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a b s t r a c t

The Collatz conjecture, also known as the 3x + 1 conjecture, can be stated in terms of
the reduced Collatz function R(x) = (3x + 1)/2h (where 2h is the larger power of 2 that
divides 3x + 1). The conjecture is: Starting from any odd positive integer and repeating R(x)
we eventually get to 1. Gk, the k-th convergence class, is the set of odd positive integers x
such that Rk(x) = 1.

In this paper an infinite sequence of binary strings sh of length 2 · 3h−1 (the seeds) are
defined and it is shown that the binary representation of all x ∈ Gk is the concatenation of
k periodic strings whose periods are sk, . . . , s1. More precisely x = s[n1)

k,dk,1
. . . s[nk)1,dk,k

where

s[ni)k,dk,i
is the substring of length ni that starts in position dk,i in a sufficiently long repetition

of the seed si.
Finally, starting positions dk,i and lengths ni for which s[n1)

k,dk,1
. . . s[nk)1,dk,k

∈ Gk are defined,
thus giving a complete characterization of classes Gk.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The Collatz function is defined on all positive integers x by:

f (x) =


x/2 x even
3x + 1 x odd.

Given any odd integer x, let x′
= (3x + 1)/2h where 2h is the highest power of 2 that divides 3x + 1. The reduced form of

the Collatz function is R(x) = x′ and is defined only for odd integers.
The Collatz conjecture says that for all integers x > 0 there exists i such that f i(x) = 1 or, equivalently, that there exists

k such that Rk(x) = 1.
Despite the efforts of many people for about seventy years, the conjecture is still undecided. The efforts are well

documented in a very large literature. The problem has been attacked frommany viewpoints. The Collatz function has been
studied in large domains: Integer, rational, real and even complex numbers (where a beautiful fractal has been obtained)
[5,3,4,9]. The Collatz conjecture has been also proved equivalent to many other conjectures in different contexts: Rewriting
systems, tag systems, etc. [7,2,6].

Our bibliography contains only a very small and incomplete selection of papers; we refer interested readers to the large
annotated bibliography in Lagarias [1]. The paper by Jean Paul Van Bendegem [10] is a philosophical essay on the 3x + 1
problem.

The paper is organized as follows: Section 2 shows the direct computation of Gk, as sets of binary strings, for the first few
values of k. Those computational experiments suggest that binary strings in Gk are the concatenation of k periodic strings
whose periods, that we call seeds, are of length 2, 6, 18, . . . , 2 · 3k−1. In Section 3 some useful (and beautiful) properties of
seeds are proved. Section 4 contains the main result: A complete characterization of classes Gk as sets of binary strings.
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2. Computational experiments

Define the inverse R−1(x) of the reduced Collatz function as the set of odd integers such that y ∈ R−1(x) iff R(y) = x. We
can easily see that

R−1(x) =



∅ if x ≡ 0 (mod 3)
x22m+2

− 1
3

: m ≥ 0


if x ≡ 1 (mod 3)


x22m+1

− 1
3

: m ≥ 0


if x ≡ 2 (mod 3).

Let Gk the class of odd integers x that converge to 1 in k steps, i.e. such that Rk(x) = 1.
The class Gk can be defined inductively by

G0 = {1}

Gk =


x∈Gk−1

R−1(x).

For a binary string s let JsK be the non-negative integer whose binary representation is s. In what follows we see classes
Gk as sets of binary strings.

Clearly G0 = {1}: The singleton set that contains only the binary string 1.
Let us compute first G1

G1 =


x0∈G0

R−1(x0) = R−1(1) =


4m1+1

− 1
3

: m1 ≥ 0


=


m1−
i=0

4i
: m1 ≥ 0


.

If we represent x1 =
∑m1

i=0 4
i as a binary string of length 2m1 + 2 we obtain 01m1+1, i.e. the concatenation of one or more

copies of the binary string s1 = 01 of length 2. Thus

G1 =

r
sm1+1
1

z
: m1 ≥ 0


.

Now we can compute G2 from G1.

G2 =


x1∈G1

R−1(x1) =

∞
m1=0

R−1
r

sm1+1
1

z
.

