Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

The convergence classes of Collatz function

Livio Colussi*

Department of Pure and Applied Mathematics, University of Padova, via Trieste, 63, 35121 Padova, Italy

ARTICLE INFO

Article history: Received 4 August 2010 Received in revised form 13 May 2011 Accepted 25 May 2011 Communicated by D. Perrin

Keywords: Collatz conjecture 3n + 1 problem

ABSTRACT

The Collatz conjecture, also known as the 3x + 1 conjecture, can be stated in terms of the reduced Collatz function $R(x) = (3x + 1)/2^h$ (where 2^h is the larger power of 2 that divides 3x + 1). The conjecture is: *Starting from any odd positive integer and repeating* R(x) *we eventually get to* 1. G_k , the *k*-th convergence class, is the set of odd positive integers *x* such that $R^k(x) = 1$.

In this paper an infinite sequence of binary strings s_h of length $2 \cdot 3^{h-1}$ (the *seeds*) are defined and it is shown that the binary representation of all $x \in G_k$ is the concatenation of k periodic strings whose periods are s_k, \ldots, s_1 . More precisely $x = s_{k,d_{k,1}}^{[n_1]} \ldots s_{1,d_{k,k}}^{[n_k]}$ where $s_{k,d_{k,i}}^{[n_i]}$ is the substring of length n_i that starts in position $d_{k,i}$ in a sufficiently long repetition of the seed s_i .

Finally, starting positions $d_{k,i}$ and lengths n_i for which $s_{k,d_{k,1}}^{[n_1]} \dots s_{1,d_{k,k}}^{[n_k]} \in G_k$ are defined, thus giving a complete characterization of classes G_k .

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The Collatz function is defined on all positive integers *x* by:

$$f(x) = \begin{cases} x/2 & x \text{ even} \\ 3x+1 & x \text{ odd.} \end{cases}$$

Given any odd integer x, let $x' = (3x + 1)/2^h$ where 2^h is the highest power of 2 that divides 3x + 1. The reduced form of the Collatz function is R(x) = x' and is defined only for odd integers.

The Collatz conjecture says that for all integers x > 0 there exists *i* such that $f^i(x) = 1$ or, equivalently, that there exists *k* such that $R^k(x) = 1$.

Despite the efforts of many people for about seventy years, the conjecture is still undecided. The efforts are well documented in a very large literature. The problem has been attacked from many viewpoints. The Collatz function has been studied in large domains: Integer, rational, real and even complex numbers (where a beautiful fractal has been obtained) [5,3,4,9]. The Collatz conjecture has been also proved equivalent to many other conjectures in different contexts: Rewriting systems, tag systems, etc. [7,2,6].

Our bibliography contains only a very small and incomplete selection of papers; we refer interested readers to the large annotated bibliography in Lagarias [1]. The paper by Jean Paul Van Bendegem [10] is a philosophical essay on the 3x + 1 problem.

The paper is organized as follows: Section 2 shows the direct computation of G_k , as sets of binary strings, for the first few values of k. Those computational experiments suggest that binary strings in G_k are the concatenation of k periodic strings whose periods, that we call *seeds*, are of length 2, 6, 18, ..., $2 \cdot 3^{k-1}$. In Section 3 some useful (and beautiful) properties of seeds are proved. Section 4 contains the main result: A complete characterization of classes G_k as sets of binary strings.

* Tel.: +39 049 827 1484. E-mail address: colussi@math.unipd.it.

^{0304-3975/\$ –} see front matter s 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.tcs.2011.05.056

2. Computational experiments

Define the inverse $R^{-1}(x)$ of the reduced Collatz function as the set of odd integers such that $y \in R^{-1}(x)$ iff R(y) = x. We can easily see that

$$R^{-1}(x) = \begin{cases} \emptyset & \text{if } x \equiv 0 \pmod{3} \\ \left\{ \frac{x2^{2m+2} - 1}{3} : m \ge 0 \right\} & \text{if } x \equiv 1 \pmod{3} \\ \left\{ \frac{x2^{2m+1} - 1}{3} : m \ge 0 \right\} & \text{if } x \equiv 2 \pmod{3}. \end{cases}$$

Let G_k the class of odd integers x that converge to 1 in k steps, i.e. such that $R^k(x) = 1$. The class G_k can be defined inductively by

$$G_0 = \{1\}$$

 $G_k = \bigcup_{x \in G_{k-1}} R^{-1}(x).$

For a binary string *s* let [*s*] be the non-negative integer whose binary representation is *s*. In what follows we see classes G_k as sets of binary strings.

Clearly $G_0 = \{1\}$: The singleton set that contains only the binary string 1. Let us compute first G_1

$$G_1 = \bigcup_{x_0 \in G_0} R^{-1}(x_0) = R^{-1}(1) = \left\{ \frac{4^{m_1+1}-1}{3} : m_1 \ge 0 \right\} = \left\{ \sum_{i=0}^{m_1} 4^i : m_1 \ge 0 \right\}.$$

If we represent $x_1 = \sum_{i=0}^{m_1} 4^i$ as a binary string of length $2m_1 + 2$ we obtain 01^{m_1+1} , i.e. the concatenation of one or more copies of the binary string $s_1 = 01$ of length 2. Thus

$$G_1 = \left\{ \left[s_1^{m_1+1} \right] : m_1 \ge 0 \right\}.$$

Now we can compute G_2 from G_1 .

$$G_2 = \bigcup_{x_1 \in G_1} R^{-1}(x_1) = \bigcup_{m_1 = 0}^{\infty} R^{-1} \left(\left[\left[s_1^{m_1 + 1} \right] \right] \right)$$

Since $x_1 = \sum_{i=0}^{m_1} 4^i \equiv m_1 + 1 \pmod{3}$ we obtain

$$G_{2} = \left\{ \frac{\left[\left[s_{1}^{3k_{1}+1} \right] \right] 4^{m_{2}+1}-1}{3} : k_{1}, m_{2} \geq 0 \right\} \cup \left\{ \frac{2\left[\left[s_{1}^{3k_{1}+2} \right] \right] 4^{m_{2}}-1}{3} : k_{1}, m_{2} \geq 0 \right\}.$$

