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1. IN~a0DUcrt0N 

Recently Rivlin [2] has given a very interesting extension of Walsh’s 
theorem on equiconvergence. Let C denote the complex plane, and let 
&(&I)), 1 < p < XI, be the class of functionsfthat are analytic on the disc 
D(p) = {z E C: 1~1 <p} and have a singularity on the circle {z E C: IzI = p}. 
If f(z) = co” u,z’, we denote by S,,(f; z) the partial sum x.;1 a,~‘. For a 
positive integer m = nq + c, where q, c are fixed integers, let o = e2nrlm. If n, 
denotes the family of all polynomials of degree <n and if p,,,(f; z) denotes 
such a polynomial minimizing 

m-1 
c IS(ok)-9,(Wk)12 (1.1) 

k=O 

over all polynomials q,, E IIT,,, then Rivlin proved 
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THEOREM A. Let f E &‘(D(p)) and let q be a fixed positive integer. Then 

lim (~,,(f; 2) - Ufi z)) = 0, (1.2) H’S 

for all z~D(p’+~), th e convergence being untform and geometric in Iz] < 
Z<p’+Y, where m = nq + c, c a fixed integer. Moreover, the result is best 
possible in the sense that (1.2) fails for every z satisfying ]zI = p’ + y for some 

f E ~(D(P)). 

When m = n + 1, Theorem A reduces to a well-known theorem of J. L. 
Walsh [ 5,4]. 

Rivlin gave another extension of Walsh’s theorem for functions analytic 
in the ellipse b(p) in C which is the image of the disc D(p) under the map- 
ping z=t(w + w-l). Let .d(G(p)) d enote the class of functions f that are 
analytic on d(p) but not on any region containing the closure of b(p). Let 

f(z)=~'4Tk), (1.3) 
0 

where Tk(z) is the Chebyshev polynomial of degree k and where the prime 
means that the first term in Eq. (1.3) is to be halved. Let (I”‘) (j = 1, . . . . m) 
be the zeros of T,(x) (i.e., Sj”‘) = cos[(2j- 1) lr/2m], j= 1, . . . . m), and let 
u,,,,(f; z) denote the algebraic polynomial which minimizes 

I f crj-‘) - p,K::“‘)I 2 (1.4) 

over all polynomials pn E II,,. If S,(f; z) = C’; =O A, TJz), then Rivlin 
proved 

THEOREM B [2]. IffEd(&(p)) and q is any integer > 1, then 

lim (u,,,(f; z) - S,(fi z)) = 0, m=nq+c (1.5) n-m 

for all z in ~?(p~~~’ ), the convergence being uniform and geometric on a(t) 
for s<pzy-‘. 

In addition, Rivlin also showed that Theorem B is also true if we replace 
u,,,(f; z) by the polynomial t,,,(f; z) which minimizes 

k.fl I f(vP') - P,(rlP)12~ (1.6) 

where q,$/) (k= 1, . . . . m) are the extrema of T,(x) on C-1, 11. 



RIVLIN'S THEOREM ON WALSH EQUICONVERGENCE 341 

The method of Rivlin is based on the properties of Chebyshev 
polynomials and their zeros. This makes a further extension of his results 
difficult. Our purpose here is to propose a mixed problem of interpolation 
and /,-approximation and to extend Rivlin’s result in two directions. As a 
special case we obtain “help” functions which give larger regions of 
equiconvergence as in [ 11. 

In Section 2 we state the problem and the main results in Theorems 1 
and 2. Section 3 deals with the proof of Theorem 1, and the proof of 
Theorem 2 is given in Section 4. 

2. PRELIMINARIES AND MAIN RESULT 

Let A(p) denote the ring {z E C: p ’ < IzI <p ), p > 1, and let d(A(p)) 
denote the class of functions f which are analytic on A(p) but not on any 
region containing the closure of A(p). Let us set 

f(z)= 5 u,z', z E ‘WI. (2.1) 
-m 

We shall consider the following two problems: 

Problem A. For given f E d(A(p)), find the polynomial P,,,,, defined 
by 

U?l+lI 
P r,+.(z)=Prm+n(f;z)= 1 C”Z” 

-rm n 

which satisfies 

[P~~+,(ok)-f(P)(cok)]=O (v=O, 1, . . . . r- l,k=O, 1, 

where u2m = 1, and which minimizes 
2m-I 

,To lP~+.(Wk)-f(')(~k)12, 

over all polynomials of the form (2.2) which satisfy (2.3). 