Since x1 =
∑m1

i=0 4
i
≡ m1 + 1 (mod 3) we obtain

G2 =

r
s3k1+1
1

z
4m2+1

− 1

3
: k1,m2 ≥ 0


∪


2

r
s3k1+2
1

z
4m2 − 1

3
: k1,m2 ≥ 0


.

Compute first

r
s31

z

3
=

2∑
i=0

4i

3
=

43
− 1
32

= 7

and let s2 = 000111 be the binary representation of 7 as a string of length 6.
A simple computation shows that

r
s3k1+1
1

z
/3 =

r
sk12 s[2)2

z
, where s[2)2 = 00 is the prefix of length 2 of s2 and

that
r
s3k1+2
1

z
/3 =

r
sk12 s[4)2

z
, where s[4)2 = 0001 is the prefix of length 4 of s2. Moreover,

r
s3k1+1
1

z
mod 3 = 1 and

r
s3k1+2
1

z
mod 3 = 2.

Then

G2 =

r
sk12 s[2)2

z
4m2+1

+
4m2+1

− 1
3

: k1,m2 ≥ 0


∪


2

r
sk12 s[4)2

z
4m2 +

4m2+1
− 1

3
: k1,m2 ≥ 0


We can write (4m2+1

− 1)/3 =
∑m2

i=0 4
i in binary both as

r
sm2
1 s[2)1

z
and

r
sm2
1,1s

[1)
1,1

z
, where s1,1 = 10 is the left rotation of s1

by 1 position.
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Lengths of strings sm2
1 s[2)1 and sm2

1,1s
[1)
1,1 are respectively 2m2 + 2 and 2m2 + 1. Thus we conclude that

G2 =

r
sk12,0s

[2)
2,0s

m2
1,0s

[2)
1,0

z
: k1,m2 ≥ 0


∪

r
sk12,0s

[4)
2,0s

m2
1,1s

[1)
1,1

z
: k1,m2 ≥ 0


where, for uniformity, s1,0 = s1 and s2,0 = s2 (the unrotated seeds).

We can conclude that G2 is the set of all integers whose binary representation starts with zero or more copies of
s2 = 000111 and continues either by the prefix s[2)2,0 = 00 of s2 followed by zero or more copies of s1,0 = 01 followed
by the prefix s[2)1,0 = s1 = 01 or by the prefix s[4)2,0 = 0001 followed by zero or more copies of s1,1 = 10 followed by the prefix
s[1)1,1 = 1. The representation of G2 as a tree is:

s∗2,0 → s[2)2,0 → s∗1,0 → s[2)1,0
↘

s[4)2,0 → s∗1,1 → s[1)1,1

or
(000111)∗ → 00 → (01)∗ → 01

↘
0001 → (10)∗ → 1

where s∗ means concatenation of zero or more copies of s.1
We can compute G3 in the same way. However it is better to use a computer program to build and print the trees for G3,

G4 and G5. The tree for G6 is too big to be computed and printed.
The program inductively computes the tree for Gk+1 from the tree for Gk by computing R−1(z) for each branch z of the

tree; it is based on two mutually recursive procedures: Div3 and Div3Aux.
Div3(x, r) is called with parameters a node of type x = s∗h,d and an integer r which is the remainder of the division by

three of the ancestors of node x (r = 0 when the procedure is called with the root as input). The companion procedure
Div3Aux(z, y, r) is called with parameters a node of type y = s[ℓ)h,d and an integer r which is the remainder of the division
by three of the ancestors of node y. Moreover, for each node x = s∗h,d, the procedure Div3Aux is called three times with,
respectively, z = sih,d for i = 0, 1, 2.

