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Abstract

The standard perturbative weak-coupling expansions in lattice models are asymptotic. The reason for this 
is hidden in the incorrect interchange of the summation and integration. However, substituting the Gaussian 
initial approximation of the perturbative expansions by a certain interacting model or regularizing original 
lattice integrals, one can construct desired convergent series. In this paper we develop methods, which are 
based on the joint and separate utilization of the regularization and new initial approximation. We prove, 
that the convergent series exist and can be expressed as re-summed standard perturbation theory for any 
model on the finite lattice with the polynomial interaction of even degree. We discuss properties of such 
series and study their applicability to practical computations on the example of the lattice φ4-model. We 
calculate 〈φ2

n〉 expectation value using the convergent series, the comparison of the results with the Borel 
re-summation and Monte Carlo simulations shows a good agreement between all these methods.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The main objects of studies in quantum field theory are the Green’s functions. They can be 
naturally expressed in terms of the path integral. However, the path integral itself gives only a 

* Corresponding author.
E-mail addresses: ivanov.as@physics.msu.ru (A.S. Ivanov), vasily.sazonov@uni-graz.at (V.K. Sazonov).
http://dx.doi.org/10.1016/j.nuclphysb.2016.11.002
0550-3213/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.nuclphysb.2016.11.002
http://www.elsevier.com/locate/nuclphysb
http://creativecommons.org/licenses/by/4.0/
mailto:ivanov.as@physics.msu.ru
mailto:vasily.sazonov@uni-graz.at
http://dx.doi.org/10.1016/j.nuclphysb.2016.11.002
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nuclphysb.2016.11.002&domain=pdf


44 A.S. Ivanov, V.K. Sazonov / Nuclear Physics B 914 (2017) 43–61
formal solution and for the practical computations one has to find some efficient method of its 
evaluation. One of the possibility is to use a finite lattice approximation of the physical space and 
then investigate the truncated system using the Monte Carlo method. Such approach was success-
fully applied in many areas of statistical, condensed matter and elementary particle physics for 
a wide range of physical parameters, e.g. coupling constants. The Monte Carlo method is based 
on the probabilistic interpretation of the lattice integrals measure and, consequently, it can not be 
applied, when the action of the system is complex. For instance, this complex action problem, or 
in other words sign problem, impedes the computations in lattice QCD at finite chemical poten-
tials [1]. Another traditional way of the path and lattice integrals computations is the utilization of 
standard perturbation theory with the Gaussian initial approximation (SPT). Usually, the series of 
SPT are asymptotic [2,3] and applicable only for the small coupling constants (parameters of the 
expansion). For example, the most precise results within standard perturbation theory were ob-
tained in QED [4,5], where the expansion parameter is extremely small: α � 1/137. At the same 
time SPT fails to describe the low energy physics of graphene, which is effectively determined 
by QED with large coupling constant [6].

The SPT series are asymptotic because of the incorrect interchange of the summation and 
integration during the construction of the perturbative expansion. Nevertheless, the problem of 
the interchanging can be avoided. For instance, it can be done by an appropriate regularization 
of the original integral. The regularization by cutting off the large fluctuations of the fields in the 
lattice models was suggested in [7,8]. In [9–13] a special integral transform of the interaction 
part of the action and consequent regularization were applied to construct convergent perturba-
tion theory for lattice models and path integrals with Gaussian measure defined by trace-class 
operators. The method, based on the modification of the interaction power due to the application 
of the intermediate field representation and on the consequent utilization of the forests/trees for-
mula [14,15] was developed in works [16–20]. Alas, the computations with all these methods are 
highly complicated.

An alternative approach to the construction of the convergent perturbative series in scalar field 
theories, based on changing of the initial Gaussian approximation to a certain interacting theory, 
was proposed in [21–23]. Later, independently developed and similar ideas become a basis of 
the variational perturbation theory methods [24–26]. In [27] the approach [21–23] was extended 
to the construction of the strong coupling expansion for the anharmonic oscillator. In [28] the 
RG-equations consistent with the method [21] were derived. The critical indices of the ϕ4-model 
obtained within the latter RG-equations are in close agreement with the numerical results and 
corresponding experimental measurements for the liquid–gas transition, He4 and binary mix-
tures [28,29]. However, a rigorous mathematical proof of the convergence of expansions [21–23,
28] is still missing. The main assumption in [21–23,25,26,28] is related to the applicability of 
the dimensional regularization [30], which is used to handle the limit of the infinite number of 
degrees of freedom during the scaling transformations of the fields. Nevertheless, the restriction 
to a finite amount of degrees of freedom allows one to carry out the derivation of the convergent 
series similar to [22,23] mathematically rigorously. A first step in this direction was done [31], 
where the one-dimensional lattice φ4-model was considered. The numerical computations within 
the convergent series in [31] revealed a perfect agreement with the results obtained by the Monte 
Carlo simulations for the lattice with the volume V = 2 and demonstrated slow convergence to 
the correct answers even for the slightly bigger lattices (with V = 4 and V = 8 lattice sites).