Compute first

$$\frac{\left[\left[s_{1}^{3}\right]\right]}{3} = \frac{\sum_{i=0}^{2} 4^{i}}{3} = \frac{4^{3} - 1}{3^{2}} = 7$$

and let $s_2 = 000111$ be the binary representation of 7 as a string of length 6. A simple computation shows that $[\![s_1^{3k_1+1}]\!]/3 = [\![s_2^{k_1}s_2^{(2)}]\!]$, where $s_2^{(2)} = 00$ is the prefix of length 2 of s_2 and that $[\![s_1^{3k_1+2}]\!]/3 = [\![s_2^{k_1}s_2^{(4)}]\!]$, where $s_2^{(4)} = 0001$ is the prefix of length 4 of s_2 . Moreover, $[\![s_1^{3k_1+1}]\!] \mod 3 = 1$ and $\left[\!\left[s_1^{3k_1+2}\right]\!\right] \mod 3 = 2.$

$$G_2 = \left\{ \left[s_2^{k_1} s_2^{[2]} \right] 4^{m_2 + 1} \right\}$$

$$e_{2} = \left\{ \left[\left[s_{2}^{k_{1}} s_{2}^{[2]} \right] \right] 4^{m_{2}+1} + \frac{4^{m_{2}+1} - 1}{3} : k_{1}, m_{2} \ge 0 \right\}$$
$$\cup \left\{ 2 \left[\left[s_{2}^{k_{1}} s_{2}^{[4]} \right] \right] 4^{m_{2}} + \frac{4^{m_{2}+1} - 1}{3} : k_{1}, m_{2} \ge 0 \right\}$$

We can write $(4^{m_2+1}-1)/3 = \sum_{i=0}^{m_2} 4^i$ in binary both as $[s_1^{m_2} s_1^{(2)}]$ and $[s_{1,1}^{m_2} s_{1,1}^{(1)}]$, where $s_{1,1} = 10$ is the left rotation of s_1 by 1 position.

Lengths of strings $s_1^{m_2}s_1^{(2)}$ and $s_{1,1}^{m_2}s_{1,1}^{(1)}$ are respectively $2m_2 + 2$ and $2m_2 + 1$. Thus we conclude that

$$G_{2} = \left\{ \left[\left[s_{2,0}^{k_{1}} s_{2,0}^{[2]} s_{1,0}^{m_{2}} s_{1,0}^{[2]} \right] : k_{1}, m_{2} \ge 0 \right\} \cup \left\{ \left[\left[s_{2,0}^{k_{1}} s_{2,0}^{[4]} s_{1,1}^{m_{2}} s_{1,1}^{[1]} \right] : k_{1}, m_{2} \ge 0 \right\}$$

where, for uniformity, $s_{1,0} = s_1$ and $s_{2,0} = s_2$ (the unrotated seeds).

We can conclude that G_2 is the set of all integers whose binary representation starts with zero or more copies of $s_2 = 000111$ and continues either by the prefix $s_{2,0}^{[2]} = 00$ of s_2 followed by zero or more copies of $s_{1,0} = 01$ followed by the prefix $s_{1,0}^{[2]} = s_1 = 01$ or by the prefix $s_{2,0}^{[4]} = 0001$ followed by zero or more copies of $s_{1,1} = 10$ followed by the prefix $s_{1,1}^{[1]} = 1$. The representation of G_2 as a tree is:

$$s_{2,0}^* \to s_{2,0}^{[2)} \to s_{1,0}^* \to s_{1,0}^{[2)} \quad \text{or} \quad (000111)^* \to 00 \quad \to (01)^* \to 01 \\ \to s_{2,0}^{[4)} \to s_{1,1}^* \to s_{1,1}^{[1)} \quad \text{or} \quad \to 0001 \quad \to (10)^* \to 1$$

where *s*^{*} means concatenation of zero or more copies of *s*.¹

We can compute G_3 in the same way. However it is better to use a computer program to build and print the trees for G_3 , G_4 and G_5 . The tree for G_6 is too big to be computed and printed.

The program inductively computes the tree for G_{k+1} from the tree for G_k by computing $R^{-1}(z)$ for each branch z of the tree; it is based on two mutually recursive procedures: Div3 and Div3Aux.

DIV3(*x*, *r*) is called with parameters a node of type $x = s_{h,d}^*$ and an integer *r* which is the remainder of the division by three of the ancestors of node *x* (r = 0 when the procedure is called with the root as input). The companion procedure DIV3AUX(*z*, *y*, *r*) is called with parameters a node of type $y = s_{h,d}^{[\ell]}$ and an integer *r* which is the remainder of the division by three of the ancestors of node *y*. Moreover, for each node $x = s_{h,d}^*$, the procedure DIv3AUX is called three times with, respectively, $z = s_{h,d}^i$ for i = 0, 1, 2.

The two procedures can be described as follows in C-like pseudo code:

DIV3(x, r) // $x = s_{h,d}^*$ $w = r \cdot s_{h,d}^3$ 1 || w is the concatenation of the binary string for r with three copies of $s_{h,d}$. $s_{h+1,d'} = w/3$ // Notice that $r = w \mod 3$ since $s_{h,d}^3 \mod 3 = 0$. 2 3 "build a new node x' with label $s_{h+1,d'}^*$ " 4 for "each son y of x" 5 **for** i = 0 **to** 2 $y' = \text{Div3Aux}(s_{h,d}^i, y, r)$ if $y' \neq \text{NIL}$ "add y' as a new son of x'" 6 7 8 9 return x' DIV3AUX(z, y, r). $|| y = s_{h,d}^{[\ell]}$ and $z = s_{h,d}^i$ for $0 \le i \le 2$. $\ell' = \ell + \text{length of } z$ 1 $w = r \cdot z \cdot s_{h,d}^{[\ell]}$ 2 $s_{h+1,d'}^{[\ell')} = w/3$ $r' = w \mod 3$ 3 4 5 if y is a leaf 6 **if** r' == 07 return NIL **else** //r' == 1 or r' == 28 "build a new node y' with label $s_{h+1 d'}^{[\ell']}$ " 9 10 **if** r' == 1"add to y' a single son $s_{1,0}^*$ followed by a leaf $s_{1,0}^{(2)}$ " 11 **else** || r' == 212 "add to y' a single son $s_{1,1}^*$ followed by a leaf $s_{1,1}^{(1)}$ " 13 else || y is not a leaf. Let x be the son of y 14 15 x' = DIV3(x, r')16 "put x' as the son of y'" 17 **return** y'

¹ The tree representation used for G_2 (and that that will be used for next classes G_k) is just the syntactic tree of a regular expression $(000111)^*[00(01)^*01 + 0001(10)^*1]$. Thus classes G_k are regular sets of strings.

