. 

One of the questions raised by the above solvability condition is the 
problem of determining when a nonsolvable permutation group has a 
solvable transitive subgroup. In Section 3 the author attempts to show that 
this problem has some merit as a problem in pure group theory, and it is 
connected to the theory of permutation representations of simple groups. 
Finally, we treat the example n = 9 in Section 4 and make some preliminary 
observations on the case n =p2. 

1. RIBET’S METHOD 

1.1. Definitions and Previous Results. All number fields in this paper are 
regarded as subfields of the field C of complex numbers. A CM-field is a 
totally imaginary quadratic extension K of a totally real field K,. Let 
[K,: O] = n, so that [K: Q] = 2n. A CM-type is a pair (K, @), where K is 
a CM-field and @ is a set of n embeddings {#,, . . . . $,} of K into C such 
that every embedding is among {4,, d,, . . . . b,,, d,}, with 4j the composite 
of di with complex conjugation. We also refer to @ as a type on K. 

Let Kc denote the Galois closure of K over Q. For a type @ on K and for 
gEGal(K”/Q), let @” be the type on K containing the embeddings d,?, 
j=l 3 ..., n, with d;(x) obtained by applying g to the image of x E K under 
4,. Then the rank of @, Rank(@), is the rank over Z of the submodule 
spanned by { QR such that gE Gal(K”/Q)} inside the free Z-module 
a41 2 4, 7 . ..> 4,, $,I. A direct proof that Rank(@) coincides with the 
dimension of the Mumford-Tate group of Abelian varieties of type (K, @) 
has been described to the author by H. Pohlmann and may be found in 
c191. 

For a CM-subfield K, of K, let @r be a CM-type on K,. Then the lift of 
(K,, @r) to K is the type consisting of all embeddings of K into @ whose 
restriction to K1 belongs to @r . Finally, the type (K, Qb) is said to be 
primitive if @ is not the lift of any type on any CM-subfield of K. We recall 
that the Theorem of Schappacher [22] asserts that, with two exceptions, 
every CM-field has some primitive type. 

The results of Kubota [16], Shimura [26], and Ribet [20,21] may be 
collected to give the following: 
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THEOREM 1.0. (i) n + 1 E S(n), for every n. (ii) t E S(n) implies t 6 n + 1. 
(iii) t ES(~) implies log,(n)+2< t. (iv) For n=2’, j32, log,(2’)+2= 
B(2j). (v) (Ribet’s Nondegeneracy Theorem) For n = p, p a prime, S(p) = 
{B(P)) = {P+ 1). 

When n is composite, but n # 2’, we use [logz(n)] + 3 as a lower bound 
for B(n), where [ ] denotes the greatest integer function, and refer to this 
as the log,-bound. We recall that @ is said to be nondegenerate when 
Rank(@)=n+ 1. 

Remark 1.1. The author has shown in [8] that B(n) < n + 1 whenever 
n is composite, so that S(n) = {B(n)} holds only when n is prime. The 
results of [S, 91 give additional information on S(n), and upper bounds on 
B(n). Composite values for which the log,-bound is the sharp lower bound 
include n = 9, 10, and 35, although the lower bound for these cases is also 
given by the bounds in the present paper. More generally, for n = (i) with 
d odd, d > 7, we have B(n) < d + 1, while the log,-bound appears to be d. 
When d is a prime, this is accounted for by Corollary 1.6 below. 

Finally, we recall in an explicit form that the proof of case (A) of the 
Theorem of [S, Sect. 3.3.11 gives the upper bound of the following: 

PROPOSITION 1.2. For n = p’, with p an odd prime, B( pi) < pj - j + 2. 

Proof The reflex type of the type in the proof (lot. cit., with k =p and 
1 =j) has the required property. The hypothesis on the existence of the 
(solvable) totally real field has been established in [IS]. 

1.2.1. Ribet’s Lower Bound. To see that there is a large class of values 
for which the log,-bound is not the sharp lower bound, consider the 
following: 

DEFINITION 1.3. Let pr be the largest prime dividing n. We say that n is 
divisible by a sufficiently large prime if 4n < 2pr. 

Then, from the Proof of the Nondegeneracy Theorem, we have 

THEOREM 1.4 (Ribet). Let p be an odd prime dividing n. Then 
B(n) >p + 1. In particular, the log,-bound on B(n) is not sharp whenever n 
has a sufficiently large prime factor. 

We include the proof below for completeness, since the same arguments 
are required for Theorem 1.12. (For the best lower bound given by this 
method, see Section 1.3.2.) 

Proof (Ribet [21]). We first note that when @ is a primitive type on K, 
no element of Gal(Kc/Q) fixes every element of the Gal(K”/Q)-orbit of @. 
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In fact, if some element y of Gal(K”/Q) fixes every @” then J is the identity 
on every conjugate (K’)” of the reflex field K’ of (K, @), and therefore on 
(K’)“. But then (K’)‘c (K’)“, so (K’)“# Kc implies (K’)‘# K, contradicting 
a requirement on primitive types (cf. Shimura 1271). 

Next we observe that since the prime p divides n, which divides the order 
of Gal(K’/Q), there is an element g of order p in Gal(K’/Q). Now let V be 
the Q-linear space spanned by the orbit of @, as in the definition of the 
rank above. Then the action of (g) on the orbit of @ induces an action of 
the ring R = Q[X]/(XP - 1) on V. Since R has the structure Q @ Q(p,,), for 
p,, a pth root of unity, the R-module I/ completely reduces as a direct sum 
V,, @ V, , where g has trivial action on V, and nontrivial action on V,, with 
dimension dim,( V, ) = h( p - 1) and b >, 1. 

Finally, the elements N,@=@+@“+...+@Kp,p’ and @+G both 
belong to V,,, and are linearly independent, which we see by considering a 
relation of the form N,@ = c( @ + 6). Adding the coefficients of the embed- 
dings on both sides, we obtain c(2n) =pn (since @ is a type), so c =p/2 is 
not an integer for p odd. But this contradicts N,V@ in Z[d,, . . . . 4,,], since 
@+ 6 is the vector with all coefficients equal 1. Thus we obtain 
Rank(~)=dim,(V)=dim,(V,)+h(p- 1)>2+ l(p-l)=p+ 1. 

The remaining observation is merely that when pY is sufficiently large, 
log,(4n) <p,, so [logz(n)] + 3 <pr+ 1. 

Examples of integers without sufficiently large prime factors are given by 
2”3’ and 3”5’. However, when n is written in the form n =n, p,, the 
cofactor n, must satisfy the condition n, < (1/~,)(2~‘~ 2), which grows 
rapidly with p,. 

1.2.2. Values ofB(n). The corollaries below give values of n for which the 
bound pr + 1, for p,. the largest prime dividing n, is the sharp lower bound 
B(n). The proofs give the reference for the construction of Abelian varieties 
with complex multiplication for which the sharp lower bound occurs. In 
cases for which n occurs in several corollaries, the field of complex mul- 
tiplication has distinct Galois-theoretic structure in each occurrence. We 
recall that giving a CM-type is sullicient to obtain an Abelian variety, by 
the analytic construction of Sections 6 and 12.4 of Shimura and-Taniyama 
~291. 

COROLLARY 1.5. Let n = 2p with p a prime larger than 3; or, more 
generally, let n =pt with t dividing p - 1 and t <p - 1. Then B(n) =p + 1. 