Here we continue the investigation of the convergent series method and present a solution 
of the slow convergence problem. We carry out main derivations on the example of the lattice 
φ4-model and perform generalizations, when it is necessary. We prove, that the convergent series 
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(CS) can be rigorously constructed for any finite lattice model with the polynomial interaction 
of even degree and that the series is expressed as a re-summation of SPT. We show, that up to 
all loops of standard perturbation theory the convergent series method has an internal symmetry, 
providing the possibility to introduce a variational parameter. The freedom in a choice of the 
variational parameter allows one to obtain numerical results, which are in agreement with the 
Monte Carlo data. Though, the convergence and non-perturbative correctness of CS, modified 
by the variational parameter, is not a priori evident. In the following we denote the latter series 
as variational (VS). To investigate the convergence of the variational series, we consider two 
regularizations of the lattice φ4. The first one, η-regularization, is a natural extension of the vari-
ational series construction and it gives suggestive arguments about the convergence of VS. The 
second, γ -regularization, is also based on the mathematical structures, used in VS. We proof, that 
γ -regularized model approximates original φ4-model with any arbitrary precision and that the 
Green’s functions of the γ -regularized model can be calculated with the variational series, which 
is convergent in this case. We demonstrate the non-perturbative independence on the variational 
parameter of VS, when the γ -regularization is removed. Using this independence property, we 
propose a way for the computations in the infinite volume limit. Summarizing the properties 
of CS and VS with regularizations, we conjecture the convergence of the variational series. We 
study the applicability of the CS and VS for different lattice volumes and investigate the depen-
dence on the variational and regularization parameters, computing the operator 〈φ2

n〉 of the lattice 
φ4-model. The results are compared with the Monte Carlo simulations and Borel re-summation.

The paper is organized as follows. In Section 2 the convergent series for lattice models with 
polynomial interactions is constructed. We introduce variational series and discuss its perturba-
tive properties in Section 3. To investigate non-perturbative aspects of VS we study regularized 
lattice models in Section 4. The results of the numerical computations are presented in Section 5. 
We conclude in Section 6.

2. Construction of the convergent series

We start with the construction of the convergent series for the lattice φ4-model. The model is 
defined by the action

S[φ] = 1

2

V −1∑
m,n=0

φmKmnφn + λ

4!
V −1∑
n=0

φ4
n, (1)

1

2

V −1∑
m,n=0

φmKmnφn =
V −1∑
n=0

[
1

2
M2φ2

n − 1

2

d∑
μ=1

(φn+μ̂ + φn−μ̂ − 2φn)φn

]
, (2)

where M is a mass parameter, λ is a coupling constant, V is the volume of the lattice, indices 
m and n label the lattice sites, d = 1, 2 is a dimension of the lattice, index μ runs over all 
spatial dimensions and μ̂ stands for the unit vector in the corresponding direction. The periodical 
boundary conditions in all possible directions are assumed.

Without loss of generality, as an example of an arbitrary Green’s function, we consider the 
two point Green’s function (propagator). The normalized to the free theory propagator is defined 
as

〈φiφj 〉 =
∫

[dφ]φiφj exp
{−S[φ]} , (3)

where 
∫ [dφ] = 1 ∏ ∫

dφn and

Z0 n
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Z0 =
∏
n

∫
dφn e− 1

2

∑
l,m φlKlmφm (4)

is the partition function of the free theory. Following [22,23], we split the action into the new 
non-perturbed part N [φ] and perturbation: S[φ] = N [φ] + (S[φ] − N [φ]). For the following it 
is convenient to modify the latter expression as

Sη[φ] = N [φ] + η
(
S[φ] − N [φ]) , (5)

where η ≤ 1 is a parameter labeling the order of the new perturbative expansion. The parameter 
η will be also used in Section 4.1 for the regularization. In the current section we derive formulas 
containing η, keeping in mind, that the initial model corresponds to η = 1. Then, the propagator 
(3) can be written as

〈φiφj 〉 =
∫

[dφ]φiφj e−N [φ]
∞∑
l=0

ηl(N[φ] − S[φ])l
l! . (6)

When

N [φ] ≥ S[φ] , (7)

the interchanging of the summation and integration in (6) leads to an absolutely convergent series

