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Abstract

We characterize the canonical algebras such that for all dimension vectors of homogeneous modules the
corresponding module varieties are complete intersections (respectively, normal). We also investigate the
sets of common zeros of semi-invariants of non-zero degree in important cases. In particular, we show that
for sufficiently big vectors they are complete intersections and calculate the number of their irreducible
components.
© 2007 Elsevier Inc. All rights reserved.
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Throughout the paper k denotes a fixed algebraically closed field. By N and Z we denote the
sets of non-negative integers and integers, respectively. Finally, if i, j ∈ Z, then [i, j ] = {l ∈ Z |
i � l � j}.

Introduction and main result

Canonical algebras were introduced by Ringel in [28, 3.7] (for a definition see also 1.1).
A canonical algebra Λ depends on a sequence (m1, . . . ,mn), n � 3, of positive integers greater
then 1 and on a sequence (λ3, . . . , λn) of pairwise distinct non-zero elements of k. In this situ-
ation we say that Λ is a canonical algebra of type (m1, . . . ,mn). The canonical algebras play a
prominent role in the representation theory of algebras (see for example [23,30]). In particular,
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the module categories over canonical algebras are derived equivalent to the categories of coher-
ent sheaves over weighted projective lines (see [16]). Moreover, according to [19, Theorem 3.1]
every quasi-titled algebra is derived equivalent to a hereditary algebra or to a canonical one.

Let Λ be an algebra. For each element d of the Grothendieck group of Λ one defines a variety
modΛ(d) called the variety of Λ-modules of dimension vector d (see 2.1). The study of varieties
of modules is an important and interesting topic in the representation theory of algebras (for some
reviews of results see for example [10,17,20]). In [6] Skowroński and the author proved that if Λ

is a tame canonical algebra and d is the dimension vector of an indecomposable Λ-module, then
modΛ(d) is a complete intersection with at most 2 irreducible components. The module varieties
over canonical algebras were also studied by Barot and Schröer in [3].

Let Λ be a canonical algebra of type (m1, . . . ,mn). We call a module regular if it is periodic
with respect to the action of the Auslander–Reiten translate (such modules are of special interest
in the representation theory, see for example [31]). This class of modules also received special
attention from a geometric point of view. Skowroński and the author showed in [7] that if d is the
dimension vector of a regular module over a tame canonical algebra Λ, then the corresponding
variety is a normal complete intersection. This result was extended in [4] by showing that the
varieties modΛ(d) are normal (respectively, complete intersections) for all dimension vectors d
of regular Λ-modules if and only if

1

m1 − 1
+ · · · + 1

mn − 1
> 2n − 5 (� 2n − 5).

A special type of regular modules are the homogeneous ones, which are invariant with respect
to the action of the Auslander–Reiten translate. The first result of the paper is the following.

Theorem 1. Let Λ be a canonical algebra of type (m1, . . . ,mn).

(1) The varieties modΛ(d) are complete intersections for all dimension vectors d of homoge-
neous Λ-modules if and only if

1

m1
+ · · · + 1

mn

� n − 4.

(2) The varieties modΛ(d) are normal for all dimension vectors d of homogeneous Λ-modules
if and only if

1

m1
+ · · · + 1

mn

> n − 4.

If 1
m1

+ · · · + 1
mn

� n − 2, then the algebra Λ is tame, hence in this case the assertion follows
from the quoted result [7]. Thus we may assume that

1

m1
+ · · · + 1

mn

< n − 2.

In this case the algebra Λ is wild and d is the dimension vector of a homogeneous module if and
only if d = ph for some p ∈ N, where h is the dimension vector with all the coordinates equal
to 1.
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We take a closer look into the boundary situation.

Theorem 2. Let Λ be a canonical algebra of type (m1, . . . ,mn) with

1

m1
+ · · · + 1

mn

= n − 4,

and let m be the least common multiple of m1, . . . ,mn.

(1) If m divides p, then modΛ(ph) is a complete intersection with exactly two irreducible com-
ponents.

(2) If m does not divide p, then modΛ(ph) is a normal complete intersection.

If Λ is an algebra then for each dimension vector d a product GL(d) of general linear groups
acts on the variety modΛ(d) (see 2.1). This action induces an action on the ring k[modΛ(d)]
of regular functions on modΛ(d) (see 3.1). It is known that for a triangular algebra (no cycles
in the Gabriel quiver), hence in particular for canonical algebras, only the constant functions
are invariant with respect to this action, however the ring SI[modΛ(d)] of semi-invariants has a
richer structure (see for example [18,27,33]). In particular, rings of semi-invariants arising for
regular modules over canonical algebras were studied [14,15,32].