The two procedures can be described as follows in C-like pseudo code:

Div3(x, r) // x = s∗h,d
1 w = r · s3h,d

// w is the concatenation of the binary string for r with three copies of sh,d.
2 sh+1,d′ = w/3 // Notice that r = w mod 3 since s3h,d mod 3 = 0.
3 ‘‘build a new node x′ with label s∗h+1,d′ ’’
4 for ‘‘each son y of x’’
5 for i = 0 to 2
6 y′

= Div3Aux(sih,d, y, r)
7 if y′

≠ nil
8 ‘‘add y′ as a new son of x′’’
9 return x′

Div3Aux(z, y, r). // y = s[ℓ)h,d and z = sih,d for 0 ≤ i ≤ 2.
1 ℓ′

= ℓ+ length of z
2 w = r · z · s[ℓ)h,d

3 s[ℓ
′)

h+1,d′ = w/3
4 r ′

= w mod 3
5 if y is a leaf
6 if r ′

== 0
7 return nil
8 else // r ′

== 1 or r ′
== 2

9 ‘‘build a new node y′ with label s[ℓ
′)

h+1,d′ ’’
10 if r ′

== 1
11 ‘‘add to y′ a single son s∗1,0 followed by a leaf s[2)1,0’’
12 else // r ′

== 2
13 ‘‘add to y′ a single son s∗1,1 followed by a leaf s[1)1,1’’
14 else // y is not a leaf. Let x be the son of y
15 x′

= Div3(x, r ′)
16 ‘‘put x′ as the son of y′’’
17 return y′

1 The tree representation used for G2 (and that that will be used for next classes Gk) is just the syntactic tree of a regular expression
(000111)∗[00(01)∗01 + 0001(10)∗1]. Thus classes Gk are regular sets of strings.
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Many different implementations of those procedure have beenwritten and used, starting from a naive one written when
no properties of the classes were already known and refining it as soon as more and more properties were discovered.

Here is the tree for G3 obtained as output of the program:

(000010010111101101)∗
→ 00 → (000111)∗ → 00 → (01)∗ → 01

↘
0001 → (10)∗ → 1

↘
0000 → (100011)∗ → 100 → (01)∗ → 01

↘
10001 → (10)∗ → 1

↘
00001001 → (011100)∗ → 01 → (10)∗ → 1

↘
011100 → (01)∗ → 01

↘
0000100101 → (111000)∗ → 1 → (10)∗ → 1

↘
11100 → (01)∗ → 01

↘
00001001011110 → (110001)∗ → 1100 → (01)∗ → 01

↘
110001 → (10)∗ → 1

↘
0000100101111011 → (001110)∗ → 0 → (01)∗ → 01

↘
001 → (10)∗ → 1

Let s∗3 = (000010010111101101)∗ be the root. Its sons are the six prefixes s[2)3,0, s
[4)
3,0, s

[8)
3,0, s

[10)
3,0 , s[14)3,0 and s[16)3,0 , each one

followed by the repetition of a different left rotation of s2: In order s∗2,0, s
∗

2,5, s
∗

2,2, s
∗

2,3, s
∗

2,4 and s∗2,1. In turn, each left rotation
of s2 is followed by two of its prefixes of different length and then by the repetition of a rotation s∗1,0 or s

∗

1,1 of s1 followed by
a prefix of the rotation. By using this notation the tree becomes

s∗3,0 → s[2)3,0 → s∗2,0 → s[2)2,0 → s∗1,0 → s[2)1,0
↘

s[4)2,0 → s∗1,1 → s[1)1,1
↘

s[4)3,0 → s∗2,5 → s[3)2,5 → s∗1,0 → s[2)1,0
↘

s[5)2,5 → s∗1,1 → s[1)1,1
↘

s[8)3,0 → s∗2,2 → s[2)2,2 → s∗1,1 → s[1)1,1
↘

s[6)2,2 → s∗1,0 → s[2)1,0
↘

s[10)3,0 → s∗2,3 → s[1)2,3 → s∗1,1 → s[1)1,1
↘

s[5)2,3 → s∗1,0 → s[2)1,0
↘

s[14)3,0 → s∗2,4 → s[4)2,4 → s∗1,0 → s[2)1,0
↘

s[6)2,4 → s∗1,1 → s[1)1,1
↘

s[16)3,0 → s∗2,1 → s[1)2,1 → s∗1,0 → s[2)1,0
↘

s[3)2,1 → s∗1,1 → s[1)1,1

Experimental results suggest that classes Gk can be defined in terms of an infinite sequence of strings sh of length 2 ·3h−1.
We call sh seed of order h.

