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Abstract 

The realization of innovative passengers transport services requires more and more often a greater flexibility and inexpensiveness 
of the service. To answer this request in many cases the physical solution is to realize a demand responsive transportation system 
(DRTS). A DRTS require the planning of travel paths (routing) and customers pick-up and drop-off times (scheduling) according 
to received requests, respecting the limited capacity of the fleet and time constraints (hard time windows) for each network’s 
node, and the service time of the system. By the modelling point of view a DRTS can be effectively represented with a Dial-a-
ride problem (DaRP). A DaRP derives from the Pick-up and Delivery Problem with Time Windows (PDPTW) and may operate 
according to a static or to a dynamic mode. In the static setting, all customers’ requests are known beforehand and the DaRP 
returns the vehicles routing and the passengers pick up and drop off time scheduling. The static setting may be representative of a 
phase of reservation occurred the day before the execution of the service. But, if the reservation requests must be processed on-
line, even during the booking process there may be a certain level ad dynamism. In fact, if the algorithm works online, it manages 
each and every incoming request separately, and accepts or refuses it immediately, without knowing anything about the 
following. The operative program is constantly updated after each received request without refusal to carry out previous accepted 
services. In the dynamic mode, customers’ requests arrive when the service is already running and, consequently, the solution 
may change whilst the vehicle is already travelling. In this mode it is necessary that the schedule is updated when each new 
request arrives and that this is done in a short time to ensure that the potential customer will not leave the system before a 
possible answer. In this work, we describe a flexible people transport system capable of managing incoming transport demand in 
dynamic mode, using a solution architecture based on a two-stage algorithm to solve Dial-a-Ride Problem instances. In the first 
stage, a constructive heuristic algorithm quickly provides a feasible solution to accept the incoming demand. The algorithm in the 
second stage try to improve the solution evaluated at the first stage by using the time between two consecutive transportation 
events. The algorithm, unlike most of the works in the literature, use an objective function that optimizes the service punctuality. 
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1. Introduction 

The realization of innovative passengers transport services requires more and more often a greater flexibility and 
inexpensiveness of the service. To answer this request in many cases the solution is to realize demand responsive 
transportation system (Ambrosino et al. 2006). A Demand Responsive Transport System (DRTS) requires the 
planning of travel paths (routing) and customer pick-up and drop-off times (scheduling) on the basis of received 
requests (Cubillos et al. 2004). In particular, it has to tackle the problem of multiple vehicles, the limited capacity of 
fleet vehicles and temporal constraints (time windows). The problem of working out optimal service paths and times 
is called a Dial-a-Ride Problem (DaRP), which derives from the well-known Vehicle Routing Problem (VRP) (Toth 
and Vigo, 2002; Barrie et al., 2003; Prins, 2004), with the addition of precedence constraints between pick-up and 
drop-off locations (Cordeau and Laporte, 2007). 

Their computational complexity makes both DaRP and VRP as NP-hard problems, so attempts to develop optimal 
solutions have been limited to simple and small-size problems. It can be argued that heuristic procedures are more 
suitable for realistic networks and demand, because they allow to obtain good solutions in a limited amount of time. 
In the DaRP, customers formulate transportation requests from a given origin-destination pair (i.e., from a pick-up 
point to a delivery point). Transportation is carried out by vehicles that provide a shared service. Due to this fact, 
several customers may be in the same vehicle at the same time. Since the DaRP is a special Vehicle Routing 
Problem with Pickup and Delivery (VRPPD) (Savelsbergh and Sol, 1995), including restrictions on the time at 
which each point may be visited by a vehicle, the problem of finding a feasible pick-up and delivery plan is NP-hard. 
Clearly, the DaRP has to take into account specific constraints as we are considering people instead of goods. As a 
consequence, each customer specifies a possible pickup and delivery time, as well as an upper bound on the riding 
time (Coslovich, et al., 2006). Furthermore, in this context, customers often formulate two requests per day, 
specifying an outbound request from the pick-up point to a destination and an inbound request for the return trip. A 
DRTS may operate according to a static or to a dynamic mode. In the static setting, all the customer requests are 
known beforehand, and the DRTS produces, by solving a DaRP instance, the tour each vehicle has to make, 
respecting the pick-up and delivery time windows while minimizing the solution cost (Bergvinsdottir et al., 2004; 
Uchimura et al., 1999; Jaw et al., 1986; Jorgensen et al., 2007). In the dynamic mode, the customer requests arrive 
over time to a control station and, consequently, the solution may also change over time (Jih and Hsu, 1999; 
Carotenuto et al., 2006; Beaudry et al., 2010; Berbeglia et al., 2010). This work improves on previous approaches as 
it operates dynamically without interrupting the optimization cycle until the end of the service, providing the best 
solution found each time the system is modified. We address a DRTS capable of managing incoming transport 
demand to solve a DaRP in-stance using a solution architecture based on a two-stage algorithm. The first one is a 
constructive heuristic algorithm that quickly provides a feasible solution. The second algorithm is a specialized 
Hybrid Genetic Algorithm (HGA). Genetic Algorithms (GA) (Goldberg, 1989), are iterative stochastic algorithms in 
which natural evolution is used to model the search method. We obtain the so-called hybridization by including 
positive features of different algorithms into the GA schema. 