Proof: When p > 7, we use the reflex of the type in Proposition 2.3.1 
[9]. For p = 5 and 7, see [S]. 

COROLLARY 1.6. Let n he a binomial coefficient, n = (L), with p a prime 
larger than 3 and 2<md(p- 1)/2. Then B(n)=p+ 1. 
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Proof: The existence here follows from the existence of a totally real 
field with Galois group the symmetric group S, over Q. (Cf., e.g., [8] or 
Section 2.1 of [9].) 

COROLLARY 1.7. Suppose the ideal (2) decomposes into primes of degree 
fin the pth cyclotomic field. Let 1 be an integer with 1 d 1 <g - 1, where g = 
(p-l)& Then B(n)=p+ 1 for n=2.“p. 

Proof: The construction is given in the Theorem of Section 3.2.2 of [8]. 

COROLLARY 1.8. Let p be a prime such that p > 100, p # 151. Suppose 
that 2 is a quadratic residue (mod p). Then B(n) =p + 1 for n = 2(P-1)i2pt 
with any t dividing (p - 1)/2. 

Proqf: The reflex type of the type constructed in [9, Corollary 2.3.41 
has the required rank, so we must verify the hypothesis on the existence of 
a prime k with 2 <k < 1~“’ such that k does not divide p - 1. We first con- 
sider large primes. Let* pi be the jth largest prime. Suppose p, up to P,~ 
divide p - 1, but ps+ , does not. Then pap,p2...ps, so f(pl...ps)“*> 

Ps+ I will suffice, since then we take k =ps+ , . 
Now we need to have at least s + 1 primes smaller than f( p1 . . .ps)ll*. 

Using a = 4 as the lower bound in the Prime Number Theorem, 
a($(p, ...p,s)“2)/log(+(p, . ..ps)“*) >s + 1 will suffice. We therefore show 
that 

a(p,-~~p,)“*/(log(p,~~~p,)+l)>s+l. (*) 

First, we observe that the inequality (*) holds with s0 = 6. Then we note 
that the function f(y) = ay “*/(log y + 1 ), defined for y > 0, is increasing 
and satisfies f(16y)>f(y)+2 for y>p,...p,. We then obtain (*) by 
induction for s > s0 = 6, and establish our conclusion for p 2 pl . . .ps + 1 = 
30,031. 

Now consider primes p in the range 23 11 <p < 30,031. Then 4p1j2 2 
t(2311 )‘I2 > 24, so one of 3, 5, 7, 11, 13, or 17 will give a choice for k. Next, 
for 211 <p < 2311, tp”* > 7, so either one of 3, 5, or 7 gives a choice for k, 
or else p is of the form p = m(210) + 1. But we take k = 11 for p 3 631, and 
observe that 2 is not a quadratic residue for p = 211 or 421, so there is a 
choice for all p >/ 211. The same method applies in the range p > 100, 
p # 15 1, giving our conclusion. 

Remark 1.9. The above proof confirms an observation of Professor 
Assmus. Recall from [9] that, except for a set of primes of density 0 (with, 
e.g., X P -I’* < cc ), the method of Corollaries 1.7 and 1.8 can at most apply 
to values of the form n = 2”pt with t dividing p - 1 and f, I as in 
Corollary 1.7. The above Corollary most likely holds with p > 17; however, 
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we recall that the coding theory restriction of t dividing (p - I )/2 cannot be 
removed for some primes. 

As a final case from the previous papers we have the following: 

COROLLARY 1.10. Let qO be an odd prime, and suppose qg + qO + 1 is a 
prime p. Then a sufficient condition for B(n) = p + 1 with n = pqg is that there 
exists a totally real field with Galois group the projective linear group 
PSL(3, qO) over the rationals. 

Proof: Subject to the existence of the totally real field, the construction 
follows from Proposition 2.4.1 of [9]. 

Remark 1.11. In support of an interest in the dimension of the 
Mumford-Tate group, we refer to Serre [24], especially Section 4, as well 
as to Deligne et al. [7]. The most direct explanation of the specific interest 
in the sharp lower bound B(n) is in connection with Ribet’s Theorem [20] 
on the rate of growth of the field of pth division points. Thus the above 
bound, and the bound in Theoem 1.12 below, asserts that this rate is often 
never as small as allowed by the log,-bound, while the Corollaries assert 
that, for the previously constructed Abelian varieties, the rate of growth for 
the degree of the field of pth division points is the slowest possible. We also 
refer here to Lang’s book [ 17, Chap. 4 and 63 and to Katz and Lang [ 151. 

Since the rate of growth in Ribet’s Theorem depends upon the number of 
distinct prime factors of n and the Kubota rank, our question of how the 
factorization of n affects the rank arises naturally. We emphasize that these 
motivations complement, rather than replace, the motivations in the 
author’s earlier papers. 

1.3.1. An Application of Ribet’s Method. If a serious study of the 
arithmetic function B(n) is to be proposed, one of the problems is to decide 
whether the interplay between group theory and number theory that gives 
the above values is actually required by the values of B(n), or only by the 
methods. As an example, we ask whether B(n) for n =pt with t <p - 1 
actually depends upon whether t divides p - 1 or not; and we ask whether 
the value for n = 2kp, with k <p - 1, actually depends upon k. A substantial 
necessary condition for an integer n with a sufficiently large prime factor to 
have B(n) =pI + 1 is given by the following: 

THEOREM 1.12. Let q be an odd prime for which q2 divides n. Then 
B(n) 2 2q. 

ProojI We consider the necessary modifications of the proof of the 
above Theorem 1.4. Since q2 divides n and q is a prime, Gal(K”/Q) has a 
subgroup of order q2. First, we dispose of the case where there is an 
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element x of oder q*. Since x4 must have nontrivial action on the orbit of 
types, there must be a type whose orbit under x has length q*. Examining 
the ring Q [X]/(X4’ - 1 ), we obtain a submodule of dimension q(q - 1) 
corresponding to the cyclotomic held generated by a primitive root of unity 
~~2 and establish our lower bound. 

Next, we consider an elementary Abelian subgroup of order q*, with 
generators g and h. Let x E ( g, h ), and y E ( g, h ), with (x, y ) = ( g, h ). 
Our proof relies upon the assertion that if there is an element in the span of 
the orbit of types for which x has trivial action, but y has nontrivial action, 
then we obtain our bound. In fact, we observe that under this hypothesis, 
the trivial submodule for the action of (x) has dimension at least 
2 + (q - 1 ), while x has nontrivial action, so there is a complementary sub- 
space of dimension at least (q - 1) and our rank is then at least 2q. Note 
that the linear independence relation of the previous proof holds in this 
case, to give the bound on the dimension of the trivial subspace. 