〈φiφj 〉 =
∞∑
l=0

〈φiφj 〉l (8)

with terms given by

〈φiφj 〉l = ηl

l!
∫

[dφ]φiφj

(
N [φ] − S[φ])l

e−N [φ] . (9)

Indeed, it is easy to see, that∣∣∣∣∣
∞∑
l=0

〈φiφj 〉l
∣∣∣∣∣ ≤

∞∑
l=0

|〈φiφj 〉l | ≤
∞∑
l=0

ηl

l!
∫

[dφ] |φiφj |
(
N [φ] − S[φ])l

e−N [φ]

=
∫

[dφ] |φiφj | e−Sη[φ] < ∞ , for η ≤ 1 . (10)

There are many possibilities to choose the new initial approximation N [φ], satisfying inequal-
ity (7), however it should correspond to a solvable model. Here we take

N [φ] =
∑
n,m

1

2
φnKnmφm + σ

(∑
n,m

1

2
φnKnmφm

)2

, (11)

where σ is an unknown positive parameter, which is determined by the substitution of (11)
into (7):

σ ≥ λ

6M4
. (12)

The functions (9) can be calculated in the following way. Introducing an auxiliary integration, 
we change ‖φ‖ ≡ ( 1φnKnmφm)

1
2 to the one-dimensional variable t
2
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〈φiφj 〉l = ηl

l!
∫

[dφ]φiφj

∞∫
0

dt e−t2−σ t4
δ
(
t − ‖φ‖)(σ t4 − λ

4!
∑
n

φ4
n

)l

. (13)

Rescaling the field variables as φold
n = tφn, we get

〈φiφj 〉l = Jη(V, l)

∫
[dφ]φiφj δ

(
1 − ‖φ‖)(σ − λ

4!
∑
n

φ4
n

)l

, (14)

where

[ll]Jη(V, l) = ηl

l!
∞∫

0

dt e−t2−σ t4
tV +4l+1 . (15)

The factor tV +4l−1 in the integrand in Jη(V, l) is obtained by rescaling of the fields measure, 
fields and delta function. Now the multi-dimensional (lattice) part of the integral is factorized 
from the auxiliary integration. Applying the binomial expansion to the brackets (...)l , we rewrite 
(14) as

〈φiφj 〉l = Jη(V, l)

∫
[dφ]φiφj δ

(
1 − ‖φ‖) l∑

k=0

Ck
l σ l−k

(
− λ

4!
∑
n

φ4
n

)k

. (16)

To solve (16), we use the following equality1∫
[dφ]φn1 ...φnQ

e−‖φ‖2 = 1

2



(
V + Q

2

)∫
[dφ]φn1 ...φnQ

δ
(
1 − ‖φ‖) . (17)

By substituting (17) in (16), we obtain

〈φiφj 〉l = Jη(V, l)

l∑
k=0

Ck
l σ l−k 2


(V +4k+2
2 )

∫
[dφ]φiφj e−‖φ‖2

(
− λ

4!
∑
n

φ4
n

)k

. (18)

Denoting the k-th order of standard perturbation theory as fk, we rewrite (18) as

〈φiφj 〉l = Jη(V, l)

[
l∑

k=0

Ck
l σ l−k 2 k!fk


(V +4k+2
2 )

]
. (19)

Therefore, each certain order l of the convergent series is expressed as a linear combination 
of first l orders of SPT with coefficients given by the one-dimensional analytically calculable 
t -depending integrals. However, the latter fact does not mean that the convergent series looses 
non-perturbative contributions from non-analytical functions such as e− 1

λ . Being an expansion 
with the non-Gaussian initial approximation, it automatically takes non-perturbative contribu-

tions into account in a similar way, as the function e− 1
λ for positive λ can be reproduced by its 

Taylor series around λ = 1.
The lattice φ4 is a Borel summable model, however, it is possible to generalize the results of 

the current section to a wider class of models, which include Borel non-summable cases.

1 The r.h.s. of the identity (17) is obtained from the left one by the transformations analogous to (13), (14).
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Proposition 1. Consider a model on the finite lattice, determined by the polynomial action 
S[φ] = P [φ] with an even deg(P ), then it is always possible to construct a convergent series for 
this model with the terms which can be expressed as a linear combinations of terms of standard 
perturbation theory.

The proof follows from the construction presented above and from the fact, that each polyno-
mial can be bounded as

|P [φ]| ≤ const
(
1 + ‖φ‖deg(P )

)
. (20)

Moreover, it is possible to show, that convergent series is a re-summation of SPT, for details see 
Section 3.

