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1. INTRODUCTION

Recently Rivlin [27] has given a very interesting extension of Walsh’s
theorem on equiconvergence. Let C denote the complex plane, and let
' (D(p)), 1 < p < oo, be the class of functions f that are analytic on the disc
D(p)={zeC: |z] <p} and have a singularity on the circle {ze C: |z] =p}.
If f(z)=Y§ a;z’, we denote by S,(f;z) the partial sum 3§ a,z’. For a
positive integer m = ng + ¢, where g, c are fixed integers, let w =™, If &,
denotes the family of all polynomials of degree <n and if p,,,(f; z) denotes
such a polynomial minimizing

m— 1

¥ 1 f(0F) =g, (0)? (1.1)

k=0

over all polynomials ¢, € I7,, then Rivlin proved

n?
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THEOREM A. Let fe 4 (D(p)) and let q be a fixed positive integer. Then
im (p,,.(f,2) = S,(f; 2) (1.2)

H— oG

for all ze D(p'*9), the convergence being uniform and geometric in |z| <
t<p'*9, where m=nq+c, c a fixed integer. Moreover, the result is best
possible in the sense that (1.2) fails for every z satisfying |z| =p'*¢ for some
fe(D(p)).

When m=n+ 1, Theorem A reduces to a well-known theorem of J. L.
Walsh [5,4].

Rivlin gave another extension of Walsh’s theorem for functions analytic
in the ellipse &(p) in C which is the image of the disc D(p) under the map-
ping z=4w+w~"). Let &/(&(p)) denote the class of functions f that are
analytic on &(p) but not on any region containing the closure of &(p). Let

=§’ A, Til2), (1.3)

where T,(z) is the Chebyshev polynomial of degree k and where the prime

means that the first term in Eq. (1.3) is to be halved. Let 5('"’ ( =1,..,m)

be the zeros of T,(x) (ie., & =cos[(2j—1)n/2m], ]—1 m), and let
u,..(f; z) denote the algebralc polynomial which minimizes

S AE) — pa(Em))? (14)

j=1
over all polynomials p,eM,. If S, (f,z)=X"%_,A:Ti(z), then Rivlin
proved

THEOREM B [2]. If fe (& (p)) and q is any integer > 1, then
lim (u,,.(f;2)—S.(f;z2)=0, m=ng+c (1.5)

n— o0

for all z in &(p?*~ '), the convergence being uniform and geometric on &(t)
for < p¥.

In addition, Rivlin also showed that Theorem B is also true if we replace
U, ( f; 2) by the polynomial 1, ,,(f; z) which minimizes

S 1 A1) — pane), (16)
k=1

where n{™ (k=1, .., m) are the extrema of T, (x) on [—1,1].
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The method of Rivlin is based on the properties of Chebyshev
polynomials and their zeros. This makes a further extension of his results
difficult. Our purpose here is to propose a mixed problem of interpolation
and /,-approximation and to extend Rivlin’s result in two directions. As a
special case we obtain “help” functions which give larger regions of
equiconvergence as in [1].

In Section 2 we state the problem and the main results in Theorems 1
and 2. Section 3 deals with the proof of Theorem 1, and the proof of
Theorem 2 is given in Section 4.

2. PRELIMINARIES AND MAIN RESULT

Let A(p) denote the ring {zeC: p "< |z| <p}, p>1, and let o (A(p))
denote the class of functions f which are analytic on A(p) but not on any
region containing the closure of A(p). Let us set

flz)= i a;z’, ze A(p). (2.1)

We shall consider the following two problems:

Problem A. For given fe o/(A(p)), find the polynomial P,,, , , defined
by
rm+n

Prm+n(z):Prm+n(ﬁ Z)= 2 Cvzv (22)

—rmoeon

which satisfies
[PY), (0")— f(0*)]=0 (v=0,1,..,r—1,k=0,1,.,2m—1), (2.3)

where w?" =1, and which minimizes
2m— 1

Y PO (0" = [P w)l, (2.4)

k=0
over all polynomials of the form (2.2) which satisfy (2.3).

