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This paper presents an application of real-coded genetic algorithm (RGA) for system iden-
tification and controller tuning in process plants. The genetic algorithm is applied sequen-
tially for system identification and controller tuning. First GA is applied to identify the
changes in system parameters. Once the process parameters are identified, the optimal
controller parameters are identified using GA. In the proposed genetic algorithm, the opti-
mization variables are represented as floating point numbers. Also, cross over and muta-
tion operators that can directly deal with the floating point numbers are used. The
proposed approach has been applied for system identification and controller tuning in non-
linear pH process. The simulation results show that the GA based approach is effective in
identifying the parameters of the system and the nonlinearity at various operating points
in the nonlinear system.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The pH control finds wide applications in process industries. The pH process is a nonlinear dynamic system and an ex-
tremely complex and challenging control problem in process industries [1]. The extensive applications of the pH process
in industry merit the study of control of these processes. Proportional integral (PI) controller has been widely used in pH
process for many years. A PID controller improves the transient response of a system by reducing the overshoot, and by
shortening the settling time of a system [2]. The nonlinearity of the pH process presents the need to tune the parameters
of this controller. Also, the process nonlinearities and time dependent characteristics cause a significant change in the dy-
namic parameters of the process. In general, plant parameters change due to ageing of the plant or changes in the load
[3]. The transient response will be worse if the plant dynamics change, which necessitates identification of the process model
at different operating conditions so that controller design can be effected [4]. To effect this plant model is identified period-
ically and the changes in its dynamic characteristics are observed. This offers a great advantage over the conventional con-
troller tuning methods, which uses the plant model at the nominal operating conditions.

In conventional identification methods, a model structure is selected and the parameters of the model are calculated by
optimizing an objective function using an optimization technique. The selection of model structure is a compromise between
model accuracy and simplicity. Auto regressive with exogenous inputs (ARX) is one of the simplest structures for system
modeling. Fassois and Florakis [5] demonstrated that an auto regressive with moving average exogenous inputs (ARMAX)
structure is a better choice than the ARX structure. But compared to ARX, ARMAX is more complicated.
. All rights reserved.
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The nonlinear models available for system identification include Hammerstein, Weiner model and nonlinear auto regres-
sive with moving average with exogenous inputs (NARMAX). The conventional parameter identification methods namely
least squares [6] and maximum likelihood method [7] often fail in the search for global optimum in the search space. Further,
they require large set of input/output data from the system.

Traditionally, the PID controller parameters are evaluated using Ziegler–Nichols (ZN) [2] and Cohen Coon (CC) [8] meth-
ods. In both these methods, the parameters of the controller are obtained for an operating point where the model can be
considered linear. The dynamic characteristics of most of the industrial processes exhibit nonlinear behavior and vary with
time. This implies that there is sub-optimal tuning when a process operates outside the validity zone of the model. Internal
model control (IMC) [9] overcomes the above said problem but its design calculations could be complicated for higher order
process.

Heuristic search techniques like genetic algorithm overcome the difficulties and limitations encountered by the conven-
tional approaches for system identification and controller tuning. Genetic algorithm [10,11] is a general-purpose optimiza-
tion algorithm based on the mechanics of natural selection and genetics. Kristinsson and Dumont [12] proposed GA to
identify plants with either minimum phase or non-minimum phase characteristic and un-modeled dynamics. Zibo and Nag-
hdt [13] applied genetic algorithm to identify the parameters of the multi input and multi output (MIMO) system that is
assumed to have an auto regressive with moving average exogenous (ARMAX) structure. Lu and Basar [14] presented the
standard GA-based estimation scheme in a neural network framework, which ensure a good approximation for the system
nonlinearity. Dangprasert and Avatchanakorn [15] employed GA for on-line parameter identification and controller tuning in
load frequency control of a power system. In [16], the authors have proposed a GA-based design strategy for offline PI con-
troller tuning in linear systems. Mwembeshi et al. [17] proposed GA-based internal model control (IMC) strategy for pH
process.

