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Abstract

Background: Transmission of respiratory pathogens in a population depends on the contact network patterns of
individuals. To accurately understand and explain epidemic behaviour information on contact networks is required, but
only limited empirical data is available. Online respondent-driven detection can provide relevant epidemiological data
on numbers of contact persons and dynamics of contacts between pairs of individuals. We aimed to analyse contact
networks with respect to sociodemographic and geographical characteristics, vaccine-induced immunity and
self-reported symptoms.

Methods: In 2014, volunteers from two large participatory surveillance panels in the Netherlands and Belgium were
invited for a survey. Participants were asked to record numbers of contacts at different locations and self-reported
influenza-like-illness symptoms, and to invite 4 individuals they had met face to face in the preceding 2 weeks. We
calculated correlations between linked individuals to investigate mixing patterns.

Results: In total 1560 individuals completed the survey who reported in total 30591 contact persons; 488 recruiter-
recruit pairs were analysed. Recruitment was assortative by age, education, household size, influenza vaccination status
and sentiments, indicating that participants tended to recruit contact persons similar to themselves. We also found
assortative recruitment by symptoms, reaffirming our objective of sampling contact persons whom a participant may
infect or by whom a participant may get infected in case of an outbreak. Recruitment was random by sex and numbers
of contact persons. Relationships between pairs were influenced by the spatial distribution of peer recruitment.

Conclusions: Although complex mechanisms influence online peer recruitment, the observed statistical relationships
reflected the observed contact network patterns in the general population relevant for the transmission of respiratory
pathogens. This provides useful and innovative input for predictive epidemic models relying on network information.

Keywords: Social contact networks, Infectious diseases, Close-contact transmission, Respiratory pathogens, Disease
outbreaks, Online survey methods
Background
For infectious diseases, such as influenza, severe acute
respiratory syndrome and measles, proximity and social
contact between individuals are major factors for
person-to-person transmission. Knowledge on contact
patterns is therefore important for the design of optimal
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outbreak control strategies [1–4]. To accurately under-
stand and explain epidemic dynamics, information is re-
quired on the underlying contact network of a host
population, i.e., a network that contains all contact per-
sons potentially at risk for infection. For example, the
number of contacts an infectious individual has with sus-
ceptible persons determines among others the basic
reproduction number R0 (i.e., the number of secondary
cases one case generates in a susceptible population) [5].
Contact networks are complex and highly dynamic

(i.e., not constant over time) [6]. Previous empirical
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studies of contact patterns used different methods of
data collection, including direct observation, contact
diaries and electronic proximity sensors, to quantify so-
cial mixing behaviour for a variety of populations [7, 8].
For example, the POLYMOD study, a large randomized
study in eight European countries, used contact diaries
to analyse mixing patterns of independent respondents
[9]. Despite controversies on the different modes of
transmission of respiratory infectious diseases [10], face-
to-face conversations and physical contact are often used
as proxies for potential infectious contacts [9, 11]. Close
contact persons such as family, friends and colleagues
are thereby assumed to capture the majority of contacts
for potential transmission events [12].
A social network approach can provide relevant epi-

demiological data on numbers of contacts and the
strength and dynamics of contacts between pairs of indi-
viduals in a population [13, 14]. Respondent-driven de-
tection, a method of detection derived from snowball
sampling, is a chain recruitment method that allows for
systematic sampling of contact persons of participants.
Previously, we demonstrated that under certain condi-
tions such a recruitment method can be applied online
to extract topological properties of contact networks in
an anonymous manner [15, 16]. This approach provides
novel insights in contact network structures compared
to studies that sampled participants independently of
one another and collected no information about the net-
work beyond the contact persons reported by partici-
pants [7]. In these earlier studies ‘seed’ individuals of
similar age groups and backgrounds were sampled at
convenience [15, 16]. Furthermore, complex mecha-
nisms may play a role when participants choose from
amongst their contact persons and when contact persons
decide whether to join the survey [11]. For example,
with an offline (i.e., paper based) chain recruitment
method participants have a tendency to recruit spatially
proximal peers [17]. This determines the type of contact
networks being sampled. Note that we distinguish
respondent-driven detection from respondent-driven
sampling as our main objective was to study contact net-
works, and not to estimate population proportions from
the sample.
Earlier we reported on a study in which we combined

online respondent-driven detection with participatory
surveillance, i.e., an Internet-based system that captures
voluntarily submitted data on influenza-like-illness (ILI)
symptoms from the general public [18]. We showed that
such respondent-driven approach can be used to im-
prove the detection of symptomatic cases [19]. In this
paper we were interested in the contact networks of re-
spondents and the association with self-reported disease.
In particular, we aimed to determine correlations be-
tween participants linked by recruitment chains (i.e.,
who recruits whom) with respect to sociodemographic
characteristics, vaccine-induced immunity and self-
reported symptoms. In addition, we investigated the ef-
fect of spatial peer recruitment on these correlations. If
recruitment of contact persons by participants is ran-
dom, these statistical relationships reflect the underlying
contact networks in the general population that are rele-
vant for the transmission of respiratory pathogens.