Many different implementations of those procedure have been written and used, starting from a naive one written when no properties of the classes were already known and refining it as soon as more and more properties were discovered. Here is the tree for G_3 obtained as output of the program:

(000010010111101101)*				
ightarrow 00	\rightarrow (000111)*	$\rightarrow 00$	\rightarrow (01)*	ightarrow 01
		^{\[\]} 0001	\rightarrow (10)*	$\rightarrow 1$
^ک 0000	\rightarrow (100011)*	$\rightarrow 100$	\rightarrow (01)*	ightarrow 01
,		^{`_} 10001	\rightarrow (10)*	$\rightarrow 1$
[∕] 00001001	\rightarrow (011100)*	$\rightarrow 01$	\rightarrow (10)*	$\rightarrow 1$
		[∖] 011100	\rightarrow (01)*	ightarrow 01
^{\[]} 0000100101	\rightarrow (111000)*	$\rightarrow 1$	\rightarrow (10)*	$\rightarrow 1$
,		× 11100	\rightarrow (01)*	ightarrow 01
[↓] 00001001011110	\rightarrow (110001)*	\rightarrow 1100	\rightarrow (01)*	ightarrow 01
		^{\[\]} 110001	\rightarrow (10)*	$\rightarrow 1$
0000100101111011	\rightarrow (001110)*	$\rightarrow 0$	\rightarrow (01)*	ightarrow 01
		^{\[]} 001	\rightarrow (10)*	$\rightarrow 1$

Let $s_3^* = (000010010111101101)^*$ be the root. Its sons are the six prefixes $s_{3,0}^{(2)}$, $s_{3,0}^{(4)}$, $s_{3,0}^{(1)}$, $s_{3,0}^{$ a prefix of the rotation. By using this notation the tree becomes

$$\begin{split} s^{*}_{3,0} & \rightarrow s^{(2)}_{3,0} & \rightarrow s^{*}_{2,0} & \rightarrow s^{(2)}_{1,0} & \rightarrow s^{(2)}_{1,0} \\ & & & & \\ & & & \\ & & & \\ s^{(4)}_{3,0} & \rightarrow s^{*}_{2,5} & \rightarrow s^{(3)}_{1,5} & \rightarrow s^{*}_{1,1} & \rightarrow s^{(1)}_{1,1} \\ & & & \\ & & & \\ & & & \\ s^{(5)}_{2,5} & \rightarrow s^{*}_{1,1} & \rightarrow s^{(1)}_{1,1} \\ & & & \\ & & & \\ s^{(6)}_{3,0} & \rightarrow s^{*}_{2,2} & \rightarrow s^{(2)}_{2,2} & \rightarrow s^{*}_{1,1} & \rightarrow s^{(1)}_{1,1} \\ & & & \\ & & & \\ & & & \\ s^{(6)}_{2,2} & \rightarrow s^{*}_{1,0} & \rightarrow s^{(2)}_{1,0} \\ & & & \\ & & & \\ s^{(5)}_{2,3} & \rightarrow s^{(1)}_{1,1} & \rightarrow s^{(1)}_{1,1} \\ & & & \\ & & & \\ & & & \\ s^{(5)}_{2,3} & \rightarrow s^{*}_{1,0} & \rightarrow s^{(2)}_{1,0} \\ & & & \\ & & & \\ s^{(10)}_{3,0} & \rightarrow s^{*}_{2,4} & \rightarrow s^{(2)}_{1,4} & \rightarrow s^{*}_{1,0} & \rightarrow s^{(2)}_{1,0} \\ & & & \\ & & & \\ & & & \\ s^{(6)}_{2,4} & \rightarrow s^{*}_{1,1} & \rightarrow s^{(1)}_{1,1} \\ & & & \\ & & & \\ s^{(16)}_{3,0} & \rightarrow s^{*}_{2,1} & \rightarrow s^{(1)}_{2,1} & \rightarrow s^{*}_{1,0} & \rightarrow s^{(2)}_{1,0} \\ & & & \\ & & & \\ & & & \\ s^{(16)}_{3,0} & \rightarrow s^{*}_{2,1} & \rightarrow s^{(1)}_{1,1} & \rightarrow s^{*}_{1,1} & \rightarrow s^{(1)}_{1,1} \\ & & & \\ \end{array}$$

Experimental results suggest that classes G_k can be defined in terms of an infinite sequence of strings s_h of length $2 \cdot 3^{h-1}$. We call s_h seed of order h.

Indeed, we will show that for each $x \in G_k$ there exist integers q_h , d_h and ℓ_h such that

$$x = \left[s_{k,d_1}^{q_1} s_{k,d_1}^{\ell_1} s_{k-1,d_2}^{q_2} s_{k-1,d_2}^{\ell_2} \dots s_{1,d_k}^{q_k} s_{1,d_k}^{\ell_k} \right]$$

where $q_h \ge 0, 0 < \ell_h \le 2 \cdot 3^{h-1}, d_1 = 0$ and, for $h > 1, 0 \le d_h < 2 \cdot 3^{h-2}$. We can extend notation $s^{(\ell)}$ (the prefix of length $\ell \le \lambda$ of a string *s* of length λ) to all non-negative integers *n* (even $n > \lambda$) by letting $s^{(n)}$ denote the prefix of length *n* of a sufficiently long repetition of *s*, i.e. if $q = \lfloor n/\lambda \rfloor$ and $\ell = n \mod \lambda$ then $s^{(n)} = s^q s^{(\ell)}$ is the concatenation of *q* copies of *s* followed by the prefix $s^{(\ell)}$.

By using this extended notation, we can write the previous equation in a more compact form as

$$\mathbf{x} = \left[\left[\mathbf{s}_{k,d_1}^{(n_1)} \mathbf{s}_{k-1,d_2}^{(n_2)} \dots \mathbf{s}_{1,d_k}^{(n_k)} \right]$$
(1)

where $n_h = 2 \cdot 3^{h-1}q_h + \ell_h$ for h = 1, ..., k.

In Section 4 the intuition coming from computational experiments is proved, i.e. that all $x \in G_k$ has the binary representation in Eq. (1).

Moreover the sequences of integers n_h , d_h such that

$$\left[\left[s_{k,d_1}^{[n_1]}s_{k-1,d_2}^{[n_2]}\dots s_{1,d_k}^{[n_k]}\right]\right] \in G_k$$

are defined, thus giving a complete characterization of classes G_k .

3. Properties of seeds

Experimental results in Section 2 suggest that seeds are binary strings s_h of length $2\lambda_h$, where $\lambda_h = 3^{h-1}$, and that seeds can be defined inductively as $s_1 = 01$ and $[s_h] = [s_{h-1}^3] / 3$ for h > 1. The simple computation

$$\llbracket s_{h} \rrbracket = \frac{\llbracket s_{h-1}^{3} \rrbracket}{3} = \llbracket s_{h-1} \rrbracket 4^{\lambda_{h-1}} \frac{\sum_{i=0}^{2} 4^{i}}{3} = 7 \llbracket s_{h-1} \rrbracket 4^{\lambda_{h-1}}$$

shows that s_h is well defined since $[s_{h-1}^3]$ /3 is an integer.

Here are some properties of seeds s_h , of rotations $s_{h,d}$ and of extended prefixes $s_h^{(n)}$.