In the traditional GAs, all the variables are encoded as binary digits forming a string. Then the genetic operators are ap-
plied to generate a new population. Such procedures are repeated until the optimal solution is reached. The binary-coded GA
has Hamming cliff problems [18], which sometimes may cause difficulties in the case of coding continuous variables. To
overcome the above difficulty this paper proposes a real-parameter genetic algorithm in which the optimization variables
are represented as floating point numbers.

Further for effective genetic operation, crossover and mutation operators, which can directly deal with real variables, are
used. The proposed approach has been applied to estimate the changes in the parameters of the system and to identify the
optimal PID controller parameters in pH process.

2. pH process

The pH process is very important in many industrial applications. As shown in Fig. 1, acetic acid is fed to the reactor with a
constant flow rate and sodium hydroxide is introduced to the reactor.

The mathematical model of the pH neutralization process proposed by McAvoy et al. [19] and reproduced below is used in
this work to simulate the pH process.
V
dxa

dt
¼ FaCa � ðFa þ FbÞxa ð1Þ

V
dxb

dt
¼ FbCb � ðFa þ FbÞxb ð2Þ

½Hþ�3 þ ½Hþ�2fKa þ xbg þ ½Hþ�fKaðxb � xaÞ � Kwg � KwKa ¼ 0 ð3Þ
pH ¼ �log10½H

þ� ð4Þ
Process 
Stream

Titration 
Stream

Effluent 
Stream

Fa +Fb 
Xa,Xb 

Fa,Ca Fb,Cb 

Fig. 1. Block diagram representation of pH process.
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The pH variables used in this study are volume of the continuous stirred tank reactor (V), base flow rate of pH process (Fb)
and concentration of acid (Ca) and concentration of base (Cb).

3. Parameter estimation and controller tuning

System identification and controller tuning are important issues in pH process. For system identification, the structure of
the system is specified first and then the parameter of the model are estimated.

A weak-acid strong-base pH process may be approximated as
V
dxa

dt
� FaðCa � xaÞ ð5Þ

V
dxb

dt
� FbðCb � xbÞ ð6Þ
The acidic ionic concentration (xa) will be approximately constant when the flow rate of the process stream (Fa) is a constant
value. Hence, the titration curve is essentially stationary and the dynamics of the CSTR may be modeled as a linear system. Fb

is the manipulated input variable and xb is the controlled variable. The pH process can therefore be approximated by the
Wiener-type nonlinear model, which is a linear system, followed by a static nonlinearity and is shown in Fig. 2. Although
the manipulated variable Fb has minimal effect on the state xa; the titration relation is still dependent on the acid concen-
tration term, and so changes in the acid flow rate and acid concentration will act as load disturbances.

The Wiener structure is relatively easy to eliminate the static nonlinearity in such a model. The linearized process can
then be placed under the control of linear controllers. Fig. 3 shows the architecture that may be used to control plants, which
are described by Wiener-type nonlinear models. A linear system can be obtained by cascading the inverse of pH–xb titration
relationship. By rearranging Eq. (3), it may be deduced that the inverse titration curve has the following general structure.
x�b ¼
1

½H þ �2 þ ðd1Þ½Hþ�
f�½H þ �3 � ðd1Þ½H þ �2 þ ðd1xa þ d2Þ½Hþ� þ ðd1d2Þg ð7Þ
Once the output pH value has been transformed into an estimate of the basic ion concentration (xb), pH control can be
achieved by employing a simple linear controller to regulate the state, xb and to reject disturbances caused by changes in
the acid flow rate and concentration. The variables h(�) and h�1(�) are static nonlinearity and the inverse model of the non-
linearity, respectively.
pHxa,  xb Fb 
Linear dynamics Static Nonlinear 

Function 

Fig. 2. Wiener-type nonlinear model.
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xb
*
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*

setpHset PI 
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h-1(.) 