The latter proposition demonstrates, that the whole non-perturbative physics of the lattice 
models with the polynomial actions can be encoded by the coefficients of standard perturbation 
theory. However, it is important to note, that this does not mean, that the non-perturbative in-
formation can be obtained only from the standard perturbative expansion. An additional input, 
needed for the construction of the convergent series is received from the model itself. In some 
sense it is similar to the resurgence program [32], where for the recovering of the non-perturbative 
contributions from the perturbative series, it is assumed that the solution is a resurgent function.

3. Variational series

The previous studies of the convergent series application to the lattice φ4-model [31] demon-
strated a critical slow down of the convergence rate with the increasing of the lattice volume 
V (see Section 5). However, this problem can be resolved by the following observation. When 
η = 1, the explicit dependence on the lattice volume V in the sum (8) of functions (19) can be 
substituted by τ = V + α, i.e.,

〈φiφj 〉 =
∞∑
l=0

Jη=1(τ, l)

[
l∑

k=0

Ck
l σ l−k 2 k!fk


( τ+4k+2
2 )

]
, (21)

where τ > −2, not to generate singularities in the integrals Jη(τ, l). The latter inequality is 
special for the propagator, for an arbitrary n-fields Green’s function it has to be substituted by 
τ > −n.

Let us first consider only a perturbative proof of (21) (the non-perturbative aspects are con-
sidered in the Section 4). It can be obtained by changing the order of summations in (21)

〈φiφj 〉 ≈
∞∑

k=0

∞∑
l=0

Jη=1(τ, l)C
k
l σ l−k 2 k!fk


( τ+4k+2
2 )

, (22)

where the sign ‘≈’ stands to indicate only perturbative equivalence between left and right parts 
of the expression. The summands in the latter expression are equal to zero, when l < k. Changing 
the summation index to y = l − k, we obtain

〈φiφj 〉 ≈
∞∑

k=0

2fk

∫ ∞
0 dt tτ+4k+1e−t2−σ t4 ∑∞

y=0
Ck

(y+k)
k! σyt4y

(y+k)!

(τ+4k+2

2 )

=
∞∑ 2fk

∫ ∞
0 dt tτ+4k+1e−t2−σ t4 ∑∞

y=0
σy t4y

y!

(τ+4k+2 )
k=0 2
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=
∞∑

k=0

2fk

∫ ∞
0 dt tτ+4k+1e−t2


(τ+4k+2
2 )

=
∞∑

k=0

fk . (23)

We end up with the series of standard perturbation theory. There are two important consequences 
from this fact (the non-perturbative analogues of these statements are derived in the following 
sections).

• The whole sum of the series over l in (21) does not depend on τ . Therefore, τ is a variational 
parameter and can be taken arbitrary to optimize the convergence of the series.

• According to (23), the convergent series is a re-summation method. Thus, for the computa-
tion of the connected Green’s functions (including the normalized to the full partition sum 
propagator, which is a subject of our numerical studies) one can use the fact, that in stan-
dard perturbation theory connected functions are obtained from the full Green’s functions by 
throwing away disconnected Feynman diagrams from the expansions.

4. Convergence of the variational series

In the last section we have introduced a variational parameter τ , to improve the convergence 
rate of CS (see Section 5). However, the derivations of the Section 2 are not applicable when 
τ �= V . The proof of the convergence of the series (8) is based on the positivity of the brackets 
(N[φ] − S[φ])l . When τ �= V , each summand of the binomial expansion of (N[φ] − S[φ])l
transforms differently under the change of τ and the positivity of the brackets (N[φ] − S[φ])l
can be lost. For instance, it is the case for the one-site lattice φ4-integral at τ = 0. In Section 3
we have proved the perturbative independence on τ of the total sum of the series (21). One can 
not a priori exclude the possibility, that some non-analytical dependence on τ at η = 1, which 
gives zero contribution to the SPT series, still persist in (21). The prescription for the evaluation 
of the connected Green’s functions, suggested in the previous section, is based also only on the 
standard perturbation theory arguments.

Here we study all these issues from the non-perturbative point of view. For this we investi-
gate the convergence properties of the variational expansions constructed for the lattice φ4 with 
two different regularizations. The first one is the η-regularization and it is achieved by consider-
ing 0 < η < 1 in (5). The second, γ -regularization, is defined in Section 4.2 by introducing an 
additional term proportional to ‖φ‖6 into the action (1).

