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a b s t r a c t

The purpose of this paper is to give a generalization of Szasz operators defined bymeans of
the Brenke type polynomials. We obtain convergence properties of our operators with the
help of Korovkin’s theorem and the order of convergence by using a classical approach,
the second modulus of continuity and Peetre’s K -functional. An explicit example with
our operators including Gould–Hopper polynomials which generalize Szasz operators in
a natural way is given.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In approximation theory, the positive approximation processes discovered by Korovkin play a central role and arise in
a natural way in many problems connected with functional analysis, harmonic analysis, measure theory, partial differential
equations and probability theory. The most useful examples of such operators are Szasz operators.

Szasz [1] defined the following linear positive operators:

Sn( f ; x) := e−nx
∞
k=0

(nx)k

k!
f

k
n


(1.1)

where x ≥ 0 and f ∈ C[0, ∞) whenever the above sum converges. Guided by this work, many authors have investigated
several interesting properties of the operators (1.1).

Later, Jakimovski and Leviatan [2] obtained a generalization of Szasz operators by means of the Appell polynomials. Let
g(z) =


∞

k=0 akz
k (a0 ≠ 0) be an analytic function in the disc |z| < R, (R > 1) and suppose that g(1) ≠ 0. The Appell

polynomials pk(x) have generating functions of the form

g(u)eux =

∞
k=0

pk(x)uk. (1.2)

Under the assumption that pk(x) ≥ 0 for x ∈ [0, ∞), Jakimovski and Leviatan introduced the linear positive operators
Pn( f ; x) via

Pn( f ; x) :=
e−nx

g(1)

∞
k=0

pk(nx)f

k
n


(1.3)

and gave the approximation properties of these operators.
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Case 1. For g(z) = 1, with the help of (1.2) we easily find pk(x) =
xk
k! and from (1.3) wemeet again the Szasz operators given

by (1.1).
Then, Ismail [3] presented another generalization of Szasz operators (1.1) and Jakimovski and Leviatan operators (1.3) by

using Sheffer polynomials. Let A(z) =


∞

k=0 akz
k (a0 ≠ 0) and H(z) =


∞

k=1 hkzk (h1 ≠ 0) be analytic functions in the disc
|z| < R (R > 1) where ak and hk are real. The Sheffer polynomials pk(x) have generating functions of the type

A(t)exH(t)
=

∞
k=0

pk(x)tk, |t| < R. (1.4)

Using the following assumptions:

(i) for x ∈ [0, ∞), pk(x) ≥ 0,
(ii) A(1) ≠ 0 and H ′(1) = 1, (1.5)

Ismail investigated the approximation properties of the linear positive operators given by

Tn( f ; x) :=
e−nxH(1)

A(1)

∞
k=0

pk(nx)f

k
n


, for n ∈ N. (1.6)

Case 1. For H(t) = t , it can be easily seen that the generating functions (1.4) return to (1.2) and, from this fact, the operators
(1.6) reduce to the operators (1.3).
Case 2. For H(t) = t and A(t) = 1, one can get the Szasz operators from the operators (1.6).

In this paper, we construct linear positive operators with the help of Brenke type polynomials. Brenke type
polynomials [4] have generating functions of the form

A(t)B(xt) =

∞
k=0

pk(x)tk (1.7)

where A and B are analytic functions:

A(t) =

∞
r=0

ar t r , a0 ≠ 0, (1.8)

B(t) =

∞
r=0

br t r , br ≠ 0 (r ≥ 0) (1.9)

and have the following explicit expression:

pk(x) =

k
r=0

ak−rbrxr , k = 0, 1, 2, . . . . (1.10)

We shall restrict ourselves to the Brenke type polynomials satisfying:

(i) A(1) ≠ 0,
ak−rbr
A(1)

≥ 0, 0 ≤ r ≤ k, k = 0, 1, 2, . . . ,

(ii) B : [0, ∞) −→ (0, ∞),

(iii) (1.7) and the power series (1.8) and (1.9) converge for|t| < R (R > 1).

(1.11)

Now, in view of the above restrictions, we introduce the following linear positive operators including the Brenke type
polynomials:

Ln( f ; x) :=
1

A(1)B(nx)

∞
k=0

pk(nx)f

k
n


(1.12)

where x ≥ 0 and n ∈ N.
Case 1. Let B(t) = et . In this case the operators (1.12) (resp. (1.7)) reduce to the operators given by (1.3) (resp. (1.2)).
Case 2. Let B(t) = et and A(t) = 1. We meet again the Szasz operators (1.1).