+ 

h-1(.) 
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Dynamics 

Fig. 3. Wiener-model control strategy.
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The next step after system identification is the tuning of the PI controller whose transfer function is given by
GcðsÞ ¼ Kp þ
Ki

s
ð8Þ
where Kp is the proportional gain and Ki is the integral gain. The performance of the closed loop system is defined by the
performance criteria of integral square error for controller (ISE(cont)), over shoot (OS) and settling time (ST) of the transient
response.

The integral square error squares the magnitude of error with respect to time. The overshoot is the difference between the
maximum value of the output response and the steady state value and the settling time is the time for the response to stay
within the specified percentage of its final value. In this work the problem of controller tuning is formulated as an optimi-
zation problem. The objective function of the controller is to minimize the integral square error, peak overshoot, rise time
and settling time of the transient response.
F ¼ w1FISEðcontÞ þw2FOS þw3FST ð9Þ
where w1, w2 and w3 are the weight factors for the Integral square error, overshoot and settling time, respectively. The
weight factors are varied in between 0 and 1 to get the optimal system response. Gradient-based conventional methods
are not good enough to solve this problem and a global optimization technique like genetic algorithm is well suited for this
kind of problems.

4. Proposed genetic algorithm

Genetic algorithm [10] is a general-purpose optimization algorithm based on the mechanics of natural selection
and genetics. Unlike traditional hill-climbing methods involving iterative changes to a single solution, genetic algo-
rithms work with a population of solutions. A fitness value, derived from the problem’s objective function is assigned
to each member of the population. Individuals that represent better solutions are awarded higher fitness values, thus
enabling them to survive more generations. Starting with an initial random population, successive generations of
populations are created by the genetic operators reproduction, crossover and mutation to yield better solutions, which
approach the optimal solution to the problem. The GA repeats the above steps until the predetermined criteria are
met.

Conventionally, binary strings are used to represent the decision variables of the optimization problem in the genetic
population, irrespective of the nature of the decision variables. The binary-coded GA has number of difficulties in dealing
with continuous search spaces. To overcome the above difficulty this paper proposes a real-parameter genetic algorithm
in which the optimization variables are represented as floating point numbers.

The use of floating point numbers in the GA representation has a number of advantages over binary coding. The efficiency
of the GA is increased as there is no need to convert the solution variables to the binary type, less memory is required, there
is no loss in precision by discretization to binary or other values, and there is greater freedom to use different genetic
operators.

With floating point representation, the evaluation procedure and reproduction operator remain the same as that in bin-
ary-coded GA, but crossover operation is done variable by variable. Also, the real parameter mutation operator, ‘‘uniform
mutation”, is used. These details are presented in the following subsections.

4.1. Reproduction

Reproduction is a method that stochastically selects the individuals from the population according to their fitness; the
higher the fitness, the more chance an individual has to be selected for the next generation. There are three main types
of selection methods: fitness proportionate selection, ranking method and tournament selection. Tournament selection
[20–22] is used in this work. In tournament selection, ‘n’ individuals are selected randomly from the population, and the best
of the ‘n’ is inserted into the new population for further genetic processing. This procedure is repeated until the mating pool
is filled. Tournaments are often held between pairs of individuals, although larger tournaments can be used.

4.2. Crossover operation

The crossover operator is mainly responsible for the global search property of the GA. Crossover basically combines sub-
structures of two parent chromosomes to produce new structures, with the selected probability typically in the range of 0.6–
1.0. The Blend crossover operator (BLX-a) [18] is employed in this study.

Fig. 4 illustrates the BLX-a crossover operation for the one-dimensional case. In the BLX-a crossover the off spring y is
sampled from the space [e1,e2] as follows:
y ¼ e1 þ r � ðe2 � e1Þ : if umin
6 y 6 umax

repeat sampling : otherwise

(
ð10Þ
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Fig. 4. Schematic representation of BLX-a crossover.
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where
Table 1
Descrip

Descrip

Volume
Flow ra
Flow ra
Concen
Concen
e1 ¼ u1 � aðu2 � u1Þ ð11Þ
e2 ¼ u2 þ a� ðu2 � u1Þ ð12Þ
r : Uniform random number 2 ½0;1�
It is to be noted that e1 and e2 will lie between umin and umax, the variable’s lower and upper bound, respectively. In a number
of test problems, it was observed that a = 0.5 provides good results. One interesting feature of this type of crossover operator
is that the created point depends on the location of both parents. If both parents are close to each other, the new point will
also be close to the parents. On the other hand, if parents are far from each other, the search is more like a random search.