Problem B. Find the region where the difference 

P rm+n(A z)- Srm+n(f; z) 

.  . . )  

(2.2) 

2m - I), (2.3) 

(2.4) 

(2.5) 

tends to zero as n --+ co, when m = nq + c, where c and q are positive integer 
constants, and where 

V?l+tl 
S rm+n(.Lz)= C ujz' (2.6) 

--rm-II 

is a section of the Laurent series (2.1) of J 
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The solution to Problem A is given by 

THEOREM 1. The polynomial P ,+,,(A z) of the,form (2.2) which satisfies 
(2.3) and minimizes (2.4) is given by 

P ..n+n~fizr)=&.~cRf(~~ trm+nK,(t, z)dt, (2.7) 

where 

z2nL 1 

( > 

r 
z rm+nK,(t, z)(t-z)= 1 - tZ” 

(z2m- 1)’ 
+(t2”‘-I)r+l t 

2m-2n4(t2n+l~z2n+1) (28) 
> . 

and C, is the oriented boundary of the ring A(R). 

We postpone the proof of Theorem 1 to Section 3 and proceed to state 
our main result. 

THEOREM 2. If‘ f~d(A(p)), f(z)=f(l/z) for all z~A(p) and 
P r,~ + ,,(f; z) is the solution to Problem A, and if m = nq + c, where n, q, and c 
are positive integers, then 

lim Cp,,+n(f;~)-Srm+n(f;~)l=O, ,1 + 3c (2.9) 

,for all z E A(@)), where 

T(P) = p2- ‘, when r=O 

=min{p 1+(24-2v(v+l) I+2/(yrpl) 
1, when rbl. 

(2.10) 
>P 

Moreover, the convergence is uniform and geometric in any compact subset 
of the above ring. Also the result is best possible in the sense that (2.9) fails 
for euery z on the boundary of A(z(p)) for some fEd(A(p)). 

Remark. Problems A and B can also be formulated and solved in a 
similar way if instead of considering the minimization problem (2.4) on the 
zeros of zZm = 1, we consider the same problem on the zeros of z2”’ = -1. In 
this case, & in (2.4) is replaced by c/-“~ and the corresponding 
polynomial B rm+n(f; z), which satisfies (2.3) and (2.4) on the zeros of 
Z 

2m = -1, is given by 

&, f(t) trm+n~,(t,z)dt. 
CR 
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Here R,( t, z) is obtained from (2.8) by replacing zZm - 1 and t2m - 1 in 
(2.8) by z2”’ + 1 and t2”’ + 1, respectively. Also, Theorem 2 holds when 
P rm + .(f; 4 replaces Cm + ,,(f; 4. 

When r = 0, Theorem A gives the polynomials t,,,(f; z) and u,,,(f; z) of 
Rivlin [2] according as we use the zeros of z*“‘+ 1 or of z2”’ - 1 respec- 
tively in (2.3) and (2.4). 

3. PROOFOF THEOREM 1 

Since P “,,+.(f; z) is of the form (2.2) and satisfies (2.3), we have 

Z “‘I + n P r’M+,,(f; z) = Q2rm- 1(z) + kZrn - 1)’ &JZ), (3.1) 

where R2,,(z) E I7,,,. From (2.3), we require that 

CQ2r,,r- I(z) = ‘“~“lj~,,,r=f’“‘(ok) (v=O,l,..., r-l,k=O, l,..., 2m-I). 

Equivalently, we require 

QL lbk) = Cz’“~+mlj,,,,,k. 

From a known formula [ 11, we have 

Q2~,‘-,(z,=~l,,“:‘~+~{l-(~)‘}dl. (3.2) 

In order to find Pz+,,(&), we need to evaluate 

A, := [Qp,+ l(z) z -],!;i and A, := [(zZM - 1)’ RZI1(Z) z -“‘? -“I$! 