The purpose of this paper is to present a generalization of Szasz operators and operators given by (1.3) containing the
Appell polynomials. Moreover, we give a suitable example with the operators (1.12) by using Gould–Hopper polynomials.

The structure of the paper is as follows. In Section 2, the convergence of the operators (1.12) is examined with the help
of Korovkin’s theorem. The order of approximation is established by means of a classical approach, the second modulus of
continuity and Peetre’s K -functional in Section 3. In the last section, operators including Gould–Hopper polynomials one
of the Brenke type polynomials are given as an example.
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2. Approximation properties of Ln operators

In this section, we give our main theorem with the help of the well-known Korovkin theorem.

Lemma 1. For all x ∈ [0, ∞), we have

Ln(1; x) = 1 (2.1)

Ln(s; x) =
B′(nx)
B(nx)

x +
A′(1)
nA(1)

(2.2)

Ln(s2; x) =
B′′(nx)
B(nx)

x2 +
[A(1) + 2A′(1)]B′(nx)

nA(1)B(nx)
x +

A′′(1) + A′(1)
n2A(1)

. (2.3)

Proof. From the generating functions of the Brenke type polynomials given by (1.7), we obtain
∞
k=0

pk(nx) = A(1)B(nx)

∞
k=0

kpk(nx) = A′(1)B(nx) + nxA(1)B′(nx)

∞
k=0

k2pk(nx) = A′′(1)B(nx) + 2nxA′(1)B′(nx) + (nx)2A(1)B′′(nx) + A′(1)B(nx) + nxA(1)B′(nx).

In view of these equalities, we get (2.1)–(2.3). �

Theorem 1. Let

lim
y→∞

B′(y)
B(y)

= 1 and lim
y→∞

B′′(y)
B(y)

= 1. (2.4)

If f ∈ C[0, ∞) ∩ E, then

lim
n→∞

Ln( f ; x) = f (x),

and the operators Ln converge uniformly in each compact subset of [0, ∞) where

E := {f : ∀x ∈ [0, ∞), |f (x)| ≤ ceAx A ∈ R and c ∈ R+
}.

Proof. According to (2.1)–(2.3), taking into account the equality (2.4) we find

lim
n→∞

Ln(si; x) = xi, i = 0, 1, 2.

The above convergence is verified uniformly in each compact subset of [0, ∞). Applying Korovkin’s theorem, we obtain the
desired result. �

3. The order of approximation

We give the following lemmas and definitions which are used in this section.

Definition 1. Let [a, b] be a closed interval and fix f ∈ C[a, b]. If δ > 0, the modulus of continuity ω( f ; δ) of f is defined by

ω( f ; δ) := sup
x,y∈[a,b]
|x−y|≤δ

|f (x) − f (y)|.

Definition 2. The second modulus of continuity of f ∈ CB[0, ∞) is defined by

ω2( f ; δ) := sup
0<t≤δ

∥f (. + 2t) − 2f (. + t) + f (.)∥CB

where CB[0, ∞) is the class of real valued functions defined on [0, ∞) which are bounded and uniformly continuous with
the norm ∥f ∥CB = supx∈[0,∞) |f (x)|.
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Definition 3 (Ditzian and Totik [5]). Peetre’s K -functional of the function f ∈ CB[0, ∞) is defined by

K( f ; δ) := inf
g∈C2

B ([0,∞))

{∥f − g∥CB + δ∥g∥C2
B
}

where

C2
B [0, ∞) := {g ∈ CB[0, ∞) : g ′, g ′′

∈ CB[0, ∞)}

and the norm ∥g∥C2
B

:= ∥g∥CB + ∥g ′
∥CB + ∥g ′′

∥CB . It is clear that the following inequality:

K( f ; δ) ≤ M{ω2( f ;
√

δ) + min(1, δ)∥f ∥CB}

is valid, for all δ > 0. The constantM is independent of f and δ.

Lemma 2 (Gavrea and Rasa [6]). Let g ∈ C2
[0, ∞) and (Pn)n≥0 be a sequence of linear positive operators with the property

Pn(1; x) = 1. Then

|Pn(g; x) − g(x)| ≤ ∥g ′
∥


Pn((s − x)2; x) +

1
2
∥g ′′

∥Pn((s − x)2; x). (3.1)

Lemma 3 (Zhuk [7]). Let f ∈ C[a, b] and h ∈ (0, b−a
2 ). Let fh be the second-order Steklov function attached to the function f .

Then the following inequalities are satisfied:

(i) ∥fh − f ∥ ≤
3
4
ω2( f ; h)

(ii) ∥f ′′

h ∥ ≤
3

2h2
ω2( f ; h).