4.1. Convergence of the variational series depending on η and τ

Let us study the convergence of the series for the full propagator, obtained from (21), extend-
ing it to η ≤ 1

〈φiφj 〉 =
∞∑
l=0

Jη(τ, l)

[
l∑

k=0

Ck
l σ l−k 2 k!fk


( τ+4k+2
2 )

]
. (24)

The asymptotic of large orders of the perturbation theory in quantum field theories and lattice 
models for the connected and full correlation functions have similar form [3,33,34]

fk ∼ (−1)k
√

2π e

(
a

e

)k

kk+b0+1/2 , (25)

where a, b0 ∈R are some constants. The upper bound for the series (24) can be obtained as
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Fig. 1. The convergence of the series (24) in the half-band −η∗ < η < η∗ , τ > −2 is provided by the bound (26). The 
convergence at τ = V and η ≤ 1 follows from the estimate (10).

|〈φiφj 〉| ≤
∞∑
l=0

|Jη(τ, l)|
[

l∑
k=0

Ck
l σ l−k 2 k! |fk|


(τ+4k+2
2 )

]

=
∞∑

k=0

2
∫ ∞

0 dt tτ+4k+1e−t2−σ(1−|η|)t4


(τ+4k+2
2 )

|fk||η|k . (26)

The coefficients in front of |fk| in (26) at large k behave as

21/2−2βσ−β
η k−k

(
e|η|
4ση

)k

, (27)

where β = (τ + 2)/4 and ση = σ(1 − |η|). Consequently, the bound (26) is convergent, when 
|η| < η∗ = 4σ

|a|+4σ
, independently on the value of τ . When τ = V , the series (24) converges for 

η ≤ 1 due to the estimate (10). The bound (26) has finite radius of the convergence in terms of 
η for any τ > −2, including, for instance τ = 0. In Fig. 1 we show the area of the parameters τ
and η for which the convergence of the series (24) is guaranteed by (26) and (10).

The convergence of the series (24) is better than the convergence of (26), because of the 
cancellations in the internal sums over k in (24). Therefore, it might be, that the series (24) is 
convergent for τ > −2 and η = 1. To support such possibility, let us consider an example of the 
series with an asymptotic of the type (25)

hk = (−1)k

( τ+4k+2

2 )

2
(k + 1)
uk , u > 0 . (28)

At η = 1 the substitution of these coefficients into the expansion (26) produces a divergent series. 
In opposite, the expansion (24) in this case can be bounded by

∞∫
0

dt tτ+1e−t2−σ t4+|σ−u|t4
< ∞ . (29)

Therefore, the series (28), re-summed in accordance to (24), is convergent.

4.2. γ -Regularization

The η-regularization enforce an additional decay of the lattice Boltzmann weight for the large 
fluctuations of the fields φn. This results in the dumping of the coefficients of standard per-
turbation theory and in the consequent convergence of the series (24) for |η| < η∗. However, 
the additional decay is not sufficiently sharp to provide convergence for η∗ ≤ η < 1, which is 
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desired, since η = 1 corresponds to the original theory. Here we introduce alternative regular-
ization, giving sharper vanishing of the large fluctuations of fields. We consider the regularized 
lattice φ4-model, defined by the action

Sγ [φ] = S[φ] + γ ‖φ‖6 . (30)

When γ = 0 the action Sγ coincides with the action of the φ4-model (1). For the model defined 
by (30) one can construct two related expansions. As always, we demonstrate them on the exam-
ple of the propagator. The first one is similar to standard perturbation theory and is obtained by 
expanding the interaction part of the original φ4-model into the Taylor series

〈φiφj 〉γ =
∑

k

∫
[dφ]φiφj e

−‖φ‖2−γ ‖φ‖6 (− λ
4!

∑
n φ4

n)k

k! . (31)

Rewriting (31) in terms of Gaussian integrals analogously to Section 2 and introducing the de-
pendence on τ , we get

〈φiφj 〉γ =
∞∑

k=0

2
∫ ∞

0 dt tτ+4k+1e−t2−γ t6


(τ+4k+2
2 )

fk . (32)

The second expansion is the variational series similar to (24). To derive it, we split the action as

Sγ [φ] = (
N [φ] + γ ‖φ‖6) + (

S[φ] − N [φ]) , (33)

where (N[φ] + γ ‖φ‖6) is treated as the initial approximation. Then, analogous to previous 
derivations, we have

〈φiφj 〉γ =
∞∑
l=0

Jγ (τ, l)

[
l∑

k=0

Ck
l σ l−k 2 k!fk


( τ+4k+2
2 )

]
, (34)

where

Jγ (τ, l) = 1

l!
∞∫

0

dt e−t2−σ t4−γ t6
tτ+4l−1 . (35)

The series (32) can be obtained from the series (34) by changing the order of summations. 
Consequently, if both of these series converge absolutely, they converge to the same sum. The 
series (32) and (34) can be bounded by

|〈φiφj 〉γ | ≤
∞∑
l=0

|Jγ (τ, l)|
[

l∑
k=0

Ck
l σ l−k 2 k! |fk|


(τ+4k+2
2 )

]

=
∞∑

k=0

2
∫ ∞

0 dt tτ+4k+1e−t2−γ t6


(τ+4k+2
2 )

|fk| . (36)

At large k the coefficients in front |fk| in the leading order are determined by

3(2
√

3)−1−4β/3γ −2β/3k−4β/3(12e2γ
)−2k/3

k−4k/3 (37)

with β = (τ +2)/4. The bound (36) converges for any τ > −2, when γ > 0. In Fig. 2 we present 
the area of parameters γ and τ for which the series (32) and (34) are convergent.