4.3. Mutation operation

After crossover is performed, mutation takes place. The mutation operator is used to inject new genetic material into the
population. Mutation randomly alters a variable with a small probability. ‘‘uniform mutation” operator is applied in this
work. In uniform mutation, the variable is set to a uniform random number between the variable’s lower and upper limit.

5. Results and discussion

This section presents the details of the simulation carried out to estimate the system parameters and to tune the PI con-
troller in pH process. The pH process was simulated in MATLAB Simulink. The software for the genetic algorithm was written
in MATLAB and executed on a PC with 2.4 MHz and 256 MB RAM. The description of the simulated pH process is given in
Table 1. Fig. 5 shows the titration curve of the experimental data obtained from experimental setup and simulated pH pro-
cess using MATLAB Simulink.

5.1. Experimental setup

In the experimental setup, acetic acid is fed to the reactor with constant flow rate and sodium hydroxide is introduced to
the reactor through the pump. Fig. 6 shows the pH process experimental setup. In the real time implementation, the dSPACE
processor can be easily interfaced with Simulink and automatically convert the Simulink model into a targeted C code and
download it to the designated hardware (dSPACE DS1102) via RTI. To read or write the internal variables of the control sys-
tem, dSPACE Control Desk provides a user-friendly graphic user interface (GUI) environment that enables the user to observe
vital data in the system.

In this paper, GA is applied to identify the parameters of the inverse titration equation and the linear controller in the
Wiener-model control architecture. The inverse titration curve variables d1 is vary between 1 and 14 and d2 is between 0
and 1.

The optimal values of model parameters obtained by the RGA based algorithm for the Weiner model are given in Table 2.
For comparison, GA based Weiner model parameters is also given in Table 2. From this table, it can be seen that RGA has
resulted in more accurate estimation of model parameters and MSE is minimum than the GA based Weiner model. The
tion of the pH process.

tion Symbol Value

of the continuous stirred tank reactor V 7.4 l
te of the influent stream Fa 0.24 l min�1

te of the titrating stream Fb 0–0.80 l min�1

tration of the influent stream Ca 0.2 g mol l�1

tration of the titrating stream Cb 0.1 g mol 1�1



Fig. 5. Titration curve of pH process.
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Fig. 6. Experimental setup.

Table 2
Estimated parameters for the pH process.

Type d1 d2 MSE CT

Binary-coded GA 6.8641 0.225 2.868e�1 7.1506e2

Real-coded GA 6.505 0.206 2.844e�4 3.4967e2
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inverse titration curve estimated by the GA is shown in Fig. 7. From this figure it is found that the real-coded GA is able to
find a solution even though the relationship between the input and output data is highly nonlinear.

Next the closed loop PI controller which is embedded in the Wiener-model control architecture is tuned for the optimal
values of Kp and Ki using proposed GA algorithm. The boundaries of the optimization variables are taken as 0.1 < Kp < 50;
0.1 < Ki < 10. Initially boundaries are randomly selected. The best results of the real-coded GA are obtained with the follow-
ing control parameters.



Fig. 7. Inverse titration curve estimated by GA.

Fig. 8. Convergence of proposed GA.

Table 3
Comparison of performance analysis.