In connection with rings of semi-invariants one may also ask, for a dimension vector d over an
algebra Λ, about properties of the set Z(d) of the common zeros of the semi-invariants of non-
zero weight. This line of research (in the context of module varieties) was initiated by Chang and
Weyman [11] and continued by Riedtmann and Zwara [24–26]. A motivation for this research is
that Z(d) reflects properties of k[modΛ(d)] as a module over SI[modΛ(d)].

The last result of the paper concerns this topic.

Theorem 3. Let Λ be a canonical algebra of type (m1, . . . ,mn). If

1

m1
+ · · · + 1

mn

< n − 4,

then there exists N such that, for p � N , Z(ph) is a set theoretic complete intersection with

(p − n)m1 · · ·mn +
∑

l∈[1,n−1]

∑
i1<···<il∈[1,n]

mi1 · · ·mil + 1

irreducible components and k[modΛ(d)] is a free SI[modΛ(d)]-module.

Explicit bounds for N can be found in Propositions 4.1, 4.2, and 4.5.
The paper is organized as follows. In Section 1 we present definition and necessary facts about

canonical algebras, and in Section 2 we prove Theorems 1 and 2. Next, in Section 3, we collect
useful facts about semi-invariants, which in Section 4 are used in the proof of Theorem 3.

1. Preliminaries on canonical algebras

In this section we present facts about canonical algebras necessary in our proofs.
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1.1. Let m = (m1, . . . ,mn), n � 3, be a sequence of integers greater than 1 and let λ =
(λ3, . . . , λn) be a sequence of pairwise distinct non-zero elements of k. We define Λ(m,λ) as the
path algebra of the bound quiver (Δ(m),R(m,λ)), where Δ(m) is the quiver

•(1,1)

α1,1

· · ·
α1,2

•(1,m1−1)

α1,m1−1

•(2,1)

α2,1

· · ·
α2,2

•(2,m2−1)

α2,m2−1•0 · · • ∞

α1,m1

α2,m2

αn,mn

· ·
· ·
•

(n,1)

αn,1

· · ·αn,2 •
(n,mn−1)

αn,mn−1

and

R(m,λ) = {
α1,1 · · ·α1,m1 + λiα2,1 · · ·α2,m2 − αi,1 · · ·αi,mi

∣∣ i ∈ [3, n]}.
The algebras of the above form are called canonical. In particular, we call Λ(m,λ) a canonical
algebra of type m. If m and λ are fixed, then we usually write Λ and (Δ,R), instead of Λ(m,λ)

and (Δ(m),R(m,λ)), respectively. In this case we further denote by Δ0 the set of vertices of Δ.
Until the end of the section we assume that Λ = Λ(m,λ) is a fixed canonical algebra and (Δ,R)

is the corresponding bound quiver. The following invariant

δ = 1

2

(
n − 2 − 1

m1
− · · · − 1

mn

)

controls the representation type of Λ (see [28]). Namely, Λ is tame if and only if δ � 0. Moreover,
Λ is domestic if and only if δ < 0.

1.2. By a representation of the bound quiver (Δ,R) we mean a collection M =
(Mx,Mi,j )x∈Δ0, i∈[1,n], j∈[1,mi ] of finite dimensional vector spaces Mx , x ∈ Δ0, and linear maps
Mi,j :M(i,j) → M(i,j−1), i ∈ [1, n], j ∈ [1,mi], such that

M1,1 · · ·M1,m1 + λiM2,1 · · ·M2,m2 − Mi,1 · · ·Mi,mi
= 0, i ∈ [3, n],

where M(i,0) = M0 and M(i,mi) = M∞ for i ∈ [1, n]. The category of representations of (Δ,R)

is equivalent to the category of Λ-modules, and we identify Λ-modules and representations of
(Δ,R). For a representation M we define its dimension vector dimM ∈ N

Δ0 by (dimM)x =
dimk Mx , x ∈ Δ0.

1.3. The Ringel bilinear form 〈−,−〉 : ZΔ0 × Z
Δ0 → Z is defined by

〈d′,d′′〉 = d ′
0d

′′
0 +

∑
i∈[1,n], j∈[1,mi−1]

d ′
i,j d

′′
i,j + d ′∞d ′′∞

−
∑

d ′
i,j d

′′
i,j−1 + (n − 2)d ′∞d ′′

0 ,
i∈[1,n], j∈[1,mi ]
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where we use the convention that di,0 = d0 and di,mi
= d∞ for d ∈ Z

Δ0 and i ∈ [1, n], and di,j =
d(i,j) for i ∈ [1, n] and j ∈ [1,mi − 1], plays an important role in describing the representation
theory of Λ. It is known (see [8, 2.2]), that if M and N are Λ-modules, then

〈dimM,dimN〉 = [M,N ] − [M,N ]1 + [M,N ]2,

where, following Bongartz [9], [M,N ] = dimk HomΛ(M,N), [M,N ]1 = dimk Ext1Λ(M,N),
and [M,N ]2 = dimk Ext2Λ(M,N).