Lemma 1 (Properties of Seeds). For all seed s_h we have

$$\llbracket s_h \rrbracket = \frac{\sum_{i=0}^{\lambda_h - 1} 4^i}{\lambda_h} = \frac{4^{\lambda_h} - 1}{\lambda_{h+1}}$$
(2)

and

 $\llbracket s_h \rrbracket \equiv 1 \pmod{3}.$

Proof. The proof is by induction. For the basis $[s_1] = 1 = (4^1 - 1)/3 = (4^{\lambda_1} - 1)/\lambda_2$ and $[s_1] \mod 3 = 1$. For the inductive step

$$\begin{split} \llbracket s_{h} \rrbracket &= \frac{\llbracket s_{h-1}^{3} \rrbracket}{3} = \frac{\sum_{i=0}^{2} \llbracket s_{h-1} \rrbracket 4^{i\lambda_{h-1}}}{3} = \frac{\sum_{i=0}^{2} (\frac{\sum_{j=0}^{\lambda_{h-1}-1} 4^{j}}{\lambda_{h-1}}) 4^{i\lambda_{h-1}}}{3} \\ &= \frac{\sum_{i=0}^{2} (\sum_{j=0}^{\lambda_{h-1}-1} 4^{j}) 4^{i\lambda_{h-1}}}{\lambda_{h}} = \frac{\sum_{i=0}^{2} \sum_{j=0}^{\lambda_{h-1}-1} 4^{i\lambda_{h-1}+j}}{\lambda_{h}} \\ &= \frac{\sum_{i=0}^{\lambda_{h}-1} 4^{i}}{\lambda_{h}} = \frac{4^{\lambda_{h}} - 1}{\lambda_{h+1}} \end{split}$$

and

$$\llbracket s_h \rrbracket \equiv \frac{\sum_{i=0}^2 \llbracket s_{h-1} \rrbracket \, 4^{i\lambda_{h-1}}}{3} \equiv \llbracket s_{h-1} \rrbracket \, 4^{\lambda_{h-1}}7 \equiv 1 \pmod{3}. \quad \Box$$

Lemma 2 (Properties of Left Rotations of Seeds). For $0 \le d < 2\lambda_h$

$$\llbracket s_{h,d} \rrbracket = \left(2^d \mod \lambda_{h+1} \right) \llbracket s_h \rrbracket$$

and

$$\llbracket s_{h,d} \rrbracket \equiv 2^d \pmod{3} \tag{5}$$

and, for $0 \leq d < \lambda_h$

$$\llbracket s_{h,d} \rrbracket + \llbracket s_{h,d+\lambda_h} \rrbracket = 4^{\lambda_h} - 1$$
(6)

(i.e. bits of string $s_{h,d+\lambda_h}$ are the complement of corresponding bits of $s_{h,d}$) and, finally

$$[[s_{h+1,d}]] = r \frac{4^{\lambda_{h+1}} - 1}{3} + \frac{[[s_{h,d'}^3]]}{3}$$
where $r = \lfloor d/(2\lambda_h) \rfloor$ and $d' = d \mod 2\lambda_h$.
(7)

(3)

(4)

Proof. The proof for Eq. (4) is

$$\begin{split} \llbracket s_{h,d} \rrbracket &= \left(\llbracket s_h \rrbracket \mod 2^{2\lambda_h - d} \right) 2^d + \frac{\llbracket s_h \rrbracket - \llbracket s_h \rrbracket \mod 2^{2\lambda_h - d}}{2^{2\lambda_h - d}} \\ &= \frac{\left(\llbracket s_h \rrbracket \mod 2^{2\lambda_h - d} \right) 4^{\lambda_h} + \llbracket s_h \rrbracket - \llbracket s_h \rrbracket \mod 2^{2\lambda_h - d}}{2^{2\lambda_h - d}} \\ &= \frac{\left(\llbracket s_h \rrbracket \mod 2^{2\lambda_h - d} \right) (4^{\lambda_h} - 1) + \llbracket s_h \rrbracket}{2^{2\lambda_h - d}} \\ &= \frac{\left(\llbracket s_h \rrbracket \mod 2^{2\lambda_h - d} \right) \lambda_{h+1} \llbracket s_h \rrbracket + \llbracket s_h \rrbracket}{2^{2\lambda_h - d}} \\ &= \frac{\lambda_{h+1} \left(\llbracket s_h \rrbracket \mod 2^{2\lambda_h - d} \right) \lambda_{h+1} \llbracket s_h \rrbracket}{2^{2\lambda_h - d}} \\ &= \frac{\lambda_{h+1} \left(\llbracket s_h \rrbracket \mod 2^{2\lambda_h - d} \right) + 1}{2^{2\lambda_h - d}} \llbracket s_h \rrbracket \\ &= \frac{\lambda_{h+1} \left(\frac{4^{\lambda_h} - 1}{\lambda_{h+1}} \mod 2^{2\lambda_h - d} \right) + 1}{2^{2\lambda_h - d}} \llbracket s_h \rrbracket \\ &= \frac{\left(4^{\lambda_h} - 1 \right) \mod \lambda_{h+1} 2^{2\lambda_h - d}}{2^{2\lambda_h - d}} \llbracket s_h \rrbracket \\ &= \frac{2^{2\lambda_h} \mod \lambda_{h+1} 2^{2\lambda_h - d}}{2^{2\lambda_h - d}} \llbracket s_h \rrbracket \\ &= \frac{2^{2\lambda_h} \mod \lambda_{h+1} 2^{2\lambda_h - d}}{2^{2\lambda_h - d}} \llbracket s_h \rrbracket \\ &= \frac{2^{2\lambda_h - d} 2^d \mod \lambda_{h+1} 2^{2\lambda_h - d}}{2^{2\lambda_h - d}} \llbracket s_h \rrbracket \\ &= \frac{2^{2\lambda_h - d} \left(2^d \mod \lambda_{h+1} 2^{2\lambda_h - d} \right)}{2^{2\lambda_h - d}} \llbracket s_h \rrbracket \end{aligned}$$

The proof for Eq. (5) is

$$\llbracket s_{h,d} \rrbracket \equiv \llbracket s_h \rrbracket \left(2^d \mod \lambda_{h+1} \right) \equiv 2^d \pmod{3}.$$

We can prove Eq. (6) only for d = 0: The cases of $1 \le d < \lambda_h$ are a simple consequence since rotations do not change the pairs of bits at a distance λ_h from each other.

$$\begin{bmatrix} s_{h,0} \end{bmatrix} = \begin{bmatrix} s_h \end{bmatrix} = \frac{4^{\lambda_h} - 1}{\lambda_{h+1}} = \frac{2^{\lambda_h} + 1}{\lambda_{h+1}} (2^{\lambda_h} - 1)$$
$$= \left(\frac{2^{\lambda_h} + 1}{\lambda_{h+1}} - 1\right) 2^{\lambda_h} + 2^{\lambda_h} - \frac{2^{\lambda_h} + 1}{\lambda_{h+1}} = \begin{bmatrix} s \end{bmatrix} 2^{\lambda_h} + \begin{bmatrix} s' \end{bmatrix}$$

where s, s' are the binary string of length λ_h such that

$$\llbracket s \rrbracket = \frac{2^{\lambda_h} + 1}{\lambda_{h+1}} - 1 \quad \text{and} \quad \llbracket s' \rrbracket = 2^{\lambda_h} - \frac{2^{\lambda_h} + 1}{\lambda_{h+1}}.$$