Indeed, we will show that for each x ∈ Gk there exist integers qh, dh and ℓh such that

x =

r
sq1k,d1s

[ℓ1)
k,d1

sq2k−1,d2
s[ℓ2)k−1,d2

. . . sqk1,dks
[ℓk)
1,dk

z

where qh ≥ 0, 0 < ℓh ≤ 2 · 3h−1, d1 = 0 and, for h > 1, 0 ≤ dh < 2 · 3h−2.
We can extend notation s[ℓ) (the prefix of length ℓ ≤ λ of a string s of length λ) to all non-negative integers n (even

n > λ) by letting s[n) denote the prefix of length n of a sufficiently long repetition of s, i.e. if q = ⌊n/λ⌋ and ℓ = n mod λ
then s[n) = sqs[ℓ) is the concatenation of q copies of s followed by the prefix s[ℓ).

By using this extended notation, we can write the previous equation in a more compact form as

x =

r
s[n1)k,d1

s[n2)k−1,d2
. . . s[nk)1,dk

z
(1)

where nh = 2 · 3h−1qh + ℓh for h = 1, . . . , k.
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In Section 4 the intuition coming from computational experiments is proved, i.e. that all x ∈ Gk has the binary
representation in Eq. (1).

Moreover the sequences of integers nh, dh such that
r
s[n1)k,d1

s[n2)k−1,d2
. . . s[nk)1,dk

z
∈ Gk

are defined, thus giving a complete characterization of classes Gk.

3. Properties of seeds

Experimental results in Section 2 suggest that seeds are binary strings sh of length 2λh, where λh = 3h−1, and that seeds
can be defined inductively as s1 = 01 and JshK =

r
s3h−1

z
/3 for h > 1. The simple computation

JshK =

r
s3h−1

z

3
= Jsh−1K 4λh−1

2∑
i=0

4i

3
= 7 Jsh−1K 4λh−1

shows that sh is well defined since
r
s3h−1

z
/3 is an integer.

Here are some properties of seeds sh, of rotations sh,d and of extended prefixes s[n)h .

Lemma 1 (Properties of Seeds). For all seed sh we have

JshK =

λh−1∑
i=0

4i

λh
=

4λh − 1
λh+1

(2)

and
JshK ≡ 1 (mod 3). (3)

Proof. The proof is by induction. For the basis Js1K = 1 = (41
− 1)/3 = (4λ1 − 1)/λ2 and Js1K mod 3 = 1. For the inductive

step

JshK =

r
s3h−1

z

3
=

2∑
i=0

Jsh−1K 4iλh−1

3
=

2∑
i=0

(

λh−1−1∑
j=0

4j

λh−1
)4iλh−1

3

=

2∑
i=0

(
λh−1−1∑

j=0
4j)4iλh−1

λh
=

2∑
i=0

λh−1−1∑
j=0

4iλh−1+j

λh

=

λh−1∑
i=0

4i

λh
=

4λh − 1
λh+1

and

JshK ≡

2∑
i=0

Jsh−1K 4iλh−1

3
≡ Jsh−1K 4λh−17 ≡ 1 (mod 3). �

Lemma 2 (Properties of Left Rotations of Seeds). For 0 ≤ d < 2λh
q
sh,d

y
=

2d mod λh+1


JshK (4)

and
q
sh,d

y
≡ 2d (mod 3) (5)

and, for 0 ≤ d < λh
q
sh,d

y
+

q
sh,d+λh

y
= 4λh − 1 (6)

(i.e. bits of string sh,d+λh are the complement of corresponding bits of sh,d) and, finally

q
sh+1,d

y
= r

4λh+1 − 1
3

+

r
s3h,d′

z

3
(7)

where r = ⌊d/(2λh)⌋ and d′
= d mod 2λh.
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Proof. The proof for Eq. (4) is

q
sh,d

y
=

JshK mod 22λh−d 2d

+
JshK − JshK mod 22λh−d

22λh−d

=


JshK mod 22λh−d


4λh + JshK − JshK mod 22λh−d

22λh−d

=


JshK mod 22λh−d


(4λh − 1) + JshK

22λh−d

=


JshK mod 22λh−d


λh+1 JshK + JshK

22λh−d

=
λh+1


JshK mod 22λh−d


+ 1

22λh−d
JshK

=

λh+1


4λh−1
λh+1

mod 22λh−d


+ 1

22λh−d
JshK

=


4λh − 1


mod λh+122λh−d

+ 1
22λh−d

JshK

=
22λh mod λh+122λh−d

22λh−d
JshK

=
22λh−d2d mod λh+122λh−d

22λh−d
JshK

=
22λh−d


2d mod λh+1


22λh−d

JshK

=

2d mod λh+1


JshK .