1.4. Let h be the dimension vector with all the coordinates equal to 1, and

ei,0 = h − (ei,1 + · · · + ei,mi−1)

for i ∈ [1, n], where (ex)x∈Z
Δ0 is the standard basis of Z

Δ0 and ei,j = e(i,j) for i ∈ [1, n] and
j ∈ [1,mi − 1]. One easily checks that

〈d,h〉 = d0 − d∞ = −〈h,d〉,
〈d, ei,j 〉 = di,j − di,j+1, i ∈ [1, n], j ∈ [0,mi − 1],
〈ei,j ,d〉 = di,j − di,j−1, i ∈ [1, n], j ∈ [1,mi − 1],

and

〈ei,0,d〉 = di,mi
− di,mi−1, i ∈ [1, n],

for d ∈ Z
Δ0 .

1.5. Let P (R, Q, respectively) be the subcategory of all Λ-modules which are direct sums
of indecomposable Λ-modules X such that

〈dimX,h〉 > 0
(〈dimX,h〉 = 0, 〈dimX,h〉 < 0, respectively

)
.

We have the following properties of the above decomposition of the category of Λ-modules
(see [28, 3.7]).

First, [N,M] = 0 and [M,N ]1 = 0, if either N ∈ R ∨ Q and M ∈ P , or N ∈ Q and M ∈
P ∨ R. Here, for two subcategories X and Y of the category of Λ-modules, we denote by
X ∨Y the additive closure of their union. Moreover, one knows that pdΛM � 1 for M ∈ P ∨R
and idΛN � 1 for N ∈ R ∨ Q. Secondly, R decomposes into a P

1(k)-family
∐

λ∈P1(k)Rλ of

uniserial categories. In particular, [M,N ] = 0 and [M,N ]1 = 0 if M ∈Rλ and N ∈ Rμ for
λ 	= μ. We put R′ = ∐

i∈[1,n] Rλi
and R′′ = ∐

λ∈P1(k)\{λ1,...,λn} Rλ, where λ1 = 0 and λ2 = ∞.

If λ ∈ P1(k)\{λ1, . . . , λn}, then there is a unique simple object Rλ in Rλ and its dimension vector
is h. On the other hand, if λ = λi for i ∈ [1, n], then there are mi simple objects R

(0)
λ , . . . ,R

(mi−1)
λ

in Rλi
and their dimension vectors are ei,j , j ∈ [0,mi − 1], respectively.
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1.6. Let P, R and Q denote the sets of the dimension vectors of modules from P , R, Q,
respectively. According to [4, 2.6], d ∈ P if and only if either d = 0 or d0 > d∞ � 0 and di,j �
di,j+1 for all i ∈ [1, n] and j ∈ [0,mi − 1]. Dually, d ∈ Q if and only if either d = 0 or 0 �
d0 < d∞ and di,j � di,j+1 for all i ∈ [1, n] and j ∈ [0,mi − 1].

For l1 ∈ [0,m1 − 1], . . . , ln ∈ [0,mn − 1] we set

e(l1, . . . , ln) = e0 +
∑

i∈[1,n]

∑
j∈[1,li ]

ei,j .

We will need the following fact.

Lemma. If d ∈ P is such that 〈d,h〉 = 1, then

d = rh + e(l1, . . . , ln)

for some r ∈ N and li ∈ [0,mi − 1], i ∈ [1, n]. In particular, 〈d,d〉 = 1.

Proof. The first part follows immediately from the above description of P and the equality
〈d,h〉 = d0 − d∞. The second part follows by direct calculations. �

1.7. The following inequality will be extremely useful in our proofs.

Lemma. Let d ∈ Z
Δ0 . Then

〈d,d〉 � −δ(d0 − d∞)2.

Moreover, the equality holds if and only if

di,j = 1

mi

(
(mi − j)d0 + jd∞

)

for i ∈ [1, n] and j ∈ [1,mi − 1].

Proof. Let d′ = d − d∞h. Then 〈d,d〉 = 〈d′,d′〉 and d ′
0 = d0 − d∞, hence the claim follows

from the following equality

〈d′,d′〉 = −δd ′2
0

+ 1

2

∑
i∈[1,n]

∑
j∈[1,mi−1]

1

(mi − j)(mi − j + 1)

(
(mi − j + 1)d ′

i,j − (mi − j)d ′
i,j−1

)2
,

which was suggested to me by Professor Riedtmann. �
2. Preliminaries on module varieties and proofs of Theorems 1 and 2

Throughout this section Λ is a fixed canonical algebra of type m and Δ is its quiver. We
first define in 2.1 varieties of modules, then formulate in 2.2 numerical criteria characterizing
geometric properties of these varieties, and finally we apply these criteria in 2.3 and 2.4 in order
to prove Theorems 1 and 2, respectively.
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2.1. For d ∈ N
Δ0 let A(d) = ∏

i∈[1,n],j∈[1,mi ] M(di,j−1, di,j ). By modΛ(d) we denote the
subset of A(d) formed by all tuples (Mi,j ) such that

M1,1 · · ·M1,m1 + λiM2,1 · · ·M2,m2 − Mi,1 · · ·Mi,mi
= 0, i ∈ [3, n].

