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Full subcategories C G Top of the category of topological spaces, which are algebraic over Set 

in the sense of Herrlich [2], have pleasant separation properties, mostly subject to additional 

closedness assumptions. For instance, every C-object is a T,-space, if the two-element discrete 

space belongs to C. Moreover, if C is closed under the formation of finite powers in Top and 

even varietal [2], then every C-object is Hausdorff. Hence, the T,-axiom turns out to be (nearly) 

superfluous in Herrlich’s and Strecker’s characterization of the category of compact Hausdorff 

spaces [l], although it is essential for the proof. 

If we think of C-objects X as universal algebras (with possibly infinite operations), then the 

subalgebras of X form the closed sets of a compact topology on X, provided that the ordinal 
spaces [0, p] belong to C. This generalizes a result in [3]. The subalgebra topology is used to 

prove criterions for the Hausdorffness of every space in C, if C is only Ggebraic. 

AMS (MOS) Subj. Class.: 54B30, 54D10, 54D15, 54D30, 

54H99, 18B30, 18CO5, 18C10 

separation axioms compact spaces 

varietal functors algebraic functors 

0. Introduction 

We consider full, isomorphism-closed subcategories Cc Top of the category Top 

of topological spaces and continuous maps which are algebraic with respect to the 

underlying set functor U: C + Set in the sense of Herrlich [2]. Well-known examples 

for C are the full subcategories of all indiscrete, discrete, compact Hausdorff, 

compact zero-dimensional T,-spaces, and all powers of a strongly rigid compact 

Hausdorff space [2]. There are a lot of further algebraic categories of topological 

spaces [3]. 

Except the indiscrete spaces, all C-objects in our examples have strong separation 

properties, they are even normal. Our aim is to show that certain separation properties 

are necessary for C to be algebraic over Set if we assume a few additional, but 

natural, more or less restrictive closedness conditions. Especially, we get that the 

T,-axiom is nearly superfluous in Herrlich’s and Strecker’s characterization of the 

category Camp, of compact Hausdorff spaces, although it plays an essential role in 
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the proof [l]. The T,-property is only needed for the two-element space (Theorem 

2.3, Corollary 3.4). 

We assume henceforth that the two-element discrete space D2 = (0, 1) is contained 

in C. 

1. The Riesz condition (T,) 

1.1. Lemma. Every space X in C fuljils the TO-axiom. 

Proof. If every space in C is discrete, nothing has to be shown. If not, we have at 

least one space T in C containing a one-element subset {to} G T which is not open. 

Now consider x, y E X E C, x # y, and assume that every neighbourhood of x contains 

y and vice versa. In this case, 

“f-(t):= { 
x if t = t,, 

y if t # to, 

defines a continuous map f: T+ X, which has a two-element image in C. By 

assumption, this image has to be discrete, because bijective continuous maps are 

isomorphisms in C. Hence, f’(x) = {to} is open in T and we have a contra- 

diction. Cl 

1.2. Proposition. Every X E C is a T,-space. 

Proof. Take T E C from the proof above. We know now that it is a To-space. From 

this we get at least one closed subset Ac T, which is not open. Because, if every 

closed subset in T is open, TO implies T2. Hence, one-element subsets are closed, 

thus open. 

Now consider again x, y E X E C, x # y, and assume that every neighbourhood of 

x contains y. In this case, we have a continuous map g: T + X defined by 

g(t) = 
x if tEA, 

y ifteA. 

Again, the two-element image of g in C has to be discrete and g-‘(x) = A has to 

be open, but it is not. 0 

2. The Hausdorff-property (Tz) 

The following observation is basic for our considerations (see [3, 1.21): 

2.1. Proposition. C is closed under the formation ofjinite coproducts (sums) in Top. 
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Proof. By assumption, there is a C-topology on the Cartesian product X x(0, 1) for 

every X E C, which is finer than or equal to the usual product topology. But the 

two injections of X, XH (x, 0), X-(X, l), are still continuous. This means that the 

C-topology on X x {0, 1) is coarser than or equal to the sum-topology on X x (0, 1) = 

Xi, X which coincides with the product-topology in Top. Therefore, we have 

XiiXEC. 