The paper is organized as follows. In Section §2, we describe the DaRP by introducing the assumptions to be 
considered when a Demand Responsive Transportation System is being designed. In Section §3, we introduce the 
algorithms used in solving the DaRP instances. In particular, in Section §4, we describe the heuristic algorithm to 
compute an initial feasible DaRP plan. Section §5 describes the Genetic Algorithm implementation, in Section §6 
some results related to a real case study are reported and finally conclusions are given. 

2. DaRP definition 

In DaRP (Bodin and al. 1983), each transportation request is dynamically formulated and specifies a single origin 
and a single destination as well as the number of passengers, a time of pick-up and delivery, the related time 
windows defined as maximum deviation by the time agreed and the maximum time that each passenger can remain 
on board the vehicle. The capacity of all vehicles is limited. For brevity, we do not provide the model formulation 
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here, but the complete mathematical structure is presented in Savelsbergh and Sol, 1995 and Cordeau and Laporte, 
2007. We would like to point out that the DaRP has to notify customers as soon as possible the acceptance or denial 
of their requests (Horn, 2002, Coslovich, et al., 2006, Quadrifoglio et al., 2007). Moreover, according to the dynamic 
mode, the DaRP has to be capable of easily inserting new customer requests into one of the already initiated tours 
without violating any previously accepted customer requests. The following notations are used throughout the paper: 
Let N be the set of Ni (i=1,…,n) customer requests, M be the set of mk vehicles (k=1,…,m) operating the tours, and 
G(V,A) be a symmetric graph representing the road network. The depot of the vehicles and the vehicle stops are 
represented as nodes in V. The cost chj denotes the distance between nodes h and j belonging to set V. The cost 
matrix {chj} satisfies the triangle inequality. 

Regarding the maximum time that each passenger can remain on board the vehicle (Maximum Ride Time), there 
is an additional parameter to consider. To set an upper limit to the ride time within which the user has to reach its 
destination, the DRTS system manager can define a  constant parameter of time (or a  parameter as function of 

hj ), so given the pick-up time, the delivery time can be calculated as follows: hj
h
i

j
i tt  (or as 

)( hjhj
h
i

j
i tt ). 

Let us introduce hj  as the minimum time required to travel from the pick-up point (h) to the destination point (j), 
both defined on graph G. If customer i specifies the pick-up time (the delivery time), the DRTS controls the delivery 
time (the pick-up time), that must be as follows: 

hj
h
i

j
i tt     ( hj

j
i

h
i tt )          (1) 

When both the pick-up and delivery times are given, the DRTS assumes as valid the pick-up time and then 
controls the delivery time feasibility. Consequently, hj  represents the minimum ride time to make the service. Each 
ride request must be carried out within two time windows, one for pick-up and the other for delivery. In order to fix 
the time windows, the DRTS assumes that the time windows are centred in the preferred delivery time and not 
centred in the preferred pick-up time. In fact, we can assume that the customers normally, don't arrive to the stop 
before the time agreed, while probably they could accept to arrive earlier than their preferred delivery time. The goal 
is to construct a set of routes in order to satisfy the set N of customer transportation requests by using at most m 
vehicles. Let h

it  and j
it  be the preferred pick up time (on node h V), and delivery time (on node j V), of customer 

i, respectively. Tk represents the tour associated to vehicle k, where tour Tk={v1k,…, vrk} is a set indicating the 
ordered list of rk nodes in V visited by the vehicle k, for all k = 1,…, m. 