Since 

L 
-g (P - l)‘] = r!(2m)’ 0 k’, 

Cl>!- 

it is easy to see that 

A, = r!(2m)‘w-k’R2,,(wk) w~~(““+~) 

Also from (3.1) and (3.2), we have 

(k = 0, 1, . ..) 2m - 1). (3.3) 

A,= 
[ 

Z-“‘1 dj 
f(t) p+n (‘) 

27-C cR 
dt 

t-z 1 c!# 
1 (Z2m- l)‘Z-‘m-n (‘) 

-- 
2rti 

dt 

t-z 1 2cwk 
=r(‘)(~~)-~,~~(‘m+n+‘, jc -flf;;;;i”uk)dt. (3.4) 

R 
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From (3.3) and (3.4), the problem of minimizing 
mizing 

2m ~ I 
c lR2”(4 - g(Wk)12 

(2.4) reduces to mini- 

(3.5) 
k=O 

over all polynomials R,, E q,,, where 

g(z)=& CR 
f(t) trm+n 

(P- l)‘(t-z)dt. 

In order to minimize (3.5), we replace g(z) by its Lagrange interpolant on 
the 2m roots of unity and use a result of Rivlin [2]. Accordingly, the 
Lagrange interpolant of g(z) is 

If s2,!(z; L,,,_ ,) denotes the Taylor 
Lz+ ,(z; g), the result of Rivlin yields 

R2n(z) = J,,(z; L2, - ,(z; g)) 

polynomial of degree 2n for 

1 
i 

f(t) t 
=271i CR 

n,r+2m~n~I(t2~+1~Z2n+1)dt 

(P- ly+‘(t-z) . (3.6) 

The formula (2.7) is obtained now on using (3.1), (3.2), and (3.6). 

COROLLARY 1. Zf fed(A(p)) and if moreouer f(z) = f(z-‘) for all 
z E A(p), then 

z ‘~+~~Pr,+H(,z)=+Jy {t~“‘+“i’K,(t. z) 

-(fr+“+‘K, (;,z)}dt, (3.7) 

where I- is the circle IzI = R, 1 < R < p. 

Proof Since C, is the union of the circles IzI = R and IzI = R-l, a 
change of variable in the integral on IzI = R-’ gives the result after an 
elementary calculation, because f(t) = f (t - I). 

Remark. We remark that when r = 0, P,Jf; z) is the polynomial 
t,,,(z; f) of Rivlin [a]. 

Also from (2.6), we see that if f (t) = f (t - I), then 

Z 
i-m+” S,,+.(f;z)=~~~~%(t,z)dt, (3.8) 
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where 

~~+?I 
z 
rm+n+ I -t rm+n+l +lZr,,._(,/t)‘“+” 

(3.9) 
z-t t z-(1/t) . 

This follows also from the representation off‘(z), viz., 

when f(z) =f(z ‘). 

(3.10) 

COROLLARY 2. If fE.d(A(p)) and if moreouer f(z)=f(z-‘) for all 
-E A(p), then i 

P mm+n(f;Z)=P,,+.(f;z-i). (3.1 I) 

Proof. From (2.7) and (2.8), we have 

x 1+ c (Z2m - l)(l- t 2m-Zn-lz2n+1 
1 (pm - 1 y+ 1 1 dt 

and 

1 0 
UTl+n 

- P 
z 

r,,,+,,cr;z-‘)~~ j f(+‘y 
CR t-z- 

x 1+(1-Z*m)rZ-2”r l-t2m-2n-1 

[ (pL 1y+l ( 
Z2n+ I 11 dt. 

Changing t into t ~’ in the above and simplifying, we have 

P ,m + .(.fi z -i,=& jc,(;)‘“‘“” 

[ 
(Z2m _ 1)’ Z-2m(r+ 1) 

( 
Z 

-2np1 

x l- (f2m~l)r+lZ2mr l-t2m-2n-I )I dt. 

From these we obtain after simplifying that 

P ,D,+.(f;z)-p~m+~(~z-I)=l 271i jcR~[(i)“+n-(;)rm+n]dt=O, 

because the integrand is single-valued analytic in the annulus C,. 
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4. SOME LEMMAS AND PROOF OF THEOREM 2 

The proof of Theorem 2 will require a number of estimates and to this 
effect we prove 

LEMMA 1. If f (z) satisfies the conditions of Theorem 2, then we have 

P ‘m+n(f;z)-~‘m+n (Lz)=+-.jy+hoW, (4.1) 

where A( t, z) is given hy 

A(t,z)=S,(t,z)+S2(trz)+S3(t,z)--S2(t~’,z)--S3(t~‘,~) (4.2) 

and 

(t 
2mr+Zn+ 1 

S,(t, z) = - 

-Z2m’+2n+1 
1 

(t-z)(tz)‘*+” ’ 

s,ct, z) = 

p’+~+1{(f**-1)‘-(z2*-l)‘) 

(t2*- l)‘(t-z)z’m+fl ’ (4.3) 

WC z) = 
(z2* -1)‘t m’+2m-fz(f2n+1~z2n+I) 

(p- l)‘+‘(t-Z)Z’*+fl . 

