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Some explicit badly approximable pairs
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Abstract

I consider the Diophantine approximation problem of sup-norm simultaneous rational

approximation with common denominator of a pair of irrational numbers, and compute

explicitly some pairs with large approximation constant. One of these pairs is the most badly

approximable pair yet computed.

r 2003 Elsevier Inc. All rights reserved.

The theory of approximation of a single irrational number by rationals is well
known, and for our purposes the relevant facts may be summarized as follows. We
measure the goodness of approximation of the rational number p=q to a by
cða; p; qÞ � qjqa� pj: For each irrational a (without loss of generality, we may
assume 0oao1) we know by Dirichlet’s theorem that there are infinitely many

rationals p=q such that ja� p=qjo1=q2; or cða; p; qÞo1: It is therefore of interest to
ask how small one may make g in cða; p; qÞog before this property fails to hold. The
approximation constant of a is thus defined as cðaÞ � lim infq-N cða; p; qÞ: Here, of

course, for each q we choose the p which minimizes cða; p; qÞ: Numbers a with a large
cðaÞ are hard to approximate by rationals. The one-dimensional Diophantine

approximation constant, defined as c1 ¼ supaAR cðaÞ; has the value 1=
ffiffiffi
5

p
; attained

at a ¼ ð
ffiffiffi
5

p
� 1Þ=2:

Otherwise expressed, this means that c1 is the unique number such that for each
e40; the inequality cða; p; qÞoc1 þ e has infinitely many rational solutions p=q for all
a; whereas there is at least one a such that cða; p; qÞoc1 � e has only finitely many
rational solutions.

These results completely solve the problem of rational approximation in one
dimension, but by contrast the situation in two or more dimensions is much more
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complex and in fact the value of the analogous constant cn for nX2 is unknown
[12,13].

We wish to simultaneously approximate a pair of irrationals by a pair of rationals
with common denominator and to measure the closeness of approximation by the

maximum error in the two components, so we make the definitions: for p ¼
ð p1; p2ÞAZ2; qAZ; a ¼ ða1; a2ÞAR2; let

cða; p; qÞ ¼ q maxðjqa1 � p1j2; jqa2 � p2j2Þ

and

cðaÞ ¼ lim inf
q-N

fcða; p; qÞ; pAZ2; qAZg:

The two-dimensional (sup-norm) simultaneous Diophantine approximation con-
stant is then

c2 ¼ sup
aAR2

cðaÞ:

Despite much work over the last few decades [1,2,4,6–9,12,13], the value of c2 is

unknown, though folklore suggests that its value is 2
7
: Adams [1] has shown that this

is the correct value if we restrict the pair ða1; a2Þ to cubic number fields, but his result
does not give us a constructive procedure to identify pairs with large cðaÞ:

Here, however, I use a theorem of Cusick together with high-precision numerical
computation to explicitly compute examples of such pairs. These have potential
applications to numerical simulation studies of dynamical systems on the 2-torus,
where ða1; a2Þ represent the winding number of periodic orbits.

Cusick’s construction makes use of the cubic number field QðyÞ; where y ¼
2 cosð2p=7Þ; of smallest positive discriminant, namely 49. For details on cubic fields
and their integral bases, I refer to [5].

The results of Cusick [7,8] state that for any integral basis f1; a; bg of QðyÞ; we

have c�o2
7; where c� is the infimum of those c such that

jx þ ay þ bzj maxðy2; z2Þoc

(with y and z not both zero) has infinitely many solutions in integers x; y; z:
Additionally, for any e40 there is an integral basis f1; a; bg such that

2

7
� c�ða;bÞoe

iff

1. The continued fraction of y has patterns ½y; n1; 1; 1; n2;y with n1; n2 arbitrarily
large; or,

2. The continued fraction of y has patterns ½y; n1; 2; n2;y with n1; n2 arbitrarily
large.
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It is not known whether either of the last two conditions are satisfied. Note that
this theorem relates to the dual problem to simultaneous Diophantine approxima-
tion, namely approximation to zero by linear forms. Hence, it is not immediately

apparent that the upper bound of 2
7
that it gives for c� that it defines is relevant to the

problem of determining c2: However, from other results of Cusick (Corollary 1 on
p. 187 of [6], along with Theorem 3 on p. 127 of [7]), we have that for the particular
field QðyÞ; c�ða; bÞ ¼ cða; bÞ for all integral bases. Also, by a theorem of Davenport
[10], we have sup c�ða;bÞ ¼ sup cða; bÞ; where the sups are over all irrational pairs,
not necessarily in a cubic field.

Thus, if the above patterns in the continued fraction of y do in fact exist, Cusick’s
theorem gives us a way of finding explicit pairs (which together with 1 form an

integral basis of QðyÞ) with a value of c close to 2
7
: Even if n1; n2 do not become

arbitrarily large, just the presence of some large values gives us potential candidates
for very badly approximable pairs.