SP Tuning Kp Ki ISE OS ST (s) PT (s) RT (s) CT (s)

5 ZN 1.2 1.149 0.1996 3.97 25 1 1 11
IMC 0.071 0.124 0.1510 4.16 20 1 1 10
GA-Weiner 92.64 40 0.0139 3.85 4 1 1 32
RGA-Weiner 84.31 5 0.0518 0.326 3 1 1 28

7 ZN 0.854 0.581 2.987 4.13 189 15 1 10
IMC 0.071 0.124 0.4985 14 68 14 1 12
GA-Weiner 62.64 35 0.067 1.81 35 1 1 42
RGA-Weiner 79.01 40 0.0422 0.1967 25 1 1 36

9 ZN 0.111 0.983 14.47 3.44 232 19 33 16
IMC 0.071 0.124 0.2914 4.5 55 4 33 14
GA-Weiner 65.78 4.5 0.08 0.32 40 4 15 53
RGA-Weiner 80.1 39.7 0.0376 0.2693 35 3 13 42

11 ZN 0.143 0.163 48.62 15.6 210 92 86 12
IMC 0.071 0.124 3.2960 10.256 70 25 20 15
GA-Weiner 92.6 40 0.04502 0.220 25 3 18 62
RGA-Weiner 92.647 40.12 0.0442 0.3373 23 3 16 50
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Fig. 9. pH value for various set-point tracking.
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Number of generations: 20.
Population size: 20.
Crossover probability: 0.8.
Mutation probability: 0.08.

Fig. 8 shows the convergence characteristics of proposed GA algorithm. It is observed that the variation of the fitness dur-
ing the GA run for the best case and shows the generation of optimal variables. It can be seen that the fitness value increases
rapidly in the first three generations of the GA. During this stage, the GA concentrates mainly on finding feasible solutions to
the problem. Then the value increases slowly, and settles down near the optimum value with most of the individuals in the
population reaching that point.

The optimal control gains obtained by the proposed algorithm along with the ISE and the system performance indices are
given in Table 3. It also gives the values and the performance indices obtained using the ZN, IMC and GA. The performance of
the system is found to be satisfactory with the control gains obtained using the proposed GA. From the Table, it is found that
the proposed GA in minimum ISE, minimum peak overshoot and minimum settling time. Also, the computation time
requirement is less in proposed GA.

Fig. 9 shows that the Wiener-model controller, whose parameters are identified using proposed GA, is able to control the
pH level over a wide range of set-point tracking. The overshoot following a set-point change is almost zero which indicates
Fig. 10. Tracking of pH value at seven in the presence of acid flow rate disturbance.



Fig. 11. Variation in acid flow rate.
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that the RGA has successfully minimized the peak overshoots. Also, the proposed GA has no oscillations and minimum set-
tling time in the nonlinear region 7–9.

Proposed GA based Weiner controller is able to reject the load disturbance taking place at feed flow rate. Fig. 10 demon-
strates that the PI controller evolved by the RGA is able to reject the load disturbances. Fig. 11 shows the load disturbances in
acid flow rate is changed from the nominal value to 0.6,1, 1.4, 1.1 and 1.3 l/min, respectively at 20, 40, 60 and 85 min. From
the figures, it is found that the controller is able to maintain the pH value of the effluent stream at the neutral value of set-
point seven in the presence of load disturbances. This characteristic is important in waste-water treatment, where distur-
bances should not cause the pH value of the effluent stream to deviate too much from the set-point.

6. Conclusion

In this paper, real-coded genetic algorithm has been applied for identifying the parameters and obtaining the optimal PID
controller variables in the process plants. In the proposed approach, the optimization variables are represented as floating
point numbers in the genetic population, and the crossover and mutation operators which can directly deal with floating
point numbers are used. The proposed GA is applied to identifying the parameters of the Wiener-model in pH process. Also
computing the optimal values of PID controller parameters has been analyzed. The simulation result shows that the GA is
able to tune the PID controller satisfactorily and able to regulate the set-point tracking with minimal overshoot and fast rise
time in all the cases. Load disturbances in acid flow rate in pH process also rejected by the proposed control methodology.
Further the proposed algorithm takes less time for convergence compared to the conventional binary-coded GA.