Methods
Study design
Volunteers of two participatory surveillance panels were
invited via the organizations’ electronic newsletters for
an online and anonymous survey between November
2013 and May 2014. The first panel focused on ILI,
operates in the Netherlands and Dutch speaking Flan-
ders (Belgium), and had 16942 active volunteers. The
second panel focused on pneumonia, operates only in
the Netherlands, and had 1691 active volunteers. After
completion of the questionnaire, participants were asked
to recruit 4 contact persons (e.g., family members,
friends, acquaintances) whom they had met face to face
in the past 2 weeks. Invited contact persons were asked
to do the same. Online peer recruitment was followed
by means of unique codes that were automatically gener-
ated. Participants could invite contact persons via stand-
ard email, via a private message on Facebook, or by
sharing a unique link (i.e., a Uniform Resource Locator
that includes a personal code). A ‘seed’ indicates a volun-
teer from the surveillance panels who participated in our
survey and a ‘recruit’ is a contact person recruited by a
survey participant. By ‘waves’ we refer to consecutive
subsamples, with seeds in wave 0, recruits invited by
seeds in wave 1, and so forth. ‘Recruitment trees’ refers
to chains of participants connected via recruitment. In-
vited contact persons could opt-out of the survey and
provide reasons for not participating.
After completion of the questionnaire, participants

were referred to a research website that displayed the
latest results (e.g., anonymous network trees). Partici-
pants recruited via the first panel who completed the
survey had the opportunity to join a raffle for 1 of 10 gift
cards of €25. This incentive only slightly increased peer
recruitment as was shown in Stein et al. [19]. For details
on the software system and information on the 171 non-
responders we also refer the reader to Stein et al. [19].
We obtained ethical approval from the Medical Ethical

Committee of the University Medical Center Utrecht,
The Netherlands (13-664/C). Informed consent was ob-
tained before survey participation.

Questionnaire
We defined ‘contact’ as touching a person (e.g., shaking
hands or hugging) or talking to a person within a distance
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of about one arm’s length (duration of conversation did
not matter). Participants were asked to report as precisely
as possible the number of contact persons that they had
during one full day (‘yesterday’) at four predefined loca-
tions, namely at home, at work or educational institute
(school or university), at the house of family or friends or
other acquaintances, and at other places (e.g., during
sports, shopping or travelling, or in a restaurant or cafe).
Participants were asked to specify the age group of the
contact person (namely 0–11 years, 12–18 years, 19–
60 years and older than 60 years); multiple contacts with
the same person during the course of the day needed to
be counted only once. ‘Degree’ denotes the total number
of contact persons reported by a participant.
Participants were asked to report any symptoms

(provided in a list) that they had experienced in the past
2 weeks. If any symptoms were reported, we asked add-
itional disease related questions and whether they knew
any contact persons with similar symptoms. Symptomatic
participants were asked about the type of disease that they
thought to have experienced (e.g., influenza or common
cold); we further refer to this as self-reported influenza or
common cold. We used the definition of the World
Health Organization to define ILI that includes having
fever (excluding questions on a body temperature of ≥ 38
C°) and cough with an onset within the last 10 days. Par-
ticipants were also asked whether they had received an in-
vitation to get an influenza vaccination and whether they
had received influenza vaccination in the past 12 months.
This information was used as a proxy for the possible im-
mune status of participants. As earlier studies described
clustered patterns of influenza vaccination uptake and
sentiments concerning vaccination, we asked participants
whether they believed that the influenza vaccine protects
them against influenza [20, 21]. Lastly, for each participant
we collected information on age, sex, educational level,
household members and their age, four digit postal code,
and work or study location. Parents could fill in the ques-
tionnaire for their child.

Statistical analysis
First we assessed the main effects of covariates (age, sex,
household size and ILI) on degree using a Poisson
Inverse-Gaussian regression model (see also Additional
file 1). This model is an alternative to a negative
binomial model and has the potential for modelling
highly dispersed count data due to the flexibility of the
Inverse - Gaussian distribution [22, 23].
We investigated mixing patterns within our sample by

analysing shortest paths between pairs of any two indi-
viduals that were one, two, or three or more link steps
away from each other in the same recruitment tree [24].
Correlation coefficients with respect to the same mea-
sured variable were calculated for pairs of recruiter and
recruit in consecutive waves. Pearson’s r was used for in-
teger variables (age, degree and household size), phi co-
efficient (rφ) for binary variables (sex, vaccination status,
symptoms) and Spearman rank-order (rrank) for ordinal
variables (education, vaccination beliefs). These correla-
tions provide both insight in recruitment patterns, as
well as in clustering (i.e., contact persons of an individ-
ual with the same characteristic(s) are recruited or in-
fected with a probability that is higher than expected if
the distribution was random) of disease, vaccination sta-
tus and sentiments.
We compared the sampled recruiter-recruit age matrix