From results in [8], it follows that for an integral basis of the form f1; pyþ
qy2; ryþ sy2g; pq

rs

� �
APSLð2;ZÞ; where �q=p and �s=r are rational approximants to y

obtained by truncating the continued fraction at the points where condition 1 or 2 is
satisfied, c� is explicitly given by

c� ¼ 1=maxfjA þ B þ Cj; jA � B þ Cj; jC � B2=ð4AÞj; jA � B2=ð4CÞjg

¼ 1=maxfjA þ B þ Cj; jA � B þ Cj; 49=j4Aj; 49=j4Cjg;

where

A

B

C

2
64

3
75 ¼

s2 �rs r2

�2qs ps þ qr �2pr

q2 �pq p2

2
64

3
75

a

b

c

2
64

3
75

with

a ¼ ðy2
2 � y2Þðy2 � y2

1Þ;

b ¼ ðy2
2 � y2Þðy1 � yÞ þ ðy2 � yÞðy2

1 � y2Þ;

c ¼ ðy� y2Þðy1 � yÞ;

y ¼ 2 cosð2p=7Þ;

y1 ¼ 2 cosð4p=7Þ;

y2 ¼ 2 cosð6p=7Þ:
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With this background, I can now state the main result of this paper: I have exactly
computed over 6 million partial quotients of the continued fraction of y (directly

from the defining cubic x3 þ x2 � 2x � 1), and the required patterns do indeed occur,
though very infrequently. The largest values of c�; with the corresponding fractional

parts of a ¼ pyþ qy2 and b ¼ ryþ sy2 occur at:

(A) positions 57–60: ½y; 60; 1; 1; 50;y; c�E0:2851877:
aE0:4563286858107963651609830446124431560745665647128596153008802;
bE0:4781573193903170892895817415258772866671562381178937772663665;

(B) positions 2927–2930: ½y; 22; 1; 1; 22;y; c�E0:2853154:
aE0:1554011929520066325796747316744656830061413509133865038820677;
bE0:6003679362632065361061389158735863615694126556922931077332356;

(C) positions 3626–3629: ½y; 272; 1; 1; 215;y; c�E0:2855726:
aE0:6530646111210617321254054547968773238346090082060701183776580;
bE0:9410463762107594592302548739412493098027738320829952592216557;

(D) positions 33 877–33 880: ½y; 81; 1; 1; 78;y; c�E0:2856261:
aE0:9319638477108390366188499907354642637920661848031694636081724;
bE0:7032571495109702868148790086182835032528572663181375225766851;

(E) positions 215 987–215 990: ½y; 124; 1; 1; 129;y; c�E0:2856678:
aE0:4375520476578757564544576313180510209212270982522655674846137;
bE0:5646614639128419094417646922292433724548272488193131214134926;

(F) positions 957 740–957 743 ½y; 460; 1; 1; 415;y; c�E0:28568046:
aE0:6134980317071692745070006892224661159462079954445253478668675;
bE0:9411544329571988683307282702558980820407618535628393885417987;

(G) positions 1 650 050–1 650 053: ½y; 648; 1; 1; 666;y; c�E0:2857082:
aE0:4848739572889332951989678247806190621159456336657613155291560;
bE0:5404925035004667478257428539575752367424111926723566428410541:

These calculations involve extremely large integer and floating-point numbers; in

case (G) the absolute values of the integers p; q; r; s are of the order 23�106

; and the
calculation of c� requires floating-point operations of about twice this precision. In
fact, these examples all come from cases of Cusick’s first condition, and c� is given by
49=j4Aj or 49=j4Cj: Of course, the approximate decimal values for a; b given above
are insufficient to represent the true values, but these may be reconstructed if
required from the continued fraction of y:

An independent verification of these results may be obtained by giving the values
a; b as input to a simultaneous Diophantine approximation algorithm. Such an
algorithm finds all best simultaneous approximants up to a given denominator. For
the computation of sup-norm best approximants, an algorithm has been given by
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Furtwängler [3,11]. Fig. 1 shows the behaviour of the Furtwängler algorithm applied
to the pairs (A) and (C) above. The approximation constant estimated from the
minimum c after ignoring the initial transient is about 0.2856, verifying the more
precise value of c� above. But the chief point to be noted is the extremely long initial
transient. Until a sufficient large denominator q is reached, these pairs would in fact
appear to be not badly approximable.

I have thus exhibited some explicit pairs which are very badly approximable by
rationals. I believe that the value 0:2857082 above is the largest explicitly computed
lower bound for the two-dimensional simultaneous Diophantine approximation
constant c2:

The question remains open as to whether there are pairs (necessarily unrelated to

the field QðyÞ) with approximation constant larger than 2
7
:
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Fig. 1. cða;b; qÞ vs. log10ðqÞ at best approximants for two integral bases ð1; a; bÞ of the field QðyÞ: Left:

case (A), right: case (C).
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