Then

$$\begin{split} \llbracket s_{h,\lambda_h} \rrbracket &= \llbracket s' \rrbracket \, 2^{\lambda_h} + \llbracket s \rrbracket = \left(2^{\lambda_h} - \frac{2^{\lambda_h} + 1}{\lambda_{h+1}} \right) 2^{\lambda_h} + \frac{2^{\lambda_h} + 1}{\lambda_{h+1}} - 1 \\ &= 4^{\lambda_h} - 1 - \frac{2^{\lambda_h} + 1}{\lambda_{h+1}} \left(2^{\lambda_h} - 1 \right) = 4^{\lambda_h} - 1 - \llbracket s_{h,0} \rrbracket \,. \end{split}$$

Finally, by Eq. (7), $2^d \equiv 2^{d'} \pmod{\lambda_{h+1}}$ and $\left\lfloor \frac{2^d \mod \lambda_{h+2}}{\lambda_{h+1}} \right\rfloor = r$ (by the isomorphism of $\mathbb{Z}^+_{2\lambda_h}$ and $\mathbb{Z}^*_{\lambda_{h+1}}$). Thus

$$2^{d} \operatorname{mod} \lambda_{h+2} = \left\lfloor \frac{2^{d} \operatorname{mod} \lambda_{h+2}}{\lambda_{h+1}} \right\rfloor \lambda_{h+1} + \left(2^{d} \operatorname{mod} \lambda_{h+2}\right) \operatorname{mod} \lambda_{h+1} = r\lambda_{h+1} + 2^{d'} \operatorname{mod} \lambda_{h+1}$$

and

$$\begin{bmatrix} s_{h+1,d} \end{bmatrix} = (2^{d} \mod \lambda_{h+2}) \begin{bmatrix} s_{h+1} \end{bmatrix} \quad (by \text{ Eq. } (4))$$

$$= (r\lambda_{h+1} + 2^{d'} \mod \lambda_{h+1}) \begin{bmatrix} s_{h+1} \end{bmatrix}$$

$$= (r\lambda_{h+1} + 2^{d'} \mod \lambda_{h+1}) \begin{bmatrix} s_{h} \end{bmatrix} / 3$$

$$= (r(4^{\lambda_{h}} - 1) + \begin{bmatrix} s_{h,d'} \end{bmatrix}) \begin{bmatrix} s_{h} \end{bmatrix} \frac{\sum_{i=0}^{2} 4^{i\lambda_{h}}}{3}$$

$$= (r(4^{\lambda_{h}} - 1) + \begin{bmatrix} s_{h,d'} \end{bmatrix}) \frac{\sum_{i=0}^{2} 4^{i\lambda_{h}}}{3}$$

$$= r\frac{4^{\lambda_{h+1}} - 1}{3} + \frac{\begin{bmatrix} s_{h,d'} \end{bmatrix}}{3}. \quad \Box$$

Lemma 3 (Properties of Extensions of Seeds). For n > 0, h > 0 and $q = \lfloor n/(2\lambda_h) \rfloor$, $\ell = n \mod 2\lambda_h$

$$\begin{bmatrix} s_h^{(n)} \end{bmatrix} = \begin{bmatrix} \frac{2^n}{\lambda_{h+1}} \end{bmatrix}$$
(8)
$$\begin{bmatrix} s_h^{(n)} \end{bmatrix} = \begin{bmatrix} \end{bmatrix} \begin{bmatrix} s_h^{(n)} \end{bmatrix} / 2 \end{bmatrix}$$

$$\begin{bmatrix} s_{h+1}^{[n]} \end{bmatrix} = \left\lfloor \begin{bmatrix} s_{h}^{[n]} \end{bmatrix} / 3 \right]$$

$$\begin{bmatrix} s_{h}^{[n]} \end{bmatrix} \equiv q2^{\ell} + \begin{bmatrix} s_{h}^{[\ell]} \end{bmatrix} \pmod{3}.$$
(10)

Moreover, for $0 \le d < \lambda_{h+1}$ *and* $r = \lfloor d/(2\lambda_h) \rfloor$, $d' = d \mod 2\lambda_h$

$$\left[\!\left[s_{h+1,d}^{[n]}\right]\!\right] = \left\lfloor \frac{r2^n + \left[\!\left[s_{h,d'}^{[n]}\right]\!\right]}{3} \right\rfloor.$$
(11)

Proof. The proof of Eq. (8) is by induction on *q*. For the basis q = 0 and $n = \ell < 2\lambda_h$

$$\left[\!\left[s_{h}^{\left[\ell\right)}\right]\!\right] = \left\lfloor \frac{4^{\lambda_{h}} - 1}{\lambda_{h+1} 2^{2\lambda_{h} - \ell}} \right\rfloor = \left\lfloor \frac{2^{\ell}}{\lambda_{h+1}} - \frac{2^{\ell}}{\lambda_{h+1} 2^{2\lambda_{h}}} \right\rfloor = \left\lfloor \frac{2^{\ell}}{\lambda_{h+1}} \right\rfloor$$

where the last equality follows from

$$\frac{2^{\ell}}{\lambda_{h+1}2^{2\lambda_h}} < \frac{1}{\lambda_{h+1}} \le \frac{2^{\ell}}{\lambda_{h+1}} - \left\lfloor \frac{2^{\ell}}{\lambda_{h+1}} \right\rfloor.$$

For the inductive step let $n' = n - 2\lambda_h$. Then

$$\left[\left[s_{h}^{[n]} \right] = \left[s_{h} \right] 2^{n'} + \left[\left[s_{h}^{[n']} \right] \right] = \frac{4^{\lambda_{h}} - 1}{\lambda_{h+1}} 2^{n'} + \left\lfloor \frac{2^{n'}}{\lambda_{h+1}} \right\rfloor = \left\lfloor \frac{2^{2\lambda_{h}} - 1}{\lambda_{h+1}} 2^{n'} + \frac{2^{n'}}{\lambda_{h+1}} \right\rfloor = \left\lfloor \frac{2^{n}}{\lambda_{h+1}} \right\rfloor.$$

For Eq. (9) let $k = \lceil n/(2\lambda_{h+1}) \rceil$. Then

$$\left[\left[s_{h+1}^{[n]}\right] = \left[\left[\left(s_{h+1}^{k}\right)^{[n]}\right]\right] = \left\lfloor \frac{\left[\left[s_{h+1}^{k}\right]\right]}{2^{k2\lambda_{h+1}-n}}\right\rfloor = \left\lfloor \frac{\left[\left[s_{h}^{3k}\right]\right]}{3 \cdot 2^{3k2\lambda_{h}-n}}\right\rfloor = \left\lfloor \left[\left[s_{h}^{[n]}\right]\right]/3\right\rfloor$$

where the last equality holds because $\left[\!\left[s_{h}^{3k}\right]\!\right] \mod 3 = 0$. For Eq. (10)

$$\left[\!\left[s_h^{[n]}\right]\!\right] \equiv \left[\!\left[s_h^q\right]\!\right] 2^\ell + \left[\!\left[s_h^{[\ell)}\right]\!\right] \equiv q 2^\ell + \left[\!\left[s_h^{[\ell)}\right]\!\right] \pmod{3}$$

where the last equality holds because $\llbracket s_h^q \rrbracket \equiv q \pmod{3}$.