with the participant-contact age matrix collected in the
Netherlands during POLYMOD (Van de Kassteele J, Van
Eijkeren J, Wallinga J: Efficient estimation of age-specific
social contact rates between men and women, in prepar-
ation) [9]. If we assume that POLYMOD data accurately
reflects all contact persons of an individual, then by a
comparison we can investigate to what extent recruit-
ment links between two participants can be interpreted
as a contact in the sense of our contact definition, at
least with respect to age. Firstly, we used the two-sample
Kolmogorov-Smirnov (KS) test to compare column wise
for each participant’s age group the (integer) age distribu-
tion of recruits sampled in our study, with those of contact
persons recorded in POLYMOD. Secondly, we used a
homogeneous uniform association model (i.e., a model that
assumes that all strata in two-way contingency tables have
a common local odds ratio, OR) to test whether there is a
statistical difference between both entire matrices [25–27].
To analyse the spatial spread of recruitment we con-

verted the registered 4-digit postal codes into coordinates
using geocoding and computed the distance between a re-
cruiter and their recruit with the great-circle distance. We
also computed the distance a participant commutes be-
tween home and the work or study location. We investi-
gated the co-occurrence of a characteristic separately for
recruiter-recruit pairs that had the same postal code, and
between pairs that lived 1 to 10 km (km) and more than
10 km away from each other. The equality of correlation
coefficients, calculated for integer variables, was tested
using Fisher z-transformation [28]. The equality of odds
ratios, calculated for binary variables, was tested using a
log-linear model. Finally, we used a logistic regression
model to estimate for individuals living in four different
regions in the Netherlands the probability of recruiting a
contact person at the work or study location (see also
Additional file 1). Statistical analyses were performed in R
(version 3.1.1).

Results
Description of sample
A total of 1560 individuals completed the survey at least
once, of which 1105 seeds (wave 0) who were invited via
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the panels, and 455 recruits (waves 1 to 6) who were in-
vited by participants. Neither participatory surveillance
panel was representative of the general population in
terms of basic demographic characteristics. However,
through peer recruitment the sample representativeness
slightly improved in terms of age and sex (see also Stein
et al. [19]). Overall, 64.7 % of the participants were fe-
male, 55.5 % were aged between 50–69 years (mean age:
53.6; range: 3–97 years), 57.4 % obtained a bachelor de-
gree or higher, 41.5 % had a two-person household and
41.9 % received an influenza vaccine in the past
12 months (Table 1). Less than half of all seeds (45.8 %)
reported at least one symptom, while more than half of
the recruits (on average 57.8 % in waves 1 to 6) reported
symptoms. Of all participants, 8.3 % self-reported they
Table 1 Sample characteristics overall and per recruitment wave

Wave 0

(n: 1105)

n %

Country Netherlands 1018 92.1

Belgium 87 7.9

Sex Male 387 35.0

Female 718 65.0

Ageb 0–39 139 12.5

40–49 189 17.1

50–64 496 44.9

65+ 281 25.5

Education Bachelor or higher 651 58.9

Lower than bachelor 144 41.1

Householdc 1-person 280 25.3

2-persons 478 43.3

3-persons 145 13.1

4 or more persons 202 18.3

Work or Study Yes 775 70.1

No 330 29.9

Vaccinatedd Yes 516 46.7

No 589 53.3

Symptoms Yes 506 45.8

No 599 54.2

Self-reported common cold Yes 175 15.8

No 930 84.2

Self-reported influenza Yes 96 8.7

No 1009 91.3

ILI Yes 34 3.1

No 1071 96.9
aOne participant lived in Germany
bOne participant provided an invalid age
cNote: 48 participants who completed the survey did not provide information on th
dVaccinated against influenza in the past 12 months
had influenza of which 32.3 % had received the influenza
vaccine, resulting in an OR of 0.64 [95 % confidence
interval (CI) 0.42–0.95] for self-reported influenza by
vaccinated individuals (compared to non-vaccinated).

Reported contact persons
A total of 30591 contact persons were reported by 1531
participants, with a mean degree of 19.6 per participant
(median: 11.0; standard deviation (SD): 35.3). Twenty-nine
participants reported zero contact persons. Figure 1a dis-
plays the sampled degree distribution, which showed
strong over-dispersion. A Poisson Inverse-Gaussian distri-
bution with mean μ = 19.6 (95 % CI 18.3–21.1) and disper-
sion parameter λ = 2.0 (95 % CI 1.8–2.1) best fitted the
empirical degree distribution. Analysis of degree with a
Wave 1 Wave 2 Waves 3–6 Total

