# The convergence classes of Collatz function 

Livio Colussi*<br>Department of Pure and Applied Mathematics, University of Padova, via Trieste, 63, 35121 Padova, Italy

## ARTICLE INFO

Article history:
Received 4 August 2010
Received in revised form 13 May 2011
Accepted 25 May 2011
Communicated by D. Perrin

## Keywords:

Collatz conjecture
$3 n+1$ problem


#### Abstract

The Collatz conjecture, also known as the $3 x+1$ conjecture, can be stated in terms of the reduced Collatz function $R(x)=(3 x+1) / 2^{h}$ (where $2^{h}$ is the larger power of 2 that divides $3 x+1$ ). The conjecture is: Starting from any odd positive integer and repeating $R(x)$ we eventually get to 1 . $G_{k}$, the $k$-th convergence class, is the set of odd positive integers $x$ such that $R^{k}(x)=1$.

In this paper an infinite sequence of binary strings $s_{h}$ of length $2 \cdot 3^{h-1}$ (the seeds) are defined and it is shown that the binary representation of all $x \in G_{k}$ is the concatenation of $k$ periodic strings whose periods are $s_{k}, \ldots, s_{1}$. More precisely $x=s_{k, d_{k, 1}}^{\left[n_{1}\right)} \ldots s_{1, d_{k, k}}^{\left[n_{k}\right)}$ where


 $s_{k, d_{k, i}}^{\left[n_{i}\right]}$ is the substring of length $n_{i}$ that starts in position $d_{k, i}$ in a sufficiently long repetition of the seed $s_{i}$.Finally, starting positions $d_{k, i}$ and lengths $n_{i}$ for which $s_{k, d_{k, 1}}^{\left[n_{1}\right)} \ldots s_{1, d_{k, k}}^{\left[n_{k}\right)} \in G_{k}$ are defined, thus giving a complete characterization of classes $G_{k}$.
© 2011 Elsevier B.V. All rights reserved.

## 1. Introduction

The Collatz function is defined on all positive integers $x$ by:

$$
f(x)= \begin{cases}x / 2 & x \text { even } \\ 3 x+1 & x \text { odd }\end{cases}
$$

Given any odd integer $x$, let $x^{\prime}=(3 x+1) / 2^{h}$ where $2^{h}$ is the highest power of 2 that divides $3 x+1$. The reduced form of the Collatz function is $R(x)=x^{\prime}$ and is defined only for odd integers.

The Collatz conjecture says that for all integers $x>0$ there exists $i$ such that $f^{i}(x)=1$ or, equivalently, that there exists $k$ such that $R^{k}(x)=1$.

Despite the efforts of many people for about seventy years, the conjecture is still undecided. The efforts are well documented in a very large literature. The problem has been attacked from many viewpoints. The Collatz function has been studied in large domains: Integer, rational, real and even complex numbers (where a beautiful fractal has been obtained) [5,3,4,9]. The Collatz conjecture has been also proved equivalent to many other conjectures in different contexts: Rewriting systems, tag systems, etc. [7,2,6].

Our bibliography contains only a very small and incomplete selection of papers; we refer interested readers to the large annotated bibliography in Lagarias [1]. The paper by Jean Paul Van Bendegem [10] is a philosophical essay on the $3 x+1$ problem.

The paper is organized as follows: Section 2 shows the direct computation of $G_{k}$, as sets of binary strings, for the first few values of $k$. Those computational experiments suggest that binary strings in $G_{k}$ are the concatenation of $k$ periodic strings whose periods, that we call seeds, are of length $2,6,18, \ldots, 2 \cdot 3^{k-1}$. In Section 3 some useful (and beautiful) properties of seeds are proved. Section 4 contains the main result: A complete characterization of classes $G_{k}$ as sets of binary strings.

[^0]
## 2. Computational experiments

Define the inverse $R^{-1}(x)$ of the reduced Collatz function as the set of odd integers such that $y \in R^{-1}(x)$ iff $R(y)=x$. We can easily see that

$$
R^{-1}(x)= \begin{cases}\emptyset & \text { if } x \equiv 0(\bmod 3) \\ \left\{\frac{x 2^{2 m+2}-1}{3}: m \geq 0\right\} & \text { if } x \equiv 1(\bmod 3) \\ \left\{\frac{x 2^{2 m+1}-1}{3}: m \geq 0\right\} & \text { if } x \equiv 2(\bmod 3)\end{cases}
$$

Let $G_{k}$ the class of odd integers $x$ that converge to 1 in $k$ steps, i.e. such that $R^{k}(x)=1$.
The class $G_{k}$ can be defined inductively by

$$
\begin{aligned}
& G_{0}=\{1\} \\
& G_{k}=\bigcup_{x \in G_{k-1}} R^{-1}(x)
\end{aligned}
$$

For a binary string $s$ let $\llbracket s \rrbracket$ be the non-negative integer whose binary representation is $s$. In what follows we see classes $G_{k}$ as sets of binary strings.

Clearly $G_{0}=\{1\}$ : The singleton set that contains only the binary string 1.
Let us compute first $G_{1}$

$$
G_{1}=\bigcup_{x_{0} \in G_{0}} R^{-1}\left(x_{0}\right)=R^{-1}(1)=\left\{\frac{4^{m_{1}+1}-1}{3}: m_{1} \geq 0\right\}=\left\{\sum_{i=0}^{m_{1}} 4^{i}: m_{1} \geq 0\right\} .
$$

If we represent $x_{1}=\sum_{i=0}^{m_{1}} 4^{i}$ as a binary string of length $2 m_{1}+2$ we obtain $01^{m_{1}+1}$, i.e. the concatenation of one or more copies of the binary string $s_{1}=01$ of length 2 . Thus

$$
G_{1}=\left\{\llbracket s_{1}^{m_{1}+1} \rrbracket: m_{1} \geq 0\right\}
$$

Now we can compute $G_{2}$ from $G_{1}$.

$$
G_{2}=\bigcup_{x_{1} \in G_{1}} R^{-1}\left(x_{1}\right)=\bigcup_{m_{1}=0}^{\infty} R^{-1}\left(\llbracket s_{1}^{m_{1}+1} \rrbracket\right) .
$$

Since $x_{1}=\sum_{i=0}^{m_{1}} 4^{i} \equiv m_{1}+1(\bmod 3)$ we obtain

$$
G_{2}=\left\{\frac{\llbracket s_{1}^{3 k_{1}+1} \rrbracket 4^{m_{2}+1}-1}{3}: k_{1}, m_{2} \geq 0\right\} \cup\left\{\frac{2 \llbracket s_{1}^{3 k_{1}+2} \rrbracket 4^{m_{2}}-1}{3}: k_{1}, m_{2} \geq 0\right\} .
$$

Compute first

$$
\frac{\llbracket s_{1}^{3} \rrbracket}{3}=\frac{\sum_{i=0}^{2} 4^{i}}{3}=\frac{4^{3}-1}{3^{2}}=7
$$

and let $s_{2}=000111$ be the binary representation of 7 as a string of length 6 .
A simple computation shows that $\llbracket s_{1}^{3 k_{1}+1} \rrbracket / 3=\llbracket s_{2}^{k_{1}} s_{2}^{[2)} \rrbracket$, where $s_{2}^{[2)}=00$ is the prefix of length 2 of $s_{2}$ and that $\llbracket s_{1}^{3 k_{1}+2} \rrbracket / 3=\llbracket s_{2}^{k_{1}} s_{2}^{[4)} \rrbracket$, where $s_{2}^{[4)}=0001$ is the prefix of length 4 of $s_{2}$. Moreover, $\llbracket s_{1}^{3 k_{1}+1} \rrbracket \bmod 3=1$ and $\llbracket s_{1}^{3 k_{1}+2} \rrbracket \bmod 3=2$.