The proof for Eq. (5) is

q
sh,d

y
≡ JshK


2d mod λh+1


≡ 2d (mod 3).

We can prove Eq. (6) only for d = 0: The cases of 1 ≤ d < λh are a simple consequence since rotations do not change the
pairs of bits at a distance λh from each other.

q
sh,0

y
= JshK =

4λh − 1
λh+1

=
2λh + 1
λh+1


2λh − 1


=


2λh + 1
λh+1

− 1

2λh + 2λh −

2λh + 1
λh+1

= JsK 2λh +
q
s′

y

where s, s′ are the binary string of length λh such that

JsK =
2λh + 1
λh+1

− 1 and
q
s′

y
= 2λh −

2λh + 1
λh+1

.

Then

q
sh,λh

y
=

q
s′

y
2λh + JsK =


2λh −

2λh + 1
λh+1


2λh +

2λh + 1
λh+1

− 1

= 4λh − 1 −
2λh + 1
λh+1


2λh − 1


= 4λh − 1 −

q
sh,0

y
.

Finally, by Eq. (7), 2d
≡ 2d′

(mod λh+1) and


2d mod λh+2
λh+1


= r (by the isomorphism of Z+

2λh
and Z∗

λh+1
). Thus

2d mod λh+2 =


2d mod λh+2

λh+1


λh+1 +


2d mod λh+2


mod λh+1 = rλh+1 + 2d′

mod λh+1
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and
q
sh+1,d

y
=

2d mod λh+2


Jsh+1K (by Eq. (4))

=


rλh+1 + 2d′

mod λh+1


Jsh+1K

=


rλh+1 + 2d′

mod λh+1

 r
s3h

z
/3

=


rλh+1 + 2d′

mod λh+1


JshK

2∑
i=0

4iλh

3

=

r(4λh − 1) +

q
sh,d′

y 2∑
i=0

4iλh

3

= r
4λh+1 − 1

3
+

r
s3h,d′

z

3
. �

Lemma 3 (Properties of Extensions of Seeds). For n > 0, h > 0 and q = ⌊n/(2λh)⌋, ℓ = n mod 2λh

r
s[n)h

z
=


2n

λh+1


(8)

r
s[n)h+1

z
=

r
s[n)h

z
/3


(9)
r
s[n)h

z
≡ q2ℓ

+

r
s[ℓ)h

z
(mod 3). (10)

Moreover, for 0 ≤ d < λh+1 and r = ⌊d/(2λh)⌋, d′
= d mod 2λh

r
s[n)h+1,d

z
=


r2n

+

r
s[n)h,d′

z

3


. (11)

Proof. The proof of Eq. (8) is by induction on q. For the basis q = 0 and n = ℓ < 2λh

r
s[ℓ)h

z
=


4λh − 1

λh+122λh−ℓ


=


2ℓ

λh+1
−

2ℓ

λh+122λh


=


2ℓ

λh+1


where the last equality follows from

2ℓ

λh+122λh
<

1
λh+1

≤
2ℓ

λh+1
−


2ℓ

λh+1


.

For the inductive step let n′
= n − 2λh. Then

r
s[n)h

z
= JshK 2n′

+

r
s[n

′)
h

z
=

4λh − 1
λh+1

2n′

+


2n′

λh+1


=


22λh − 1

λh+1
2n′

+
2n′

λh+1


=


2n

λh+1


.

For Eq. (9) let k = ⌈n/(2λh+1)⌉. Then

r
s[n)h+1

z
=

s
skh+1

[n){
=

 r
skh+1

z

2k2λh+1−n


=

 r
s3kh

z

3 · 23k2λh−n


=

r
s[n)h

z
/3


where the last equality holds because
r
s3kh

z
mod 3 = 0.