Now we claim that the above always holds. Take a (primitive) type @ in 
the Gal(K”/Q)-orbit on which g has nontrivial action. Writing the action 
on the left, we set N,,,(Qi)=~+x~+...+xY~‘~, for x of order q. If h 
fixes the type @ on which g has nontrivial action, h also fixes g@ (since g 
and h commute), so the above argument establishes our bound. Similarly, 
we obtain that the type @ has an orbit of order q* under (g, h). Now we 
consider the elements N<,>(Q), Ncghj(@), . . . . NcgY-lh>(@). If g is nontrivial 
on any of these, the above applies; so we consider the case where equations 
g{N<,,,>(@)} =N<R,h)(@) hold for j=O, 1, . . . . q- 1. We add these q 
equations together, and observe that the terms may be rearranged so that 
the right-hand side satisfies 

N@>(Q) + NC,,> (@)+ .‘. +N<,,-I,,(@) 

=q(@)+hN,,>(@)+h*N,,z>(@)+ . ..+h”-‘N.,,+,(@) 

= 4(Q) + (4 - 1 )(N<,>(@)). 

In fact, Ncgjj(@) = Ncgj(@), and hj must have trivial action, or else the 
above applies. But then, on the left-hand side, a similar rearrangement 
gives g~,,,W+ . ..+slv<.,-lh>(~)=q(g(~))+(q- w$,>WD)~ so 
g(@) = @, which contradicts our choice of @. 

From Proposition 1.2 above we have immediately the following: 

COROLLARY 1.13. B(n) = 2p when n = p2 for p an odd prime. 

1.3.2. Postcript: The p-Sylow Bound. When n is divisible by a large 
prime power, Ribet’s method gives substantially stronger lower bounds. As 
in the proof of Theorem 1.4, a primitive CM-type gives a faithful linear 
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representation defined over the rationals of the group G = Gal(K’/Q). A 
necessary condition for Rank(@) = r is then that G must be isomorphic to a 
(finite) subgroup of CL,- r(Q), since we may split off a l-dimensional 
trivial representation corresponding to @ + 6. We immediately obtain the 
following: 

THEOREM 1.14 (p-sylow Bound). ( 1) Factor n as n =p[;’ . .p: with pi # p, 
for i# j, with i, j= 1, . . . . r. For p =pi, let R(p, n) denote the smallest integer 
d such that there exists afinite subgroup of GL(d, Q) with p-Sylow subgroup 
of order > pf’. Then 

B(n) > L(n) = max (R(p, n) + e,), 
P 

where ep = 2 if p is odd, e, = 1 if p is even. 

(2) Zf K is a given CM-field of degree 2n, and G is the group 
Gal(Kc/Q), then for every primitive CM-type @ on K 

Rank(@)3L(IGI), 

where L( 1 G I) is defined as in (1) with n replaced by the order of G. 
Finally, ifp’ is the exact power of p dividing n, then R(p, n) is known, and 

satisfies the asymptotic estimate 

NP, n) > 4p - 1 )‘/P, ifp is odd and R(2, n) > e/2. 

Proof: Let P be the p-Sylow subgroup of G. Then the value of eP for p 
odd follows from the independence of the norm NJ@) = CRt P @J” from 
@+ 4, which depends upon p being odd. For the value of 
R(p, n) = R(p, p’), we consider the arithmetic function r(x, y) in Exercises 
6 and 7 of Chapter 3 of Bourbaki [ 11. Then R(p, n) = d when 
e > r(p, d + 1) but e < r(p, d). We have that when p is odd 

where [ ] denotes the greatest integer function. The asymptotic estimate is 
then given by the inequalities 

Y O,y)< -1 I, I( 1+;+-++... > 
<(YI(P- l)NPl(P- 1)). 

The same method is used to estimate the given value for r(2,y). 
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Parts (1) and (2) of the above result were observed by the author in June 
1985, along with an elementary estimate for R( p, n). In fact, if e <p we 
have d= e( p - 1 ), but for e >p the term [d/p( p - l)] is nonzero. The 
correct estimate, and then the above reference, was brought to the author’s 
attention by H. W. Lenstra, Jr. The author also acknowledges the 
comments and subsequent letter of V. Kumar Murty. 

The interest of the bound given in (2) above is the restriction on the 
possible CM-fields that could have a type of rank L(n), since we may have 
L( ( G 1) > L(n). We also record Lenstra’s remark that if a p-Sylow subgroup 
P of G has a central element of order p2 then Rank(@) > R(p, 1 G I). A 
closer examination of Exercise 6, e, f (/cc. cit.) shows that when the 
maximum value giving L(n) occurs for an odd prime then a necessary 
condition for B(n) = L(n) is that the p-Sylow subgroup of G must have the 
precise structure given there. These remarks clarify the role of the type in 
Proposition 1.2, since the p-Sylow subgroups used there are Abelian or 
have just one wreath product. 

2. A SOLVABILITY CONDITION ON CM-FIELDS 

2.1.0. The Action on Types. We recall the notation of [8], which is 
used to specify types and the Gal(K”/Q)-action on types. As the group- 
theoretic properties are somewhat intricate, we restate our intention to 
obtain simplifications under restrictive conditions. Let K0 be the maximal 
totally real subfield of K and Kg be the Galois closure of K, over Q. Let G, 
be a permutation representation of Gal(K;/Q) for which Gal(K;/K,) 
corresponds to the stabilizer of a letter, which we take to be 1. 

Then our method requires that we begin by specifying a permutation 
representation of Gal(K’/Q). We do this by taking G, to act on the 
symbols ( 1, . . . . n} and giving an action on symbols { f 1, . . . . kn} under the 
conditions that 

(1) every set { +j} is mapped to a set { f k}, and 
(2) the induced action on the sets { ?j} coincides with the action of 

G, on { 1, . . . . n} under the identification of { +j} with j. 
We recall that such an action is said to have n sets of imprimitivity of order 
2 and has been shown to be necessary in [S, Sect. 11. 

Next, we must specify the kernel of the induced action in (2). Let (Z2)n 
denote the group generated by the transpositions ( +j, -j). We specify 
( +j, -j) by a 1 in the jth coordinate of (Z,)“. Let cr E G, act on (Z,)” by 
sending ( +j, -j) to ( +o( j), -a(j)). Then we give 

(3) a subgroup C of (Z,)” such that (a) C contains the permutation 
( + 1, - 1). . . ( + n, -n) and (b) C is preserved by the action of G,. 
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Here we recall that C is referred to as a (linear) code, and that the largest 
subgroup of S, preserving C under the above action is referred to as the 
automorphism group of the code. The distinguished permutation in (3a), 
also denoted by (1, . . . . 1 ), or by p, represents the field automorphism given 
by complex conjugation. We refer to the rode given by (p) as the triviul 
code. 

Finally, we must give a choice of coset representatives for the projection 
(2). For e E (Z,)” and 0 E S,, let (e, c) denote the permutation of the set 
{ f 1, . . . . &n} given by applying e and then applying the map c? sending +.i 
to +a(j) and -j to -a(j). Then we give 

(4) a map s: G, + (Zz)” such that the composite with the projection 
onto (Z,)“/C is a 1-cocycle. 

From the information specified by (l)-(4) we obtain a permutation 
group G with elements given by (es(o), a), where e ranges over C and 0 
ranges over G,. Since we have shown in [S] that every Galois group of a 
CM-field has such a permutation representation, we use the data (G,, C, s) 
to define the action on types. The reader interested in this “structure” may 
wish to consult [S, Sect. 2 and 61. 