Problem B. Find the region where the difference
Prm+n(.f;2)—srm+n(ﬁz) (2‘5)

tends to zero as n — oo, when m = ng + ¢, where ¢ and g are positive integer

constants, and where
rm+n

Sminlfizy= Y a2 (2.6)

—rm—n

1s a section of the Laurent series (2.1) of f.
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The solution to Problem A is given by

THEOREM 1. The polynomial P, , .(f.z) of the form (2.2) which satisfies
(2.3) and minimizes (2.4) is given by

I
Prsal Sy Z)zz_mL~ Sy " K (1, 2) d, (2.7)

where

2m __ 1\"
2K (L 2 —z) =1 —<£—>

-1
2m_1 r
+(t(22m_1)r)+ltzm—2n1(t2n+1_22n+1)’ (2.8)

and Cy is the oriented boundary of the ring A(R).

We postpone the proof of Theorem 1 to Section 3 and proceed to state
our main result.

THEOREM 2. If fesl(A(p)), f(z)=f(1/z) for all zeA(p) and
P.... . [f; z) is the solution to Problem A, and if m =nq + ¢, where n, q, and ¢
are positive integers, then

lim [Prm+n(f; Z)—Srm+n(.f; Z)]=0’ (29)

H— o

for all ze A(zx(p)), where

(p)=p* ", when r=0

: 2g-2 1 1+2 1 (2.10)
:mln{p1+( q—2)/(gr+ ),p +2/{qr — )}’ when r>1.

Moreover, the convergence is uniform and geometric in any compact subset
of the above ring. Also the result is best possible in the sense that (2.9) fails
for every z on the boundary of A(t(p)) for some fe A (A(p)).

Remark. Problems A and B can also be formulated and solved in a
similar way if instead of considering the minimization problem (2.4) on the
zeros of z2” = 1, we consider the same problem on the zeros of z” = —1. In
this case, w* in (2.4) is replaced by w*~'? and the corresponding
polynomial P, , .(f:z), which satisfies (2.3) and (2.4) on the zeros of
z?" = —1, is given by

i _
%L‘ (1) R (1, 2) dr.
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Here K,(t,z) is obtained from (2.8) by replacing z*" —1 and +*"—1 in
(2.8) by z™+1 and * +1, respectively. Also, Theorem 2 holds when

prm+n(ﬂ Z) replaces Prm+n(ﬁ Z).

When r =0, Theorem A gives the polynomials ¢,,,(f: z) and u,,.(f: z) of
Rivlin [2] according as we use the zeros of z” + 1 or of z" — 1 respec-
tively in (2.3) and (2.4).

3. PrROOF OF THEOREM 1

Since P,,, ., .(f; z) is of the form (2.2) and satisfies (2.3), we have

Zrm+"Prm+n(ﬁ Z) = Q2rm~ I(Z) + (zlm_ l)r R2n(z)’ (31)
where Rz,,(z)e II,,. From (2.3), we require that
[Qoym_(2)z™ ”]‘V_’“ =/ w,) (v=0,1,.,r—1,k=0,1,..,2m—1).

Equivalently, we require
b (@)= [2™ A ()]0

From a known formula [1], we have

B 1 f(t)[rm+n ZZm_l r
O =5 [ L= i-(5 ) e 62

In order to find P

rm+n(
Al = [QZrmf](Z 4 rm_"]::k) and 2 _[( ) RZH(Z)Z e ((,:k)

Since

%), we need to evaluate

dl'
|: - (22— 1)’] =rl2m) o *,
dz wk

it is easy to see that
Ay =ri2m) o0 "Ry (@*) 0K+ (k=0,1,..,2m—1). (33)
Also from (3.1) and (3.2), we have

1 t rm+n {r)
[_ [ L0,
R

2ni t—z Wk
j f rm+n (ZZm_l)rZ—rm—n (r) »
S 2mide, (P AY t—z ek
= {r) k _r'(zm)r —k(rm+n+r) f(t) t""+’1 dt 3 4
f (Cl) ) 27” w JCR(Izm—l)r(t—Cl)k) ‘ ( i )
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From (3.3) and (3.4), the problem of minimizing (2.4) reduces to mini-
mizing
2m—1

Y Ry (")~ g(h))? (3.5)

k=0
over all polynomials R,, € n,,, where

1f (f(t)t""*"

2mideg (7 —1)(t - 2)

g(z)= dr.
In order to minimize (3.5), we replace g(z) by its Lagrange interpolant on

the 2m roots of unity and use a result of Rivlin [2]. Accordingly, the
Lagrange interpolant of g(z) is

f t) trm+n(12m ZZm)

Ly, (2 8)= 27”_[ 1)r+1(t—2) dr.