(n: 310) (n: 93) (n: 52) (n: 1560)

n % n % n % n %

295 95.2 86 92.5 52 100 1451 93.0

15a 4.8 7 7.5 0 0 109 7.0

122 39.4 31 33.3 10 19.2 550 35.3

188 60.6 62 66.7 42 80.8 1010 64.7

91 29.3 26 28.0 13 25.0 268 17.2

43 13.9 18 19.3 6 11.5 256 16.4

106 34.2 32 34.4 22 42.3 656 42.1

70 22.6 17 18.3 11 21.2 379 24.3

166 53.5 56 60.2 23 44.2 896 57.4

29 46.5 37 39.8 29 55.8 664 42.6

78 25.2 22 23.7 10 19.2 390 25.0

110 35.5 38 40.9 22 42.3 648 41.5

35 11.3 6 6.4 6 11.5 192 12.3

87 28.0 27 29.0 14 26.9 330 21.2

228 73.5 73 78.5 41 78.8 1117 71.6

82 26.5 20 21.5 11 21.2 443 28.4

104 33.5 19 20.4 15 28.8 654 41.9

206 66.5 74 79.6 37 71.2 906 58.1

172 55.5 56 60.2 35 68.3 769 49.3

138 44.5 37 39.8 17 32.7 791 50.7

60 19.4 27 29.0 10 19.2 272 17.4

250 80.6 66 71.0 42 80.8 1288 82.6

24 7.7 7 7.5 3 5.8 130 8.3

286 92.3 86 92.5 49 94.2 1430 91.7

2 0.6 2 2.2 2 3.8 40 2.6

308 99.4 91 97.8 50 96.2 1520 97.4

eir household size and were assumed to live alone



Fig. 1 Reported contact persons and recruitment trees. a The empirical reversed cumulative distribution of degree (number of contact persons
per participant) is indicated with black circles. The line is the fitted theoretical Poisson inverse-Gaussian distribution with mean μ: 19.6 (95 % CI
18.3–21.1) and dispersion parameter λ: 2.0 (95 % CI 1.8–2.1). b Number of participants (nodes) per recruitment tree. Most recruitment ‘trees’ only
consisted of one participant (the seed), two trees consisted of 11 participants. c Number of waves that recruitment trees reached by peer recruitment, with
seeds in wave 0. One recruitment tree reached 6 waves of recruits. d Recruitment generation interval. Red line indicates median generation interval
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multiple regression model showed a lower contact fre-
quency for those aged ≥ 65 years compared to participants
between 0 and 39 years old (Table 2). A larger household
size was associated with a higher number of contact per-
sons. Participants with ILI had less contact persons than
persons without these symptoms. Such reduction in num-
bers of contacts has also been observed among ILI cases
during the 2009 influenza epidemic and may be explained
by people staying at home and avoiding social activ-
ities when ill [29]. Weekdays were associated with
33 %–84 % more contact persons than Sundays (see
also Additional file 1 for the distribution of contact
persons by days of the week), which is in accordance with
results from other studies on contact patterns [9, 30].



Table 2 Number of reported contact persons per participant per day by different characteristics and relative number of contacts
from the Poisson Inverse-Gaussian Regression model

Category Covariate Number of participants Mean (standard deviation) of
number of reported contacts

Relative number of reported
contacts (95 % CI)a

Age of participant 0–39 268 20.98 (24.88) 1.00

40–49 256 25.35 (37.24) 0.97 (0.80–1.17)

50–64 656 19.94 (35.16) 0.93 (0.79–1.09)

65+ 379 14.19 (39.63) 0.69 (0.58–0.83)

Sex of participant Female 1010 18.94 (30.78) 1.00

Male 549 20.83 (42.41) 1.05 (0.94–1.18)

Household size 1 389 17.85 (29.49) 1.00

2 648 15.73 (23.91) 1.02 (0.89–1.17)

3 192 26.54 (58.17) 1.44 (1.20–1.73)

4 218 24.93 (43.10) 1.55 (1.29–1.87)

≥5 112 25.92 (37.37) 1.81 (1.43–2.29)

ILI No 1519 19.93 (35.68) 1.00

Yes 40 7.25 (9.70) 0.37 (0.25–0.53)

Days of the week Sunday 224 16.68 (51.25) 1.00

Monday 414 17.94 (32.15) 1.33 (1.12–1.59)

Tuesday 249 24.27 (36.80) 1.84 (1.52–2.23)

Wednesday 192 22.41 (31.73) 1.60 (1.30–1.96)

Thursday 182 21.16 (28.29) 1.61 (1.31–1.99)

Friday 117 18.76 (28.11) 1.42 (1.12–1.81)