To obtain types, we normalize s: G, + Zl; to have first coordinate 0, and 
pick coset representatives z, for the stabilizer of 1 in G,. Then fe Z;, 
f = (f, , . . . ..f.,), is used to specify the type on K given by restricting the maps 
corresponding to (p”s(z,), 7;) to K, where p = (1, . . . . 1) corresponds to com- 
plex conjugation. Then the required action from [S] is given by writing 
gE Gal(K”/Q) as g = (es(a), a) with e E C, and recalling that for @ given by 
f, @’ is given by o-‘(fes(a)), where the addition in Z; is written mul- 
tiplicatively. The choice of embeddings specified by f will also be viewed as 
a choice of cosets of Gal(K’/K) in Gal(K’/Q) as in Shimura [28, Sect. 5.51. 

2.1.1. A Nondegeneracy Result. A case that illustrates the principle that 
certain Galois-theoretic properties of CM-types are determined by the 
Galois structure of the maximal totally real subfield of the CM-field is the 
generic case S, included in the following: 

PROPOSITION 2.1. Let n he odd and suppose that K is a CM-field oj 
degree 2n such that the maximal totally real suhjeld K, has Gal( K;/Q) E A,, 
or S,. Then every primitive CM-type (K, @) is nondegenerate. 

Proof: By [9, Proposition 2.2.21 we have that either there is a single 
Gal(K”/Q)-orbit of types of order 2”, in which case Rank(@) = n + 1 is 
clear, or else K contains an imaginary quadratic subfield. In the latter case, 
we take s to be identically 0, as usual, and note that in the action on types 
e = 0 or p. Then recall from Section 2.1 (lot. cit.) that for n > 1 there are 
only (n - 1)/2 orbits of primitive types, where each orbit corresponds 
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to fE Z; having a fixed number of nonzero coordinates. For an orbit 
with k nonzero coordinates, 1 6 k < (n - 1)/2, we select the n vectors 
(lo*..ol..~l), (010~~~01--~1), ,,.) (O.*.Ol..el), (10~~~0101~~~1), 
(010.. . 01101 . . . l), . ..) (0.. .OlO . . . 01 ... lo), and observe that they are 
linearly independent in Z[Z;]. Then we conclude that Rank(f) = n + 1 by 
the Constant Weight Criterion [S]. 

2.2.1. The Minimal Group Method. Let G and G, be as in Section 2.1.0 
and consider a minimal permutation subgroup M, of G,; that is, let M, be 
a transitive subgroup with the property that every proper subgroup of M, 
is intransitive. A transitive subgroup M of G is obtained by restricting the 
map s to M,, so that we have M = {(es(a), cr) such that e E C and rr E M,}, 
where G is given by (G,, C, s), as above. Then the G-orbit off decomposes 
into a disjoint union of orbits of M. An element of an M-orbit defines a 
“type,” regarded as a choice of n of the 2n cosets of the stabilizer in M of a 
letter, under the condition that only one coset is selected from each of the 
cosets paired by the action of p. Then we have the following: 

PROPOSITION 2.2. The rank of the type defined by f is bounded below by 
the ranks of types representing the orbits of M, for any choice of a minimal 
transitive subgroup MO. Further, tj” M, is a primitive permutation group then 
M, must be a simple group with a maximal subgroup of index n. 

Proof. For the first assertion, recall the method used in the proof of the 
Minimal Weight Criterion [S, Sect. 3.1.11, where the types are regarded as 
elements of H[Zp]. Then the submoduie spanned by the types for M is 
contained in the submodule spanned by the types for G when coset 
representatives for M, are used as coset representatives for Go. The second 
assertion follows from [ 18, Proposition 4.41, which asserts that normal 
subgroups of primitive groups are transitive. 

Remark 2.3. An example of a minimal permutation group that is 
primitive, non-Abelian, and simple is given by the Mathieu group M,,, 
with n = 22, as may be observed from Conway [4, Table 31. A general 
class of examples is given by Proposition 3.3 below. However, we note that 
[3] (cf. Cameron [2]) shows that the set of integers n for which there is 
any primitive group in degree n aside from A, and S, has density 0. 
Further, A, contains a regular subgroup unless n = 2 (mod 4); and in this 
last case the permutation group of [8, Sect. 3.3.1, Proof of (C)] is a 
solvable transitive subgroup. 

2.2.2. A Relative Solvability Condition. Our group-theoretic condition 
is given by the following: 

DEFINITION 2.4. Let n be a positive integer and let KO be a totally real 
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field of degree n. Then the Galois closure K; of K, is said to satisfy the 
relative solvability condition with respect to K, if the permutation group 
determined by the action of Gal(K$Q) on the cosets of Gal(K;/K,) in 
Gal(K;/Q) has at least one solvable subgroup that is transitive. 

Observe that Kg solvable over Q is sufficient to assure relative solvability 
with respect to any subfield. In particular, K, normal over Q is sufficient 
when n is odd, by the Theorem of Feit and Thompson. Second, if K; over 
Q has the Galois group An, with n odd, n > 5, where K, is of degree n, then 
Kg is relatively solvable with respect to K, (Remark 2.3) so that our 
condition is weaker than solvability. An example that does not satisfy this 
solvability condition, with n = 15, is obtained from a totally real field with 
group A, over Q, by taking K, to be the subfield fixed by a 24~10~ sub- 
group. 

We now have a stronger form of the orbit decomposition in 
Proposition 2.2 given by the following: 

THEOREM 2.5. Let (K, @) be a primitive CM-type, and let K,, be the 
maximal totally real subfield of K. Suppose that [K,: Q] = n is odd, and that 
KG is relatively solvable with respect to K,. Then the Gal(K”/Q)-orbit of @ is 
a union of orbits of a solvable subgroup M, whose action on types as in 
Section 2.1.0 is given by the trivial code C = (p ) and the action of a 
transitive permutation group M, of degree n (i.e., the coset map s in (4) of 
Section 2.1.0 is identically 0). In particular, we may choose M, to be a 
minimal permutation group. 

Conversely, the orbits of types for the permutation groups M, occur for 
certain CM:fields of degree 2n, and these CM,fields contain an imaginary 
quadratic subfield. 

The computable subset St,,,(n) in the Introduction is the collection of 
ranks of primitive types on CM-fields of degree 2n that contain an 
imaginary quadratic subfield and have solvable Galois closure. 

Proof As in Proposition 2.2, we consider a transitive permutation sub- 
group M, of the permutation group determined by K,. Then we obtain the 
orbit of types for Gal(Kc/Q) as a disjoint union of types for the 
permutation group M given by restricting the map s, associated with a 
permutation representation of Gal(K”/Q), to M,. By our assumption, we 
pick M, to be solvable. 

Using P. Hall’s extended Sylow Theorems for solvable groups, we pick a 
subgroup P, of M, having odd order and satisfying 1 M, 1 = 2k ) P, 1. We 
then observe that P, is a transitive subgroup of M, by examining the 
stabilizer H, of a letter in the action of M, and checking that the indices 
satisfy (M,: H,) = (PO: P, n H,), so that coset representatives for H, in M, 
may be selected from P,. 
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Now taking M, to have odd order, the group extension 

splits, by the Theorem of Schur and Zassenhaus, since all elements of C are 
of order 2. Then we apply Lemma 2.2.1 of [9], noting that M, is of odd 
order, to obtain that the permutation structure of M is uniquely deter- 
mined by the group extension. In particular, we may adjust the map s 
giving the action of Gal(E/Q) on types to arrange that s restricts to 0 on 
M, by extending the definition of a coboundary in B’(M,, (Z,)“/C) to 
Gal(K;/Q) (cf. [S, Sect. 21). Finally, with s identically 0 on M,, the sub- 
group (p) x M, of the semi-direct product C x, M0 gives our transitive 
subgroup M, of Gal(P/Q). 