Therefore, a solution for the DaRP is a set of routes Tk satisfying the pick-up and delivery time windows. In 
particular, let h

kis ,  and j
kis ,  be the pick-up and delivery times (at nodes h, j V), respectively, assigned to customer i 

whose request has been inserted into tour Tk. 
We aim to identify the DaRP plan (i.e. a solution S) minimising cost z, representing customer delays, defined as 

follows: 

z = i = 1, …, n |
h

kis , - h
it | + | j

kis , - j
it |,     for all k=1,…, m, and h,j V         (2) 

We emphasize the following additional statement and hypothesis. Each customer request has to also specify the 
number of people requiring the transportation service. The vehicle capacity is a bound of the number of customers 
that can be on board the vehicle at any given time. The following sections aim to identify the algorithms adopted for 
the DaRP solution and describe how they interact. 

3. The two stage framework 

This Section defines the general algorithmic architecture implemented in solving the DaRP. We assume that the 
problem is characterized by hard time window constraints where each customer i specifies either the pick-up time, or 
the delivery time, or both pick-up and delivery times. As a result, the DRTS has to pre-process the customer requests 
in order to verify the pick-up and delivery time feasibility and to define the time windows, thus the DaRP instance. 
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Then the DRTS produces a feasible requests instance for the DaRP, and to solve this requests instance we 
implement a two-level algorithm. In the first level an ‘Insertion’ heuristic algorithm is implemented, that produces, 
in a fast way, a set of feasible solution S for the requests instance. The second algorithm is an Hybrid Genetic 
Algorithm (HGA). Therefore, the best solution S constitutes the input for the HGA algorithm that produces and 
evaluates new improved solutions. Figure 1 represents the DaRP general schema 

 

 

Fig. 1. The framework. 

We emphasize two critical aspects. The first one concerns the ‘Insertion’ algorithm. In fact, one of the main 
requirements of a DaRP is its capability to quickly notify customers of the acceptance or denial of their requests. In 
this setting, the computational time of the algorithm used to solve the DaRP instance could be relevant for the DRTS 
consideration. This is the main reason why we have decided to implement a fast heuristic algorithm. Obviously, this 
DRTS capability will also be exploited in the dynamic mode, where customer requests arrive over time and it is 
necessary to provide notification as soon as possible. 

The second critical aspect deals with the HGA having two main goals. First of all, it has to improve the solutions 
given by the ‘Insertion’ algorithm by allowing it to obtain a more profitable solution from the customer’s point of 
view. That is, once a set of customer requests has been accepted, then the solution can be improved by using HGA. 
Therefore, in the dynamic mode, once the ‘Insertion’ algorithm accepts a new request, it has to produce a new 
solution, even if the tours have already been initiated. 

4. Insertion algorithm 

The algorithm called ‘Insertion’ is a constructive heuristic considering one customer request at a time. Initially, 
the tour Tk associated to each vehicle is empty, for each mk ,...,1 , and at each iteration the algorithm enlarges the 
tours by selecting one of the customer transportation requests. Therefore, the ‘Insertion’ algorithm finds a solution in 
n iterations, one for each customer requests. 
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Fig. 2. The insertion heuristic scheme. 

To insert a new customer request, selected by using a FIFO structure, the algorithm evaluates the request on the 
basis of previous solution, and if feasible a new solution S is given. The algorithm ends when all the requests have 
been evaluated. Clearly, the set of tours identifies an operative plan. In the following, we define the steps of the 
‘Insertion’ algorithm (Nanry and Barnes, 2000): 

 STEP 1: Initially, each tour Tk = . 
 STEP 2: For customer request Ni, the algorithm first examines the pick-up node h V. It analyses one tour Tk 

(k=1,…, m) at a time and finds all the possible insertions of the pick-up node respecting the pick-up time 
window. Then, for all the tours whose pick up time window has been respected, the algorithm also tries to insert 
the delivery node j V, respecting the delivery time window. Clearly, the insertion of customer request Ni can be 
accepted if the previously inserted customer requests are still feasible, and if the vehicle capacity is not violated. 