Now let X, YE C be non-empty, x0 E X, y, E Y. By assumption on C, there is a 

C-topology on X x Y such that the natural projections have the usual universal 

property in C. Therefore, the following map is continuous with respect to this 

topology and it has a unique surjective-injective-factorization in C: 

(id X, y,)ti(x,,id Y) 

(XXY)ti(XXY) > (XxY)cj(XxY) 

(with (id X ydx, Y) := (x, YJ and (x0, id Y)(x, Y) := (x0, ~1). 
The coarsest topology on I for which the map i becomes continuous is the 

coproduct-topology, i.e. the finest topology for which the injections X x {yO}, {x,} x 

Y =+ I become continuous. But these injections have to be continuous, because they 

are compositions of continuous maps in C: 

Therefore, I carries the coproduct-topology, and we have 

xi, Y=zEc. 0 

2.2. Corollary. U: C + Set preserves and reflects jinite unions. 

Proof. Finite unions in C are regular images of finite coproducts. By Proposition 

2.1, U preserves and reflects finite coproducts and, by assumption, regular epi- 

morphisms. 0 

2.3. Theorem. If U: C + Set is even varietal [2] and if C is closed under the formation 

ofjinite powers in Top, then every X E C is Hausdors 
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Proof. We have to show that the diagonal in X xX is always closed. The diagonal 

is the image of the diagonal map Ax : X L, X xX, which is a C-morphism. Therefore 

we prove that the set-theoretical image of every monomorphism in C is a closed 

subset of its codomain: 

Let X, Y be spaces in C with X G Y such that the natural inclusion i: XL* Y is 

continuous. Up to isomorphisms, all monomorphisms in C are of this kind. Now 

consider the C-union of the diagonal A .:Y=+ YxYandtheinclusionixi:XxX-, 

Y x Y, which is preserved by U: C+ Set (Corollary 2.2). In Set it is just the 

equivalence relation R on Y which belongs to the decomposition of Y into X and 

one-element subsets. The corresponding natural projection r: Y+ Y/X can be 

‘lifted’ along U, because lJ is varietal. Hence there is a (unique) C-topology on 

Y/X such that r becomes continuous. Using Proposition 1.2 we get that X = 

F’({X}) is a closed subset of Y. 0 

2.4. Remarks. (1) Obviously, the inclusion i: X-, Y in the proof above is the 

C-equalizer of r and the constant map Y 3 y++ X E Y/X. Hence, every monomorph- 

ism in C is regular and, therefore, every epimorphism too, because C is (regular- 

epi, mono)-factorizable. If the inclusion C-, Top preserves finite limits, for instance, 

if C is a reflective subcategory, then every monomorphism in C is an embedding. 

(2) Conversely, if C is not necessarily varietal but has the property that every 

C-monomorphism is regular, then every C-object X is Hausdorff, provided that the 

inclusion CL* Top preserves finite limits. 

To prove this, consider the diagonal A,: X L, X XX and the embedding of a 

single point {(x, y)}- X XX, x # y. The latter is a C-morphism too, because it is 

the C-image of a constant map. The induced map X i, {(x, y)} =+ X xX is a C- 

morphism (Proposition 2.1) hence, by assumption, an embedding. Thus there is a 

neighbourhood of (x, y) in X XX which is disjoint from the diagonal. It follows 

that the diagonal is closed in X xX. 

Note that the regularity assumption is only needed for the monomorphism 

X ti {(x, y)} v X xX. It is always regular if every pair of constant C-morphisms 

(with a single point as domain) has a coequalizer which is preserved by U: C + Set. 

To be varietal is an essential assumption for C in the theorem above. It is not 

clear whether it remains valid if C is only algebraic or not, although there is some 

evidence for a result in this direction: 

2.5. Proposition. Let the ordinal space [0, w] be contained in C. Then every C- 

subobject of any C-product of C-objects which satisfy the first axiom of countability 

is Hausdorfl 

Proof. Obviously, it is enough to show that any C-object X which satisfies the first 

axiom of countability is Hausdorff. 
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Let {CJIiEN}, {V,IiEN} b I e ocal bases at x, y E X, x # y, such that U, 2 U,,, and 

V, 2 V,,, for all i E N. Now assume that there is an element xi E Ui n V, for every 

i E N, with x, # x, y and x, # x, for i fj, using the T,-axiom (Proposition 1.2). 

By Proposition 2.1, the sum S:= [0, w]i, [0, w] is contained in C and we get a 

C-morphism 

f:S+X 

defined by 

I 

xi for i # w in both summands, 

f(i)= x for i = w in the 1st summand, 

y for i = w in the 2nd summand. 

The C-image f(S) off carries a topology which is coarser than or equal to the final 

topology with respect to f: In any case, we get a bijective continuous map g: [0, w] + 

f(S), hence an isomorphism, defined as follows: 

1 

%I for O< i<w, 

g(i)= x for i = w, 

Y for i = 0. 