If s,,(z;L,,_;) denotes the Taylor polynomial of degree 2n for
L,,  (z; g), the result of Rivlin yields

Ry (z)=53,02; Ly, _1(2; 8))

3 1 J_ f(t)tmr+2m7"71([2"+l—22"+1)
T 2midey, (" —1y* Y1 —2)

The formula (2.7) is obtained now on using (3.1), (3.2), and (3.6).

dt. (3.6)

COROLLARY 1. If fe.(A(p)) and if moreover f(z)=f(z™") for all
ze A(p), then

L /)
Lrm+n B = rm+n+1
“ Prm+n(f;z) ZTU.JF p {t Kl(t, Z)

1 rm+n+ 1 1
- <7> K, <7, z>} dt, 3.7)

where I is the circle |z] =R, 1 <R < p.

Proof. Since Cp is the union of the circles |z =R and |z|=R~', a
change of variable in the integral on |z| = R~! gives the result after an
elementary calculation, because f(¢)= f(t ).

Remark. We remark that when r=0, P,(f;z) is the polynomial
t,m(z; ) of Rivlin [2].
Also from (2.6), we see that iff(t)=f(t“) then

rm+nSrm+n(f '[ ——-—Ko(t Z) dl (38)

2m
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where

rm+n rm+n+l_trm+n+1 lzrm+n_(1/t)rm+n

Zz z
Ko(t,Z)=<-t'> P +7 Z—(l/t) . (39)

This follows also from the representation of f(z), viz.,

fz) == jm[—-’——’—l] ar, (3.10)

T 2nmi t |t—z t7'—z
when f(z)=f(z ).

COROLLARY 2. If fe s/ (A(p)) and if moreover f(z)=f(z"") for all
ze A(p), then

Prn1+n(ﬁz):Prm+n(f‘;Zgl)' (311)
Proof. From (2.7) and (2.8), we have

B 1 J_ f(t) trm+n
-27131. Cr

2Pl 2)

t—z
(ZZm_l)(l_IZm—2n~lz2n+l)
X[]+ (t2m__])r+] dt
and
1rm+n 1 f(t)trm+n
- P )= | I
G) Pmatsiz =5 ] B

(I_ZZm)rZ~2mr th—anl
X|:1+ 1y ! 1- pErE dr.
Changing ¢ into ¢ ' in the above and simplifying, we have
1 z rm+n+1
P tz T =— =
mertfiz =52 ] (3)
2m __ r.—2m(r+1) —2n—1
o [P it ) e S P dt.
(IZm__l)r+lzmr th——2n~l
From these we obtain after simplifying that

Pamei2) = Pan iz =5 [ L (7= (3)" a0,

crt—2zZ|\z t

because the integrand is single-valued analytic in the annulus Cpg.
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4. SOME LEMMAS AND PROOF OF THEOREM 2

The proof of Theorem 2 will require a number of estimates and to this
effect we prove

Lemma 1. If f(z) satisfies the conditions of Theorem 2, then we have

1
P ;2= S i =5 | L4020, (4.1)

where A(t, z) is given by
At 2)=S,(t, 2) + 8o, 2) + S3(1, 2) = Syt ', 2) = S5t 71, z) - (42)

and

(t2mr+2n+l _ 2mr+2n+l)

Z
(t—2)ezy™*"
tmr+n+1{(12m_ 1)r_ (Z2m_ l)r}
(t2m_1)r(t_z)zrm+n ’
(ZZm_ 1)r tmr+2m~n(t2n+1 _22n+1)

(t2m__ 1)r+ l(t—Z) Zrmtn

Si(t,z2)= —

S,(t, z)=

Si(t, z)=

Proof. These formulae are obtained from (3.7) and (3.8) and on adding
the integral

rm+n_ rm-+n rm+n__ rm+n
LJ f@) (z t +lz (1/t) &t
r t

2nidr ot t1—z z—1t!
to the right side of (3.7), since it is easily seen to be zero when f(¢) = f(1/¢).
LEMMA 2. The following identity holds:

(t2m_1)r_(22m_1)r 2mr — 1

= 3 A, (4.4)
I—z k=0
where A,(t) is a polynomial such that
Ava(t) = A2mv+ l(t) = = A2m(v+ 1)— l(t)
-1y =3 =y () e
j=0 J

r

-3 (¢1)’j<;>t2"‘j (v=0,1,...r—1).  (45)

j=v+1
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This is easily verified. When r=0, 4,(7)’s are all zero, and when r=1,
Ak(t) = tzm.
LemMma 3. If we set
mr+n

Anz)= Y A, (4.6)

Jj= —mr—n
then A{t)=24_[1), j=1,2,..,rm+n, and for |t| =R (1 <R <p), we have
L) =O0@R ™" m(r=20=2)+n+ 1<|jl<m(r—22)—n—1
= O(R~mr72m+n)’ maX(O, m(r—2/1)—n)< |j| <m(r—2,{)+n
(4.7)

The proof of this lemma depends on Lemma 2 and (4.3). The estimates
(4.7) can be used to prove Theorem 2, but we provide here a simple proof.

Proof of Theorem?2. Set A:=S5(t,z)+ S5(t,z) + S5(f, z). Then from
(4.3) we obtain

Zmr+n+1 (I_Zfzm)r Zmr—n (_1+72r7+1t2m72r171)
Az(t_z)tmr+n—(1_t—Zm)r+ltmr+2m-rn—l (f—Z)
1 Zmr+n+l Zmrfn(l_zf2m)r
=I—Z tmr+n +tmr+2m7n—«l(1_t72n1)r+1

Zmr+n+l (1__2 —2m)r :|

tmr+n (1 _ 172m)r+1

t—z| e

+tmr—iszﬁ {1+0(z7*")+ 0(12”')}],

where we may assume without loss of generality that [z|>1, |f]> 1.
Moreover, we observe that if we set B :=S,(1/¢, z) + S5(1/¢, z), then using
(4.3) again we see that

tfmr—nfl{(t72m_ l)r_(zlm_l)r}

B=
(tAlm_ l)r(t~l_z)zmr+n

(ZZm_l)r tfmrﬁ2m+n(t—2n71__

(tfzm_l)r+1 (tfl_z)zmr+n

22n+1)

+
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Some simplification yields

1 [ D o o)
(22)

:]—IZ rm+n_ tmr+n

(_l)rzmr+n+l

+ (1+0(z‘2"')+0(z2’"))}

tmr+2m~n—1

From the above estimates for 4 and B we see that as n — oo,
gmrEn Zmr—n
A:O(tmr+n+2m)+0<tmr+2m—n1)
Zmrwu Zmr+n+1
B=0<tmr+n)+0<tmr+2mnl>’
[z Zmr+n+1
A(t’ z)=0(tmr+n>+0<tmr+2m— mI)’ (48)

which tends to zero if

and

Thus we have

‘Zl <min{p(mr+n)/(mr-n)’ p(mr+2m ~n— 1)/ (mr+n+ l)}~

This gives the result when » — o0 and completes the proof for r> 1.

For r=0, S,(4,z) and S,(1/t,z) do not occur and the estimate in
Theorem 2 is easily obtained from (4.8), since in this case A(r,z)=
O(Zrz+l/t2n1—r141).

Remark. For r=0, the polynomial P (z) in Theorem 1 can be easily
seen to be the polynomial ¢, ,,,y(z, f) of Rivlin [2]. In fact we can see from
(2.7) and (2.8) that

n 1 IZmAjfl [j-«»l
Pae) =t )= % e 52 [ 10) (S by ) e

j=0

If we set

sn,v(za f) = Z’ (A2vm+j+A2vm¥j) 7;(2) (V = 19 25 3a )5
j=0
where f(z) is given by (1.3), then

-1

m 1y )= su(5 )= 3 5wz £) =0 (49)

v=1

for |z] < pa—1,
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Theorems 1 and 2 can be formulated for functions in «/(A(p)) and an
analogue of (4.9) can also be obtained from the representation (4.1).

It would be interesting to obtain sharpness results analogous to those of
Saff and Varga [3] and the analogue of Theorem 2 above when Hermite
interpolation is replaced by lacunary interpolation as in [6].
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