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Full subcategories C < Top of the category of topological spaces, which are algebraic over Set
in the sense of Herrlich [2], have pleasant separation properties, mostly subject to additional
closedness assumptions. For instance, every C-object is a T,-space, if the two-element discrete
space belongs to C. Moreover, if C is closed under the formation of finite powers in Top and
even varietal [2], then every C-object is Hausdorfl. Hence, the T,-axiom turns out to be (nearly)
superfluous in Herrlich’s and Strecker’s characterization of the category of compact Hausdorff
spaces [1], although it is essential for the proof.

If we think of C-objects X as universal algebras (with possibly infinite operations), then the
subalgebras of X form the closed sets of a compact topology on X, provided that the ordinal
spaces [0, 8] belong to C. This generalizes a result in [3]. The subalgebra topology is used to
prove criterions for the Hausdorfiness of every space in C, if C is only aigebraic.

AMS (MOS) Subj. Class.: 54B30, 54D10, 54D15, 54D30,
54H99, 18B30, 18C05, 18C10
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varietal functors algebraic functors

0. Introduction

We consider full, isomorphism-closed subcategories C < Top of the category Top
of topological spaces and continuous maps which are algebraic with respect to the
underlying set functor U: C - Set in the sense of Herrlich [2]. Well-known examples
for C are the full subcategories of all indiscrete, discrete, compact Hausdorfi,
compact zero-dimensional T,-spaces, and all powers of a strongly rigid compact
Hausdorff space [2]. There are a lot of further algebraic categories of topological
spaces [3].

Except the indiscrete spaces, all C-objects in our examples have strong separation
properties, they are even normal. Our aim is to show that certain separation properties
are necessary for C to be algebraic over Set if we assume a few additional, but
natural, more or less restrictive closedness conditions. Especially, we get that the
T,-axiom is nearly superfluous in Herrlich’s and Strecker’s characterization of the
category Comp, of compact Hausdorff spaces, although it plays an essential role in
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the proof [1]. The T,-property is only needed for the two-element space (Theorem
2.3, Corollary 3.4).

We assume henceforth that the two-element discrete space D, = {0, 1} is contained
in C.

1. The Riesz condition (T)
1.1. Lemma. Every space X in C fulfils the T,-axiom.

Proof. If every space in C is discrete, nothing has to be shown. If not, we have at
least one space T in C containing a one-element subset {#,} = T which is not open.
Now consider x, y € X € C, x # y, and assume that every neighbourhood of x contains
y and vice versa. In this case,

x ift=1t,,

f(,);={y if 1 to,

defines a continuous map f:T- X, which has a two-element image in C. By
assumption, this image has to be discrete, because bijective continuous maps are
isomorphisms in C. Hence, f '(x)={t,} is open in T and we have a contra-
diction. (J

1.2. Proposition. Every X € C is a T,-space.

Proof. Take T € C from the proof above. We know now that it is a Ty-space. From
this we get at least one closed subset A< T, which is not open. Because, if every
closed subset in T is open, T, implies T,. Hence, one-element subsets are closed,
thus open.

Now consider again x, y€ X € C, x # y, and assume that every neighbourhood of
x contains y. In this case, we have a continuous map g: T > X defined by

(t)_{x iftc A,
& if1¢ A

Again, the two-element image of g in C has to be discrete and g~ '(x)= A has to
be open, but it is not. [

2. The Hausdorff-property (T3)
The following observation is basic for our considerations (see {3, 1.2]):

2.1. Proposition. C is closed under the formation of finite coproducts (sums) in Top.
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Proof. By assumption, there is a C-topology on the cartesian product X x{0, 1} for
every X € C, which is finer than or equal to the usual product topology. But the
two injections of X, x+—(x, 0), x—(x, 1), are still continuous. This means that the
C-topology on X x{0, 1} is coarser than or equal to the sum-topology on X x{0, 1} =
X U X which coincides with the product-topology in Top. Therefore, we have

XuXeC.

Now let X, Y eC be non-empty, x,€ X, y,€ Y. By assumption on C, there is a
C-topology on X XY such that the natural projections have the usual universal
property in C. Therefore, the following map is continuous with respect to this
topology and it has a unique surjective-injective-factorization in C:

(id X, y,)U(x,,id Y)
(XXY)U(XXY) (XXY)U(XXY)

N

I=(X x{yoD) U ({xo} X Y)

(with (id X, yo)(x, y) = (x, yo) and (x,, id Y)(x, )= (xo, y)).