Then

$$
\begin{aligned}
G_{2}= & \left\{\llbracket s_{2}^{k_{1}} s_{2}^{[2)} \rrbracket 4^{m_{2}+1}+\frac{4^{m_{2}+1}-1}{3}: k_{1}, m_{2} \geq 0\right\} \\
& \cup\left\{2 \llbracket s_{2}^{k_{1}} s_{2}^{[4)} \rrbracket 4^{m_{2}}+\frac{4^{m_{2}+1}-1}{3}: k_{1}, m_{2} \geq 0\right\}
\end{aligned}
$$

We can write $\left(4^{m_{2}+1}-1\right) / 3=\sum_{i=0}^{m_{2}} 4^{i}$ in binary both as $\llbracket s_{1}^{m_{2}} s_{1}^{[2)} \rrbracket$ and $\llbracket s_{1,1}^{m_{2}} s_{1,1}^{[1)} \rrbracket$, where $s_{1,1}=10$ is the left rotation of $s_{1}$ by 1 position.

Lengths of strings $s_{1}^{m_{2}} s_{1}^{[2)}$ and $s_{1,1}^{m_{2}} s_{1,1}^{[1)}$ are respectively $2 m_{2}+2$ and $2 m_{2}+1$. Thus we conclude that

$$
G_{2}=\left\{\llbracket s_{2,0}^{k_{1}} s_{2,0}^{[2)} s_{1,0}^{m_{2}} s_{1,0}^{[2)} \rrbracket: k_{1}, m_{2} \geq 0\right\} \cup\left\{\llbracket s_{2,0}^{k_{1}} s_{2,0}^{[4)} s_{1,1}^{m_{2}} s_{1,1}^{[1)} \rrbracket: k_{1}, m_{2} \geq 0\right\}
$$

where, for uniformity, $s_{1,0}=s_{1}$ and $s_{2,0}=s_{2}$ (the unrotated seeds).
We can conclude that $G_{2}$ is the set of all integers whose binary representation starts with zero or more copies of $s_{2}=000111$ and continues either by the prefix $s_{2,0}^{[2)}=00$ of $s_{2}$ followed by zero or more copies of $s_{1,0}=01$ followed by the prefix $s_{1,0}^{[2)}=s_{1}=01$ or by the prefix $s_{2,0}^{[4]}=0001$ followed by zero or more copies of $s_{1,1}=10$ followed by the prefix $s_{1,1}^{[1)}=1$. The representation of $G_{2}$ as a tree is:

$$
\begin{array}{rlllllll}
s_{2,0}^{*} & \rightarrow s_{2,0}^{[2)} & \rightarrow s_{1,0}^{*} & \rightarrow s_{1,0}^{[2)} \\
& \searrow s_{2,0}^{(4)} & \rightarrow s_{1,1}^{*} & \rightarrow s_{1,1}^{[1)}
\end{array} \quad \text { or } \quad(000111)^{*} \quad \rightarrow 00 \quad \rightarrow(01)^{*} \quad \rightarrow 01
$$

where $s^{*}$ means concatenation of zero or more copies of $s .{ }^{1}$
We can compute $G_{3}$ in the same way. However it is better to use a computer program to build and print the trees for $G_{3}$, $G_{4}$ and $G_{5}$. The tree for $G_{6}$ is too big to be computed and printed.

The program inductively computes the tree for $G_{k+1}$ from the tree for $G_{k}$ by computing $R^{-1}(z)$ for each branch $z$ of the tree; it is based on two mutually recursive procedures: Div3 and Div3Aux.
$\operatorname{Div} 3(x, r)$ is called with parameters a node of type $x=s_{h, d}^{*}$ and an integer $r$ which is the remainder of the division by three of the ancestors of node $x(r=0$ when the procedure is called with the root as input). The companion procedure $\operatorname{Div} 3 A U X(z, y, r)$ is called with parameters a node of type $y=s_{h, d}^{[\ell)}$ and an integer $r$ which is the remainder of the division by three of the ancestors of node $y$. Moreover, for each node $x=s_{h, d}^{*}$, the procedure Div3Aux is called three times with, respectively, $z=s_{h, d}^{i}$ for $i=0,1,2$.

The two procedures can be described as follows in C-like pseudo code:

```
\(\operatorname{Div} 3(x, r) \quad / / x=s_{h, d}^{*}\)
    \(w=r \cdot s_{h, d}^{3}\)
    // \(w\) is the concatenation of the binary string for \(r\) with three copies of \(s_{h, d}\).
    \(s_{h+1, d^{\prime}}=w / 3 \quad / /\) Notice that \(r=w \bmod 3\) since \(s_{h, d}^{3} \bmod 3=0\).
    "build a new node \(x^{\prime}\) with label \(s_{h+1, d^{\prime}}^{*}\) "
    for "each son \(y\) of \(x\) "
        for \(i=0\) to 2
            \(y^{\prime}=\operatorname{Div} 3 A u x\left(s_{h, d}^{i}, y, r\right)\)
            if \(y^{\prime} \neq\) NIL
                "add \(y^{\prime}\) as a new son of \(x^{\prime \prime}\)
    return \(x^{\prime}\)
\(\operatorname{Div3Aux}(z, y, r) . \quad / / y=s_{h, d}^{[\ell)}\) and \(z=s_{h, d}^{i}\) for \(0 \leq i \leq 2\).
    \(\ell^{\prime}=\ell+\) length of \(z\)
    \(w=r \cdot z \cdot s_{h, d}^{(\ell)}\)
    \(s_{h+1, d^{\prime}}^{\left[\ell^{\prime}\right)}=w / 3\)
    \(r^{\prime}=w \bmod 3\)
    if \(y\) is a leaf
        if \(r^{\prime}=0\)
            return NIL
        else \(/ / r^{\prime}==1\) or \(r^{\prime}==2\)
            "build a new node \(y^{\prime}\) with label \(s_{h+1, d^{\prime}}^{\left[\ell^{\prime}\right)}\) "
            if \(r^{\prime}==1\)
                        "add to \(y^{\prime}\) a single son \(s_{1,0}^{*}\) followed by a leaf \(s_{1,0}^{[2)}\) ",
            else \(\quad / \mid r^{\prime}==2\)
                        "add to \(y^{\prime}\) a single son \(s_{1,1}^{*}\) followed by a leaf \(s_{1,1}^{[1)}\) ",
    else \(/ / y\) is not a leaf. Let \(x\) be the son of \(y\)
        \(x^{\prime}=\operatorname{Div} 3\left(x, r^{\prime}\right)\)
        "put \(x^{\prime}\) as the son of \(y^{\prime \prime}\)
    return \(y^{\prime}\)
```

[^1]Many different implementations of those procedure have been written and used, starting from a naive one written when no properties of the classes were already known and refining it as soon as more and more properties were discovered.