 STEP 3: Among the possible insertions providing a feasible pair ( h
iks , j

iks ), the algorithm selects the best one, 
that is the one minimising the value of z (see(1)). If a feasible insertion does not exist, the customer request is 
rejected, and the algorithm goes to step 4. 
STEP 4: If all the customer requests have been evaluated, then the ‘Insertion’ algorithm stops. Otherwise, it goes 

to step 2 by analysing the next customer request Ni+1. 
The ‘Insertion’ algorithm allows a rapid computation of the DaRP plan. Figure 2 shows the scheme of the 

insertion algorithm 
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5. Genetic schema 

Our proposed HGA adopts the general structure of a classic genetic algorithm (Goldberg, 1989), but the 
chromosome is connected to a further string corresponding to the visiting sequence, and the fitness function values 
are provided by a modified ‘Insertion’ algorithm. Next, we briefly describe the main HGA steps: 

 Initial Population. The initial population is made with the best feasible solutions previously found by the 
‘Insertion’ algorithm. The feasible solutions found by the “Insertion” heuristics are more than one. We use all the 
solutions found to build the initial population, but these solutions are insufficient for achieving the entire initial 
population, therefore, we also use randomly generated solutions. 

 Solution Encoding. We consider exactly n genes each one corresponding to an element of the set N of customer 
requests. Gene i specifies the vehicle k that serves customer request i. Clearly, the set of n genes constitutes the 
“chromosome”. On the other hand, this solution encoding does not identify a single solution, because the value of 
the solution depends on the sequence in which the customers are served by the vehicles (this occurs during the 
modified insertion heuristics execution). Due to this fact, and to speed up individual evaluations in terms of the 
fitness function value, the chromosome contains a further string “sequence” corresponding to the visit sequence 
for each vehicle (Genes). The following table refers to a simple chromosome composed of four genes, where 
customers 1 and 3 are served by vehicle 1, while customers 2 and 4 are served by vehicle 2 and 3, respectively. 
 

Customers 1 2 3 4 

Genes 1 2 1 3 

Sequence 1 1 2 1 

 
 There may be different string sequences for the same genes string. In fact we could also consider the 

chromosome having the same genes string but the sequence values 2, 1, 1, 1. In this case the vehicle 1 serves at 
first the customer request 3 and then the customer request 1. The two chromosomes represent two different 
solutions and different fitness function values. 

 Fitness. The HGA uses the value of the objective function z as defined in (1), to evaluate the fitness function of 
the solutions. The value of z function is given by a specialized version of the ‘Insertion’ algorithm. 

 Notice that, since the HGA implements the roulette wheel selection, the fitness function (ff) is the function to 
maximize, while our objective function (z) is to minimize. For this reason we consider the following relationship 
(Goldberg, 1989) to compute the ff: 

zMff           (3) 

where M is the maximum delay reachable to the stops by the m vehicles and z the value of the objective function 
(fo). In such way, maximizing the ff we select with high probability, individuals with lower z (lower fo). 

 Reproduction. It is based on the classical roulette wheel selection (Goldberg 1989), where a chromosome x of the 
old population will be selected according to its fitness value as follows 

x
xx ffffpselect /           (4) 

 Crossover and mutation. As described in Goldberg (1989) but slightly modified, the HGA selected two 
chromosomes in the current population, with a given pc probability value, execute a single-point crossover jointly 
with a modified version of the ‘Insertion’ algorithm, then with a given pm probability value apply the mutation 
operator to the newly generated child. 

The single-point crossover recombines a new individual using a modified version of the ‘Insertion’ algorithm. 
Working together, they make a ‘placement to comb’ for each specific vehicle and in the chromosomes, of the genetic 



448   Pasquale Carotenuto et al.  /  Transportation Research Procedia   3  ( 2014 )  442 – 451 

material from the second part of the second chromosome in the first part of the first chromosome. The semi-ordered 
sequences can intersect or in some cases juxtapose. The ‘Insertion’ algorithm is modified in the STEP 2 as follows: 

 STEP 2 MODIFIED (HGA): For customer request Ni  the algorithm examines first the pick-up node h V. It 
analyses only the tour Tk specified by the gene Ni and finds all the possible insertions for the pick-up node 
respecting the pick-up time window. Then, the algorithm tries to insert in this tour also the delivery node j V, 
respecting its time window. Clearly, the insertion of customer request Ni can be accepted if the previously 
inserted customer requests are still feasible, and if the vehicle capacity is not violated. After the crossover 
execution, the sequence information could be partial, so that mutation and crossover could result in a lack of 
elements in the sequence. 
For instance, consider two individuals as follows: 
 