We identify the points M of modΛ(d) with Λ-modules of dimension vector d by taking Mx = kdx

for x ∈ Δ0. The product GL(d) = ∏
x∈Δ0

GL(dx) of general linear groups acts on modΛ(d) by
conjugation

(g · M)i,j = g(i,j−1)Mi,j g
−1
(i,j), i ∈ [1, n], j ∈ [1,mi],

for g ∈ GL(d) and M ∈ modΛ(d), where g(i,0) = g0 and g(i,mi) = g∞ for i ∈ [1, n]. The orbits
with respect to this action correspond bijectively to the isomorphism classes of Λ-modules of
dimension vector d. For M ∈ modΛ(d) we denote by O(M) the GL(d)-orbit of M . We put

a(d) = dim A(d) − (n − 2)d0d∞.

Note that a(d) = dim GL(d) − 〈d,d〉.

2.2. For a subcategory X of the category of Λ-modules and a dimension vector d we denote
by X (d) the set of all M ∈ modΛ(d) such that M ∈ X . One knows that if d ∈ N

Δ0 then P(d)

and (R∨Q)(d) are open subsets of modΛ(d) (see [4, Lemmas 3.7 and 3.8]). Together with the
properties of the categories P , R and Q listed in 1.5, it implies that we can apply the results of
[4, Section 4] with X = P and Y = R∨Q.

Observe that if d ∈ P and p � d0, then ph − d ∈ Q. Moreover,

〈ph − d,d〉 = −p(d0 − d∞) − 〈d,d〉.
Thus, the following proposition is a consequence of [4, Propositions 4.3, 4.5 and 4.9].

Proposition 2.2.1. Let p � 1.

(1) The variety modΛ(ph) is a complete intersection if and only if 〈d,d〉 � −p(d0 − d∞) for all
d ∈ P such that d0 � p.

(2) The variety modΛ(ph) is normal if and only if 〈d,d〉 > −p(d0 − d∞) for all d ∈ P, d 	= 0,
such that d0 � p.

We will also need the following consequence of the proof of [4, Proposition 4.5].

Proposition 2.2.2. Let p � 1 and assume that 〈d,d〉 � −p(d0 − d∞) for all d ∈ P such that
d0 � p. Then the irreducible components of modΛ(ph) are in bijection with the dimensions
vectors d ∈ P such that d0 � p and 〈d,d〉 = −p(d0 − d∞).

2.3. We now prove Theorem 1. Recall that it is enough to prove the theorem for d = ph with
p � 1 (see the discussion after Theorem 1). Assume that

1 + · · · + 1 � n − 4.

m1 mn



G. Bobiński / Journal of Algebra 319 (2008) 1320–1335 1327
Then δ � 1 and according to Lemma 1.7

〈d,d〉 � −δ(d0 − d∞)2 � −d0(d0 − d∞) � −p(d0 − d∞)

for each p � 1 and d ∈ P such that d0 � p. According to Proposition 2.2.1(1), this implies that
modΛ(ph) is a complete intersection. Analogously, we prove that modΛ(ph) is normal if

1

m1
+ · · · + 1

mn

> n − 4,

since in this case δ < 1 and the second inequality in the above string is strict for d 	= 0.
It remains to prove that if

1

m1
+ · · · + 1

mn

< n − 4 (� n − 4),

then there exists p such that modΛ(ph) is not a complete intersection (respectively, normal), or
in other words, there exists d ∈ P (d 	= 0) such that

〈d,d〉 < −p(d0 − d∞)
(
� p(d0 − d∞)

)
.

A construction of such p and d is suggested by Lemma 1.7. Namely, let p = m1 · · ·mn and d be
given by the formulas

d0 = p, d∞ = 0, di,j = mi − j

mi

p, i ∈ [1, n], j ∈ [1,mi − 1].

Then d ∈ P, d 	= 0, and 〈d,d〉 = −δp(d0 − d∞), what finishes the proof.