Especially, {y} is open in f(S), thus f-‘(y) = {w} has to be open in [0, w], which is 

a contradiction! 0 

3. The subobject topology 

The set-theoretical images of all C-monomorphisms A-* X, X fixed, are closed 

under intersections and finite unions (Corollary 2.2). Therefore they can be con- 

sidered as the closed sets of a topology on X, the subobject-topology. Using the same 

technique as in [3, 1.41 we get: 

3.1. Theorem. Let the ordinal spaces [0, p], p a limit ordinal, be contained in C. Then 

every X E C is compact in its subobject-topology. 

Proof. Just as in the proof of [3, 1.41, it can be calculated that every decreasing 

family (An)aGIO,P, of non-empty images of C-subobjects of X, has a non-empty 

intersection because every C-morphism remains continuous with respect to the 

subobject-topology. Moreover, it is immediate that every ordinal space [0, a] and 

[cu + 1, p] is contained in C, O< (Y <p, and that the U-universal maps n: I + UFZ 

are dense with respect to the subobject-topology. q 

3.2. Corollary (see [3, 1.41). If C contains the ordinal spaces [0, p] for all limit 

ordinals p and is weakly closed hereditary, i.e., every closed subset A of a C-object 

X carries a C-topology such that the inclusion A-, X is continuous, then every space 

in C is compact. 
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Proof. By assumption, the subobject-topology on X E C is finer than or equal to 

the original one. Hence, Theorem 3.1 applies. 0 

3.3. Remark. As we have seen in the proof of Theorem 2.3, every C-subobject has 

a closed image, if C is even varietal over Set. Hence, the subobject-topology is 

coarser than or equal to the original C-topology in this case. Both coincide if C is 

weakly closed hereditary. 

Combining Theorem 2.3 and Corollary 3.2 we get: 

3.4. Corollary (Herrlich-Strecker [l]). If C is closed-hereditary and productive in 

Top and if U: C + Set is varietal then C = Comp, (and vice versa). 

Proof. See, for instance, the proof of [3, 1.61. 0 

4. Compactness and normality 

As we have seen above, every space in C is compact Hausdorff, hence normal, 

if C is closed hereditary and productive in Top, and if U: C + Set is even varietal. 

The algebraic case is much more difficult, unless we assume a rather restrictive 

closedness condition: 

4.1. Proposition. Let C be closed hereditary and productive in Top. Then the following 

are equivalent: 

(1) Every space in C is (compact) Hausdorfl 

(2) Compact C-topologies are maximal compact. 

(3) Compact rejinements of C-topologies are C-topologies. 

Proof. By the general assumption, every closed subspace of the powers D:, hence 

every compact zero-dimensional To-space, especially every ordinal space [0, p] is 

contained in C. Thus Corollary 3.2 applies, and every X E C is compact. Therefore 

(l)+(2); (2)=9(3) is trivial. 

(3)+(l). By Theorem 3.1, every space (X, %‘) E C is compact in its subobject- 

topology 9 By the general assumption, 9 is a refinement of Z, which means that 

(X, Y) E C, and 

idX:(X,Y)+(X,%) 

is a bijective C-morphism, hence an isomorphism. 

Consequently, the C-topology of every X E C coincides with its subobject- 

topology. Especially, this holds for X XX. But the diagonal in X XX is closed with 

respect to the subobject-topology, hence in the product-topology, too. 0 
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4.2. Remark. It is well known [4], that there are (maximal) compact spaces for 

which every compact subset is closed, although they are not Hausdorff. The full 

subcategory KG Top of all topological spaces in which compact and closed subsets 

coincide is closed hereditary and closed under the formation of compact subobjects 

in Top. Every surjective continuous map in K is a quotient map, every injective an 

embedding, every bijective an isomorphism. But K is very far from being productive 

in Top, because the diagonal is always compact in X XX for X E K, although not 

closed with respect to the product-topology, in general. 

In the following we try to weaken the closedness conditions in Proposition 4.1 

above. 

4.3. Lemma. Let YE Top be a T,-space, X E Top a T,-space, and s: Y + X closed, 

surjective, and continuous, then X is Hausdorfi 

4.4. Lemma. Let C be closed under the formation of limits in Top. Then C contains 

all compact zero-dimensional T,-spaces, especially the ordinal spaces [0, /3]. 

Proof. Let A c 0: be closed. Then A is compact, and for any point x E D:\A there 

is a clopen neighbourhood U of A with x& U. Therefore, A is the equalizer of the 

following family: 

{f: 0: + II2 1 f continuous and f(A) = (0)). 

Hence, every closed subspace of powers of D2 belongs to C, thus every compact 

zero-dimensional TO-space. q 

By assumption, U: C + Set has a left adjoint F: Set + C. The images FZ of F are 

called the free C-objects. 