Customers request 1 2 3 4  Customers request 1 2 3 4 
Genes 1 2 1 3  Genes 1 1 1 1 
Sequence 1 1 2 1  Sequence 1 2 3 4 

 
Fixing the single-point crossover equal to gene 2, the HGA considers the following new chromosome: 
 

Customers request 1 2 3 4  Customers request 1 2 3 4 
Genes 1 2 1 1  Genes 1 1 1 3 
Sequence 1 1 3 4  Sequence 1 2 2 1 

 
At this point, HGA executes the modified ‘Insertion’ algorithm in order to build the visit sequence for each 

vehicle. Therefore, by analysing the chromosome on the left, the algorithm constructs the tour for vehicle 1 and 
inserts customer request 1, and then customer 2. Then, customer 3 is inserted into the best available position in the 
current tour, while customer 4 is inserted according to its order in the arrangement S, so that, it has to be inserted in 
the best position after customer 3. Analogously, for the child on the right, the ‘Insertion’ algorithm considers all the 
customers having the same priority value, and inserts customers 1, 2, and 3 into the tour related to vehicle 1, while 
customer 4 is inserted into the tour of vehicle 3. After the crossover, the HGA has to apply the mutation operator and 
then the next chromosome could be valued. The mutation operator moves a request from one vehicle to another, to 
correctly insert the request in the new vehicle we still use the modified ‘insertion’ heuristic. When a single solution 
that violates the constraints is generated, it is assigned a low value to ff in order to have low probability of being 
selected. 

 Stopping Criterion: A given number of generations or, in an operative situation, an event that imposes a change 
in the operative plan (i.e. a new request to evaluate, a user takes the vehicle, a user leaves the vehicle). 

The hybrid genetic algorithm continuously obtains improved solutions and provides the best current solution to 
every system request. 

6. Preliminary test 

To validate the algorithm, a series of preliminary tests have been run using random instances and a test network 
with horizontal and vertical arcs with different travel times: 2 minutes for horizontal arcs and 1 minute for vertical 
arcs (Taniguchi, et al., 2001). Every test has been done on 20 random instances considering the average value of the 
fitness function. To build the set of request, a procedure randomly generates a pair of pick-up and delivery nodes and 
the pick-up time requested by the user, then the delivery time is established by adding to the pick-up time the 
minimum time necessary to travel between the two nodes, plus a random value between 0 and 5 minutes. 
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6.1. Test on the evolution of the genetic algorithm 

The first tests have shown that the maximum value of the fitness function has a tendency to rise quickly and then 
to stabilize, while the average value gradually rise, bringing it close to the maximum. 

 

 

Fig. 3. The trend of the fitness function of the best individual and the average value of the generation. 

The instance used for this preliminary test has a number of requests equal to 25 and a fleet of 3 vehicles. The data 
showed in figure 3 are related to 10 generations based on a population of 20 elements. The diagram presents the 
trend of the best individual fitness function and the average value of the individuals generation by generation. In the 
diagram, the maximum value of the fitness function quickly rises up until it settle itself in the last generations. Also 
the average value of the population show an upward positive trend with some small oscillation. 

6.2. Test on the evolution of the genetic algorithm 

The genetic algorithm has been modified to evaluate the effectiveness of elitism (Goldberg 1989). Eight scenarios 
have been considered by varying the ratio between the number of requests/number of vehicles whilst leaving the 
network of tests unchanged. The genetic algorithm that uses elitism always obtains the best values. The elitism has 
been realized maintaining in memory the best individuals created in the various generations through a Best Solutions 
Container (BSC). Its size is set equal to half of the population number. When the BSC is full and a new solution with 
a better fitness than the last element stored is generated, the lowest element is removed from the BSC, and the better 
one just found is properly inserted. The size of the BSC remains constant. When a new population will be created, 
individuals from the old population and individuals from the BSC, with given probabilities, are selected to act as 
parents for new individuals. 