We may either replace our initial choice of M, by a minimal transitive 
subgroup, to obtain a restrictive collection of permutation groups of degree 
n for M,, with considerable information on types, or else we may allow M, 
to range over all solvable permutation groups for which the subgroup M of 
Gal(ZP/Q) has trivial split structure, and therefore admits a transitive sub- 
group M, of the above from. The latter collection gives the larger collec- 
tion of ranks of orbits, so we wish to show that all of these ranks do occur 
in S(n). But Shafarevich’s Theorem on the existence of totally real fields L, 
with arbitrarily given solvable Galois group (cf. [9, Theorem 1.11) gives 
the existence of CM-fields L with Galois group isomorphic to M,, for 
which the fixed field of M0 is imaginary quadratic. Then a CM-field as 
required is given as the subfield of L fixed by the subgroup 0 x H,, with H, 
the stabilizer of a letter in M, 

The reader might wish to refer to Section 4.1 to see how the sharp lower 
bound in dimension 9 occurs: the minimal (solvable) groups give only the 
values 8 and 10, and the sharp lower bound of 6 occurs (only) for solvable 
groups with orbits that avoid primitive types for the minimal groups and 
contain several orbits of reducible types. As to the actual computation of 
the above values, we note that the values obtained in Section 1 are all 
associated with non-Abelian groups (fields), and in each case the ranks are 
computed from the reflex type. 

We use the above method to obtain some information on the solvable 
minimal groups in the following: 

PROPOSITION 2.6. For a minimal solvable permutation group MO of 
degree n, the set of primes dividing the order of M, coincides with the set of 
primes dividing n. 

ProoJ: Since n divides the order of M,, we must show that every prime 
dividing the order of M, divides n. But if q is a prime dividing the order of 
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M, we again use solvability and the extended Sylow Theorems to obtain a 
complement to a q-Sylow subgroup of M,. As above, we observe that this 
complement is transitive unless q divides II, so M, minimal implies that q 
divides n. 

2.3. The Prime Power Case. There is one case where the above method 
applies to all CM-fields. 

PROPOSITION 2.7. Let n =pJ with p a prime, and let G, be a permutation 
group of degree n. Then G, contains a minimal transitive subgroup that is a 
p-group. Further, for n =p2, G, contains one of the two regular groups. 

In particular, the solvability condition required for Theorem 2.5 holds 
relative to each K, of degree n = p’, with p an odd prime. 

Proof: Let H, be the subgroup of G, fixing a letter, so that the index 
(G,: H,) = p’. Consider a p-sylow subgroup P, of G,. Observe that 
(P, : P, n H,) = p j, so that coset representatives for H, in G, may be selec- 
ted from P,. Then P, is a transitive subgroup of G,, and we obtain a 
minimal transitive subgroup of G, that is a p-group by picking a minimal 
transitive subgroup of P,. Finally, p-groups are solvable, so the conditions 
for Theorem 2.5 hold. 

For the case n =p2, we use an argument suggested by the referee. If the 
group P, has exponent p2, then pick any cyclic subgroup of order p2 and 
observe it is transitive since it contains a p2-cycle. Otherwise, let z # 1 be 
central. Since z does not belong to P, = H, n P,, we consider the group 
L= P, x (z). Then for any y$ L we have a factorization PO= P, . (z, y). 
So (2, y) is transitive, and clearly regular. 

Remark 2.8. We recall that a proper transitive subgroup always gives a 
factorization as in the above proof (cf. R. Scott, “Group Theory,” Pren- 
tice-Hall, Englewood Cliffs, N.J., 1964). In particular, for p-groups, we 
have a factorization if and only if the subgroup fixing a letter is not a sub- 
group of the Fratini subgroup. Then an example of a nonregular minimal 
2-group of degree 8 may be observed as the permutation group G = 32r,a, 
with sets of imprimitivity permuted by (Z,)’ from [8, Sect. 5.21. In 
fact, since the Fratini subgroup of G is (Z,)3, with subgroup H= (Z,)’ 
containing no nontrivial normal subgroup of G, we also obtain a non- 
regular minimal group of degree 16. Further examination of the tables and 
lattice diagrams of Hall and Senior shows that G is the unique nonregular 
minimal group of degree 8. 

Remark 2.9. The present methods give an improvement of 
Theorem 2.1.1 of the author’s paper [9]. We consider the values 2nt listed 
in (*) 2. Applying the above results with a minimal cyclic group of prime 
order, the orbits of types contain 2mp or 2(mp + 1) elements, depending 
upon whether the orbit contains (p) or not. Thus we would have 
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2”t E 0 or 1 (mod p), where t divides p - 1. But recalling that f was chosen 
so that 2f E 1 (mod p), we obtain t E 1 (mod p) and t <p, so t = 1. This 
argument may be used to replace Corollary 2.3.7 and Proposition 2.3.9 in 
the proof of Theorem 2.1.3, and removes the restriction p E 3 (mod 4) in 
Theorem 2.1.3(b). 

3. NONSOLVABLE PERMUTATION GROUPS 

3.0. A Problem on Nonsolvable Permutation Groups. The material of the 
present section is not required in Section 4. Recall that a transitive per- 
mutation group M, of degree n, is said to be a minimal transitive group of 
degree n if every proper subgroup of M is intransitive. We have the 
following: 

PROPOSITION 3.1. Let M be a minimal transitive permutation group of 
degree n. Then exactly one of the folowing descriptions hold. 

(1) M is regular, i.e., of order n. 

(2) M is non-regular and primitive. In this case M is a non-Abelian 
simple group. 

(3) M is non-regular, imprimitive, but still simple. 

(4) M is non-regular and has a nontrivial proper normal subgroup N. 
In this case the orbits of N are sets of imprimitivity for M. 

Proof Regular groups are clearly “minimal.” If M is not simple, we 
obtain sets of imprimitivity by Wielandt [31, Proposition 7.11. 

If we are to analyze the action of all permutation groups of some fixed 
degree n by use of the minimal transitive groups, we must first restrict our 
choice of n to control the regular groups. As remarked above, taking n odd 
assures that the regular groups are solvable. Next, we must select a value of 
n for which the simple groups of degree n can be analyzed; for example, 
where n is square free as in [ 121, or where n has just two distinct prime 
factors at least one of which is repeated. Heuristically, we regard the groups 
of case (4) above as the main nonregular case: there are many degrees for 
which A,, is the only simple group of degree n, but A, is not minimal for 
n > 3. The following subsections on simple groups are relevant to a 
numerical version of this principle. For standard references and notation 
for simple groups, we refer to Gorenstein [lo]. 

First, we consider the groups of case (4). We have the following: 

THEOREM 3.2. Let M be a non-regular minimal transitive group of degree 
n, and suppose M has a nontrivial normal subgroup N. Let L be the (normal) 

481/111/1-5 
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subgroup of M fixing each orbit of N. Then M/L is a minimal transitive 
group on the set of orbits of N. The degree of this permutation representation 
divides n. 

Proof If T/L acts transitively on the orbits of N, then T is transitive. 