Saturday 181 16.65 (29.16) 1.27 (1.03–1.57)
aDispersion parameter λ = 1.7 (95 % CI 1.4–2.1). The Poisson Inverse-Gaussian model is appropriate for modelling correlated counts with long sparse extended tails.
The over-dispersion parameter in the model was significantly different from zero, indicating the necessity to use this model instead of a generalised Poisson
model. Comparing AIC statistics, the Poisson Inverse-Gaussian model gave a better fit as opposed to a negative binomial model and a generalised Poisson
model [22]
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Recruitment trees
Figure 1b shows the size of 1105 recruitment trees. Most
recruitment trees consisted of only one node (i.e., seeds
who did not recruit contact persons). There were 206 re-
cruitment trees with at least two nodes (i.e., trees with at
least two participants and one recruitment wave), and two
of these trees consisted of 11 nodes each. One recruitment
tree reached 6 waves of recruits. The majority of the re-
cruits responded the same day they were invited by their
recruiter, giving a median generation interval (i.e., the time
between invitation by a recruiter and participation by his/
her recruit) of 14.6 h (mean: 50.7; SD: 100.0) (Fig. 1d).
Overall, the larger the proportion of women or individuals
with a bachelor’s degree or higher in a recruitment tree,
the larger the tree size was on average. Seed characteristics
did not appear to influence the number of nodes in a re-
cruitment tree (see also Additional file 1).

Recruitment mixing patterns
Overall, we obtained 455 pairs between a recruiter and
his/her recruit whereby both participants completed the
survey. For an additional 33 pairs we solely obtained
basic demographic information.
We observed assortative recruitment patterns by age
(r = 0.36 [95 % CI 0.28–0.44]), education (rrank = 0.31
[95 % CI 0.23–0.40]) and household size (r = 0.22 [95 %
CI 0.13–0.30]), indicating that participants tend to re-
cruit contact persons similar to themselves (Table 3). Re-
cruitment was random (i.e., not assortative, nor
disassortative) by sex (rφ = 0.07 [95 % CI −0.02–0.16])
and degree (r = 0.07 [95 % CI −0.03–0.16]).
Pairs showed frequently a similar influenza vaccination

status (rφ = 0.23 [95 % CI 0.14–0.32]) and the same
beliefs on vaccine effectiveness (rrank = 0.26 [95 % CI
0.18–0.35]). To a lesser extent, we observed assortative re-
cruitment by self-reported symptoms (rφ = 0.11 [95 % CI
0.02–0.20]). There were 150 (33.0 %) pairs where both in-
dividuals reported at least one symptom compared to 104
(22.9 %) where both did not report any symptoms.
The assortative correlations by age persisted be-

tween any two participants that were two or more
link steps away from each other in the same network
chain, indicating that the survey mainly spread among
individuals of similar age. Having one or more symp-
toms also seemed to cluster within the same recruit-
ment trees.



Table 3 Homophily in network components for different link steps

Variables (type of
correlation coefficient)

1 link stepa p value 2 link stepsa p value 3-6 link steps
(lumped together)a

p value

Type of contact
network

Age (r) 0.36 [0.28–0.44] <0.001 (df: 486) 0.13 [−0.03−0.28] 0.109 (df: 156) 0.23 [−0.01−0.43] 0.058 (df: 70)

Sex (rφ) 0.07 [−0.02–0.16] 0.107 (df: 486) 0.25 [0.09–0.39] 0.002 (df: 156) 0.17 [−0.07−0.38] 0.167 (df: 70)

Education (rrank) 0.31 [0.23–0.40] <0.001 (n: 488) 0.08 [−0.08–0.24] 0.293 (n: 158) −0.01 [−0.25−0.21] 0.951 (n: 72)

Household size (r) 0.22 [0.13–0.30] <0.001 (df: 486) 0.18 [0.02–0.33] 0.025 (df: 156) 0.03 [−0.20−0.26] 0.785 (df: 70)

Degree LOG (r) 0.07 [−0.03–0.16] 0.153 (df: 468) −0.02 [−0.18–0.14] 0.808 (df: 149) −0.03 [−0.26−0.21] 0.838 (df: 67)

Clustering of
vaccination
and disease

Vaccinated (rφ) 0.23 [0.14–0.32] <0.001 (df: 453) 0.02 [−0.14–0.18] 0.817 (df: 143) 0.07 [−0.17−0.30] 0.567 (df: 67)

Belief vaccination
protects (rrank)

0.26 [0.18–0.35] <0.001 (n: 455) 0.02 [−0.14–0.18] 0.812 (n: 145) 0.11 [−0.13−0.32] 0.387 (n: 69)

One or more
symptoms (rφ)

0.11 [0.02–0.20] 0.018 (df: 453) 0.11 [−0.05–0.27] 0.179 (df: 143) 0.15 [−0.09−0.37] 0.231 (df: 67)

Self-reported
common cold (rφ)

0.04 [−0.06–0.13] 0.455 (df: 453) −0.08 [−0.24–0.08] 0.333 (df: 143) −0.11 [−0.33−0.14] 0.389 (df: 67)

Self-reported
influenza (rφ)