References

[1] B.D. Kulkarni, P.B. Deshpande, Nonlinear pH control, Chem. Eng. Sci. 46 (1991) 995–1003.
[2] K.J. Astrom, T. Hagglund, The future of PID control, Control Eng. Pract. 9 (11) (2001) 1163–1175.
[3] T.S. Schei, Automatic tuning of PID controllers based on transfer function estimation, Automatica 30 (12) (1994) 1983–1989.
[4] A. Florakis, S.D. Fassosis, MIMO LMS–ARMAX identification of vibrating structures. Part II: A critical assessment, Mech. Syst. Signal Process. 15 (4)

(2001) 737–758.
[5] S. Dionisio, O.P. Pinto, Genetic algorithm based system identification and PID tuning for optimum adaptive control, in: International Conference on

Advanced Intelligent Mechatronics, California, 2005, pp. 801–806.
[6] B. Rad, W.L. Lo, Self-tuning PID controller using Newton–Raphson search method, Trans. Ind. Electron. 44 (5) (1997) 717–725.
[7] L. Ljung, System Identification – Theory for the User, second ed., PTR Prentice Hall, Upper Saddle River, NJ, 1999.
[8] F.G. Shinskey, Process Control System: Application, fourth ed., Design and Tuning, McGraw-Hill, 1996.
[9] M. Morari, E. Zufiriou, Robust Process Control, Prentice-Hall Inc., Englewood cliffs, NJ, 1987.

[10] D.E. Goldberg, Genetic Algorithms in Search Optimization and Machine Learning, Addison Wesley, 1989.
[11] K.M. Passino, Towards bridging the perceived gap between conventional and intelligent control, in: Intelligent Control: Theory and applications, IEEE

Press, Piscataway, NJ, 1996, pp. 1–27.
[12] K. Kristinsson, G.A. Dumont, System identification and control using genetic algorithms, IEEE Trans. Syst. Man Cyb. 22 (5) (1992) 1033–1046.
[13] Z. Zibo, F. Naghdt, Application of genetic algorithms to system identification, IEEE Int. Conf. Evolut. Comput. 2 (1995) 777–782.
[14] S. Lu, T. Basar, Genetic algorithms-based identification, IEEE Inter. Conf. Syst. Man Cyb. 1 (1995) 22–25.
[15] P. Dangprasert, V. Avatchanakorn, Genetic algorithms based self-tuning regulator, IEEE Int. Conf. Evolut. Comput. 1 (1995) 444–449.
[16] C. Vlachos, D. Williams, J.B. Gomm, Genetic approach to decentralized PI controller for multivariable processes, Proc. IEE Control Theory Appl. 146 (1)

(1999) 58–64.
[17] M.M. Mwembeshi, C.A. Kent, A genetic algorithm based approach to intelligent modelling and control of pH in reactors, Comput. Chem. Eng. 28 (9)

(2004) 1743–1757.



K. Valarmathi et al. / Applied Mathematical Modelling 33 (2009) 3392–3401 3401
[18] D. Devaraj, B. Yegnanarayana, Genetic algorithm-based optimal power flow for security enhancement, IEE Proc. Gener. Trans. Distrib. 152 (6) (2005)
899–905.

[19] T.J. McAvoy, E. Hsu, Dynamics of pH in controlled stirred tank reactor’, Ind. Eng. Chem. Process Des. Dev. 68 (1972) 114–120.
[20] F. Herrera, M. Lozano, A taxonomy for the crossover operator for real-coded genetic algorithms: An experimental study, Int. J. Intell. Syst. 18 (3) (2003)

309–338.
[21] L.J. Eschelman, J.D. Schaffer, Real-coded Genetic Algorithms and Interval-Schemata Foundations of Genetic Algorithms 2, Morgan Kaufman Publishers,

San Mateo, 1993.
[22] W. Chang, Nonlinear system identification and control using a real-coded genetic algorithm’, Appl. Math. Model. 31 (2007) 541–550.


	Real-coded genetic algorithm for system identification and controller tuning
	Introduction
	pH process
	Parameter estimation and controller tuning
	Proposed genetic algorithm
	Reproduction
	Crossover operation
	Mutation operation

	Results and discussion
	Experimental setup

	Conclusion
	References