To see that there are many non-Abelian simple candidates for the 
quotient M/L above, consider the following: 

PROPOSITION 3.3. Let G be an abstract finite simple group, and let d(G) 
be the minimal degree of the permutation representations of G. Let G, be a 
permutation group isomorphic to G, and let H, be the stabilizer of a letter in 
G,. Suppose that the index n of H,, in G, satisfies n > 1 G (/d(G). Then G, is a 
group of degree n with no proper transitive subgroup. 

Proof Suppose that G, = Ho&f0 with M, transitive. Then the order 
of MO satisfies 1 M, 1 > n. But (Go: M,) 2 d(G), so 1 G 1 = 1 G, I = 
(G,: MO) I M, I Z d(G) n. But now we have n d I G //d(G), which is contra- 
dictory. 

We note that n is odd if and only if H, contains a 2-Sylow subgroup of 
G,, and that every simple group occurs at leasst with n given as the index 
of a 2-Sylow of G, as well as with n the index of the “local” subgroup con- 
taining a 2Sylow. As a prototypical example for the Proposition, consider 
the Suzuki groups Sz(q) (= ‘B,(q)), f or which the list of maximal sub- 
groups is given in Suzuki [30]. In particular, n = 65 is an odd value for 
which there definitely is a group of degree n with no solvable transitive 
subgroup. (The Mathieu group M,, in degree 22 has been previously 
mentioned.) 

As an additional example, we mention N. Ito’s paper (Acta Sci. Math. 
(Szeged) 15 (1953), 79-84), which shows that most subgroups of PSL(2, q) 
do not occur in any factorization, and therefore we obtain minimal 
transitive groups as in Remark 2.8. 

3.1. Representations of the Simple Groups in Odd Degrees. We consider 
the simple groups of Lie type. We separate our results depending upon 
whether our group is “exceptional” or classical, where the twisted groups 
are included as one or the other of these two cases. We use the method of 
Guralnick’s paper [ll], supplemented by the list of maximal parabolic 
subgroups for the groups of Lie rank 1 or 2. 

PROPOSITION 3.4. Let G be a simple exceptional group of Lie type 
defined over a finite field with q elements and characteristic q,,, Suppose that 
G has a permutation representation of degree n with n odd. Then either q0 
divides 2n or else G = E,(q), and n is divisible by (q9 - 1)(qi2 - l)/ 
(q - l)(q4 - 1). In any case, q3 <n. 
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Suppose in addition that n is relatively prime to 3 and 5. Then either q is 
odd or else G=E,(q) with q=28k, and n is divisible by (q9 + 1)(q5 + 1) 
(q14 - l)/(q - 1). Further, for G = EJq), the above exception occurs only 
when q = 3k. 

Proof If qO does not divide n, we have by the Lemma of Seitz and Tits 
[23] that G has a maximal parabolic subgroup P with the index (G : P) 
dividing n. If, in addition, qO is odd, we check the list of maximal 
parabolics and find that (G: P) is even with the exception of a single pair of 
parabolics for E,(q) with the given index. 

With the additional assumption that n is prime to 3, we observe that the 
given index for E6 is divisible by 3 whenever q - f 1 (mod 3) since there is 
a factor of the form m4 + m2 + 1 with m = q2. Rechecking the indices with q 
even shows that the same fact holds for these cases, except for Sz(q), where 
the odd degrees are divisible by 5, and the above case for E,. 

Finally, the estimate on q may be found in [3]. (To remove any possible 
confusion regarding the Chevalley groups, we may check that the asser- 
tions of the Proposition hold for the simple group of Tits using [S].) 

For the classical groups, the formulae giving the indices of the maximal 
parabolic subgroups are less tractable. We have the following: 

PROPOSITION 3.5. Let G,, be a classical simple group defined over a field 
with q elements and characteristic q,,. Suppose that G has a representation of 
degree n with n odd. Then one of the following holds. 

( 1) G = PSL(2, q) with either (a) q even and q + 1 dividing n or (b) q 
odd and qO dividing n. In either case q < n. 

(2) G= PSL(3, q) with either (a) q2 +q+ 1 dividing n or (b) qO 
dividing n. In either case q2 < n. 

(3) G is a classical group aside from the above two, and either qO 
divides n or else n is divisible by one of the values on the list of indices of the 
maximal parabolic subgroups below. In any case q3 c n. 

rIj7.d (cl’- 1) 
(3a) n;=, (q’-l)&Y1k(q’-1) 

for PSL(m, q). 

(3b) 
r-p=, (q”- 1) 

n;=, tqj L 1) nTselk tq2j _ 1) for PSp(2m, q) and Q(2m + ‘)y q). 

(3c) IJ;y (q”-‘- (- l)“-‘) 
nt=, (q”- 1) for u,(q). 

(3d) n,“zi (~“-2-e)(qm-vd’ +e) 

I-I,“=, (d- 1) 
for Q”(2m, q), e=El, .s= f. 
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Proof Parts (1) and (2) are well known. Part (3) results from the 
Lemma referred to in the proof of Proposition 3.4, combined with 
Cooperstein [6], which lists the above indices and gives the minimal 
degree for permutation representations. 

Lists of maximal subgroups have long been available for PSL(2, q), 
PSL(3, q), U,(q), and, when q is odd, PSp(4, q) (see the references in 
Cooperstein [6]). The reader can easily locate examples from among these 
that occur in degrees with no small prime factor (Definition 3.6 below), 
which are extreme examples of degrees that are odd and prime to 3 ‘5. 
While our lists could be extended to give, for example, the cases up to 
q5 <n, hard information on the maximal subgroups of odd index in the 
groups Lie type has recently been obtained by Kantor [ 141, so we defer 
further numerical consideration of the parabolic case. 

3.2. Degrees without Small Divisors. As remarked above, there is no 
shortage of examples, so we consider the case of the following: 

DEFINITION 3.6. Let n be an odd integer with at least two distinct prime 
divisors. Let pr denote the smallest prime dividing n. We say that n has no 
small prime divisors if 4n < 2 pB. 

For the alternating groups we observe that when n has no small divisors 
we may specify precisely when an alternating group aside from A,, in degree 
n can occur. 

PROPOSITION 3.7. Suppose n is without small prime divisors. Let A,,, be 
an alternating group with a permutation representation qf degree n. Then 
either n = m or else there is a binomial coefficient (T), I <k <m/2, that has 
no small prime divisors and divides n. 

Proof: We follow a simplification suggested by the referee. Let H be the 
subgroup of A,,, stabilizing one of the n letters and consider the action of H 
on the m letters corresponding to A, c S, = Aut( { 1, 2, . . . . m}). If H is 
intransitive on these m letters, H has an orbit of size k with 1 d k < m/2. If 
k # 1, (7) divides n, this being the index of a maximal subgroup containing 
H. If k = 1 the result follows by induction, so we may suppose H acts 
transitively on the m letters. 

If the action of H is imprimitive, m has a factorization m = st, and con- 
sidering a maximal subgroup M containing H, n is divisible by 
(A,: M)= (st)!/(s!)’ (t!). Observe that this number and the number 
obtained by switching the role of s and t have a prime factor p, with p, in 
the interval [max(s, t), 2 max(s, t)]. We therefore consider the smaller of 
these two numbers, i.e., we suppose t > s. Checking for small prime factors, 
we may suppose t > 5. With t = 5, we verify that (St)! > (s!)’ t!2++ *, for 
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each s = 1, . . . . 5 = t. We therefore obtain this inequality in general by induc- 
tion, delaying the case s = t to the last step. Then p, is a small prime factor, 
contradicting our assumption that n has no small prime factors. 