Here is the tree for $G_{3}$ obtained as output of the program:

| (000010010111101101)* |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\rightarrow 00$ | $\rightarrow(000111)^{*}$ | $\rightarrow 00$ | $\rightarrow(01) *$ | $\rightarrow 01$ |
|  |  | $\searrow_{0001}$ | $\rightarrow(10)^{*}$ | $\rightarrow 1$ |
| $\searrow_{0000}$ | $\rightarrow(100011)^{*}$ | $\rightarrow 100$ | $\rightarrow(01)^{*}$ | $\rightarrow 01$ |
|  |  | $\searrow_{10001}$ | $\rightarrow$ (10)* | $\rightarrow 1$ |
| $\searrow_{00001001}$ | $\rightarrow(011100)^{*}$ | $\rightarrow 01$ | $\rightarrow(10)^{*}$ | $\rightarrow 1$ |
|  |  | $\searrow_{011100}$ | $\rightarrow(01)^{*}$ | $\rightarrow 01$ |
| $\searrow_{0000100101}$ | $\rightarrow(111000) *$ | $\rightarrow 1$ | $\rightarrow(10)^{*}$ | $\rightarrow 1$ |
|  |  | $\searrow_{11100}$ | $\rightarrow(01) *$ | $\rightarrow 01$ |
| $\searrow_{00001001011110}$ | $\rightarrow(110001)^{*}$ | $\rightarrow 1100$ | $\rightarrow(01)^{*}$ | $\rightarrow 01$ |
|  |  | $\searrow_{110001}$ | $\rightarrow(10)^{*}$ | $\rightarrow 1$ |
| $\searrow_{0000100101111011}$ | $\rightarrow(001110)^{*}$ | $\rightarrow 0$ | $\rightarrow(01)^{*}$ | $\rightarrow 01$ |
|  |  | $\searrow_{001}$ | $\rightarrow$ (10)* | $\rightarrow 1$ |

Let $s_{3}^{*}=(000010010111101101)^{*}$ be the root. Its sons are the six prefixes $s_{3,0}^{[2)}, s_{3,0}^{[4)}, s_{3,0}^{[8)}, s_{3,0}^{[10)}, s_{3,0}^{[14)}$ and $s_{3,0}^{[16)}$, each one followed by the repetition of a different left rotation of $s_{2}$ : In order $s_{2,0}^{*}, s_{2,5}^{*}, s_{2,2}^{*}, s_{2,3}^{*}, s_{2,4}^{*}$ and $s_{2,1}^{*}$. In turn, each left rotation of $s_{2}$ is followed by two of its prefixes of different length and then by the repetition of a rotation $s_{1,0}^{*}$ or $s_{1,1}^{*}$ of $s_{1}$ followed by a prefix of the rotation. By using this notation the tree becomes

$$
\begin{aligned}
& s_{3,0}^{*} \rightarrow s_{3,0}^{[2)} \rightarrow s_{2,0}^{*} \quad \rightarrow s_{2,0}^{[2)} \quad \rightarrow s_{1,0}^{*} \quad \rightarrow s_{1,0}^{[2)} \\
& \searrow_{s_{2,0}^{(4)}} \rightarrow s_{1,1}^{*} \quad \rightarrow s_{1,1}^{(1)} \\
& \searrow_{s_{3,0}^{(4)}} \rightarrow s_{2,5}^{*} \quad \rightarrow s_{2,5}^{(3)} \rightarrow s_{1,0}^{*} \quad \rightarrow s_{1,0}^{[2)} \\
& \searrow_{(8)} \quad \searrow_{s_{2,5}^{(5)}} \rightarrow s_{1,1}^{*} \quad \rightarrow s_{1,1}^{[1]} \\
& \begin{array}{rlll}
\searrow_{s_{3,0}^{[8)}} \quad \rightarrow s_{2,2}^{*} & \rightarrow s_{2,2}^{[2)} & \rightarrow s_{1,1}^{*} & \rightarrow s_{1,1}^{[1)} \\
& \searrow_{s_{2,2}^{[6)}} & \rightarrow s_{1,0}^{*} & \rightarrow s_{1,0}^{[2)}
\end{array} \\
& \searrow_{s_{3,0}^{[10)}} \rightarrow s_{2,3}^{*} \quad \rightarrow s_{2,3}^{[1)} \quad \rightarrow s_{1,1}^{*} \quad \rightarrow s_{1,1}^{[1)} \\
& \searrow_{S_{2,3}^{[5)}} \rightarrow s_{1,0}^{*} \rightarrow s_{1,0}^{[2)} \\
& \begin{array}{rlll}
\searrow_{s_{3,0}^{[14)}} & \rightarrow s_{2,4}^{*} & \rightarrow s_{2,4}^{[4)} & \rightarrow s_{1,0}^{*}
\end{array} \rightarrow s_{1,0}^{[2)} \\
& \begin{array}{llll} 
& & s_{2,4}^{(6)} & \rightarrow s_{1,1}^{*}
\end{array} \quad \rightarrow s_{1,1}^{[1)} \\
& \searrow_{S_{2,1}^{[3)}} \rightarrow s_{1,1}^{*} \rightarrow s_{1,1}^{[1)}
\end{aligned}
$$

Experimental results suggest that classes $G_{k}$ can be defined in terms of an infinite sequence of strings $s_{h}$ of length $2 \cdot 3^{h-1}$. We call $s_{h}$ seed of order $h$.

Indeed, we will show that for each $x \in G_{k}$ there exist integers $q_{h}, d_{h}$ and $\ell_{h}$ such that

$$
x=\llbracket s_{k, d_{1}}^{q_{1}} s_{k, d_{1}}^{\left[\ell_{1}\right)} s_{k-1, d_{2}}^{q_{2}} s_{k-1, d_{2}}^{\left[\ell_{2}\right)} \ldots s_{1, d_{k}}^{q_{k}} s_{1, d_{k}}^{\left[\ell_{k}\right)} \rrbracket
$$

where $q_{h} \geq 0,0<\ell_{h} \leq 2 \cdot 3^{h-1}, d_{1}=0$ and, for $h>1,0 \leq d_{h}<2 \cdot 3^{h-2}$.
We can extend notation $s^{[\ell)}$ (the prefix of length $\ell \leq \bar{\lambda}$ of a string $s$ of length $\lambda$ ) to all non-negative integers $n$ (even $n>\lambda$ ) by letting $s^{[n)}$ denote the prefix of length $n$ of a sufficiently long repetition of $s$, i.e. if $q=\lfloor n / \lambda\rfloor$ and $\ell=n \bmod \lambda$ then $s^{[n)}=s^{q} s^{[\ell)}$ is the concatenation of $q$ copies of $s$ followed by the prefix $s^{[\ell)}$.

By using this extended notation, we can write the previous equation in a more compact form as

$$
\begin{equation*}
x=\llbracket s_{k, d_{1}}^{\left[n_{1}\right)} s_{k-1, d_{2}}^{\left[n_{2}\right)} \ldots s_{1, d_{k}}^{\left[n_{k}\right)} \rrbracket \tag{1}
\end{equation*}
$$

where $n_{h}=2 \cdot 3^{h-1} q_{h}+\ell_{h}$ for $h=1, \ldots, k$.

In Section 4 the intuition coming from computational experiments is proved, i.e. that all $x \in G_{k}$ has the binary representation in Eq. (1).

Moreover the sequences of integers $n_{h}, d_{h}$ such that

$$
\llbracket s_{k, d_{1}}^{\left[n_{1}\right)} s_{k-1, d_{2}}^{\left[n_{2}\right)} \ldots s_{1, d_{k}}^{\left[n_{k}\right)} \rrbracket \in G_{k}
$$

are defined, thus giving a complete characterization of classes $G_{k}$.