The coarsest topology on I for which the map [ becomes continuous is the
coproduct-topology, i.e. the finest topology for which the injections X x{y}, {xo} X
Y = I become continuous. But these injections have to be continuous, because they
are compositions of continuous maps in C:

X x{yo}

1.inj.
XXY (X X Y)U (X X Y)—— 1.

L 2. inj.
{x} XY

Therefore, I carries the coproduct-topology, and we have
XuY=JleC O

2.2, Corollary. U:C - Set preserves and reflects finite unions.

Proof. Finite unions in C are regular images of finite coproducts. By Proposition
2.1, U preserves and reflects finite coproducts and, by assumption, regular epi-
morphisms. [

2.3. Theorem. If U:C - Set is even varietal [2] and if C is closed under the formation
of finite powers in Top, then every X € C is Hausdorff.
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Proof. We have to show that the diagonal in X X X is always closed. The diagonal
is the image of the diagonal map 4y : X < X x X, which is a C-morphism. Therefore
we prove that the set-theoretical image of every monomorphism in C is a closed
subset of its codomain:

Let X, Y be spaces in C with X < Y such that the natural inclusion i: X < Y is
continuous. Up to isomorphisms, all monomorphisms in C are of this kind. Now
consider the C-union of the diagonal A, : Y < Y X Y and the inclusion i Xi: X X X =
Y xY, which is preserved by U:C-Set (Corollary 2.2). In Set it is just the
equivalence relation R on Y which belongs to the decomposition of Y into X and
one-element subsets. The corresponding natural projection r: Y- Y/X can be
‘lifted’ along U, because U is varietal. Hence there is a (unique) C-topology on
Y/X such that r becomes continuous. Using Proposition 1.2 we get that X =
r'({X}) is a closed subset of Y. [

2.4. Remarks. (1) Obviously, the inclusion i: X = Y in the proof above is the
C-equalizer of r and the constant map Y 3 y— X € Y/ X. Hence, every monomorph-
ism in C is regular and, therefore, every epimorphism too, because C is (regular-
epi, mono)-factorizable. If the inclusion C— Top preserves finite limits, for instance,
if C is a reflective subcategory, then every monomorphism in C is an embedding.

(2) Conversely, if C is not necessarily varietal but has the property that every
C-monomorphism is regular, then every C-object X is Hausdorff, provided that the
inclusion C=> Top preserves finite limits.

To prove this, consider the diagonal 4x: X < X x X and the embedding of a
single point {(x, y)}— X X X, x# y. The latter is a C-morphism too, because it is
the C-image of a constant map. The induced map X U{(x, y)}=> X XX is a C-
morphism (Proposition 2.1) hence, by assumption, an embedding. Thus there is a
neighbourhood of (x, y) in X X X which is disjoint from the diagonal. It follows
that the diagonal is closed in X X X.

Note that the regularity assumption is only needed for the monomorphism
X U{(x, y)}—> X xX. It is always regular if every pair of constant C-morphisms
(with a single point as domain) has a coequalizer which is preserved by U: C - Set.

To be varietal is an essential assumption for C in the theorem above. It is not
clear whether it remains valid if C is only algebraic or not, although there is some
evidence for a result in this direction:

2.5. Proposition. Let the ordinal space [0, w] be contained in C. Then every C-
subobject of any C-product of C-objects which satisfy the first axiom of countability
is Hausdorff.

Proof. Obviously, it is enough to show that any C-object X which satisfies the first
axiom of countability is Hausdorff.
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Let {U;|ieN}, {V;|ieN} be local bases at x, y € X, x # y, such that U; 2 U,,, and
V.2 V,,, for all ieN. Now assume that there is an element x;€ U;n V; for every
ieN, with x;# x, y and x, # x; for i# j, using the T;-axiom (Proposition 1.2).

By Proposition 2.1, the sum S:=[0, w]U[0, @] is contained in C and we get a
C-morphism

f:S-X
defined by

x; for i# w in both summands,
f(iy=<x for i=w in the 1st summand,
y for i=w in the 2nd summand.

The C-image f(S) of f carries a topology which is coarser than or equal to the final
topology with respect to f. In any case, we get a bijective continuous map g:[0, @]~
f(8), hence an isomorphism, defined as follows:

x,, for0<i<aw,
g(i)=¢x for i = w,
y for i=0.