2.4. We now prove Theorem 2. Assume that

1

m1
+ · · · + 1

mn

= n − 4

and p > 0. We already know that modΛ(ph) is a complete intersection. Moreover, according
to [4, Proposition 4.9] it is normal if and only it is irreducible. Thus our task it to classify the
irreducible components of modΛ(ph). According to Proposition 2.2.2 this is equivalent to clas-
sifying the dimension vectors d ∈ P such that d0 � p and 〈d,d〉 = −p(d0 − d∞). Obviously, one
such vector is the zero vector. Hence assume that d 	= 0. It follows from Lemma 1.7 that 〈d,d〉 �
−(d0 − d∞)2 (recall that δ = 1 in our case). Thus the condition 〈d,d〉 = −p(d0 − d∞) implies
that d0 = p and d∞ = 0. Moreover, we know again from Lemma 1.7 that 〈d,d〉 = −(d0 − d∞)2

if and only if di,j = mi−i
mi

p, i ∈ [1, n], j ∈ [1,mi − 1]. Note that d defined by the above formulas

belongs to P if and only if it belongs to N
Δ0 , i.e., if and only if mi divides p for i ∈ [1, n]. This

observation concludes the proof.
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3. Preliminaries on semi-invariants

Throughout this section Λ = Λ(m,λ) is a fixed canonical algebra, and Δ = Δ(m). Moreover,
we put

|m| = m1 + · · · + mn.

Our main aim in this section is to prove Proposition 3.9, which reduces the proof of Theorem 3 to
a certain inequality. In order to achieve this aim we first recall basic facts about semi-invariants
in 3.1 and 3.2. The main result of this first part is Corollary 3.3 giving a new formulation of
Theorem 3, which we subsequently improve in 3.4–3.9.

3.1. Let d ∈ N
Δ0 . The action of GL(d) on modΛ(d) induces an action of GL(d) on the

coordinate ring k[modΛ(d)] of modΛ(d) in the usual way, i.e.

(g · f )(M) = f
(
g−1 · M)

for g ∈ GL(d), f ∈ k[modΛ(d)], and M ∈ modΛ(d). The product SL(d) = ∏
x∈Δ0

SL(dx) of
special linear groups is a closed subgroup of GL(d). The ring SI[modΛ(d)] of invariants with
respect to the induced action of SL(d) on k[modΛ(d)] is called the ring of semi-invariants.

By a weight we mean a group homomorphism σ : ZΔ0 → Z. We identify the weights with the
elements of the group Z

Δ0 in the usual way. If σ is a weight, then we define the weight space

SI
[
modΛ(d)

]
σ

=
{
f ∈ k

[
modΛ(d)

] ∣∣∣ g · f =
( ∏

x∈Δ0

detσ(x)(g)

)
f

}

(observe that SI[modΛ(d)]σ ⊂ SI[modΛ(d)]). It is known that

SI
[
modΛ(d)

] =
⊕

σ∈Z
Δ0

SI
[
modΛ(d)

]
σ

provided d is sincere, i.e. dx 	= 0 for x ∈ Δ0. Moreover SI[modΛ(d)]0 = k. In this situation the
set Z(d) of common zeros of homogeneous semi-invariants with non-zero weights is called the
zero set of semi-invariants.

3.2. We recall now a construction of semi-invariants described in [15] (being a generalization
of a construction of Schofield [29]—compare also [12,13]). Let M be a Λ-module of projective
dimension at most 1, and let

0 → P1
ϕ→ P0 → M → 0

be its minimal projective resolution. If d ∈ N
Δ0 satisfies 〈dimM,d〉 = 0, then the map

dM
d : modΛ(d) → k given by dM

d (N) = det HomΛ(ϕ,N) is well defined (up to scalars) and is
a homogeneous semi-invariant of weight −〈dimM,−〉. Moreover, dM

d (N) = 0 if and only if
[M,N ] 	= 0.
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3.3. For d ∈ N
Δ0 let RegΛ(d) denote the closure of R(d). If R(d) is non-empty, i.e. d ∈ R,

then RegΛ(d) is an irreducible component of modΛ(d). The action of GL(d) on k[modΛ(d)]
restricts to an action on k[RegΛ(d)]. In particular, by SI[RegΛ(d)] we denote the ring of SI(d)-
invariant regular functions on RegΛ(d). The rings SI[RegΛ(d)] for d ∈ R have been studied
in [32] (in case of characteristic 0) and in [15] (in case of arbitrary characteristic). We now list
their properties which are important for our investigations.

Proposition. Let p � 1. Then SI[RegΛ(ph)] is generated by dM
ph, M ∈R. Moreover, if p � n − 1

then SI[RegΛ(ph)] is a polynomial algebra in |m| + p + 1 − n variables.

The following consequence of the above proposition will be crucial for us.

Corollary. Let p � 1. If modΛ(ph) is irreducible, then

Z(ph) = {
N ∈ modΛ(ph)

∣∣ [M,N ] 	= 0 for all M ∈R
}
.

Moreover, if p � n − 1 and

dimZ(ph) = a(d) − |m| − p − 1 + n,

then Z(ph) is a set theoretic complete intersection and k[modΛ(ph)] is a free SI[modΛ(ph)]-
module.