Finally, for Eq. (11), let $k = \lceil n/(2\lambda_{h+1}) \rceil$ so that $\llbracket s_{h+1,d}^{[n]} \rrbracket = \llbracket (s_{h+1,d}^k)^{[n]} \rrbracket$. Then

$$\begin{bmatrix} s_{h+1,d}^{k} \end{bmatrix} = \sum_{i=0}^{k-1} \begin{bmatrix} s_{h+1,d} \end{bmatrix} 2^{2\lambda_{h+1}}$$
$$= \sum_{i=0}^{k-1} \left(r \frac{4^{\lambda_{h+1}} - 1}{3} + \frac{\begin{bmatrix} s_{h,d'}^{3} \end{bmatrix}}{3} \right) 2^{2\lambda_{h+1}} \qquad \text{(by Eq. (7))}$$
$$= r \frac{4^{k\lambda_{h+1}} - 1}{3} + \frac{\begin{bmatrix} s_{h,d'}^{3k} \end{bmatrix}}{3}$$

and

$$\begin{split} \left[\left(s_{h+1,d}^{k} \right)^{[n)} \right] &= \left\lfloor \frac{2^{n}}{2^{2k\lambda_{h+1}}} \left(r \frac{4^{k\lambda_{h+1}} - 1}{3} + \frac{\left[s_{h,d'}^{3k} \right]}{3} \right) \right\rfloor \\ &= \left\lfloor \frac{2^{n}}{2^{2k\lambda_{h+1}}} \left(r \left\lfloor \frac{4^{k\lambda_{h+1}}}{3} \right\rfloor + \frac{\left[s_{h,d'}^{3k} \right]}{3} \right) \right\rfloor \\ &= \left\lfloor \frac{2^{n}}{2^{2k\lambda_{h+1}}} \left\lfloor \frac{r4^{k\lambda_{h+1}} + \left[s_{h,d'}^{3k} \right]}{3} \right\rfloor \right\rfloor \\ &= \left\lfloor \frac{2^{n}}{2^{2k\lambda_{h+1}}} \frac{r4^{k\lambda_{h+1}} + \left[s_{h,d'}^{3k} \right]}{3} \right\rfloor \\ &= \left\lfloor \frac{1}{3} \left(r2^{n} + \frac{2^{n} \left[s_{h,d'}^{3k} \right]}{2^{2k\lambda_{h+1}}} \right) \right\rfloor \\ &= \left\lfloor \frac{r2^{n} + \left[s_{h,d'}^{3k} \right]}{3} \right\rfloor. \quad \Box \end{split}$$

4. Convergence classes

The experimental results in Paragraph 1 suggest that each $x \in G_k$ has the binary representation given by Eq. (1), for some integers n_i , d_i ($1 \le i \le k$).

Here we characterize integers n_i and d_i such that the *x* given by Eq. (1) is in G_k . We do so by defining a *scheme* \mathscr{S}_k which is a set of lengths $n_i > 0$ and left rotations $d_{h,i}$ (for $1 \le i \le h \le k$).

Definition 1 (*Scheme* δ_k for G_k). A scheme δ_1 for G_1 is given by the rotation $d_{1,1} = 0$ and an even length $n_1 \equiv 0 \pmod{2}$. For k > 1 the lengths $n_i > 0$ and left rotations $d_{h,i}$ of a scheme δ_k are defined by mutual induction by

(a) $n_1 \equiv \pm 2 \pmod{6}$,

(b) $n_i \equiv r_{i-1,i-1}(5 - 2[r_{i-1,i-1} - r_{i,i-1}]) \pm 1 \pmod{6}$, for $2 \le i < k$

(c)
$$n_k \equiv r_{k-1,k-1} - 1 \pmod{2}$$

(d)
$$d_{h,1} = 0$$
, for $1 \le h \le k$,

(e) $d_{h,i} = d_{h-1,i} + r_{h-1,i-1} 2\lambda_{h-i-1}$, for $2 \le i < h \le k$

(f) $d_{h,h} = r_{h-1,h-1} - 1$, for $2 \le h \le k$

where $r_{h,i} = \left[\!\!\left[s_{h,d_{h,1}}^{[n_1)} \dots s_{h-i+1,d_{h,i}}^{[n_i]}\right]\!\right] \mod 3.$

Lemma 4. Let \mathscr{S}_k a scheme for G_k . Then $r_{h,h} \neq 0$ for $1 \leq h < k$.

Proof. By induction on *h*. For the basis $r_{1,1} = \begin{bmatrix} s_{1,d_{1,1}}^{[n_1]} \end{bmatrix} \mod 3$ and

$$\llbracket s_{1,d_{1,1}}^{[n_1]} \rrbracket \equiv \llbracket s_1^{[n_1]} \rrbracket \equiv \llbracket s_1^{n_1/2} \rrbracket \equiv n_1/2 \pmod{3}.$$

Then $r_{1,1} \neq 0$ since $n_1 \equiv \pm 2 \pmod{6}$.

Let h > 1 and assume $r_{h-1,h-1} \neq 0$. Then

If $r_{h-1,h-1} = 1$ then $n_h = 2m$ is even and

$$r_{h,h} \equiv r_{h,h-1} + \llbracket s_1^{[n_h)} \rrbracket \pmod{3}$$
$$\equiv r_{h,h-1} + \llbracket s_1^m \rrbracket \pmod{3}$$
$$\equiv r_{h,h-1} + m \pmod{3}$$

and so $r_{h,h} \neq 0$ iff

$$m + r_{h,h-1} \not\equiv 0 \pmod{3}$$

$$n_h + 2r_{h,h-1} \not\equiv 0 \pmod{3}$$

 $n_h \not\equiv r_{h,h-1} \pmod{3}$.