Especially, {y} is open in f(S), thus f~'(y) = {w} has to be open in [0, ], which is
a contradiction! [

3. The subobject topology

The set-theoretical images of all C-monomorphisms A= X, X fixed, are closed
under intersections and finite unions (Corollary 2.2). Therefore they can be con-
sidered as the closed sets of a topology on X, the subobject-topology. Using the same
technique as in [3, 1.4] we get:

3.1. Theorem. Let the ordinal spaces [0, B], B a limit ordinal, be contained in C. Then
every X € C is compact in its subobject-topology.

Proof. Just as in the proof of [3, 1.4], it can be calculated that every decreasing
family (A, )acros; Of non-empty images of C-subobjects of X, has a non-empty
intersection because every C-morphism remains continuous with respect to the
subobject-topology. Moreover, it is immediate that every ordinal space [0, ] and
[a+1, B] is contained in C, 0<<a < B, and that the U-universal maps n:1~> UFI
are dense with respect to the subobject-topology. [l

3.2. Corollary (see [3, 1.4]). If C contains the ordinal spaces [0, B] for all limit
ordinals B and is weakly closed hereditary, i.e., every closed subset A of a C-object
X carries a C-topology such that the inclusion A= X is continuous, then every space
in C is compact.



84 G. Richter | Separation properties

Proof. By assumption, the subobject-topology on X € C is finer than or equal to
the original one. Hence, Theorem 3.1 applies. O

3.3. Remark. As we have seen in the proof of Theorem 2.3, every C-subobject has
a closed image, if C is even varietal over Set. Hence, the subobject-topology is
coarser than or equal to the original C-topology in this case. Both coincide if C is
weakly closed hereditary.

Combining Theorem 2.3 and Corollary 3.2 we get:

34. Corollary (Herrlich-Strecker [1]). If C is closed-hereditary and productive in
Top and if U:C - Set is varietal then C = Comp, (and vice versa).

Proof. See, for instance, the proof of [3,1.6]. O

4. Compactness and normality

As we have seen above, every space in C is compact Hausdorfi, hence normal,
if C is closed hereditary and productive in Top, and if U: C - Set is even varietal.
The algebraic case is much more difficult, unless we assume a rather restrictive
closedness condition:

4.1. Proposition. Let C be closed hereditary and productive in Top. Then the following
are equivalent:

(1) Every space in C is (compact) Hausdorff.

(2) Compact C-topologies are maximal compact.

(3) Compact refinements of C-topologies are C-topologies.

Proof. By the general assumption, every closed subspace of the powers D, hence
every compact zero-dimensional T,-space, especially every ordinal space [0, 8] is
contained in C. Thus Corollary 3.2 applies, and every X € C is compact. Therefore
(1)=(2); (2)=(3) is trivial.

(3)=(1). By Theorem 3.1, every space (X, ¥)e C is compact in its subobject-
topology &. By the general assumption, & is a refinement of &, which means that
(X, ¥)eC, and

idX: (X, F)> (X, )
is a bijective C-morphism, hence an isomorphism.
Consequently, the C-topology of every X € C coincides with its subobject-

topology. Especially, this holds for X x X. But the diagonal in X x X is closed with
respect to the subobject-topology, hence in the product-topology, too. [
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4.2. Remark. It is well known [4], that there are (maximal) compact spaces for
which every compact subset is closed, although they are not Hausdorff. The full
subcategory K < Top of all topological spaces in which compact and closed subsets
coincide is closed hereditary and closed under the formation of compact subobjects
in Top. Every surjective continuous map in K is a quotient map, every injective an
embedding, every bijective an isomorphism. But K is very far from being productive
in Top, because the diagonal is always compact in X XX for X € K, although not
closed with respect to the product-topology, in general.

In the following we try to weaken the closedness conditions in Proposition 4.1
above.

4.3. Lemma. Let Y e Top be a T,-space, X € Top a T,-space, and s: Y - X closed,
surjective, and continuous, then X is Hausdorff.

4.4. Lemma. Let C be closed under the formation of limits in Top. Then C contains
all compact zero-dimensional T,-spaces, especially the ordinal spaces [0, 8].

Proof. Let A< D) be closed. Then A is compact, and for any point x € D3\ A there
is a clopen neighbourhood U of A with x g U. Therefore, A is the equalizer of the
following family:

{f: D3~ D,|f continuous and f(A) = {0}}.

Hence, every closed subspace of powers of D, belongs to C, thus every compact
zero-dimensional Ty-space. [

By assumption, U:C— Set has a left adjoint F:Set—- C. The images FI of F are
called the free C-objects.