Similar to the η-regularization case the convergence of (34) is better than of the series (32)
and bound (36).
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Fig. 2. In the marked area the convergence of both series (32) and (34) is obtained due to the non-zero γ . At γ = 0 and 
τ = V , as it follows from the estimate (10), only the series (34) is convergent.

4.3. Non-perturbative independence on τ and continuity of the γ -regularization

Here we show, that for any τ > −2, there are such γ∗ ∈ R+ and K(γ∗) ∈ N, that it is possible 
to construct convergent series (32), which approximates the propagator of the lattice φ4-model 
with an arbitrary precision δ > 0:∣∣∣∣∣

K(γ∗)∑
k=0

2
∫ ∞

0 dt tτ+4k+1e−t2−γ∗t6


(τ+4k+2
2 )

fk − 〈φiφj 〉
∣∣∣∣∣ < δ . (38)

The proof of (38) also demonstrates, that in the limit γ → 0 the sum of the series (32) is inde-
pendent on τ non-perturbatively, i.e., including all possible non-analytical contributions.

Since for γ > 0 the series (32) is absolutely convergent one can interchange in it the summa-
tion and integration (the SPT-coefficients fk are integrals), this gives

〈φiφj 〉γ =
∫

[dφ]φiφj e
−‖φ‖2

∞∑
k=0

hk(φn, γ, τ ) , (39)

where

hk(φn, γ, τ ) = (− λ
4!

∑
n φ4

n)k

k!
2
∫ ∞

0 dt tτ+4k+1e−t2−γ t6


(τ+4k+2
2 )

. (40)

The series 
∑∞

k=0 hk(φn, γ, τ) converges faster than the series for the exponent and, consequently, 
is uniformly convergent for each compact subset of the region of parameters Ā = {φn ∈ R,

γ ≥ 0, τ > −2}. In region Ā the functions hk(φn, γ, τ) are continuous in all parameters, there-
fore the sum of them is also continuous. At γ = 0 each function hk(φn, γ, τ) is independent on 
τ and the propagator (39) coincides with 〈φiφj 〉, defined by (3). Hence, (39) is finite at γ = 0. 
The finiteness of (39) for γ > 0, τ > −2 follows from the convergence of the series (32). Then, 
because 

∑∞
k=0 hk(φn, γ, τ) is continuous in Ā and (39) is finite for γ ≥ 0, τ > −2, it follows, 

that for any ̃δ > 0 there is such γ̃ , that

|〈φiφj 〉γ̃ − 〈φiφj 〉| < δ̃ . (41)

From the latter inequality and from the convergence of the series (39) we obtain (38).
As it was discussed above series (32) and (34) converge to the same quantities, therefore, all 

stated here is valid also for (34).
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4.4. Evaluation of the connected Green’s functions

In previous parts of the paper we predominantly discussed constructions of the convergent 
series for the full Green’s functions on the example of the propagator. The generating func-
tional of the full functions is the partition function Z[A], which is a functional of the external 
field A. However, the thermodynamical quantities are naturally expressed in terms of the con-
nected Green’s functions, given by derivatives of the log(Z[A]) with respect to the external 
field A. Within the framework of standard perturbation theory it is shown, that connected func-
tions are obtained from the full functions by throwing away all disconnected diagrams of the 
perturbative expansion, see, for instance, [29]. As it is known from the theory of the combinato-
rial species [35] this relation is much more general. If the weights of a generating function for a 
combinatorial weighted species factorize among the connected components of the species, then 
the logarithm of that function is given by the sum over the connected associated species. In the 
convergent series (32) as in SPT the disconnected diagrams are the products of the connected 
ones, consequently, for the computation of the connected functions using the convergent series 
one has to substitute the contributions fk of all diagrams in each order of SPT by the contributions 
only from connected diagrams f̃k . The resulting series is convergent, since the asymptotic of the 
high orders of standard perturbation theory has similar form (25) for both full and connected 
Green’s functions.

Let us change fk by f̃k in (34). Analogously to the relation between (32) and (34), the inter-
change of the summations in the series (34) with f̃k gives the series (32) with fk , changed by f̃k . 
Therefore, the series (34) with f̃k instead of fk is also convergent.