## 3. Properties of seeds

Experimental results in Section 2 suggest that seeds are binary strings $s_{h}$ of length $2 \lambda_{h}$, where $\lambda_{h}=3^{h-1}$, and that seeds can be defined inductively as $s_{1}=01$ and $\llbracket s_{h} \rrbracket=\llbracket s_{h-1}^{3} \rrbracket / 3$ for $h>1$. The simple computation

$$
\llbracket s_{h} \rrbracket=\frac{\llbracket s_{h-1}^{3} \rrbracket}{3}=\llbracket s_{h-1} \rrbracket 4^{\lambda_{h-1}} \frac{\sum_{i=0}^{2} 4^{i}}{3}=7 \llbracket s_{h-1} \rrbracket 4^{\lambda_{h-1}}
$$

shows that $s_{h}$ is well defined since $\llbracket s_{h-1}^{3} \rrbracket / 3$ is an integer.
Here are some properties of seeds $s_{h}$, of rotations $s_{h, d}$ and of extended prefixes $s_{h}^{[n)}$.
Lemma 1 (Properties of Seeds). For all seed $s_{h}$ we have

$$
\begin{equation*}
\llbracket s_{h} \rrbracket=\frac{\sum_{i=0}^{\lambda_{h}-1} 4^{i}}{\lambda_{h}}=\frac{4^{\lambda_{h}}-1}{\lambda_{h+1}} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\llbracket s_{h} \rrbracket \equiv 1(\bmod 3) \tag{3}
\end{equation*}
$$

Proof. The proof is by induction. For the basis $\llbracket s_{1} \rrbracket=1=\left(4^{1}-1\right) / 3=\left(4^{\lambda_{1}}-1\right) / \lambda_{2}$ and $\llbracket s_{1} \rrbracket \bmod 3=1$. For the inductive step

$$
\begin{aligned}
\llbracket s_{h} \rrbracket & =\frac{\llbracket s_{h-1}^{3} \rrbracket}{3}=\frac{\sum_{i=0}^{2} \llbracket s_{h-1} \rrbracket 4^{i \lambda_{h-1}}}{3}=\frac{\sum_{i=0}^{2}\left(\frac{\sum_{j=0}^{\lambda_{h-1}-1} 4^{j}}{\lambda_{h-1}}\right) 4^{i \lambda_{h-1}}}{3} \\
& =\frac{\sum_{i=0}^{2}\left(\sum_{j=0}^{\lambda_{h-1}-1} 4^{j}\right) 4^{i \lambda_{h-1}}}{\lambda_{h}}=\frac{\sum_{i=0}^{2} \sum_{j=0}^{\lambda_{h-1}-1} 4^{i \lambda_{h-1}+j}}{\lambda_{h}} \\
& =\frac{\sum_{i=0}^{\lambda_{h}-1} 4^{i}}{\lambda_{h}}=\frac{4^{\lambda_{h}}-1}{\lambda_{h+1}}
\end{aligned}
$$

and

$$
\llbracket s_{h} \rrbracket \equiv \frac{\sum_{i=0}^{2} \llbracket s_{h-1} \rrbracket 4^{i \lambda_{h-1}}}{3} \equiv \llbracket s_{h-1} \rrbracket 4^{\lambda_{h-1}} 7 \equiv 1(\bmod 3)
$$

Lemma 2 (Properties of Left Rotations of Seeds). For $0 \leq d<2 \lambda_{h}$

$$
\begin{equation*}
\llbracket s_{h, d} \rrbracket=\left(2^{d} \bmod \lambda_{h+1}\right) \llbracket s_{h} \rrbracket \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\llbracket s_{h, d} \rrbracket \equiv 2^{d}(\bmod 3) \tag{5}
\end{equation*}
$$

and, for $0 \leq d<\lambda_{h}$

$$
\begin{equation*}
\llbracket s_{h, d} \rrbracket+\llbracket s_{h, d+\lambda_{h}} \rrbracket=4^{\lambda_{h}}-1 \tag{6}
\end{equation*}
$$

(i.e. bits of string $s_{h, d+\lambda_{h}}$ are the complement of corresponding bits of $s_{h, d}$ ) and, finally

$$
\begin{equation*}
\llbracket s_{h+1, d} \rrbracket=r \frac{4^{\lambda_{h+1}}-1}{3}+\frac{\llbracket s_{h, d^{\prime}}^{3} \rrbracket}{3} \tag{7}
\end{equation*}
$$

where $r=\left\lfloor d /\left(2 \lambda_{h}\right)\right\rfloor$ and $d^{\prime}=d \bmod 2 \lambda_{h}$.

Proof. The proof for Eq. (4) is

$$
\begin{aligned}
\llbracket s_{h, d} \rrbracket & =\left(\llbracket s_{h} \rrbracket \bmod 2^{2 \lambda_{h}-d}\right) 2^{d}+\frac{\llbracket s_{h} \rrbracket-\llbracket s_{h} \rrbracket \bmod 2^{2 \lambda_{h}-d}}{2^{2 \lambda_{h}-d}} \\
& =\frac{\left(\llbracket s_{h} \rrbracket \bmod 2^{2 \lambda_{h}-d}\right) 4^{\lambda_{h}}+\llbracket s_{h} \rrbracket-\llbracket s_{h} \rrbracket \bmod 2^{2 \lambda_{h}-d}}{2^{2 \lambda_{h}-d}} \\
& =\frac{\left(\llbracket s_{h} \rrbracket \bmod 2^{2 \lambda_{h}-d}\right)\left(4^{\lambda_{h}}-1\right)+\llbracket s_{h} \rrbracket}{2^{2 \lambda_{h}-d}} \\
& =\frac{\left(\llbracket s_{h} \rrbracket \bmod 2^{2 \lambda_{h}-d}\right) \lambda_{h+1} \llbracket s_{h} \rrbracket+\llbracket s_{h} \rrbracket}{2^{2 \lambda_{h}-d}} \\
& =\frac{\lambda_{h+1}\left(\llbracket s_{h} \rrbracket \bmod 2^{2 \lambda_{h}-d}\right)+1}{2^{2 \lambda_{h}-d}} \llbracket s_{h} \rrbracket \\
& =\frac{\lambda_{h+1}\left(\frac{4^{\lambda_{h}-1}}{\lambda_{h+1}} \bmod 2^{2 \lambda_{h}-d}\right)+1}{2^{2 \lambda_{h}-d}} \llbracket s_{s_{h} \rrbracket}^{2^{2}} \\
& =\frac{\left(4^{\lambda_{h}}-1\right) \bmod \lambda_{h+1} 2^{2 \lambda_{h}-d}+1}{2^{2 \lambda_{h}-d}} \llbracket s_{h} \rrbracket \\
& =\frac{2^{2 \lambda_{h}} \bmod \lambda_{h+1} 2^{2 \lambda_{h}-d}}{2^{2 \lambda_{h}-d}} \llbracket s_{h} \rrbracket \\
& =\frac{2^{2 \lambda_{h}-d}\left(2^{d} \bmod \lambda_{h+1} 2^{2 \lambda_{h}-d}\right.}{2^{2 \lambda_{h}-d}} \llbracket s_{h} \rrbracket \\
& =\left(2^{2 \lambda_{h}-d} \bmod \lambda_{h+1}\right) \llbracket s_{h} \rrbracket . \\
& s_{h} \rrbracket
\end{aligned}
$$

The proof for Eq. (5) is

$$
\llbracket s_{h, d} \rrbracket \equiv \llbracket s_{h} \rrbracket\left(2^{d} \bmod \lambda_{h+1}\right) \equiv 2^{d}(\bmod 3)
$$

We can prove Eq. (6) only for $d=0$ : The cases of $1 \leq d<\lambda_{h}$ are a simple consequence since rotations do not change the pairs of bits at a distance $\lambda_{h}$ from each other.

$$
\begin{aligned}
\llbracket s_{h, 0} \rrbracket & =\llbracket s_{h} \rrbracket=\frac{4^{\lambda_{h}}-1}{\lambda_{h+1}}=\frac{2^{\lambda_{h}}+1}{\lambda_{h+1}}\left(2^{\lambda_{h}}-1\right) \\
& =\left(\frac{2^{\lambda_{h}}+1}{\lambda_{h+1}}-1\right) 2^{\lambda_{h}}+2^{\lambda_{h}}-\frac{2^{\lambda_{h}}+1}{\lambda_{h+1}}=\llbracket s \rrbracket 2^{\lambda_{h}}+\llbracket s^{\prime} \rrbracket
\end{aligned}
$$

where $s, s^{\prime}$ are the binary string of length $\lambda_{h}$ such that

$$
\llbracket s \rrbracket=\frac{2^{\lambda_{h}}+1}{\lambda_{h+1}}-1 \quad \text { and } \quad \llbracket s^{\prime} \rrbracket=2^{\lambda_{h}}-\frac{2^{\lambda_{h}}+1}{\lambda_{h+1}} .
$$