For Eq. (10)
r
s[n)h

z
≡

r
sqh

z
2ℓ

+

r
s[ℓ)h

z
≡ q2ℓ

+

r
s[ℓ)h

z
(mod 3)

where the last equality holds because
r
sqh

z
≡ q (mod 3).
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Finally, for Eq. (11), let k = ⌈n/(2λh+1)⌉ so that
r
s[n)h+1,d

z
=

r
skh+1,d

[n)z. Then
r
skh+1,d

z
=

k−1−
i=0

q
sh+1,d

y
22λh+1

=

k−1−
i=0


r
4λh+1 − 1

3
+

r
s3h,d′

z

3


22λh+1 (by Eq. (7))

= r
4kλh+1 − 1

3
+

r
s3kh,d′

z

3
and

s
skh+1,d

[n){
=


2n

22kλh+1


r
4kλh+1 − 1

3
+

r
s3kh,d′

z

3



=


2n

22kλh+1


r

4kλh+1

3


+

r
s3kh,d′

z

3



=


2n

22kλh+1


r4kλh+1 +

r
s3kh,d′

z

3



=


2n

22kλh+1

r4kλh+1 +

r
s3kh,d′

z

3



=


1
3


r2n

+

2n
r
s3kh,d′

z

22kλh+1



=


r2n

+

r
s3kh,d′

z

3


. �

4. Convergence classes

The experimental results in Paragraph 1 suggest that each x ∈ Gk has the binary representation given by Eq. (1), for some
integers ni, di (1 ≤ i ≤ k).

Here we characterize integers ni and di such that the x given by Eq. (1) is in Gk. We do so by defining a scheme Sk which
is a set of lengths ni > 0 and left rotations dh,i (for 1 ≤ i ≤ h ≤ k).

Definition 1 (Scheme Sk for Gk). A scheme S1 for G1 is given by the rotation d1,1 = 0 and an even length n1 ≡ 0 (mod 2).
For k > 1 the lengths ni > 0 and left rotations dh,i of a scheme Sk are defined by mutual induction by

(a) n1 ≡ ±2 (mod 6),
(b) ni ≡ ri−1,i−1(5 − 2[ri−1,i−1 − ri,i−1]) ± 1 (mod 6), for 2 ≤ i < k
(c) nk ≡ rk−1,k−1 − 1 (mod 2)

(d) dh,1 = 0, for 1 ≤ h ≤ k,
(e) dh,i = dh−1,i + rh−1,i−12λh−i−1, for 2 ≤ i < h ≤ k
(f) dh,h = rh−1,h−1 − 1, for 2 ≤ h ≤ k

where rh,i =

r
s[n1)h,dh,1

. . . s[ni)h−i+1,dh,i

z
mod 3.

Lemma 4. Let Sk a scheme for Gk. Then rh,h ≠ 0 for 1 ≤ h < k.

Proof. By induction on h. For the basis r1,1 =

r
s[n1)1,d1,1

z
mod 3 and

r
s[n1)1,d1,1

z
≡

r
s[n1)1

z
≡

r
sn1/21

z
≡ n1/2 (mod 3).

Then r1,1 ≠ 0 since n1 ≡ ±2 (mod 6).
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Let h > 1 and assume rh−1,h−1 ≠ 0. Then

rh,h ≡

r
s[n1)h,dh,1

. . . s[nh)1,dh,h

z
(mod 3)

≡ rh,h−12nh +

r
s[nh)1,dh,h

z
(mod 3)

≡ rh,h−1rh−1,h−1 +

r
s[nh)1,rh−1,h−1−1

z
(mod 3).

If rh−1,h−1 = 1 then nh = 2m is even and

rh,h ≡ rh,h−1 +

r
s[nh)1

z
(mod 3)

≡ rh,h−1 +
q
sm1

y
(mod 3)

≡ rh,h−1 + m (mod 3)

and so rh,h ≠ 0 iff

m + rh,h−1 ≢ 0 (mod 3)

nh + 2rh,h−1 ≢ 0 (mod 3)

nh ≢ rh,h−1 (mod 3).