Proof. Recall from [4] that if modΛ(ph) is irreducible then modΛ(ph) is a complete intersection
of dimension a(d), thus the above corollary is a direct consequence of the above proposition and
[5, Section 4]. �

We note that always Z(ph) � a(d) − |m| − p − 1 + n, hence the hard part of the proof is
show that Z(ph) � a(d) − |m| − p − 1 + n.

3.4. We will need the following well-known fact.

Lemma. If p � 1, then R′′(ph) is an open subset of R(ph). In particular, dimR′′(ph) = a(ph).

Proof. Let M ∈ R. Then M ∈ R′′ if and only if HomΛ(R
(j)
λi

,M) = 0 for all i ∈ [1, n] and
j ∈ [0,mi − 1], which implies the first part of the lemma. The second part is an immediate
consequence of the well-known fact that R(ph) is an irreducible set of dimension a(ph) (see for
example remarks after [4, Lemma 3.7]). �

3.5. Fix d′ ∈ P, d′′ ∈ Q and X ∈ R′ such that d′ + d′′ + dimX = qh for some q � 1. For
each p � q we consider the set Cp(d′,d′′,X) consisting of all M ∈ modΛ(ph) which are iso-
morphic to modules of the form M ′ ⊕ M ′′ ⊕ X ⊕ Y , where M ′ ∈ P(d′), M ′′ ∈ Q(d′′) and
Y ∈R′′((p − q)h). We will need the following properties of the set Cp(d′,d′′,X).

Lemma. Let d′, d′′, X, q and p be as above, and C = Cp(d′,d′′,X). Then C is an irreducible
constructible set of dimension

a(ph) − (
(2p − q)〈d′,h〉 + 〈d′,d′〉 + 〈d′,dimX〉 + [X,X]).
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Proof. The claim follows from [4, Corollary 3.4]. Indeed

C = P(d′) ⊕O(X) ⊕R′′((p − q)h
) ⊕Q(d′′)

in the notation of [4, 3.4]. Moreover, according to [4, Lemma 3.8]

dimP(d′) = a(d′) and dimQ(d′′) = a(d′′).

Further, by a well-known formula for the dimension of O(X) (see for example [21, 2.2])

dimO(X) = dim GL(d) − [X,X] = a(d) + 〈d,d〉 − [X,X],

where d = dimX. In addition, according to Lemma 3.4

dimR′′((p − q)h
) = a

(
(p − q)h

)
.

Finally, for any M ′ ∈P(d′), M ′′ ∈ Q(d′′) and M ∈R′′((p − q)h)

[M ′,X] = 〈d′,d〉, [X,M ′] = 0,

[M ′,M] = 〈
d′, (p − q)h

〉
, [M,M ′] = 0,

[M ′,M ′′] = 〈d′,d′′〉, [M ′,M ′′] = 0,

[X,M] = 0 = 〈
d, (p − q)h

〉
, [M,X] = 0,

[X,M ′′] = 〈d,d′′〉, [M ′′,X] = 0,

[M,M ′′] = 〈
(p − q)h,d′′〉, [M ′′,M] = 0,

hence we are in position to apply [4, Corollary 3.4]. Since 〈h,d′〉 = −〈d′,h〉 and 〈d′′,h〉 =
〈qh − d − d′,h〉 = −〈d′,h〉, the formula follows by direct calculations. �

3.6. Another important property is the following.

Lemma. Let d′, d′′, X, q and p be as above, and C = Cp(d′,d′′,X). If modΛ(ph) is irreducible,
then C ∩ Z(ph) 	= ∅ if and only if d′ 	= 0 and for each i ∈ [1, n] and j ∈ [0,mi − 1] either
〈d′, ei,j 〉 	= 0 or [X,R

(j)
λi

] 	= 0. In particular, C ∩Z(ph) 	= ∅ if and only if C ⊂ Z(ph).

Proof. Take N ∈ C. Recall that, according to Corollary 3.3, under the assumptions of the lemma
N ∈ Z(ph) if and only if [N,R] 	= 0 for all R ∈ R. This is equivalent to saying that [N,Rλ] 	= 0
for all λ ∈ P

1(k) \ {λ1, . . . , λn} and [N,R
(j)
λi

] 	= 0 for all i ∈ [1, n] and j ∈ [0,mi − 1]. Write
N � M ′ ⊕X ⊕M ⊕M ′′ for M ′ ∈ P , M ∈R′′ and M ∈Q. The former condition is equivalent to
M ′ 	= 0 (i.e., d′ 	= 0) since [X ⊕ M ′′,R] = 0 for all R ∈R′′ and [M,Rλ] = 0 for all but a finite
number of λ ∈ P

1(k) \ {λ1, . . . , λn}. Similarly, the latter condition leads to the second condition
of the lemma. �
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3.7. For p � 1 let Zp be the set of all triples (d′,d′′, [X]), where d′ ∈ P, d′′ ∈ Q and X ∈R′
are such that d′ + d′′ + dimX = qh for some q � p, d′ 	= 0, and for each i ∈ [1, n] and j ∈
[0,mi − 1] either 〈d′, ei,j 〉 	= 0 or [X,R

(j)
λi

] 	= 0. Here [X] denotes the isomorphism class of X.
Observe that Zp is a finite set, hence as a consequence of two preceding lemmas and Corollary 3.3
we get the following.