4.5. Lemma. Let C be contained in Comp,. Then every free C-object is zero- 

dimensional. 

Proof. In this case, the embedding C L, Comp, is algebraic in the sense of Herrlich 

[2], especially, C is closed under the formation of limits in Comp,, hence in Top. 

By Lemma 4.4, C contains all compact zero-dimensional TO-spaces, among them 

the Stone-tech compactifications PI of discrete spaces I. But PI is universal with 

respect to the underlying set functor of Comp,, hence with respect to its restriction 

U: C + Set. Thus we have FL = PI. 0 

4.6. Lemma. Let A be a closed subset of a compact zero-dimensional T,,-space X. Then 

the quotient space X/A is compact zero-dimensional and To. 

This tells us that the algebraic but not varietal full subcategory of compact 

zero-dimensional T,,-spaces is closed under the formation of certain quotients in Top! 
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Proof. Let 2, FE X/A be distinct points. Without loss of generality, we may 

assume that x^ = {x} is a single point and 9 at least compact (a single point or equal 

to A) in X. Therefore, there is a clopen neighbourhood U of j? with x& U, hence 

a continuous map 

with f( U) = 1 and f(x) = 0. This map induces a continuous map p: X/A + D, with 

j(x^) = 0 and p(j) = 1. This shows that X/A is a Top-subobject of a certain power 

of D,. Moreover, it is compact, hence a closed subspace. 0 

4.7. Theorem. Let C be weakly closed hereditary and assume that the inclusion C v Top 

preserves limits. Then the following are equivalent: 

(1) Every space X E C is (compact) Hausdorjf 

(2) (i) Every compact Hausdorfrejinement of a C-topology is a C-topology. 

(ii) C is closed under the formation of quotients FI/{x, y}, {x, y} G FZ, in Top. 

Proof. By assumption and by Corollary 3.2, Lemma 4.3, every space in C is compact. 

(l)*(2). Condition (i) is trivial, and (ii) follows from Lemmas 4.4, 4.5 and 4.6. 

(2)+(l). By assumption (ii) there is a C-topology on FI/{x, y> such that the 

natural projection FI + FI/{x, y} becomes continuous. By our general assumption, 

its kernel pair R in Top belongs to C: 

R = {(t, t) 1 t E FG u 1(x, Y), (Y, x)1. 

Now there is an obvious bijective, continuous map 

which has to be an isomorphism (Proposition 2.1). Hence the diagonal is closed in 

R, thus in FI x FI, because x, y E FI are arbitrary. Therefore, every free C-object is 

compact Hausdorff, hence normal, and carries its subobject-topology. 

Now consider an arbitrary space X E C and a continuous surjection s: FI + X. 

This map remains continuous, if we consider the possibly finer subobject-topology 

on X. Moreover, it becomes closed. Since the subobject-topology is T,, Lemma 4.6 

applies, and we get that X is compact (Corollary 3.2) Hausdorff in this topology. 

Using (i), we get that the original C-topology of X coincides with the subobject- 

topology. cl 
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4.8. Remarks. (1) For ‘(2)+( 1)’ it is enough to assume that the inclusion preserves 

finite limits and that the ordinal spaces [0, p], /3 a limit ordinal, are contained in C. 

(2) Condition (ii) in Theorem 4.7 (2) can be replaced by a weaker version: 

(ii’) For every pair of distinct points x, y in a free object FI there is a C-topology 

on m/(x, v} which is coarser than or equal to the quotient topology (i.e. C is weakly 

closed under the formation of such quotients in Top). 

The proof of Theorem 4.7 simplifies a lot if we replace (ii) by the rather strong 

assumption 

(ii”) Every free C-object is Hausdorff. 

4.9. Corollary. Let C be weakly closed hereditary such that the inclusion Cv Top 

preservesjnite limits. Moreover, let Comp, be contained in C. Then the following are 

equivalent : 

(1) C=Comp,. 

(2) C is closed under the formation of quotients FI/{x, y}, {x, y} E FI, in Top. 

Unfortunately, it is not clear whether there is a proper algebraic extension C of 

Comp, in Top or not. On the one hand, such an extension cannot be cogenerated 

by a space which satisfies the first axiom of countability (Proposition 2.5). Moreover, 

its free objects must be rather strange (Corollary 4.9(2)), and non-regular 

monomorphisms have to exist (Remark 2.4(2)), provided that the inclusion CL, Top 

preserves finite limits. On the other hand, there are a lot of ridiculous topological 

spaces [4]. 
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