Then

$$
\begin{aligned}
\llbracket s_{h, \lambda_{h}} \rrbracket & =\llbracket s^{\prime} \rrbracket 2^{\lambda_{h}}+\llbracket s \rrbracket=\left(2^{\lambda_{h}}-\frac{2^{\lambda_{h}}+1}{\lambda_{h+1}}\right) 2^{\lambda_{h}}+\frac{2^{\lambda_{h}}+1}{\lambda_{h+1}}-1 \\
& =4^{\lambda_{h}}-1-\frac{2^{\lambda_{h}}+1}{\lambda_{h+1}}\left(2^{\lambda_{h}}-1\right)=4^{\lambda_{h}}-1-\llbracket s_{h, 0} \rrbracket .
\end{aligned}
$$

Finally, by Eq. (7), $2^{d} \equiv 2^{d^{\prime}}\left(\bmod \lambda_{h+1}\right)$ and $\left\lfloor\frac{2^{d} \bmod \lambda_{h+2}}{\lambda_{h+1}}\right\rfloor=r$ (by the isomorphism of $\mathbb{Z}_{2 \lambda_{h}}^{+}$and $\mathbb{Z}_{\lambda_{h+1}}^{*}$ ). Thus

$$
2^{d} \bmod \lambda_{h+2}=\left\lfloor\frac{2^{d} \bmod \lambda_{h+2}}{\lambda_{h+1}}\right\rfloor \lambda_{h+1}+\left(2^{d} \bmod \lambda_{h+2}\right) \bmod \lambda_{h+1}=r \lambda_{h+1}+2^{d^{\prime}} \bmod \lambda_{h+1}
$$

and

$$
\begin{aligned}
\llbracket s_{h+1, d} \rrbracket & =\left(2^{d} \bmod \lambda_{h+2}\right) \llbracket s_{h+1} \rrbracket \quad(\text { by Eq. }(4)) \\
& =\left(r \lambda_{h+1}+2^{d^{\prime}} \bmod \lambda_{h+1}\right) \llbracket s_{h+1} \rrbracket \\
& =\left(r \lambda_{h+1}+2^{d^{\prime}} \bmod \lambda_{h+1}\right) \llbracket s_{h}^{3} \rrbracket / 3 \\
& =\left(r \lambda_{h+1}+2^{d^{\prime}} \bmod \lambda_{h+1}\right) \llbracket s_{h} \rrbracket \frac{\sum_{i=0}^{2} 4^{i \lambda_{h}}}{3} \\
& =\left(r\left(4^{\lambda_{h}}-1\right)+\llbracket s_{h, d^{\prime}} \rrbracket\right) \frac{\sum_{i=0}^{2} 4^{i \lambda_{h}}}{3} \\
& =r \frac{4^{\lambda_{h+1}}-1}{3}+\frac{\llbracket s_{h, d^{\prime}}^{3} \rrbracket}{3} .
\end{aligned}
$$

Lemma 3 (Properties of Extensions of Seeds). For $n>0, h>0$ and $q=\left\lfloor n /\left(2 \lambda_{h}\right)\right\rfloor, \ell=n \bmod 2 \lambda_{h}$

$$
\begin{align*}
& \llbracket s_{h}^{[n)} \rrbracket=\left\lfloor\frac{2^{n}}{\lambda_{h+1}}\right\rfloor  \tag{8}\\
& \llbracket s_{h+1}^{[n)} \rrbracket=\left\lfloor\llbracket s_{h}^{[n)} \rrbracket / 3\right\rfloor  \tag{9}\\
& \llbracket s_{h}^{[n)} \rrbracket \equiv q 2^{\ell}+\llbracket s_{h}^{[\ell)} \rrbracket \quad(\bmod 3) \tag{10}
\end{align*}
$$

Moreover, for $0 \leq d<\lambda_{h+1}$ and $r=\left\lfloor d /\left(2 \lambda_{h}\right)\right\rfloor, d^{\prime}=d \bmod 2 \lambda_{h}$

$$
\begin{equation*}
\llbracket s_{h+1, d}^{[n)} \rrbracket=\left\lfloor\frac{r 2^{n}+\llbracket s_{h, d^{\prime}}^{[n)} \rrbracket}{3}\right\rfloor . \tag{11}
\end{equation*}
$$

Proof. The proof of Eq. (8) is by induction on $q$. For the basis $q=0$ and $n=\ell<2 \lambda_{h}$

$$
\llbracket s_{h}^{[\ell)} \rrbracket=\left\lfloor\frac{4^{\lambda_{h}}-1}{\lambda_{h+1} 2^{2 \lambda_{h}-\ell}}\right\rfloor=\left\lfloor\frac{2^{\ell}}{\lambda_{h+1}}-\frac{2^{\ell}}{\lambda_{h+1} 2^{2 \lambda_{h}}}\right\rfloor=\left\lfloor\frac{2^{\ell}}{\lambda_{h+1}}\right\rfloor
$$

where the last equality follows from

$$
\frac{2^{\ell}}{\lambda_{h+1} 2^{2 \lambda_{h}}}<\frac{1}{\lambda_{h+1}} \leq \frac{2^{\ell}}{\lambda_{h+1}}-\left\lfloor\frac{2^{\ell}}{\lambda_{h+1}}\right\rfloor .
$$

For the inductive step let $n^{\prime}=n-2 \lambda_{h}$. Then

$$
\llbracket s_{h}^{[n)} \rrbracket=\llbracket s_{h} \rrbracket 2^{n^{\prime}}+\llbracket s_{h}^{\left[n^{\prime}\right)} \rrbracket=\frac{4^{\lambda_{h}}-1}{\lambda_{h+1}} 2^{n^{\prime}}+\left\lfloor\frac{2^{n^{\prime}}}{\lambda_{h+1}}\right\rfloor=\left\lfloor\frac{2^{2 \lambda_{h}}-1}{\lambda_{h+1}} 2^{n^{\prime}}+\frac{2^{n^{\prime}}}{\lambda_{h+1}}\right\rfloor=\left\lfloor\frac{2^{n}}{\lambda_{h+1}}\right\rfloor .
$$

For Eq. (9) let $k=\left\lceil n /\left(2 \lambda_{h+1}\right)\right\rceil$. Then

$$
\llbracket s_{h+1}^{[n)} \rrbracket=\llbracket\left(s_{h+1}^{k}\right)^{[n)} \rrbracket=\left\lfloor\frac{\llbracket s_{h+1}^{k} \rrbracket}{2^{k 2 \lambda_{h+1}-n}}\right\rfloor=\left\lfloor\frac{\llbracket s_{h}^{3 k} \rrbracket}{3 \cdot 2^{3 k 2 \lambda_{h}-n}}\right\rfloor=\left\lfloor\llbracket s_{h}^{[n)} \rrbracket / 3\right\rfloor
$$

where the last equality holds because $\llbracket s_{h}^{3 k} \rrbracket \bmod 3=0$.
For Eq. (10)

$$
\llbracket s_{h}^{[n)} \rrbracket \equiv \llbracket s_{h}^{q} \rrbracket 2^{\ell}+\llbracket s_{h}^{[\ell)} \rrbracket \equiv q 2^{\ell}+\llbracket s_{h}^{[\ell)} \rrbracket(\bmod 3)
$$

where the last equality holds because $\llbracket s_{h}^{q} \rrbracket \equiv q(\bmod 3)$.