Proposition. Let p � 1 and assume that modΛ(ph) is irreducible. If

(2p − q)〈d′,h〉 + 〈d′,d′〉 + 〈d′,dimX〉 + [X,X] � |m| + p + 1 − n (∗)

for all (d′,d′′, [X]) ∈ Zp , where qh = d′ + d′′ + dimX, then Z(ph) is a set theoretic complete
intersection and k[modΛ(ph)] is free as a module over SI[modΛ(ph)]. Moreover, if this is the
case then the map

Zp � (
d′,d′′, [X]) �→ Cp(d′,d′′,X) ⊂ Z(ph)

induces a bijection between those members of Zp with equality in (∗) and the irreducible com-
ponents of Z(ph).

Proof. The only missing part is the well-known fact that irreducible components of complete
intersections have the same dimension [22, 3.12]. �

3.8. The following inequality will give us a more accessible version of the previous fact.

Lemma. Let p � 1. If (d′,d′′, [X]) ∈ Zp , then

[X,X] � |m| − n〈d′,h〉.

Proof. Since the categories Rλi
, i ∈ [1, n], are uniserial and pairwise orthogonal it follows for

indecomposable R ∈ R′, that if [R,R
(j0)
λi0

] 	= 0 for some i0 ∈ [1, n] and j0 ∈ [0,mi − 1], then

[R,R
(j)
λi

] = 0 for all i ∈ [1, n] and j ∈ [0,mi − 1] such that (i, j) 	= (i0, j0). For i ∈ [1, n] let si
denote the number of the indecomposable direct summands of X which belong to Rλi

. Since

〈d′,h〉 = 〈
d′, ei,0

〉 + · · · + 〈
d′, ei,mi−1

〉
,

for each i ∈ [1, n], 〈d′, ei,j 〉 � 0 for all i ∈ [1, n] and j ∈ [0,mi −1], it follows from the definition
of Zp that 〈d′,h〉 � mi − si . Using that [X,X] � s1 + · · · + sn, we obtain our claim. �

3.9. We now reformulate Proposition 3.7.

Proposition. Let p � 1 and assume that modΛ(ph) is irreducible. If

(p − q)〈d′,h〉 + (p − n)
(〈d′,h〉 − 1

) + (〈d′,d′〉 − 1
)
� 0

for all (d′,d′′, [X]) ∈ Zp , where qh = d′ + d′′ + dimX, then Z(ph) is a set theoretic complete
intersection and k[modΛ(ph)] is free as a module over SI[modΛ(ph)]. Moreover, if this is the
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case and the above inequality is strict for all (d′,d′′, [X]) ∈ Zp such that 〈d′,h〉 > 1, then the
irreducible components are indexed by the triples (d′,d′′, [X]) ∈ Zp such that

〈d′,dimX〉 = 0, [X,X] = |m| − n〈d′,h〉,
〈d′,h〉 = 1, d′ + d′′ + dimX = ph.

(+)

Proof. The first part follows from Proposition 3.7 and Lemma 3.8 together with the obvious in-
equality 〈d′,dimX〉 � 0. The second part is obtained in a similar way: one has to use in addition
Lemma 1.6. �

For future reference we introduce the following notation:

diff
(
d′,d′′, [X]) = (p − q)〈d′,h〉 + (p − n)

(〈d′,h〉 − 1
) + (〈d′,d′〉 − 1

)

for (d′,d′′, [X]) ∈ Zp , with d′ + d′′ + dimX = qh.

3.10. We calculate now the number of triples described in the above proposition.

Lemma. If p � n then the number of triples (d′,d′′, [X]) ∈ Zp satisfying (+) is

(p − n)m1 · · ·mn +
∑

l∈[1,n−1]

∑
i1<···<il∈[1,n]

mi1 · · ·mil + 1.