5. Computations and numerical results

Here we present the results of the 〈φ2
n〉 operator computations within the convergent and 

variational series and compare them with the Borel re-summation and Monte Carlo simulations. 
We show the numerical dependences on the variational and regularization parameters τ and γ . 
The propagator between all lattice cites 〈φiφj 〉 is computed, but we present only the part of the 
resulting data representing 〈φ2

n〉, for greater clarity. All calculations are performed at unit mass 
M = 1 and for the coupling constants λ in the region [0, 10].

The computations within the convergent/variational series methods contain two main steps. 
The first one is the evaluation of the coefficients of standard perturbation theory for the propa-
gator 〈φiφj 〉. For this the connected diagrams of the φ4-theory are generated using the system 
‘GRACE’ [36]. The free propagator in diagrams is obtained by the numerical inversion of the 
Kmn matrix (2). The best current results within the ε-expansion in the continuum φ4-theory are 
obtained in the 6-loops approximation [37]. We also compute 6 orders of the lattice SPT, since 
it is reasonable to test the efficiency of the convergent series within the same order of the pertur-
bation theory. The second step of the calculations using the CS/VS methods is the re-summation 
of the perturbative results in accordance to the formulas (8), (19), (24), (34).

To perform the Borel re-summation procedure, we use the conformal mapping for the analyti-
cal continuation in the Borel plane. The conformal mapping can be done if the parameter a from 
the asymptotic of the high orders of the perturbation theory (25) is known. We estimate a using 
the values presented in [38] for the continuous one- and two-dimensional φ4-model

d = 1 , a = 1/8, (42)

d = 2 , a = 1/35.102 . . . . (43)
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Fig. 3. Dependence of 〈φ2
n〉 on the order of the perturbation theory for the lattice volume V = 4 at λ = 0.1.

Fig. 4. Dependence of 〈φ2
n〉 on the order of the perturbation theory for the lattice volume V = 4, τ = 0 at λ = 0.1.

The results obtained on the lattice with V = 4 sites are the following. In Figs. 3 and 5 we 
present the operator 〈φ2

n〉 computed with CS and other methods depending on the number of 
known orders of the perturbation theory (from 0 to 6 loops) at coupling constants λ = 0.1 and 
λ = 10 respectively. At small value of the coupling constant λ = 0.1 one observes an agree-
ment between all methods including standard perturbation theory. When λ = 10, the result is 
qualitatively different. The convergent series is out of the Monte Carlo error bars, but the Borel 
re-summation method is in the agreement with the Monte Carlo data. The values of standard 
perturbation theory series are omitted because of the strong divergence.

In Figs. 4 and 6 we show the results obtained with the variational series and other methods at 
coupling constants λ = 0.1 and λ = 10 respectively. The variational series exhibits remarkable 
agreement with the Monte Carlo data and converges even faster than the Borel re-summation.

In Figs. 7 and 8 we demonstrate the dependence of 〈φ2
n〉 on the coupling constant λ for differ-

ent methods with V = 4. The computations carried according to VS agree with the Monte Carlo 
results with the precision of the one standard deviation.

The results obtained on the one-dimensional lattice with V = 64 are qualitatively similar. In 
Fig. 9 we show the computations performed with the convergent series method in comparison 
with other methods. Even at small coupling constants the convergent series does not agree with 
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Fig. 5. Dependence of 〈φ2
n〉 on the order of the perturbation theory for the lattice volume V = 4 at λ = 10.

Fig. 6. Dependence of 〈φ2
n〉 on the order of the perturbation theory for the lattice volume V = 4, τ = 0 at λ = 10.

Fig. 7. Dependence of the operator 〈φ2
n〉 on coupling constant for the lattice volume V = 4.
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Fig. 8. Dependence of the operator 〈φ2
n〉 on coupling constant for the lattice volume V = 4, τ = 0.

Fig. 9. Dependence of the operator 〈φ2
n〉 on coupling constant for the lattice volume V = 64.

the Monte Carlo. The Borel re-summation is in agreement with the Monte Carlo data in the whole 
region λ ∈ [0, 10]. However, the results obtained within VS are significantly different from the 
results of the simple convergent series. Corresponding computations are presented in Fig. 10. The 
variational series matches the Monte Carlo data with the precision of the one standard deviation 
again!

In Fig. 11 we present the dependence of 〈φ2
n〉 on λ for the two-dimensional lattice with V =

8 × 8, calculated with the VS method, τ = 0. The VS method gives the results which are close to 
the Monte Carlo simulations. The strong deviation of the Borel re-summation can be caused by 
the not precise estimate of the parameter a in the asymptotic of the high orders of the perturbation 
theory (43).

In Section 4.3 we have proved the continuity of the series (34) with respect to the parameter 
γ ≥ 0, in Fig. 12 we demonstrate it for λ = 1.