In the version without elitism instead, every new created population is “daughter” of the individuals in the 
preceding generation. The best individual in absolute is memorized because it represents the solution to the problem, 
but it cannot be used for the crossover until the following generation is created. In the HGA version with the elitism, 
the program needs two new input parameters: the size of the BSC; the probability to choose from the BSC. The size 
of the BSC is set equal to half of the population for all the resolved instances. The population number is set equal to 
20. The pBSC probability regulates the frequency with which an individual of the BSC can be selected to be a 
parent. To perform this test a value of pBSC=0.8 was chosen.  
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Table 1: Comparison of the results using the elitism or not 

n m n/m 
Trial order 

Increasing n/m fo (BSC) fo (NOBSC) fo(BSC)/n fo(NOBSC)/n 
25 3 8,33 2 62,25 62,85 2,49 2,51 

50 3 16,67 5 121,80 144,45 2,44 2,89 

75 3 25,00 8 207,67 289,00 2,77 3,85 

75 4 18,75 7 185,94 243,85 2,48 3,25 

75 5 15,00 4 182,60 224,60 2,43 2,99 

75 10 7,50 1 174,90 196,00 2,33 2,61 

100 5 20,00 7 270,50 352,17 2,71 3,52 

100 10 10,00 3 234,35 277,45 2,34 2,77 

 
This is a very high probability to choose from the BSC. In this way the system works in an condition significantly 

distant from the condition of the simple version of the hybrid genetic algorithm. The test carried out has the purpose 
to establish whether it is better to adopt a genetic algorithm that uses the BSC or not. To obtain this we have 
considered 8 scenarios with different characteristic and compared the value of the objective function, maintaining 
unchanged the number of generations. By comparing the results of the objective function reached by the 2 
procedures showed in the table 1, we can easily see how the HGA that uses the elitism, fo (BSC), has provided the 
best results for all the 8 different scenarios considered. 

6.3. Tuning of the parameters 

The following parameters of the algorithm have been assessed: the probability of mutation, the probability of 
crossover and the probability of pick out by the BSC (De Jong, 1975, Goldberg, 1989). The test on the probability of 
mutation has been done, using empirical evidence and considering the fol-lowing values: 0.10, 0.03 and 0.00 (no 
mutation). The tests make us to prefer the value 0.03. In the tests, the worst result was obtained with the value of 
mutation of 0.0, this means that the mutation operator is necessary to better explore the solution space. The tests on 
the probability of crossover were performed considering the following values: 0.5, 0.7 and 0.9. In this case, it 
appears preferable the value 0.9. To test the probability of choosing a solution from the BSC, were considered the 
following values: 0.2, 0.5, 0.8. With regards to BSC probability, if the number of requests/number of vehicles is low, 
it is better to utilize 0.8 as a probability value, whilst if the number of requests/number of vehicles is high, it is better 
to utilize 0.5. 

6.4. Test on the graph 

We have also analyzed the variation of the percentage of rejected requests by varying the number of vehicles and 
the number of requests while keeping the network characteristics unchanged. The results show that if the number of 
vehicles in the network is kept constant, the number of accepted requests increases until it reaches a point of break-
up. In addition, we have alternatively varied the number of nodes and the length of the arcs. The results show that by 
increasing the area covered by the service (the network) the number of request refusals grows but the number of 
request refusals doesn't depend on the number of nodes in the network. This is an advantage for users because it 
increases their access to the service whilst the service manager is not subject to additional costs. 

6.5. Test on the heuristic 

We have also evaluated the performance of the genetic algorithm compared to the heuristic one. A number of 12 
scenarios have been considered, and the value of the objective function provided by the heuristic has been compared 
with the best solution provided by the HGA. The results show that the genetic algorithm does indeed improve the 
solutions found by the heuristic algorithm. Furthermore, it is able to find some solutions even when the heuristic 
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algorithm fails. If only the heuristic algorithm should be used, there would be a risk of refusing otherwise accepted 
requests. 

7. Conclusion 

This paper proposes a Hybrid Genetic Algorithm (HGA) for the DaRP and described its implementation. The 
DaRP is part of a DRTS whose goal is to support a public Service Provider in the management of transport activities. 
In particular, for the DRTS we approached the problem using a solution architecture based on a two-stage algorithm. 
After setting the parameters of the algorithm, (population size, crossover rate and mutation rate), we have 
implemented some computational experiments and obtained some interesting preliminary results. In future we plan 
to apply this method to a larger case and experiment other ways to improve this algorithm. For example we could 
take in account the use of the path relinking method (Ho and Gendreau, 2006; Rahimi-Vahed et al. 2012), applied 
successfully in similar context. 
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