If $r_{h-1,h-1} = 2$ then $n_h = 2m + 1$ is odd and

$$r_{h,h} \equiv 2r_{h,h-1} + \left[\!\left[s_{1,1}^{(n_h)}\right]\!\right] \pmod{3}$$
$$\equiv 2r_{h,h-1} + \left[\!\left[s_1^{m+1}\right]\!\right] \pmod{3}$$
$$\equiv 2r_{h,h-1} + m + 1 \pmod{3}$$

and so $r_{h,h} \neq 0$ iff

$$m + 1 + 2r_{h,h-1} \neq 0 \pmod{3}$$

$$n_h + 1 + r_{h,h-1} \neq 0 \pmod{3}$$

$$n_h \neq 2(r_{h,h-1} + 1) \pmod{3}.$$

In both cases

$$n_h \neq r_{h-1,h-1}(r_{h-1,h-1} + r_{h,h-1} - 1) \pmod{3}$$

Thus n_h satisfy the congruences

$$n_h \equiv r_{h-1,h-1} - 1 \pmod{2}$$

and either

 $n_h \equiv 1 + r_{h-1,h-1}(r_{h-1,h-1} + r_{h,h-1} - 1) \pmod{3}$

or

$$n_h \equiv 2 + r_{h-1,h-1}(r_{h-1,h-1} + r_{h,h-1} - 1) \pmod{3}.$$

Using the Chinese Remainder Theorem, we can obtain in the former case

$$n_h \equiv 3(r_{h-1,h-1} - 1) - 2[1 + r_{h-1,h-1}(r_{h-1,h-1} + r_{h,h-1} - 1)] \pmod{6}$$

$$\equiv r_{h-1,h-1}[5 - 2(r_{h-1,h-1} + r_{h,h-1})] + 1 \pmod{6}$$

and in the latter case

$$n_h \equiv 3(r_{h-1,h-1} - 1) - 2[2 + r_{h-1,h-1}(r_{h-1,h-1} + r_{h,h-1} - 1)] \pmod{6}$$

$$\equiv r_{h-1,h-1}[5 - 2(r_{h-1,h-1} + r_{h,h-1})] - 1 \pmod{6}.$$

Then $r_{h,h} \neq 0$ iff

$$n_h \equiv r_{h-1,h-1}[5 - 2(r_{h-1,h-1} - r_{h,h-1})] \pm 1 \pmod{6}$$

and the later is true by definition of δ_k . \Box

Lemma 5. Let k > 1 and δ_k a scheme for G_k . Then for all h > 1

$$\left[\!\left[s_{h,d_{h,1}}^{[n_1]} \dots s_{2,d_{h,h-1}}^{[n_{h-1}]}\right]\!\right] = \left\lfloor \left[\!\left[s_{h-1,d_{h-1,1}}^{[n_1]} \dots s_{1,d_{h-1,h-1}}^{[n_{h-1}]}\right]\!\right] / 3\right\rfloor.$$

Proof. We will prove, by induction on i = 1, ..., h - 1, the more general equation

$$\left[\!\left[s_{h,d_{h,1}}^{[n_1]} \dots s_{h-i+1,d_{h,i}}^{[n_i]}\right] = \left\lfloor \left[\!\left[s_{h-1,d_{h-1,1}}^{[n_1]} \dots s_{h-i,d_{h-1,i}}^{[n_i]}\right]/3\right\rfloor.$$

For the basis i = 1, $d_{h,1} = d_{h-1,1} = 0$ and Eq. (9) gives

$$\begin{bmatrix} s_{h,d_{h,1}}^{[n_1]} \end{bmatrix} = \begin{bmatrix} s_h^{[n_1]} \end{bmatrix} = \left\lfloor \begin{bmatrix} s_{h-1}^{[n_1]} \end{bmatrix} / 3 \right\rfloor = \left\lfloor \begin{bmatrix} s_{h-1,d_{h-1,1}}^{[n_1]} \end{bmatrix} / 3 \right\rfloor$$

For i > 1, by applying the inductive hypothesis, we can obtain

$$\begin{bmatrix} s_{h-1,d_{h-1,1}}^{[n_1]} \dots s_{h-i,d_{h-1,i}}^{[n_i]} \end{bmatrix} / 3 = \left\lfloor \begin{bmatrix} s_{h-1,d_{h-1,1}}^{[n_1]} \dots s_{h-i-1,d_{h-1,i-1}}^{[n_{i-1}]} \end{bmatrix} / 3 \right\rfloor 2^{n_i} + \left(r_{h-1,i-1} 2^{n_i} + \begin{bmatrix} s_{h-i,d_{h-1,i}}^{[n_i]} \end{bmatrix} \right) / 3 \\ = \left\| s_{h,d_{h,1}}^{[n_1]} \dots s_{h-i,d_{h,i-1}}^{[n_{i-1}]} \right\| 2^{n_i} + \left(r_{h-1,i-1} 2^{n_i} + \begin{bmatrix} s_{h-1,d_{h-i,i}}^{[n_i]} \end{bmatrix} \right) / 3$$

and then, by using Formula (11),

$$\left\lfloor \begin{bmatrix} s_{h-1,d_{h-1,1}}^{[n_1)} \dots s_{h-i,d_{h-1,i}}^{[n_i]} \end{bmatrix} / 3 \right\rfloor = \begin{bmatrix} s_{h,d_{h,1}}^{[n_1]} \dots s_{h-i,d_{h,i-1}}^{[n_{i-1}]} \end{bmatrix} 2^{n_i} + \left\lfloor \left(r_{h-1,i-1} 2^{n_i} + \begin{bmatrix} s_{h-1,d_{h-i,i}}^{[n_i]} \end{bmatrix} \right) / 3 \right\rfloor$$
$$= \begin{bmatrix} s_{h,d_{h,1}}^{[n_1]} \dots s_{h-i,d_{h,i-1}}^{[n_{i-1}]} \end{bmatrix} 2^{n_i} + \begin{bmatrix} s_{h,d_{h-i+1,i}}^{[n_i]} \end{bmatrix} = \begin{bmatrix} s_{h,d_{h,1}}^{[n_1]} \dots s_{h-i+1,d_{h,i}}^{[n_i]} \end{bmatrix}. \quad \Box$$

Lemma 6. Let \mathscr{S}_k be a scheme for G_k and, for $1 \le h \le k$, let $x_h = \left[\!\!\left[s_{h,d_{h,1}}^{[n_1]} \dots s_{1,d_{h,h}}^{[n_h]}\right]\!\!\right]$. Then $x_h \in G_h$.