0.26 [0.17–0.34] <0.001 (df: 453) 0.03 [−0.13–0.20] 0.691 (df: 143) −0.04 [−0.27−0.20] 0.764 (df: 67)

aCoefficients and 95 % confidence intervals are shown
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Comparison with POLYMOD
Figure 2a shows the recruiter-recruit matrix by age that
visualizes the strong tendency of participants to recruit
contact persons of similar age. This pattern is most pro-
nounced in those aged 50–65 years. We observed two
sub-diagonals that represent recruitment across genera-
tions. A column wise comparison with the contact mix-
ing matrix by age of POLYMOD showed comparable
distributions for participants aged between 20–39 years
(Fig. 2b). This suggests that recruitment links might be
representative for the contact persons recruiters encoun-
ter in daily life, at least with respect to age. However, the
number of recruitments by participants in this age group
was likely insufficient for a proper comparison of sam-
ples. A statistical comparison of the entire two matrices
showed a significant difference (p < 0.001).
Overall, the strong assortative recruitment by age re-

sulted in higher sample proportions of recruits of similar
ages, while pairs of individuals with different ages were
underrepresented compared to POLYMOD. The average
numbers of contact persons by age reported in the ques-
tionnaire by participants were consistent with the as-
sortative recruitment patterns. This was most apparent
for participants aged between 19–60 years who reported
mainly contact with persons of the same age group
(Fig. 2c).
Participants below the age of 65 years mostly reported

contacts at work or university, while those aged ≥ 65 years
reported mostly contacts at other places. The number of
persons contacted at different locations was similar in
POLYMOD, although participants in our sample reported
slightly less contact persons at home (Fig. 2d).
In the Additional file 1 we displayed the mixing
matrices by age of our sample and of POLYMOD sep-
arately, as well as the absolute number of self-reported
symptoms and a visualisation of the mixing patterns by
degree.

Spatial recruitment
The median geographical distance between a recruiter
and recruit was 3.0 km (mean: 21.0; SD: 38.5) (Fig. 3).
There were 180 recruits with the same postal code as
their recruiter, which suggests recruitment of nearby res-
idents including household members. Seeds and their re-
cruits lived on average further away from each other
than pairs of participants in consecutive waves. The
mean distance decreased from 22.4 km (SD: 40.1) be-
tween participants in waves 0 and 1, to 14.6 km (SD:
27.1) between participants in waves 2 and 3.
Of all recruitments, 76.4 % took place within the same

Dutch province (i.e., the Netherlands counts 12 prov-
inces that represent the administrative layers between
the national government and the local municipalities) or
within Belgium (included as one ‘province’), which cor-
responds to the 87.7 % of all participants that work or
study within their province of residence (Fig. 4). The esti-
mated probabilities of recruiting a contact person in the
municipality where the recruiter both lived and worked
varied between 0.56–0.77 (see also Additional file 1).
The distance between a recruiter and recruit deter-

mined the type of contact networks being sampled. Re-
cruitment of persons with same postal code was
stronger assortative by age, education, household size,
degree, vaccination status and vaccination beliefs, and



Fig. 2 Recruitment and contact persons by age. a Recruitment patterns by age (npairs: 488). b Difference between recruitment matrix and contact
matrix by age of Dutch POLYMOD. Colours and scale indicate for each cell the proportional difference between both matrices, for the particular
participant’s age group and his/her contact person’s age group (note: recruitment matrix minus POLYMOD matrix). For each participant’s age
group, integer counts of contact persons were compared with POLYMOD using a two-sample KS test, the p values are shown above each column.
c Contact persons reported in questionnaire by participants, values indicate the average number of contact persons in an age group recorded per day
by participants. d Contact location by age groups and pooled for comparison with POLYMOD. The first four columns show the locations as displayed
in the questionnaire. For comparison with POLYMOD, the sample was weighted for the size of POLYMOD age groups (weights are displayed
in Additional file 1), and the category “at the home of family and friends” was combined with “other”. POLYMOD was regrouped as “home”, “work” (at
work and at school combined) and “other” (leisure, travel and other combined), frequency of contact with the same person was ignored
and for contact at multiple locations only the first entry was counted (equivalent to our questionnaire)

Stein et al. BMC Infectious Diseases  (2015) 15:522 Page 8 of 12
strongly disassortative by sex, compared to recruitment
of persons who lived 1 km or further away. These pat-
terns may reflect recruitment of individuals within the
same household, such as partners. Participants were more
likely to recruit persons of the same sex who lived 1 km
or further away. Recruitment was strongly assortative by
vaccination beliefs for pairs living >10 km away from each
other, and by one or more symptoms and self-reported
influenza for pairs living 1 to 10 km away from each other
(Table 4).