Finally, for Eq. (11), let $k=\left\lceil n /\left(2 \lambda_{h+1}\right)\right\rceil$ so that $\llbracket s_{h+1, d}^{[n)} \rrbracket=\llbracket\left(s_{h+1, d}^{k}\right)^{[n)} \rrbracket$. Then

$$
\begin{aligned}
\llbracket s_{h+1, d}^{k} \rrbracket & =\sum_{i=0}^{k-1} \llbracket s_{h+1, d} \rrbracket 2^{2 \lambda_{h+1}} \\
& =\sum_{i=0}^{k-1}\left(r \frac{4^{\lambda_{h+1}}-1}{3}+\frac{\llbracket s_{h, d^{\prime}}^{3} \rrbracket}{3}\right) 2^{2 \lambda_{h+1}} \quad \text { (by Eq. (7)) } \\
& =r \frac{4^{k \lambda_{h+1}}-1}{3}+\frac{\llbracket s_{h, d^{\prime}}^{3 k} \rrbracket}{3}
\end{aligned}
$$

and

$$
\begin{aligned}
\llbracket\left(s_{h+1, d}^{k}\right)^{[n)} \rrbracket & =\left\lfloor\frac{2^{n}}{2^{2 k \lambda_{h+1}}}\left(r \frac{4^{k \lambda_{h+1}}-1}{3}+\frac{\llbracket s_{h, d^{\prime}}^{3 k} \rrbracket}{3}\right)\right\rfloor \\
& =\left\lfloor\frac{2^{n}}{2^{2 k \lambda_{h+1}}}\left(r\left\lfloor\frac{4^{k \lambda_{h+1}}}{3}\right\rfloor+\frac{\llbracket s_{h, d^{\prime}}^{3 k} \rrbracket}{3}\right)\right\rfloor \\
& =\left\lfloor\frac{2^{n}}{2^{2 k \lambda_{h+1}}}\left\lfloor\frac{r 4^{k \lambda_{h+1}}+\llbracket s_{h, d^{\prime}}^{3 k} \rrbracket}{3}\right\rfloor\right. \\
& =\left\lfloor\frac{2^{n}}{2^{2 k \lambda_{h+1}}} \frac{r 4^{k \lambda_{h+1}}+\llbracket s_{h, d^{\prime}}^{3 k} \rrbracket}{3}\right\rfloor \\
& =\left\lfloor\frac{1}{3}\left(r 2^{n}+\frac{2^{n} \llbracket s_{h, d^{\prime}}^{3 k} \rrbracket}{2^{2 k \lambda_{h+1}}}\right)\right\rfloor \\
& =\left\lfloor\frac{r 2^{n}+\llbracket s_{h, d^{\prime}}^{3 k} \rrbracket}{3}\right\rfloor . \square
\end{aligned}
$$

## 4. Convergence classes

The experimental results in Paragraph 1 suggest that each $x \in G_{k}$ has the binary representation given by Eq. (1), for some integers $n_{i}, d_{i}(1 \leq i \leq k)$.

Here we characterize integers $n_{i}$ and $d_{i}$ such that the $x$ given by Eq. (1) is in $G_{k}$. We do so by defining a scheme $s_{k}$ which is a set of lengths $n_{i}>0$ and left rotations $d_{h, i}$ (for $1 \leq i \leq h \leq k$ ).

Definition 1 (Scheme $s_{k}$ for $G_{k}$ ). A scheme $s_{1}$ for $G_{1}$ is given by the rotation $d_{1,1}=0$ and an even length $n_{1} \equiv 0(\bmod 2)$. For $k>1$ the lengths $n_{i}>0$ and left rotations $d_{h, i}$ of a scheme $s_{k}$ are defined by mutual induction by
(a) $n_{1} \equiv \pm 2(\bmod 6)$,
(b) $n_{i} \equiv r_{i-1, i-1}\left(5-2\left[r_{i-1, i-1}-r_{i, i-1}\right]\right) \pm 1(\bmod 6)$, for $2 \leq i<k$
(c) $n_{k} \equiv r_{k-1, k-1}-1(\bmod 2)$
(d) $d_{h, 1}=0$, for $1 \leq h \leq k$,
(e) $d_{h, i}=d_{h-1, i}+r_{h-1, i-1} 2 \lambda_{h-i-1}$, for $2 \leq i<h \leq k$
(f) $d_{h, h}=r_{h-1, h-1}-1$, for $2 \leq h \leq k$
where $\left.r_{h, i}=\llbracket s_{h, d_{h, 1}}^{\left[n_{1}\right)} \ldots s_{h-i+1, d_{h, i}}^{\left[n_{i}\right)}\right] \bmod 3$.
Lemma 4. Let $s_{k}$ a scheme for $G_{k}$. Then $r_{h, h} \neq 0$ for $1 \leq h<k$.
Proof. By induction on $h$. For the basis $r_{1,1}=\llbracket s_{1, d_{1,1}}^{\left[n_{1}\right)} \rrbracket \bmod 3$ and

$$
\llbracket s_{1, d_{1,1}}^{\left[n_{1}\right)} \rrbracket \equiv \llbracket s_{1}^{\left[n_{1}\right)} \rrbracket \equiv \llbracket s_{1}^{n_{1} / 2} \rrbracket \equiv n_{1} / 2(\bmod 3)
$$

Then $r_{1,1} \neq 0$ since $n_{1} \equiv \pm 2(\bmod 6)$.

Let $h>1$ and assume $r_{h-1, h-1} \neq 0$. Then

$$
\begin{aligned}
r_{h, h} & \equiv \llbracket s_{h, d_{h, 1}}^{\left[n_{1}\right)} \ldots s_{1, d_{h, h}}^{\left[n_{h}\right)} \rrbracket \quad(\bmod 3) \\
& \equiv r_{h, h-1} 2^{n_{h}}+\llbracket s_{1, d_{h, h}}^{\left[n_{h}\right)} \rrbracket \quad(\bmod 3) \\
& \equiv r_{h, h-1} r_{h-1, h-1}+\llbracket s_{1, r_{h-1, h-1}-1}^{\left[n_{n}\right)} \rrbracket \quad(\bmod 3)
\end{aligned}
$$

If $r_{h-1, h-1}=1$ then $n_{h}=2 m$ is even and

$$
\begin{aligned}
r_{h, h} & \equiv r_{h, h-1}+\llbracket s_{1}^{\left[n_{h}\right)} \rrbracket \quad(\bmod 3) \\
& \equiv r_{h, h-1}+\llbracket s_{1}^{m} \rrbracket \quad(\bmod 3) \\
& \equiv r_{h, h-1}+m \quad(\bmod 3)
\end{aligned}
$$

and so $r_{h, h} \neq 0$ iff

$$
\begin{aligned}
& m+r_{h, h-1} \not \equiv 0(\bmod 3) \\
& n_{h}+2 r_{h, h-1} \not \equiv 0(\bmod 3) \\
& n_{h} \not \equiv r_{h, h-1}(\bmod 3)
\end{aligned}
$$

$$
\text { If } r_{h-1, h-1}=2 \text { then } n_{h}=2 m+1 \text { is odd and }
$$

$$
r_{h, h} \equiv 2 r_{h, h-1}+\llbracket s_{1,1}^{\left[n_{h}\right)} \rrbracket \quad(\bmod 3)
$$

$$
\equiv 2 r_{h, h-1}+\llbracket s_{1}^{m+1} \rrbracket \quad(\bmod 3)
$$

$$
\equiv 2 r_{h, h-1}+m+1 \quad(\bmod 3)
$$

and so $r_{h, h} \neq 0$ iff

$$
\begin{aligned}
& m+1+2 r_{h, h-1} \not \equiv 0 \quad(\bmod 3) \\
& n_{h}+1+r_{h, h-1} \not \equiv 0 \quad(\bmod 3) \\
& n_{h} \not \equiv 2\left(r_{h, h-1}+1\right) \quad(\bmod 3) .
\end{aligned}
$$