(3.2)

Lemma 4. For x ∈ [0, ∞), we have

Ln((s − x)2; x) =
B′′(nx) − 2B′(nx) + B(nx)

B(nx)
x2 +

A(1)B′(nx) + 2A′(1)[B′(nx) − B(nx)]
nA(1)B(nx)

x +
A′′(1) + A′(1)

n2A(1)
.

Proof. From the linearity property of Ln operators, we can write

Ln((s − x)2; x) = Ln(s2; x) − 2xLn(s; x) + x2Ln(1; x).

By virtue of Lemma 1, the proof is completed. �

The rate of convergence will be calculated using the following four theorems.

Theorem 2. Let f ∈ C[0, ∞) ∩ E. The Ln operators verify the following inequality:

|Ln( f ; x) − f (x)| ≤ 2ω( f ;


λn(x))

where

λ := λn(x) = Ln((s − x)2; x) =
B′′(nx) − 2B′(nx) + B(nx)

B(nx)
x2

+
A(1)B′(nx) + 2A′(1)[B′(nx) − B(nx)]

nA(1)B(nx)
x +

A′′(1) + A′(1)
n2A(1)

. (3.3)

Proof. Using (2.1) and the properties of the modulus of continuity, we deduce

|Ln( f ; x) − f (x)| ≤
1

A(1)B(nx)

∞
k=0

pk(nx)
f 

k
n


− f (x)


≤


1 +

1
A(1)B(nx)

1
δ

∞
k=0

pk(nx)
 kn − x




ω( f ; δ). (3.4)
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By considering the Cauchy–Schwarz inequality, in view of Lemma 4 we get

∞
k=0

pk(nx)
 kn − x

 ≤


A(1)B(nx)


∞
k=0

pk(nx)
 kn − x

2
 1

2

= A(1)B(nx)

B′′(nx) − 2B′(nx) + B(nx)

B(nx)
x2

+
A(1)B′(nx) + 2A′(1)[B′(nx) − B(nx)]

nA(1)B(nx)
x +

A′′(1) + A′(1)
n2A(1)

1/2

.

By using the last inequality in (3.4), we obtain

|Ln( f ; x) − f (x)| ≤


1 +

1
δ


λn(x)


ω(f ; δ) (3.5)

where λn(x) is given by (3.3). With the inequality (3.5), on choosing δ =
√

λn(x), we obtain the desired result. �

Theorem 3. For f ∈ C[0, a], the following inequality:

|Ln( f ; x) − f (x)| ≤
2
a
∥f ∥h2

+
3
4
(a + 2 + h2)ω2( f ; h)

is satisfied where

h := hn(x) =
4

Ln((s − x)2; x)

and the second modulus of continuity of f ∈ C[a, b] is given by

ω2( f ; δ) := sup
0<t≤δ

∥f (. + 2t) − 2f (. + t) + f (.)∥

with the norm ∥f ∥ = max
x∈[a,b]

|f (x)|.

Proof. Let fh be the second-order Steklov function attached to the function f . By virtue of the identity (2.1), we have

|Ln( f ; x) − f (x)| ≤ |Ln( f − fh; x)| + |Ln(fh; x) − fh(x)| + |fh(x) − f (x)|
≤ 2∥fh − f ∥ + |Ln( fh; x) − fh(x)|. (3.6)

Taking into account the fact that fh ∈ C2
[0, a], it follows from Lemma 2 that

|Ln( fh; x) − fh(x)| ≤ ∥f ′

h∥

Ln((s − x)2; x) +

1
2
∥f ′′

h ∥Ln((s − x)2; x). (3.7)

Combining the Landau inequality and Lemma 3, we can write

∥f ′

h∥ ≤
2
a
∥fh∥ +

a
2
∥f ′′

h ∥

≤
2
a
∥f ∥ +

3a
4

1
h2

ω2( f ; h).

From the last inequality, (3.7) becomes, on taking h =
4

Ln((s − x)2; x),

|Ln( fh; x) − fh(x)| ≤
2
a
∥f ∥h2

+
3a
4

ω2(f ; h) +
3
4
h2ω2( f ; h). (3.8)

Substituting (3.8) in (3.6), Lemma 3 hence gives the proof of the theorem. �

Remark 1. In Theorem 3, we give a proof for h ∈ (0, a
2 ). For the special case B(t) = et , A(t) = 1 and x = 0, one can deduce

that h = 0 from the equality h := hn(x) =
4

Ln((s − x)2; x). The inequality obtained in Theorem 3 still remains true when

h = 0.