Discussion
In this study we explored social contact networks aris-
ing from a respondent-driven survey conducted in the
Netherlands and parts of Belgium during the winter
season 2013–2014. We have shown that an online



Fig. 3 Distribution of recruitment and commuting distances. Black
triangles indicate distances between recruiters and their recruits, with
median 2.8 km (mean: 20.7; SD: 38.3). Blue squares indicate distances
participants commute to work, with median: 3.4 km (mean: 11.0; SD: 18.1)
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respondent-driven method in combination with partici-
patory surveillance can be used to (i) study contact net-
works relevant for the spread of infectious diseases that
transmit via close contact between individuals, (ii) de-
tect clustering of these diseases in a contact network,
and (iii) reach within short time and with large spatial
coverage a diverse group of individuals in the general
population. Furthermore, we found that the spatial dis-
tribution of recruitment influences the type of contact
networks being sampled.
We analysed a large number of recruiter-recruit pairs

and of individuals with different ages and backgrounds.
This enabled us to investigate the distribution of num-
bers of contact persons and to quantify the strength of
network ties that allow the transmission of diseases that
spread via close contact or airborne droplets. Such infor-
mation can inform mathematical models of infectious
disease epidemics [31–34]. Symptomatic participants
showed a tendency to recruit other symptomatic partici-
pants, at least for one or more symptoms and self-
reported influenza. This observation lends some support
to our hypothesis that via respondent-driven recruitment
we reached contact persons whom a participant may in-
fect or by whom a participant may get infected in case
of an infectious disease outbreak. The self-reported symp-
tom data by pairs of participants provides an indication on
disease clustering in contact networks. Such information
can be quickly obtained with online respondent-driven de-
tection as the recruitment generation interval was less
than one day.
We also observed clustering of the same influenza vac-
cination status and reported sentiments about vaccin-
ation in recruitment trees. Such clustering of similar
health behaviour has been described before and provides
an indication of clustering of vaccine-induced immunity
in a population [20, 21]. Clustering of negative vaccin-
ation statuses or sentiments about vaccination leads to
clusters of unprotected individuals that increase the like-
lihood of disease outbreaks [21]. Such information could
be used to design intervention messages for vulnerable
populations.
Compared to a paper-based approach [17], online peer

recruitment was spatially wider dispersed and covered a
larger geographical area. A stratification on distance of
the relationships between recruiter-recruit pairs showed
differences in the type of recruited contact persons.
There may be several explanations why a participant in-
vited certain contact persons [35]. For example, symp-
tomatic participants may have been biased towards
inviting symptomatic contact persons who lived further
away than contact persons whom they more frequently
meet. A proper assessment would require to investigate
the ‘pool of contact persons’ from which a recruiter can
choose, and which contact persons were invited but did
not join the survey. Furthermore, identifying different
types of relations (e.g., family members, friends or col-
leagues) by asking recruits about their recruiter would
allow further clarification of the observed correlations.
Such information can only be collected with a non-
anonymous survey design, which would also make it
possible to measure transitivity, i.e., the extent to which
contact persons of a participant are also contact persons
of each other [36]. This network property is known to
reduce the rate at which an infection can spread through
a network [36–38].
The ‘who recruited whom’ matrix stratified by age

showed qualitatively similar structures as the contact
matrix by age reported in POLYMOD [9]. In addition,
proportions of contact persons at different locations
were similar to POLYMOD and the regression analysis
showed similar covariates such as age, household size
and days of week to affect degree. This suggests for on-
line recruitment that invited contact persons are in gen-
eral representative for the contact persons daily
encountered by participants and that respondent-driven
detection can indeed provide accurate information on
the underlying contact network. However, despite the
fact that recruitment criteria were set the same for all
participants, regardless of whether they reported symp-
toms, we cannot preclude a bias in how participants
chose from their contact persons. The age matrices were
statistically not comparable. There may be several expla-
nations for this statistical discrepancy, such as a differ-
ence in the age distributions of the samples and the fact



Fig. 4 Spatial recruitment and commuting network structure. a Peer recruitment within The Netherlands and (between) Belgium. Arrows indicate
recruitment between provinces and circles recruitment within a province. b Commuting network: directions that participants daily commute to
work or study. Arrows indicate commuting across provinces, and circles commuting within a province. Sizes of arrows and circles are weighted
for the total number of recruitments/commuters, with darker colours/larger circles indicating higher proportions. The maps were created with a
shapefile (.shp file) that was extracted from GADM, an online geographic database of global administrative areas that is freely available for academic
and other non-commercial use [45]

Table 4 Effect of geographical distance on recruiter-recruita relationship

Variable correlation/
odds ratio

Same postal codeb p value 1 to 10 kmb p value >10 kmb p value Overall
test

Age r 0.50 [0.39–0.61] <0.001 (df: 177) 0.40 [0.25–0.53] <0.001 (df: 144) 0.21 [0.06–0.35] 0.008 (df: 160) 0.008

Education rrank 0.33 [0.19–0.47] <0.001 (n: 179) 0.26 [0.09–0.41] 0.001 (n: 146) 0.32 [0.15–0.47] <0.001 (n: 162) 0.770

Household size r 0.40 [0.26–0.51] <0.001 (df: 177) 0.08 [−0.09–0.24] 0.363 (df: 144) 0.14 [−0.01–0.29] 0.067 (df: 160) 0.004