Proof: These formulae are obtained from (3.7) and (3.8) and on adding 
the integral 

1 f(t) 

zir t J i 

Z’m+n-t’m+n 1 Z’m+n-(l/t)‘m+n 

t-z +t z-t-’ 1 
dt 

to the right side of (3.7), since it is easily seen to be zero when f(t) = f( l/t). 

LEMMA 2. The following identity holds: 

(t2m - I)‘- (z2m - 1)’ = **c 1 Zkt-k- lAk(t) 
t-z k=O 

wlhere Ak(t) is a polynomial such that 

= i (-l)‘-’ r t2mj (v=O,l,...,, 
j=v+l 0 j 

*- 

(4.4) 

1). (4.5) 
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This is easily verified. When r = 0, AJt)‘s are all zero, and when Y = 1, 
A/J t) = t2m. 

LEMMA 3. Zf we set 

mr+n 
A(t, z)= c A#) zj, (4.6) 

,= -*r-n 

then l,(t) = L,(t), j= 1, 2, . . . . rm+n, andfor Itl=R (l<R<p), wehaue 

lw,,,(t)=O(R ~m’pnp’), m(r-2A--2)+n+ 1 d 1 jl <m(r-211)-n- 1 

= O(R- ,‘I’ ~ 2m + ,1 
L max(O, m(r - 22) -n) < 1 jl 6 m(r - 2i) + n. 

(4.7) 

The proof of this lemma depends on Lemma 2 and (4.3). The estimates 
(4.7) can be used to prove Theorem 2, but we provide here a simple proof. 

Proof of Theorem 2. Set A := S,(t, z) + S,(t, z) + S,(t, z). Then from 
(4.3) we obtain 

,mr ?I 

+ 

t 
m’:2m-n-1 (1 +ow2m)+o(~-2m)~ 1 > 

where we may assume without loss of generality that IzI > 1, ItI > 1. 
Moreover, we observe that if we set B := S,( l/t, z) + S,( l/t, z), then using 
(4.3) again we see that 

B2 
+-nw(t~*m- l)‘-($m- 1)‘) 

(t-2* - l)‘(t-I-Z)Z*‘+n 

(Zzm -1)’ tp-2m+n(f-2n~I~Z2n+1) 

+([-2m- I)‘+1 (t-1 -Z)p’+n 
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Some simplification yields 

1 
B=vw..- -_ 

[ 

1 ( - 1)’ Zmr -. n 

1 - tz (tZ)rm+n p+ll (1 +o(Z-2m)+0(t-*m)) 

+W) 
rzmr+n+ I 

mr+2m-n- 1 (1+ OWZrn) + o(t-2m)) . t 1 
From the above estimates for A and B we see that as n -+ co, 

and 

Thus we have 

nct,z,=o(~)+o(t~~::~~~~,), (4.8) 

which tends to zero if 

IzI < min{p (mr+nMmr-n) ) pr+zm -n- l)/(mr+n+ I) 
1. 

This gives the result when n + cc and completes the proof for r > 1 

For r = 0, S,(t, z) and S,(l/t, z) do not occur and the estimate in 
Theorem 2 is easily obtained from (4.8), since in this case A(t, z) = 
(+rz+ Ilt2” n - 1 ), 

Remark. For r = 0, the polynomial P,(z) in Theorem 1 can be easily 
seen to be the polynomial t,,,(,) (z, f) of Rivlin [2]. In fact we can see from 
(2.7) and (2.8) that 

If we set 

Sn,v(Z,f)= i’ (A2vm+j+AZvm-j) T,(Z) (v = 1, 2, 3, . ..). 
J=o 

wheref(z) is given by (1.3), then 
I- 1 

/i-mm tn.&; f) - s,(z; f) - C s,,,(z; f) = 0 
“=I 

for (zl < p2+ ‘. 

(4.9) 
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Theorems 1 and 2 can be formulated for functions in &‘(A@)) and an 
analogue of (4.9) can also be obtained from the representation (4.1). 

It would be interesting to obtain sharpness results analogous to those of 
Saff and Varga [3] and the analogue of Theorem 2 above when Hermite 
interpolation is replaced by lacunary interpolation as in [6]. 
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