Proof. It follows from Lemma 1.6 that the condition 〈d′,h〉 = 1 implies that

d′ = rh + e0 + e(l1, . . . , ln)

for some r ∈ N and li ∈ [0,mi − 1], i ∈ [1, n]. Note that if i ∈ [1, n] and j ∈ [0,mi − 1], then
〈d′, ei,j 〉 > 0 if and only if j = li . Consequently, for each i ∈ [1, n] and j ∈ [0,mi − 1], j 	= li ,

there exists an indecomposable direct summand Xi,j of X such that [Xi,j ,R
(j)
λi

] 	= 0. It follows

that Xi,j = R
(j)
λi

since otherwise either [Xi,l,Xi,j ] 	= 0 for l 	= j and consequently [X,X] >

|m| − n, or 〈d′,dimXi,j 〉 	= 0. It is possible to find d′′ ∈ Q such that d′ + d′′ + dimX = ph if
and only if r + |{i ∈ [1, n] | li > 0}| � p − 1, which implies the formula in the lemma. �
4. Proof of Theorem 3

Throughout this section we assume that Λ is a fixed canonical algebra of type m. Our aim in
this section is to show how Proposition 3.9 and Lemma 3.10 imply Theorem 3.

4.1. We start with the domestic case.

Proposition. Let δ < 0. If p � n then Z(ph) is a set theoretic complete intersection and
k[modΛ(d)] is a free SI[modΛ(d)]-module. For p > n the number of the irreducible components
of Z(ph) is

(p − n)m1 · · ·mn +
∑

l∈[1,n−1]

∑
i1<···<il∈[1,n]

mi1 · · ·mil + 1.
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Proof. The claim follows from Proposition 3.9, Lemma 3.10 and Theorem 1. It is enough to ob-
serve that, according to Lemma 1.7, 〈d′,d′〉 � 1 for d′ ∈ P, hence obviously diff(d′,d′′, [X]) � 0
for all (d′,d′′, [X]) ∈ Zp if p � n. Moreover, this inequality is strict if 〈d′,h〉 > 1 and p > n. �

4.2. We consider now the tubular case.

Proposition. Let δ = 0. If p � n + 1 then Z(ph) is a set theoretic complete intersection and
k[modΛ(d)] is a free SI[modΛ(d)]-module. The number of irreducible components of Z(ph) is

(p − n)m1 · · ·mn +
∑

l∈[1,n−1]

∑
i1<···<il∈[1,n]

mi1 · · ·mil + 1

for p > n + 1.

Proof. Fix (d′,d′′, [X]) ∈ Zp . Observe that if 〈d′,h〉 = 1 then 〈d′,d′〉 = 1, according to
Lemma 1.6, and

diff
(
d′,d′′, [X]) = p − q � 0.

On the other hand, if 〈d′,h〉 > 1 then it follows from Lemma 1.7 that 〈d′,d′〉 � 0, hence

diff
(
d′,d′′, [X]) � (p − n)

(〈d′,h〉 − 1
) − 1 � 0

provided p � n+ 1. Moreover, this inequality is strict if p > n+ 1. Now the claim follows again
from Proposition 3.9, Lemma 3.10 and Theorem 1. �

4.3. It remains to consider the case 0 < δ < 1. We start with the following observation.

Lemma. If 0 < δ < 1 then 4δ + n + 1 < 1
1−δ

(n + 1).

Proof. Recall that n � 3. Consequently,

1

1 − δ
(n + 1) = n + 1

1 − δ
δ + (n + 1) > 4δ + n + 1

and the claim follows. �
4.4. For a fixed p � 1 consider the real-valued function f given by

f (t) = −δt2 + t (p − n) + (n − p − 1).

Lemma. Let p � 1 and f be as above. If p � 1
1−δ

(n + 1) then f (t) > 0 for all t ∈ [2,p].

Proof. It is enough to show that f (2) > 0 and f (p) > 0. The first inequality follows from the
previous lemma, since

f (2) = p − (4δ + n + 1).
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On the other hand,

f (p) = p
(
(1 − δ)p − (n + 1)

) + (n − 1) � n − 1 > 0,

which finishes the proof. �
4.5. Now we can finish our proof.

Proposition. Let 0 < δ < 1. If p � 1
1−δ

(n+1) then Z(ph) is a set theoretic complete intersection
with

(p − n)m1 · · ·mn +
∑

l∈[1,n−1]

∑
i1<···<il∈[1,n]

mi1 · · ·mil + 1

irreducible components and k[modΛ(d)] is a free SI[modΛ(d)]-module.

Proof. Fix (d′,d′′, [X]) ∈ Zp . Observe again that if 〈d′,h〉 = 1 then 〈d′,d′〉 = 1, according to
Lemma 1.6, and

diff
(
d′,d′′, [X]) = p − q � 0.

On the other hand, if t = 〈d′,h〉 > 1 then it follows from Lemma 1.7 that 〈d′,d′〉 � −δt2, hence
we obtain from the previous lemma that

diff
(
d′,d′′, [X]) � f (t) > 0

provided p � 1
1−δ

(n + 1). The claim follows again from Proposition 3.9, Lemma 3.10 and The-
orem 1. �
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G. Bobiński / Journal of Algebra 319 (2008) 1320–1335 1335
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