Theorem 4. Let f ∈ C2
B [0, ∞). Then

|Ln( f ; x) − f (x)| ≤ γ ∥f ∥C2
B
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where

γ := γn(x) =


B′′(nx) − 2B′(nx) + B(nx)

B(nx)
x2 +

(B′(nx) − B(nx))(nA(1) + 2A′(1)) + A(1)B′(nx)
nA(1)B(nx)

x

+
A′′(1) + (n + 1)A′(1)

n2A(1)


.

Proof. Using the Taylor expansion of f , the linearity property of the operators Ln and (2.1), it follows that

Ln( f ; x) − f (x) = f ′(x)Ln(s − x; x) +
1
2
f ′′(η)Ln((s − x)2; x), η ∈ (x, s). (3.9)

Taking into account the fact that

Ln(s − x; x) =
B′(nx) − B(nx)

B(nx)
x +

A′(1)
nA(1)

≥ 0

for x ≤ s, by combining Lemmas 1 and 4 in (3.9) we are led to

|Ln( f ; x) − f (x)| ≤


B′(nx) − B(nx)

B(nx)
x +

A′(1)
nA(1)


∥f ′

∥CB +
1
2


B′′(nx) − 2B′(nx) + B(nx)

B(nx)
x2

+
A(1)B′(nx) + 2A′(1)


B′(nx) − B(nx)


nA(1)B(nx)

x +
A′′(1) + A′(1)

n2A(1)


∥f ′′

∥CB

≤


B′′(nx) − 2B′(nx) + B(nx)

B(nx)
x2 +

(B′(nx) − B(nx))(nA(1) + 2A′(1)) + A(1)B′(nx)
nA(1)B(nx)

x

+
A′′(1) + (n + 1)A′(1)

n2A(1)


∥f ∥C2

B

which completes the proof. �

Theorem 5. Let f ∈ CB[0, ∞). Then

|Ln( f ; x) − f (x)| ≤ 2M{ω2( f ;
√

δ) + min(1, δ)∥f ∥CB}

where

δ := δn(x) =
1
2
γn(x)

and M > 0 is a constant independent of the function f and of δ. Note that γn(x) is defined as in Theorem 4.

Proof. Let g ∈ C2
B [0, ∞). Theorem 4 allows us to write

|Ln( f ; x) − f (x)| ≤ |Ln( f − g; x)| + |Ln(g; x) − g(x)| + |g(x) − f (x)|

≤ 2∥f − g∥CB +


B′′(nx) − 2B′(nx) + B(nx)

B(nx)
x2

+
(B′(nx) − B(nx))(nA(1) + 2A′(1)) + A(1)B′(nx)

nA(1)B(nx)
x +

A′′(1) + (n + 1)A′(1)
n2A(1)


∥g∥C2

B

= 2[∥f − g∥CB + δ∥g∥C2
B
]. (3.10)

The left-hand side of inequality (3.10) does not depend on the function g ∈ C2
B [0, ∞), so

|Ln( f ; x) − f (x)| ≤ 2K( f ; δ). (3.11)

By using the relation between Peetre’s K -functional and the second modulus of smoothness, (3.11) becomes

|Ln( f ; x) − f (x)| ≤ 2M{ω2( f ;
√

δ) + min(1, δ)∥f ∥CB}. �

Remark 2. Note that in Theorems 2–5 when n → ∞, then λ, h, γ and δ tend to zero under the assumption (2.4).
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4. Example

Gould–Hopper polynomials [8] have generating functions of the form

eht
d+1

exp(xt) =

∞
k=0

gd+1
k (x, h)

tk

k!
(4.1)

and the explicit representation

gd+1
k (x, h) =


k

d+1


s=0

k!
s!(k − (d + 1)s)!

hsxk−(d+1)s (4.2)

where, as usual, [.] denotes the integer part. The Gould–Hopper polynomials gd+1
k (x, h) are d-orthogonal polynomial sets of

Hermite type [9]. The notion of d-orthogonality was introduced by Van Iseghem [10] and Maroni [11].
From (4.1), it is clear that the Gould–Hopper polynomials are the Brenke type polynomials with

A(t) = eht
d+1

and B(t) = et .

Under the assumption h ≥ 0, the restrictions (1.11) and condition (2.4) for the operators Ln given by (1.12) are satisfied.
Then the explicit form of the Ln operators including the Gould–Hopper polynomials is

L∗

n( f ; x) = e−nx−h
∞
k=0

gd+1
k (nx, h)

k!
f

k
n


. (4.3)

It is worthy of note that for h = 0 we obtain gd+1
k (nx, 0) = (nx)k and the operators (4.3) lead to the well-known Szasz

operators.
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