Degree LOG r 0.16 [0.01–0.30] 0.034 (df: 173) −0.02 [−0.18–0.15] 0.855 (df: 136) 0.04 [−0.11–0.20] 0.583 (df: 154) 0.264

Belief vaccination
protects

rrank 0.19 [0.04–0.35] 0.012 (n: 169) 0.17 [−0.00–0.33] 0.056 (n: 131) 0.41 [0.27–0.55] <0.001 (n: 154) 0.041

Sex OR 0.35 [0.14–0.79] 0.006 (n: 179) 4.86 [2.13–11.39] <0.001 (n: 146) 1.91 [0.93–3.93] 0.054 (n: 162) <0.001

Vaccinated OR 4.94 [2.30–11.07] <0.001 (n: 169) 3.54 [1.50–8.67] 0.001 (n: 131) 1.36 [0.66–2.81] 0.366 (n: 154) 0.025

One or more
symptoms

OR 1.09 [0.57–2.11] 0.771 (n: 169) 3.03 [1.39–6.80] 0.002 (n: 131) 1.36 [0.68–2.72] 0.349 (n: 154) 0.093

Self-reported
common cold

OR 1.27 [0.47–3.23] 0.585 (n: 169) 1.31 [0.33–4.35] 0.635 (n: 131) 1.10 [0.25–3.79] 0.874 (n: 154) 0.974

Self-reported
influenza

OR 8.01 [1.98–31.38] <0.001 (n: 169) 9.32 [1.22–59.64] 0.001 (n: 131) 4.90 [0.73–25.05] 0.052c (n: 154) 0.814

aNumber of pairs with same postal code (n: 180 pairs), with same Internet Protocol (IP) address (n: 86), and number of pairs with both same postal code and same
IP address (n: 72)
bCorrelation coefficients/odds ratios with 95 % confidence intervals are shown
cFisher’s exact test was used for contingency tables containing small values (n < 10)
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that POLYMOD participants were able to report an un-
restricted number of contact persons, while our survey
participants could only invite a maximum of four con-
tact persons.
This study has limitations. By using participatory sur-

veillance panels for recruitment of seeds, we reached a
diverse group of individuals within a short period of
time. However, the volunteers in these panels are not
representative for the general population; some groups
like women and highly educated persons are overrepre-
sented [19]. Such overrepresentations are common in
participatory surveillance systems [18]. We did reach all
age groups, but due to strong assortative peer recruit-
ment certain age classes were represented more in the
sample and the young age classes were reached less with
our survey, therefore limiting the generalisability of our
results to the young age groups.
To reduce the participation burden and stimulate re-

cruitment at the end of the questionnaire, we applied an
aggregated contact diary design, i.e., a participant did
not need to report on each contact separately. The mean
number of contact persons per participant was therefore
likely higher than in previous studies [9, 39]. More im-
portantly, we did not collect information on contact in-
tensity and duration. The probability of transmission
between individuals requires different levels of contact
for different infectious diseases, e.g., influenza and mea-
sles require only spatial proximity between individuals to
transmit, while Ebola is believed to require physical con-
tact to cause infection [7, 14]. Note that the survey did
not include questions on other potentially important
transmission routes, such as exposure not involving
physical contact or conversation (e.g., sneezing passen-
ger in public transport) or indirect fomite transmission
from shared contaminated objects [7]. Earlier studies ex-
plicitly linked contact intensity and duration with infec-
tion risk and showed their importance for understanding
transmission dynamics [40, 41]. Contact duration also
influences the likelihood that a certain contact is re-
ported, e.g., contacts of long duration are substantially
more likely to get reported than contacts of short dur-
ation [42, 43]. It is possible to derive these contact met-
rics from earlier studies, but not to exclude the effect of
heterogeneities in motivation or recall capabilities on re-
ported numbers of contacts, e.g., between male and fe-
male participants [42].
In a future survey volunteers of participatory surveil-

lance panels could be selected according to specific char-
acteristics to obtain seeds that are in some sense
representative for the general population. Furthermore,
it may be useful to conduct a similar study in other
countries where comparable participatory surveillance
systems are in place, such as the United Kingdom, Italy
and France, to allow for a country comparison [44].
Conclusions
In this study we used online respondent-driven detection
to study the distribution of the number of contact per-
sons and mixing patterns within contact networks. The
observed contact patterns are relevant for the transmis-
sion of respiratory pathogens that spread via close con-
tact between individuals. We found that the spatial
distribution of recruitment influenced the type of con-
tact networks being sampled. Even though complex
mechanisms influence peer recruitment, the observed
statistical relationships reflected the observed contact
network patterns in the general population. This pro-
vides useful and innovative input for predictive epidemic
models relying on network information.

Additional file

Additional file 1: Tracking social contact networks with online
respondent-driven detection: who recruits whom? This file contains
supporting information for the results presented in the manuscript
“Tracking social contact networks with online respondent-driven detection:
who recruits whom?”. (PDF 2053 kb)
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