Proof. The proof is by induction on *h*. For the base case h = 1, n_1 is even and

$$x_1 = \left[\!\!\left[s_{1,d_{1,1}}^{[n_1]}\right]\!\!\right] = \left[\!\!\left[s_{1,0}^{[2m+2)}\right]\!\!\right] = \left[\!\!\left[s_1^{m+1}\right]\!\!\right] \in G_1.$$

For h > 1 we can prove

$$x_h = \frac{x_{h-1}2^{n_h} - 1}{3} \in R^{-1}(x_{h-1}) \subseteq G_h.$$

Indeed, by applying the inductive hypothesis, we can obtain

$$\begin{aligned} \frac{x_{h-1}2^{n_h}-1}{3} &= \frac{(3\left\lfloor \frac{x_{h-1}}{3}\right\rfloor + r_{h-1,h-1})2^{n_h}-1}{3} \\ &= \left\lfloor \frac{x_{h-1}}{3}\right\rfloor 2^{n_h} + \frac{r_{h-1,h-1}2^{n_h}-1}{3} \\ &= \left\lfloor \frac{x_{h-1}}{3}\right\rfloor 2^{n_h} + \left[\!\left[s_{1,d_{h,h}}^{(n_h)}\right]\!\right] \\ &= \left\lfloor \left[\!\left[s_{h-1,d_{h-1,1}}^{(n_1)} \cdots s_{1,d_{h-1,h-1}}^{(n_{h-1})}\right]\!\right]/3\right\rfloor 2^{n_h} + \left[\!\left[s_{1,d_{h,h}}^{(n_h)}\right]\!\right] \\ &= \left[\!\left[s_{h,d_{h,1}}^{(n_1)} \cdots s_{2,d_{h,h-1}}^{(n_{h-1})}\right]\!\right] 2^{n_h} + \left[\!\left[s_{1,d_{h,h}}^{(n_h)}\right]\!\right] \\ &= x_h. \quad \Box \end{aligned}$$

Lemma 7. For all $x \in G_k$ there is a scheme \mathscr{S}_k such that $x = \left[\left[S_{k,d_{k,1}}^{[n_1]} \dots S_{1,d_{k,k}}^{[n_k]} \right] \right]$.

Proof. The proof is by induction on *k*. For the base case k = 1 the proof is straightforward:

$$G_1 = \left\{ \left[\left[s_1^{m+1} \right] \right] : \ m \ge 0 \right\} = \left\{ \left[\left[s_{1,0}^{(2m+2)} \right] \right] : \ m \ge 0$$

and so $x = [s_{1,0}^{\lfloor 2m+2 \rfloor}]$ for some $m \ge 0$. Then, choosing δ_k with $n_1 = 2m + 2$ and $d_{1,1} = 0$, we obtain $x = [s_{1,d_{1,1}}^{\lfloor n_1 \rfloor}]$. Let k > 1 and let $y \in G_{k-1}$ such that $x \in R^{-1}(y)$.

By the inductive hypothesis there is a scheme \mathscr{S}_{k-1} such that

$$y = \left[s_{k-1,d_{k-1,1}}^{[n_1)} \dots s_{1,d_{k-1,k-1}}^{[n_{k-1})} \right]$$

Moreover $y \mod 3 \neq 0$ and

$$x = \left(y2^n - 1\right)/3$$

where, for some $m \ge 0$, n = 2m + 2 if $y \mod 3 = 1$ and n = 2m + 1 if $y \mod 3 = 2$.

We can extend δ_{k-1} to δ_k by setting $n_k = n$, $d_{k,1} = 0$, $d_{k,i} = d_{k-1,i} + r_{k-1,i-1} 2\lambda_{k-i-1}$, for $2 \le i < k$, and $d_{k,k} = r_{k-1,k-1} - 1$. Then $x = \left[s_{k,d_{k,1}}^{(n_1)} \dots s_{1,d_{k,k}}^{(n_k)} \right]$ and $x \in G_k$ by the previous lemma. \Box **Theorem 1** (Structure of Convergence Classes). $x \in G_k$ iff there exists a scheme \mathscr{S}_k for G_k such that

$$\mathbf{x} = \begin{bmatrix} s_{k,d_{k,1}}^{[n_1]} \dots s_{1,d_{k,k}}^{[n_k]} \end{bmatrix}.$$
(12)

Proof. Immediate from the last two lemmas.

Given a scheme δ_k we can compute the corresponding $x \in G_k$ by Formula (12). In the reverse direction, given $x \in G_k$ we can compute the corresponding scheme δ_k as follows. Let $x_k = x$ and, for h = k - 1, ..., 1, compute $x_h = R(x_{h+1})$ and take as n_k , n_{k-1} , ..., n_1 the exponents of the power of 2 at the denominators in $R(x_{h+1})$. We can easily prove that this sequence of lengths satisfy points (a), (b) and (c) of the definition of a scheme. Then we can use points (d), (e) and (f) to compute rotations d_{h_i} .

For example, for $x = 27 \in G_{41}$ we obtain

i	1	2	3	4	5	6	7	8	9	10
n _i	4	5	1	1	3	4	2	2	4	1
$d_{k,i}$	0	11	107	71	47	122	650	866	1154	6155
i	11	12	13	14	15	16	17	18	19	20
n _i	1	1	3	1	1	1	1	1	2	1
$d_{k,i}$	4103	2735	1823	4859	3239	2159	1439	959	638	851
i	21	22	23	24	25	26	27	28	29	30
n _i	2	1	1	3	2	1	1	1	2	1
$d_{k,i}$	755	566	503	335	890	1187	791	527	350	467
i	31	32	33	34	35	36	37	38	39	40
n _i	1	2	1	2	2	1	1	1	1	2
$d_{k,i}$	311	206	275	182	242	323	53	35	5	2
i	41									
n _i	1									
$d_{k,i}$	1									

Notice that $s_{k,d_{k,i}}^{[n_i)} = 0^{n_i}$ but for $s_{k,d_{k,39}}^{[n_{39})} = 00011$, $s_{k,d_{k,40}}^{[n_{40})} = 01$ and $s_{k,d_{k,41}}^{[n_{41})} = 1$. A final implementation of procedures Div3 and Div3Aux based on the scheme \mathscr{S}_k (with a nice graphical interface) is described in [8] (in Italian).

References

- [1] J.C. Lagarias, The 3n + 1 problem: an annotated bibliography, II (2000–2009). In http://arxiv.org/abs/math/0608208v5.
- [2] Lisbeth De Mol, Tag Systems and Collatz-like functions, Theoretical Computer Science 390 (2008) 92–101.
- [3] Joseph L. Pe, The 3x + 1 fractal, Computers & Graphics 28 (2004) 431–435.
- [4] Jeffrey P. Dumont, Clifford A. Reiter, Visualizing generalized 3x + 1 function dynamics, Computers and Graphics 25 (2001) 883–898.
- [5] Pavlos B. Konstadinidis, The real 3x + 1 problem, Acta Arithmetica 122 (2006) 35–44.
- [6] Pascal Michel, Small Turing machines and generalized busy beaver competition, Theoretical Computer Science 326 (2004) 45–56.
- [7] Giuseppe Scollo, ω -rewriting the Collatz problem, Fundamenta Informaticae 64 (2005) 401–412.
- [8] Lorenzo Tessari, Visualizzatore Binario delle Classi di Convergenza della funzione di Collatz. Tesi di Laurea Triennale in Informatica, Dipartimento di Matematica Pura e Applicata, Università di Padova.
- Toshio Urata, Some holomorphic functions connected with the Collatz problem, Bulletin of Aichi University of Education (Natural Science) 51 (2002) 13-16.
- [10] Jean Paul Van Bendegem, The Collatz conjecture: A case study in mathematical problem solving, Logic and Logical Philosophy 14 (1) (2005) 7-23.