In both cases

$$
n_{h} \not \equiv r_{h-1, h-1}\left(r_{h-1, h-1}+r_{h, h-1}-1\right)(\bmod 3) .
$$

Thus $n_{h}$ satisfy the congruences

$$
n_{h} \equiv r_{h-1, h-1}-1(\bmod 2)
$$

and either

$$
n_{h} \equiv 1+r_{h-1, h-1}\left(r_{h-1, h-1}+r_{h, h-1}-1\right)(\bmod 3)
$$

or

$$
n_{h} \equiv 2+r_{h-1, h-1}\left(r_{h-1, h-1}+r_{h, h-1}-1\right)(\bmod 3)
$$

Using the Chinese Remainder Theorem, we can obtain in the former case

$$
\begin{aligned}
n_{h} & \equiv 3\left(r_{h-1, h-1}-1\right)-2\left[1+r_{h-1, h-1}\left(r_{h-1, h-1}+r_{h, h-1}-1\right)\right] \quad(\bmod 6) \\
& \equiv r_{h-1, h-1}\left[5-2\left(r_{h-1, h-1}+r_{h, h-1}\right)\right]+1 \quad(\bmod 6)
\end{aligned}
$$

and in the latter case

$$
\begin{aligned}
n_{h} & \equiv 3\left(r_{h-1, h-1}-1\right)-2\left[2+r_{h-1, h-1}\left(r_{h-1, h-1}+r_{h, h-1}-1\right)\right] \quad(\bmod 6) \\
& \equiv r_{h-1, h-1}\left[5-2\left(r_{h-1, h-1}+r_{h, h-1}\right)\right]-1 \quad(\bmod 6)
\end{aligned}
$$

Then $r_{h, h} \neq 0$ iff

$$
n_{h} \equiv r_{h-1, h-1}\left[5-2\left(r_{h-1, h-1}-r_{h, h-1}\right)\right] \pm 1(\bmod 6)
$$

and the later is true by definition of $\ell_{k}$.
Lemma 5. Let $k>1$ and $\iota_{k}$ a scheme for $G_{k}$. Then for all $h>1$

$$
\llbracket s_{h, d_{h, 1}}^{\left[n_{1}\right)} \ldots s_{2, d_{h, h-1}}^{\left[n_{h-1}\right)} \rrbracket=\left\lfloor\llbracket s_{h-1, d_{h-1,1}}^{\left[n_{1}\right)} \ldots s_{1, d_{h-1, h-1}}^{\left[n_{h-1}\right)} \rrbracket / 3\right\rfloor .
$$

Proof. We will prove, by induction on $i=1, \ldots, h-1$, the more general equation

$$
\left.\left.\llbracket s_{h, d_{h, 1}}^{\left[n_{1}\right)} \ldots s_{h-i+1, d_{h, i}}^{\left[n_{i}\right)}\right\rfloor=\left\lfloor\llbracket s_{h-1, d_{h-1,1}}^{\left[n_{1}\right)} \ldots s_{h-i, d_{h-1, i}}^{\left[n_{i}\right)}\right] / 3\right\rfloor .
$$

For the basis $i=1, d_{h, 1}=d_{h-1,1}=0$ and Eq. (9) gives

$$
\llbracket s_{h, d_{h, 1}}^{\left[n_{1}\right)} \rrbracket=\llbracket s_{h}^{\left[n_{1}\right)} \rrbracket=\left\lfloor\llbracket s_{h-1}^{\left[n_{1}\right)} \rrbracket / 3\right\rfloor=\left\lfloor\llbracket s_{h-1, d_{h-1,1}}^{\left[n_{1}\right)} \rrbracket / 3\right\rfloor .
$$

For $i>1$, by applying the inductive hypothesis, we can obtain

$$
\begin{aligned}
\left.\llbracket s_{h-1, d_{h-1,1}}^{\left[n_{1}\right)} \ldots s_{h-i, d_{h-1, i}}^{\left[n_{i}\right)}\right] / 3 & =\left\lfloor\llbracket s_{h-1, d_{h-1,1}}^{\left[n_{1}\right)} \ldots s_{h-i-1, d_{h-1, i-1}}^{\left[n_{i-1}\right)} \rrbracket / 3\right\rfloor 2^{n_{i}}+\left(r_{h-1, i-1} 2^{n_{i}}+\llbracket s_{h-i, d_{h-1, i}}^{\left[n_{n}\right)} \rrbracket\right) / 3 \\
& \left.=\llbracket s_{h, d_{h, 1}}^{\left[n_{1}\right)} \ldots s_{h-i, d_{h, i-1}}^{\left[n_{i-1}\right)} \rrbracket 2^{n_{i}}+\left(r_{h-1, i-1} 2^{n_{i}}+\llbracket s_{h-1, d_{h-i, i}}^{\left[n_{i}\right)}\right]\right) / 3
\end{aligned}
$$

and then, by using Formula (11),

$$
\begin{aligned}
\left.\left\lfloor\llbracket s_{h-1, d_{h-1,1}}^{\left[n_{1}\right)} \ldots s_{h-i, d_{h-1, i}}^{\left[n_{n}\right)}\right] / 3\right\rfloor & \left.=\llbracket s_{h, d_{h, 1}}^{\left[n_{1}\right)} \ldots s_{h-i, d_{h, i-1}}^{\left[n_{i-1}\right)} \rrbracket 2^{n_{i}}+\left\lfloor\left(r_{h-1, i-1} 2^{n_{i}}+\llbracket s_{h-1, d_{h-i, i}}^{\left[n_{i}\right)}\right]\right) / 3\right\rfloor \\
& \left.=\llbracket s_{h, d_{h, 1}}^{\left[n_{1}\right)} \ldots s_{h-i, d_{h, i-1}}^{\left[n_{i-1}\right)} \rrbracket 2^{n_{i}}+\llbracket s_{h, d_{h-i+1, i}}^{\left[n_{i}\right)} \rrbracket=\llbracket s_{h, d_{h, 1}}^{\left[n_{1}\right)} \ldots s_{h-i+1, d_{h, i}}^{\left[n_{i}\right)}\right]
\end{aligned}
$$

Lemma 6. Let $s_{k}$ be a scheme for $G_{k}$ and, for $1 \leq h \leq k$, let $x_{h}=\llbracket s_{h, d_{h, 1}}^{\left[n_{1}\right)} \ldots s_{1, d_{h, h}}^{\left[n_{h}\right)} \rrbracket$. Then $x_{h} \in G_{h}$.
Proof. The proof is by induction on $h$. For the base case $h=1, n_{1}$ is even and

$$
x_{1}=\llbracket s_{1, d_{1,1}}^{\left[n_{1}\right)} \rrbracket=\llbracket s_{1,0}^{[2 m+2)} \rrbracket=\llbracket s_{1}^{m+1} \rrbracket \in G_{1} .
$$

For $h>1$ we can prove

$$
x_{h}=\frac{x_{h-1} 2^{n_{h}}-1}{3} \in R^{-1}\left(x_{h-1}\right) \subseteq G_{h}
$$

Indeed, by applying the inductive hypothesis, we can obtain

$$
\begin{aligned}
\frac{x_{h-1} 2^{n_{h}}-1}{3} & =\frac{\left(3\left\lfloor\frac{x_{h-1}}{3}\right\rfloor+r_{h-1, h-1}\right) 2^{n_{h}}-1}{3} \\
& =\left\lfloor\frac{x_{h-1}}{3}\right\rfloor 2^{n_{h}}+\frac{r_{h-1, h-1} 2^{n_{h}}-1}{3} \\
& =\left\lfloor\frac{x_{h-1}}{3}\right\rfloor 2^{n_{h}}+\llbracket s_{1, d_{h, h}}^{\left[n_{h}\right)} \rrbracket \\
& =\left\lfloor\llbracket s_{h-1, d_{h-1,1}}^{\left[n_{1}\right)} \ldots s_{1, d_{h-1, h-1}}^{\left[n_{h-1}\right)} \rrbracket / 3\right\rfloor 2^{n_{h}}+\llbracket s_{1, d_{h, h}}^{\left[n_{h}\right)} \rrbracket \\
& =\llbracket s_{h, d_{h, 1}}^{\left[n_{1}\right)} \ldots s_{2, d_{h, h-1}}^{\left[n_{h-1}\right)} \rrbracket 2^{n_{h}}+\llbracket s_{1, d_{h, h}}^{\left[n_{h}\right)} \rrbracket \\
& =x_{h} . \quad \square
\end{aligned}
$$