Finally, if H is primitive, we observe that the small divisor 3 must not 
divide n, so H contains a 3-Sylow subgroup of A,. But then H contains a 
3-cycle, so H = A, by Wielandt [ 311. 

Next we consider the sporadic groups, under the same condition on n. 
During corrections to the final version of the paper, we have completed the 
following: 

PROPOSITION 3.8. Suppose that n has no small prime divisors and that a 
sporadic simple group has a representation of degree n. Then n = 11 .23, G is 
the Mathieu group M,,, and G has one of the two possible permutation 
structures. 

Professor Gorenstein has informed us that a forthcoming paper by 
M. Aschbacher, to appear as an AMS Memoir, includes a solution for 
all odd n as a special case. The present result illustrates our divisibility 
assumption. 

ProojI Several of the sporadic groups have orders with no divisor being 
without small prime factors. These are the Mathieu groups M,i, Ml*, and 
M,,, the Janko group J,, the McLaughlin group, the Higman-Sims group, 
and Held’s group. We observe that if every primitive representation has a 
small prime factor then we are done, since the degree of any imprimitive 
representation is divisible by the degree of a primitive representation. The 
sporadic groups whose maximal subgroups have been classified now at 
least include all but seven of the sporadic groups, as in [S]. 

For the remaining groups, we resort to the available information on the 
characters. Thus we must have n = 1 + C e, f,, where the f, are degrees of 
nontrivial irreducible characters and the e, are the multiplicities, as in 
Higman [ 131. We use the degrees of the irreducible characters given in the 
tables of [S] to complete our analysis. 

In the earlier version of this paper the author located some degrees n so 
that n is of the form n =pq, with p and q distinct primes, and the only 
simple group of degree n is A,. We will observe that the recent paper by 
Guralnick and Wales [12] settles this question (without supposing that n 
has no small prime divisors). In response to examples of parabolic sub- 
groups found by the author, Guralnick asserts that the list of Table 1 (lot. 
cit.) is complete after the following minor corrections: 

( 1) the comment on when (I’ - 1 )/(I - 1) has exactly two prime 
factors should require only that E is necessarily a prime or the square of a 
prime; 
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(2) L,(2) ( zA,) occurs in degree 5.7 for a unique conjugacy class of 
subgroups (stabilizing a plane), and L,(2) occurs in degree 5.31 for two 
classes with the same character (stabilizing a lane and a 3-space); and, 

(3) Q&(2), with subgroup H = stabilizer of a singular line, occurs in 
degree (2” - 1)(2”- ’ + l), which has only 2 prime factors when m is a 
Fermat prime, 2” ~ ’ + 1 is a Fermat prime, and 2”‘- 1 is a Mersenne prime 
(e.g., m=5 or 17). 

We record our observation as a 

COROLLARY OF GURALNICK AND WALES. Let n=pq be the product qf 
two distinct prime factors. Then A,, is the only simple primitive transitive 
permutation group of degree n tf and only tf n is not given by 

(a) n=p(p+ 1)/Z 
(b) n=(l’- l)/(r-- 1); 
(c) n=(2”- 1)(2”-’ + 1) with m a Fermat prime; or 

(d) n=22, 35, 3.19, 7.11, 5.31, or 7.29. 

Further, including simple imprimitive groups, the same conclusion holds M’ith 
the addition that n is not given by 

(d (2) q with q dividing 1 - 1. 

Proof The present assertion involves only an analysis the degrees in 
Table 1 Guralnick and Wales, noting that we have only corrected the use 
of elementary number theory referred to in [ 12, p. 1081. The main cases 
(a) and (b) occur (at least) for linear and alternating groups. The groups 
U,, Sz, and Sp, also occur in degrees given by (b). The orthogonal case 
above is accounted for by (c), so we are left with 21 isolated exampies, 
occurring in 14 distinct degrees. All of these but the 6 cases listed in 
(d) occur in degrees given by (a). Finally, for the imprimitive case (e), 
p must be a “special prime” as in [9], and G = PSL,(1) occurs as in [ 12, 
Theorem 6.2(6), (7)]. 

To assist in the location of examples in degrees with more prime factors, 
we apply Propositions 3.43.8 to obtain the following: 

Numerical Restrictions 3.9. Suppose n <N with N= lo’, and that n is 
without small prime divisors. Then a simple group G has a primitive per- 
mutation representation of degree n only if (a) n = (T) and G = A,, (b) 
n= 11.23 and G=IW~~, (c) n=(q”‘-l)/(q-l), (d) G is of Lie type of 
characteristic qO with qO dividing n, or (e) G is a classical group of charac- 
teristic 2. Further, in Proposition 3.5, (3b) is always divisible by q + 1 and 
therefore is even when q is odd. 
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4. AN EXAMPLE 

4.1. Minimal Group Calculations in Dimension 9. This section is 
independent of the material in Section 3; we return to the analysis of CM- 
types. Recall that for a regular group R, the holomorph, Hol(R,), of R, is 
the permutation group R, x, A, where A is the automorphism group of R,. 
The notation R, will always denote a regular permutation group in this 
section. Also, for f EZ’;, recall that weight(f) is the number of nonzero 
coordinates of f. 

PROPOSITION 4.1. Let f E Zz define a type on (p ) x R,, for R, one of the 
two regular groups of degree 9. Then the type defined by f is nondegenerate 
whenever weight (f) is relatively prime to 3. 

Proof Let weight(f) = k. Observe that if a subgroup of R, stabilizes f 
then the coordinates of f are constant on the orbits of the subgroup. But 
since the proper subgroups of the regular groups are &-transitive, this can- 
not occur unless k = 0, 3, 6, or 9. Thus, the orbit off under R, is of order 9. 

By the Constant Weight Criterion we are reduced to showing that the 9 
elements in each orbit are linearly independent. Multiplying by p = (1 . . . 1 ) 
we may suppose that k = 1, 2, or 4. When k = 1, linear independence is 
clear, and we also check the 4 orbits of weight 2 directly. 

Now, with k =4, we apply the Lemma below to observe that checking 
representatives for the Hol(R,)-orbits of the R,-orbits is sufftcient. By 
explicit calculations we find that there are 4 such Hol(Z,)-orbits and 3 
such Hol(Z:)-orbits. In either case, we pick representatives and check 
linear independence directly to verify that all R,-orbits are nondegenerate. 

LEMMA 4.2. Let G, c S,, let n be an element of the normalizer N,(G,), 
and let f E Z; define a type on (p ) x GO. Then Rank(f) = Rank(rcf). In par- 
ticular, when GO is regular, the rank of types on GO is constant on Hol(G,)- 
orbits. 

Proof Observe that CoEG,, n,o(xf) = C,,,,-I (n,,,,-l)(na’71-‘)(7Cf) = 
Lc,-l horn- I) no’f = rc[C,(n,,)(o’f)]; so, when 71 normalizes G,,, relations 
among elements of the Go-orbits of rcf induce relations in the G,-orbit of f, 
and conversely. The assertion on the holomorph follows, since Hol(G,) = 
N,“(G). 