In the limit γ → 0 the dependence on τ of the sum (34) has to disappear. In the real cal-
culations one always has only a finite amount of terms of (34). In Figs. 13 and 14 we present 
the dependence on τ of the 6-th order approximation of the variational series (24) for the cou-
pling constants λ = 1 and λ = 5 respectively. The optimal values of the parameter τ , giving the 
matching with the Monte Carlo mean value, are τλ=1 � −0.1, τλ=5 � {−1.62; −0.38}. Without 
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Fig. 10. Dependence of the operator 〈φ2
n〉 on coupling constant for the lattice volume V = 64, τ = 0.

Fig. 11. Dependence of the operator 〈φ2
n〉 on coupling constant in the two-dimensional case V = 8 × 8, τ = 0.

Fig. 12. Dependence of the operator 〈φ2
n〉, computed by the variational series, on the regularization parameter γ , λ = 1, 

V = 64, τ = 0.
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Fig. 13. Dependence of the operator 〈φ2
n〉 on the variational parameter τ , λ = 1 for the lattice volume V = 64.

Fig. 14. Dependence of the operator 〈φ2
n〉 on the variational parameter τ , λ = 5 for the lattice volume V = 64.

comparison with the Monte Carlo simulations one can apply the principle of the smallest contri-
bution of the last term of the series, it gives uniform optimal τλ � −0.086. In the main part of 
our computations we use τ = 0, what corresponds in the continuum limit to the utilization of the 
dimensional regularization [30].

6. Conclusions

We have presented the construction of the convergent series for the lattice models with the 
even degree polynomial interaction and investigated it in details on the example of the lattice 
φ4-model. We have proved, that CS is a re-summation method. The latter fact supports the 
resurgence idea, that the non-perturbative physics can be expressed via the coefficients of stan-
dard perturbation theory. The initial approximation of the convergent series is a non-Gaussian 
interacting non-local model, hence, CS automatically takes into account such non-analytical con-

tributions as e− 1
λ .

We have observed an internal symmetry of the CS method and, using it, developed the varia-
tional series. The numerical values of the operator 〈φ2

n〉 calculated using the CS and VS methods 
with 6 orders of standard perturbation theory were compared with the Borel re-summation and 
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Monte Carlo method. The comparison revealed, that for the small lattices and for the small cou-
pling constants the convergent series exhibits the agreement with the Monte Carlo and Borel 
re-summation, but deviates from them for larger lattice volumes and/or for larger coupling con-
stants. The variational series method, applied to the one- and two-dimensional cases, agrees with 
other methods for the wide range of lattice volumes and coupling constants and converges even 
faster to the Monte Carlo results than the Borel re-summation.

To study the convergence and correctness of the variational series from the analytical point 
of view, we have considered two regularizations of the lattice φ4-model. In both cases we have 
constructed for the variational series the upper bounds with finite radii of convergence in terms 
of the regularization parameters. For the γ -regularization the border of the convergence region 
approaches γ = 0, which corresponds to the non-regularized model. We also have shown, that 
the original model can be approximated by the γ -regularization with any arbitrary precision 
and it is always possible to construct two related convergent expansions for this regularization. 
Therefore, the γ -regularized series can be used itself for the non-perturbative computations, 
without the utilization of the variational series (21). The convergence properties of VS, depending 
on regularization parameters are summarized in Figs. 1 and 2. The series (34) and (24) are the 
regularizations of (21). Using this information and the fact, that the convergence of the series 
(34) and (24) should be better than the convergence of their bounds, we conjecture that the series 
(21) is convergent for any τ > −2.

The convergence of (21) independently on values of τ and the independence on τ of its sum 
at γ → 0 allows one to consider any finite τ > −2 even for very large (infinite) volumes V . The 
diagrams of standard perturbation theory can be easily computed in the infinite volume. This 
provides a way for taking the infinite volume limit within the CS/VS methods. The computations 
at τ = 0 work equally well for lattice volumes more than 10 times different, see Figs. 8 and 10, 
this supports the statement above and gives a numerical evidence of the possibility to perform 
the infinite volume limit.

It is important to note, that the applicability of the convergent/variational series is not based 
on any criteria of the kind of the Borel summability of the original perturbation theory. The 
presented construction can be generalized to the fermionic lattice models by employing bosoniza-
tion. For instance, an application of the method [9–13] to the bosonized fermionic model, a 
model of lattice QED, was proposed in [39]. The bosonization of the complex actions has been 
recently suggested in [40]. Therefore, the convergent series, which is based only on the per-
turbative computations, can provide a way for the bypassing the sign problem in bosonic and 
fermionic models.
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