Lemma 7. For all $x \in G_{k}$ there is a scheme $s_{k}$ such that $\left.x=\llbracket s_{k, d_{k, 1}}^{\left[n_{1}\right)} \ldots s_{1, d_{k, k}}^{\left[n_{k}\right)}\right]$.
Proof. The proof is by induction on $k$. For the base case $k=1$ the proof is straightforward:

$$
G_{1}=\left\{\llbracket s_{1}^{m+1} \rrbracket: m \geq 0\right\}=\left\{\llbracket s_{1,0}^{[2 m+2)} \rrbracket: m \geq 0\right\}
$$

and so $x=\llbracket s_{1,0}^{[2 m+2)} \rrbracket$ for some $m \geq 0$. Then, choosing $s_{k}$ with $n_{1}=2 m+2$ and $d_{1,1}=0$, we obtain $x=\llbracket s_{1, d_{1,1}}^{\left[n_{1}\right)} \rrbracket$. Let $k>1$ and let $y \in G_{k-1}$ such that $x \in R^{-1}(y)$.
By the inductive hypothesis there is a scheme $s_{k-1}$ such that

$$
y=\llbracket s_{k-1, d_{k-1,1}}^{\left[n_{1}\right)} \ldots s_{1, d_{k-1, k-1}}^{\left[n_{k-1}\right)} \rrbracket .
$$

Moreover $y \bmod 3 \neq 0$ and

$$
x=\left(y 2^{n}-1\right) / 3
$$

where, for some $m \geq 0, n=2 m+2$ if $y \bmod 3=1$ and $n=2 m+1$ if $y \bmod 3=2$.
We can extend $s_{k-1}$ to $s_{k}$ by setting $n_{k}=n, d_{k, 1}=0, d_{k, i}=d_{k-1, i}+r_{k-1, i-1} 2 \lambda_{k-i-1}$, for $2 \leq i<k$, and $d_{k, k}=r_{k-1, k-1}-1$.
Then $x=\llbracket s_{k, d_{k, 1}}^{\left[n_{1}\right)} \ldots s_{1, d_{k, k}}^{\left[n_{k}\right)} \rrbracket$ and $x \in G_{k}$ by the previous lemma.

Theorem 1 (Structure of Convergence Classes). $x \in G_{k}$ iff there exists a scheme $\ell_{k}$ for $G_{k}$ such that

$$
\begin{equation*}
x=\llbracket s_{k, d_{k, 1}}^{\left[n_{1}\right)} \ldots s_{1, d_{k, k}}^{\left[n_{k}\right)} \rrbracket . \tag{12}
\end{equation*}
$$

Proof. Immediate from the last two lemmas.
Given a scheme $s_{k}$ we can compute the corresponding $x \in G_{k}$ by Formula (12). In the reverse direction, given $x \in G_{k}$ we can compute the corresponding scheme $s_{k}$ as follows. Let $x_{k}=x$ and, for $h=k-1, \ldots, 1$, compute $x_{h}=R\left(x_{h+1}\right)$ and take as $n_{k}, n_{k-1}, \ldots, n_{1}$ the exponents of the power of 2 at the denominators in $R\left(x_{h+1}\right)$. We can easily prove that this sequence of lengths satisfy points (a), (b) and (c) of the definition of a scheme. Then we can use points (d), (e) and (f) to compute rotations $d_{h, i}$.

For example, for $x=27 \in G_{41}$ we obtain

| $i$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $n_{i}$ | 4 | 5 | 1 | 1 | 3 | 4 | 2 | 2 | 4 | 1 |
| $d_{k, i}$ | 0 | 11 | 107 | 71 | 47 | 122 | 650 | 866 | 1154 | 6155 |
| $i$ | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| $n_{i}$ | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 2 | 1 |
| $d_{k, i}$ | 4103 | 2735 | 1823 | 4859 | 3239 | 2159 | 1439 | 959 | 638 | 851 |
| $i$ | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| $n_{i}$ | 2 | 1 | 1 | 3 | 2 | 1 | 1 | 1 | 2 | 1 |
| $d_{k, i}$ | 755 | 566 | 503 | 335 | 890 | 1187 | 791 | 527 | 350 | 467 |
| $i$ | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| $n_{i}$ | 1 | 2 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 |
| $d_{k, i}$ | 311 | 206 | 275 | 182 | 242 | 323 | 53 | 35 | 5 | 2 |
| $i$ | 41 |  |  |  |  |  |  |  |  |  |
| $n_{i}$ | 1 |  |  |  |  |  |  |  |  |  |
| $d_{k, i}$ | 1 |  |  |  |  |  |  |  |  |  |

Notice that $s_{k, d_{k, i}}^{\left[n_{i}\right)}=0^{n_{i}}$ but for $s_{k, d_{k, 39}}^{\left[n_{39}\right)}=00011, s_{k, d_{k, 40}}^{\left[n_{40}\right)}=01$ and $s_{k, d_{k, 41}}^{\left[n_{41}\right)}=1$.
A final implementation of procedures Div3 and Div3Aux based on the scheme $\ell_{k}$ (with a nice graphical interface) is described in [8] (in Italian).

## References

[1] J.C. Lagarias, The $3 n+1$ problem: an annotated bibliography, II (2000-2009). In http://arxiv.org/abs/math/0608208v5.
[2] Lisbeth De Mol, Tag Systems and Collatz-like functions, Theoretical Computer Science 390 (2008) 92-101.
[3] Joseph L. Pe, The $3 x+1$ fractal, Computers \& Graphics 28 (2004) 431-435.
[4] Jeffrey P. Dumont, Clifford A. Reiter, Visualizing generalized $3 x+1$ function dynamics, Computers and Graphics 25 (2001) 883-898
[5] Pavlos B. Konstadinidis, The real $3 x+1$ problem, Acta Arithmetica 122 (2006) 35-44.
[6] Pascal Michel, Small Turing machines and generalized busy beaver competition, Theoretical Computer Science 326 (2004) 45-56.
[7] Giuseppe Scollo, $\omega$-rewriting the Collatz problem, Fundamenta Informaticae 64 (2005) 401-412.
[8] Lorenzo Tessari, Visualizzatore Binario delle Classi di Convergenza della funzione di Collatz. Tesi di Laurea Triennale in Informatica, Dipartimento di Matematica Pura e Applicata, Università di Padova.
[9] Toshio Urata, Some holomorphic functions connected with the Collatz problem, Bulletin of Aichi University of Education (Natural Science) 51 (2002) 13-16.
[10] Jean Paul Van Bendegem, The Collatz conjecture: A case study in mathematical problem solving, Logic and Logical Philosophy 14(1)(2005)7-23.


[^0]:    * Tel.: +39 0498271484.

    E-mail address: colussi@math.unipd.it.

[^1]:    ${ }^{1}$ The tree representation used for $G_{2}$ (and that that will be used for next classes $G_{k}$ ) is just the syntactic tree of a regular expression $(000111)^{*}\left[00(01)^{*} 01+0001(10)^{*} 1\right]$. Thus classes $G_{k}$ are regular sets of strings.