If rh−1,h−1 = 2 then nh = 2m + 1 is odd and

rh,h ≡ 2rh,h−1 +

r
s[nh)1,1

z
(mod 3)

≡ 2rh,h−1 +

r
sm+1
1

z
(mod 3)

≡ 2rh,h−1 + m + 1 (mod 3)

and so rh,h ≠ 0 iff

m + 1 + 2rh,h−1 ≢ 0 (mod 3)
nh + 1 + rh,h−1 ≢ 0 (mod 3)
nh ≢ 2(rh,h−1 + 1) (mod 3).

In both cases

nh ≢ rh−1,h−1(rh−1,h−1 + rh,h−1 − 1) (mod 3).

Thus nh satisfy the congruences

nh ≡ rh−1,h−1 − 1 (mod 2)

and either

nh ≡ 1 + rh−1,h−1(rh−1,h−1 + rh,h−1 − 1) (mod 3)

or

nh ≡ 2 + rh−1,h−1(rh−1,h−1 + rh,h−1 − 1) (mod 3).

Using the Chinese Remainder Theorem, we can obtain in the former case

nh ≡ 3(rh−1,h−1 − 1) − 2[1 + rh−1,h−1(rh−1,h−1 + rh,h−1 − 1)] (mod 6)
≡ rh−1,h−1[5 − 2(rh−1,h−1 + rh,h−1)] + 1 (mod 6)

and in the latter case

nh ≡ 3(rh−1,h−1 − 1) − 2[2 + rh−1,h−1(rh−1,h−1 + rh,h−1 − 1)] (mod 6)
≡ rh−1,h−1[5 − 2(rh−1,h−1 + rh,h−1)] − 1 (mod 6).

Then rh,h ≠ 0 iff

nh ≡ rh−1,h−1[5 − 2(rh−1,h−1 − rh,h−1)] ± 1 (mod 6)

and the later is true by definition of Sk. �

Lemma 5. Let k > 1 and Sk a scheme for Gk. Then for all h > 1
r
s[n1)h,dh,1

. . . s[nh−1)
2,dh,h−1

z
=

r
s[n1)h−1,dh−1,1

. . . s[nh−1)
1,dh−1,h−1

z
/3


.
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Proof. We will prove, by induction on i = 1, . . . , h − 1, the more general equation
r
s[n1)h,dh,1

. . . s[ni)h−i+1,dh,i

z
=

r
s[n1)h−1,dh−1,1

. . . s[ni)h−i,dh−1,i

z
/3


.

For the basis i = 1, dh,1 = dh−1,1 = 0 and Eq. (9) gives
r
s[n1)h,dh,1

z
=

r
s[n1)h

z
=

r
s[n1)h−1

z
/3


=

r
s[n1)h−1,dh−1,1

z
/3


.

For i > 1, by applying the inductive hypothesis, we can obtain
r
s[n1)h−1,dh−1,1

. . . s[ni)h−i,dh−1,i

z
/3 =

r
s[n1)h−1,dh−1,1

. . . s[ni−1)
h−i−1,dh−1,i−1

z
/3

2ni +


rh−1,i−12ni +

r
s[ni)h−i,dh−1,i

z
/3

=

r
s[n1)h,dh,1

. . . s[ni−1)
h−i,dh,i−1

z
2ni +


rh−1,i−12ni +

r
s[ni)h−1,dh−i,i

z
/3

and then, by using Formula (11),r
s[n1)h−1,dh−1,1

. . . s[ni)h−i,dh−1,i

z
/3


=

r
s[n1)h,dh,1

. . . s[ni−1)
h−i,dh,i−1

z
2ni +


rh−1,i−12ni +

r
s[ni)h−1,dh−i,i

z
/3


=

r
s[n1)h,dh,1

. . . s[ni−1)
h−i,dh,i−1

z
2ni +

r
s[ni)h,dh−i+1,i

z
=

r
s[n1)h,dh,1

. . . s[ni)h−i+1,dh,i

z
. �

Lemma 6. Let Sk be a scheme for Gk and, for 1 ≤ h ≤ k, let xh =

r
s[n1)h,dh,1

. . . s[nh)1,dh,h

z
. Then xh ∈ Gh.

Proof. The proof is by induction on h. For the base case h = 1, n1 is even and

x1 =

r
s[n1)1,d1,1

z
=

r
s[2m+2)
1,0

z
=

r
sm+1
1

z
∈ G1.