EXAMPLE 4.3. When n=9 and R,=Z:, we have Aut(Z:)= GL(2,3), 
the general linear group of 2-by-2 matrices. To obtain the Hol(Z:)-orbits of 
the Z$orbits in the proof of Proposition 4.1, we take Z: to be explicitly 
given as the group generated by (123)(456)(789) and (147)(258)(369). 
Then generators for GL(2, 3) are explicitly given as automorphisms of Z: 
by (23)(56)(89), (2539)(4876), (2437)(5698), and (456)(798). 

By the analysis in the proof of Proposition 4.1, we may now assume 
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weight (f) = 3 and restrict to representatives for the Hol(R,)-orbits of the 
R,-orbits. The remaining information provided by the orbits of the minimal 
groups (p) x R, is collected in the following: 

PROPOSITION 4.4. ( 1) Suppose R, = Z, and weight(f) = 3. Then the orbits 
of order 9 give types with rank(f) = 8 or 10, and these orbits account ,for all 
but three f, in a single Z,-orbit. 

(2) Suppose R, = Z: and weight(f) = 3. Then there are the following 
cases: (a) the orbits of order 9 give types with rank(f) = 8 and (b) there are 
twelve f in four Z$orbits of order 3. 

Further, in case (2b), an orbit of types consisting of the union of any two 
orbits corresponds to types with rank 6, and such an orbit occurs for certain 
GO properly containing R, = Z:. Finally, the union of three orbits corresponds 
to types of rank 8, and the union of all four orbits corresponds to types qf 
rank 10. 

Proof: (1) There are two distinct Hol(Z,)-orbits of Z,-orbits of order 9, 
with respective ranks 8 and 10. We note here that three orbits of order 9 
consist of types for which rank (f) = 8. 

(2) There is a single Hol(Z:)-orbit of Z$orbits of order 9, whose 
types have rank 8. The four Z:-orbits of order 3 correspond to the four 
subgroups isomorphic to Z, in Z:, and the ranks for the union of these 
orbits may then be checked directly. The rank 6 orbit is the one referred to 
in Proposition 1.2. 

Remark 4.5. As a corollary of the above analysis of Hol(R,)-orbits, 
and of the existence of solvable CM-fields, we obtain the existence of 
simple Abelian varieties of dimension n = 18, 27, 36, 54, and 72 with 
rank 10, i.e., 10 E S(n) for these n. 

4.2. A Characterization of the Rank in Dimension 9. To complete the 
analysis of the rank of primitive types in dimension 9, we must examine 
unions of orbits of degenerate types, or of reducible types, for the minimal 
groups, as described in Section 2. Since a full characterization includes a 
criterion for each value of the rank to occur, we observe the following: 

PROPOSITION 4.6. Suppose A is a simple Abelian variety of dimension 9 
and that A has complex multiplication. Let (K, @) be the CM-type of A, and 
suppose that Rank(A) = 6. Then the following properties hold: 

(i) (K, @) is the refex type of a CM-type (K’, @‘), where K’ has 
degree 12 over Q; and, 

(ii) the maximal totally real subfield K, of K is not Galois over Q, 
[K: K;] = 2, and Gal(K;/Q) is isomorphic to one of the wreath products 
Z, 2 Z, or S, 2 Z,, or else to one of two specific groups of order 36 that 
occur as index two subgroups in the latter group. 
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Proof: Consider the number of elements in an orbit of types for 
Gal(K”/Q). By Proposition 2.2 we must take unions of orbits of types for a 
permutation subgroup A4 over a minimal group M,, so that none of the 
orbits have rank greater than 6. Since M is split with trivial structure over 
M,, observe that M has a transitive subgroup M, of the form analyzed in 
Section 4.1, i.e., with Z; = (p), and that the M-orbits are given as unions 
of M,-orbits. 

Then the only possible orbits, aside from the order 12 orbits, obtained as 
8 u 8p for 8 an orbit of order 6 in Proposition 4.4(2b), are the union of one 
of these with the orbit (0, p} of order 2. But we eliminate an orbit of order 
14 since, by Section 5.1 of [S], there is no CM-field of degree 14 with a 
reflex field of degree 18. (Alternatively, we observe that such a type would 
have rank 8.) 

As to the specific groups in (ii), observe that [K’: Q] = 12, [K: C?] = 18 
with (K, @) primitive gives that v = 1 in the Reflex Degree Theorem applied 
to (K’)‘, and K” = Kc. Therefore, [Kc : Q] = 2m, where m is the order of an 
abstract group H with transitive permutation representations of degree 6 
and 9. But there are only 6 permutation groups of degree 6 with order 
divisible by 9, while A, and S, do not admit degree 9 representations, so at 
most the four groups referred to in (ii) occur. 

Remark 4.7. Let A be a simple Abelian variety with complex mul- 
tiplication, and suppose that the dimension of A is 9. Then Rank(A) = 6, 8, 
or 10, and these three numbers do occur. This conclusion may be 
established by the present methods and has motivated a subsequent 
investigation by the author. As the new method is both simpler and more 
general, we omit the initial proof. 

3.3. A Preliminary Result with n =p2. Let A(p2) be the smallest value 
of the rank of the primitive CM-types (K, @) as K ranges over the CM- 
fields with K normal over Q of degree 2p2, and Gal(K/Q) Abelian. A 
general version of the result of Section 4.2 is given by the following: 

PROPOSITION 4.8. Suppose that (K, 0) is a primitive CM-type on a CM- 
field K with [K: Q] = 2p*, f or p an odd prime. Suppose that Rank(@) = t 
with t < A(p*). Then the reflex field K’ of the type (K, @) has degree 2n’ with 
n’=mp or mp+ 1. 

Proof: Let K, ‘be the maximal totally real subfield of K. By 
Proposition 2.7, the permutation group determined by K,, must contain at 
least one of Zp2 or Zs as a regular subgroup. Then by Theorem 2.5 the 
Gal(K”/Q)-orbit of the type @ is given as a union of orbits of 
MI = (p) x RO, for R,, one of these two regular groups. Let @ be given by 
f as usual, and observe that, if the Gal(K/Q)-orbit of f contains any RO- 
orbit of order p2, then rank(f) 2 A(p2), since the orbits of order p* are 
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precisely the orbits of the primitive types on the cyclotomic fields, up to 
multiplication by p. We therefore have that the orbit of f is a union or 
orbits of RO of order p, paired by multiplication by p, with the possible 
addition of (0, p}. This gives our conclusion, since the degree of the reflex 
field is the order of the orbit of the type. 

Additional Remark. We describe here some subsequent developments 
relevant to the interest of the calculations of Section 4. The result of 
Proposition 4.1, taken together with the construction of [S] used to 
establish the converse of Ribet’s Nondegeneracy Theorem, suggested to the 
author that a simple degenerate Abelian variety with a (minimal) cyclic 
transitive subgroup should be defined by a type with weight relatively 
prime to the dimension of the variety. H. W. Lenstra, Jr. gave a coun- 
terexample to this tentative conjecture at the Arcata Arithmetic Geometry 
conference. His examples have dimension 42 (even) and 385 (odd) and 
represent a theory that the author hopes to develop in a future 
investigation. 
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