4.5. Lemma. Let C be contained in Comp,. Then every free C-object is zero-
dimensional.

Proof. In this case, the embedding C— Comp, is algebraic in the sense of Herrlich
[2], especially, C is closed under the formation of limits in Comp,, hence in Top.
By Lemma 4.4, C contains all compact zero-dimensional T,-spaces, among them
the Stone-Cech compactifications BI of discrete spaces I. But BI is universal with
respect to the underlying set functor of Comp,, hence with respect to its restriction
U:C- Set. Thus we have FI=81 0O

4.6. Lemma. Let A be a closed subset of a compact zero-dimensional T,-space X. Then
the quotient space X/ A is compact zero-dimensional and T,.

This tells us that the algebraic but not varietal full subcategory of compact
zero-dimensional Ty-spaces is closed under the formation of certain quotients in Top!
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Proof. Let X, e X/A be distinct points. Without loss of generality, we may
assume that X ={x} is a single point and j at least compact (a single point or equal
to A) in X. Therefore, there is a clopen neighbourhood U of § with x & U, hence
a continuous map

fiX->D,

with f(U)=1 and f(x)=0. This map induces a continuous map f: X/A- D, with
f(X)=0 and f(§)=1. This shows that X/ A is a Top-subobject of a certain power
of D,. Moreover, it is compact, hence a closed subspace. [

4.7. Theorem. Let C be weakly closed hereditary and assume that the inclusion C > Top
preserves limits. Then the following are equivalent:
(1) Every space X € C is (compact) Hausdorff.
(2) (i) Every compact Hausdorff refinement of a C-topology is a C-topology.
(ii) C is closed under the formation of quotients FI/{x, y}, {x, y} < FI, in Top.

Proof. By assumption and by Corollary 3.2, Lemma 4.3, every space in C is compact.
(1)=(2). Condition (i} is trivial, and (i1) follows from Lemmas 4.4, 4.5 and 4.6.
(2)=(1). By assumption (ii) there is a C-topology on FI/{x, y} such that the

natural projection FI - FI/{x, y} becomes continuous. By our general assumption,

its kernel pair R in Top belongs to C:

X+ [ )
(v, x)
FI R ={(t, z)|teF[}u{(x,y),(y,x)}.
y_.._ [ )
(x,y)
| |
y X

FI
Now there is an obvious bijective, continuous map
FIOD,> R,

which has to be an isomorphism (Proposition 2.1). Hence the diagonal is closed in
R, thus in FI X FI, because x, y € FI are arbitrary. Therefore, every free C-object is
compact Hausdorff, hence normal, and carries its subobject-topology.

Now consider an arbitrary space X € C and a continuous surjection s: FI - X,
This map remains continuous, if we consider the possibly finer subobject-topology
on X. Moreover, it becomes closed. Since the subobject-topology is T,, Lemma 4.6
applies, and we get that X is compact (Corollary 3.2) Hausdorfl in this topology.
Using (i), we get that the original C-topology of X coincides with the subobject-
topology. 0OJ
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4.8. Remarks. (1) For ‘(2)=>(1)’ it is enough to assume that the inclusion preserves
finite limits and that the ordinal spaces [0, 8], B a limit ordinal, are contained in C.

(2) Condition (ii) in Theorem 4.7 (2) can be replaced by a weaker version:

(ii") For every pair of distinct points x, y in a free object FI there is a C-topology
on FI/{x, y} which is coarser than or equal to the quotient topology (i.e. C is weakly
closed under the formation of such quotients in Top).

The proof of Theorem 4.7 simplifies a lot if we replace (ii) by the rather strong
assumption

(ii") Every free C-object is Hausdorft.

4.9. Corollary. Let C be weakly closed hereditary such that the inclusion C— Top
preserves finite limits. Moreover, let Comp, be contained in C. Then the following are
equivalent:

(1) C=Comp,.

(2) C is closed under the formation of quotients FI/{x, y}, {x, vy} < FI, in Top.

Unfortunately, it is not clear whether there is a proper algebraic extension C of
Comp, in Top or not. On the one hand, such an extension cannot be cogenerated
by a space which satisfies the first axiom of countability (Proposition 2.5). Moreover,
its free objects must be rather strange (Corollary 4.9(2)), and non-regular
monomorphisms have to exist (Remark 2.4(2)), provided that the inclusion C= Top
preserves finite limits. On the other hand, there are a lot of ridiculous topological
spaces [4].
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