For h > 1 we can prove

xh =
xh−12nh − 1

3
∈ R−1(xh−1) ⊆ Gh.

Indeed, by applying the inductive hypothesis, we can obtain

xh−12nh − 1
3

=
(3
 xh−1

3


+ rh−1,h−1)2nh − 1

3

=

xh−1

3


2nh +

rh−1,h−12nh − 1
3

=

xh−1

3


2nh +

r
s[nh)1,dh,h

z

=

r
s[n1)h−1,dh−1,1

. . . s[nh−1)
1,dh−1,h−1

z
/3

2nh +

r
s[nh)1,dh,h

z

=

r
s[n1)h,dh,1

. . . s[nh−1)
2,dh,h−1

z
2nh +

r
s[nh)1,dh,h

z

= xh. �

Lemma 7. For all x ∈ Gk there is a scheme Sk such that x =

r
s[n1)k,dk,1

. . . s[nk)1,dk,k

z
.

Proof. The proof is by induction on k. For the base case k = 1 the proof is straightforward:

G1 =

r
sm+1
1

z
: m ≥ 0


=

r
s[2m+2)
1,0

z
: m ≥ 0


and so x =

r
s[2m+2)
1,0

z
for somem ≥ 0. Then, choosing Sk with n1 = 2m + 2 and d1,1 = 0, we obtain x =

r
s[n1)1,d1,1

z
.

Let k > 1 and let y ∈ Gk−1 such that x ∈ R−1(y).
By the inductive hypothesis there is a scheme Sk−1 such that

y =

r
s[n1)k−1,dk−1,1

. . . s[nk−1)
1,dk−1,k−1

z
.

Moreover y mod 3 ≠ 0 and

x =

y2n

− 1

/3

where, for somem ≥ 0, n = 2m + 2 if y mod 3 = 1 and n = 2m + 1 if y mod 3 = 2.
We can extend Sk−1 to Sk by setting nk = n, dk,1 = 0, dk,i = dk−1,i+rk−1,i−12λk−i−1, for 2 ≤ i < k, and dk,k = rk−1,k−1−1.
Then x =

r
s[n1)k,dk,1

. . . s[nk)1,dk,k

z
and x ∈ Gk by the previous lemma. �
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Theorem 1 (Structure of Convergence Classes). x ∈ Gk iff there exists a scheme Sk for Gk such that

x =

r
s[n1)k,dk,1

. . . s[nk)1,dk,k

z
. (12)

Proof. Immediate from the last two lemmas. �

Given a scheme Sk we can compute the corresponding x ∈ Gk by Formula (12). In the reverse direction, given x ∈ Gk we
can compute the corresponding scheme Sk as follows. Let xk = x and, for h = k − 1, . . . , 1, compute xh = R(xh+1) and take
as nk, nk−1, . . . , n1 the exponents of the power of 2 at the denominators in R(xh+1). We can easily prove that this sequence
of lengths satisfy points (a), (b) and (c) of the definition of a scheme. Then we can use points (d), (e) and (f) to compute
rotations dh,i.

For example, for x = 27 ∈ G41 we obtain

i 1 2 3 4 5 6 7 8 9 10
ni 4 5 1 1 3 4 2 2 4 1
dk,i 0 11 107 71 47 122 650 866 1154 6155
i 11 12 13 14 15 16 17 18 19 20
ni 1 1 3 1 1 1 1 1 2 1
dk,i 4103 2735 1823 4859 3239 2159 1439 959 638 851
i 21 22 23 24 25 26 27 28 29 30
ni 2 1 1 3 2 1 1 1 2 1
dk,i 755 566 503 335 890 1187 791 527 350 467
i 31 32 33 34 35 36 37 38 39 40
ni 1 2 1 2 2 1 1 1 1 2
dk,i 311 206 275 182 242 323 53 35 5 2
i 41
ni 1
dk,i 1

Notice that s[ni)k,dk,i
= 0ni but for s[n39)k,dk,39

= 00011, s[n40)k,dk,40
= 01 and s[n41)k,dk,41

= 1.
A final implementation of procedures Div3 and Div3Aux based on the scheme Sk (with a nice graphical interface) is

described in [8] (in Italian).
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