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Abstract

Evaluative arguments are pervasive in natural human communication. In countless situations people attempt to advise or persuade
their interlocutors that something is desirable (vs. undesirable) or right (vs. wrong). With the proliferation of on-line systems
serving as personal advisors and assistants, there is a pressing need to develop general and testable computational models for
generating and presenting evaluative arguments. Previous research on generating evaluative arguments has been characterized
by two major limitations. First, researchers have tended to focus only on specific aspects of the generation process. Second, the
proposed approaches were not empirically tested. The research presented in this paper addresses both limitations. We have designed
and implemented a complete computational model for generating evaluative arguments. For content selection and organization, we
devised an argumentation strategy based on guidelines from argumentation theory. For expressing the content in natural language,
we extended and integrated previous work in computational linguistics on generating evaluative arguments. The key knowledge
source for both tasks is a quantitative model of user preferences. To empirically test critical aspects of our generation model,
we have devised and implemented an evaluation framework in which the effectiveness of evaluative arguments can be measured
with real users. Within the framework, we have performed an experiment to test two basic hypotheses on which the design of
the computational model is based; namely, that our proposal for tailoring an evaluative argument to the addressee’s preferences
increases its effectiveness, and that differences in conciseness significantly influence argument effectiveness. The second hypothesis
was confirmed in the experiment. In contrast, the first hypothesis was only marginally confirmed. However, independent testing by
other researchers has recently provided further support for this hypothesis.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Evaluative arguments are pervasive in natural human communication. In countless situations, people attempt to
advise or persuade their interlocutors that something is desirable (vs. undesirable) or right (vs. wrong). For instance,
doctors need to advise patients about which treatment is best for them. A teacher may need to convince a student
that a certain course is (is not) the best choice for the student. And salespeople often need to compare similar prod-
ucts, explaining why one of the products would be more to the current customer’s liking than the other(s). With the
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explosion of information available on-line and the ever-increasing availability of wireless devices, we are witnessing
a proliferation of computer systems serving as personal assistants or advisors, e.g., [9,62], which aim to support or
replace humans in similar communicative settings. The success of such systems will crucially depend on their ability
to generate and present effective evaluative arguments.

In the 1990s, considerable research was devoted to developing computational models for automatically generating
and presenting evaluative arguments. Several studies have investigated the process of selecting and structuring the
content of an argument (e.g., [7,31,35,47]), and [23] developed a detailed model of how the selected content should
be realized in natural language. Despite the abundance of prior work on this topic, the previous research has been
characterized by two major limitations. First, because of the complexity of generating natural language, researchers
have tended to focus only on specific aspects of the generation process. Second, because of a lack of systematic
evaluation, it is difficult to gauge the effectiveness, scalability and robustness of the proposed approaches.

The research presented in this paper addresses these limitations. By following principles from argumentation the-
ory and computational linguistics, we have developed a complete computational model for generating evaluative
arguments. In our model, all aspects of the generation process are covered in a principled way, from selecting and or-
ganizing the content of the argument, to expressing the selected content in natural language. For content selection and
organization, we devised an argumentation strategy based on guidelines from argumentation theory. For expressing
the content in natural language, we extended and integrated previous work on generating evaluative arguments. The
key knowledge source for both tasks is a quantitative model of user preferences. To empirically test critical aspects of
our generation model, we have devised and implemented an evaluation framework in which the effectiveness of evalu-
ative arguments can be measured with real users. The design of the evaluation framework was based on principles and
techniques from several research fields, including computational linguistics, social psychology, decision theory and
human computer interaction. Within the framework, we have performed an experiment to test two basic hypotheses
on which the design of the computational model is based; namely, that tailoring an evaluative argument to a model of
the addressee’s preferences increases its effectiveness, and that differences in conciseness significantly influence ar-
gument effectiveness. The first hypothesis was only marginally confirmed in the experiment (0.05 < p < 0.10), while
the second one was confirmed at p < 0.05. Moreover, recent work [62], which is a direct extension of our research,
provided further independent empirical support for the first hypothesis.

In the next section, we focus on the problem of generating evaluative arguments tailored to a model of the user’s
preferences and we describe the design and development of our Generator of Evaluative Argument (GEA). In Sec-
tion 2, we describe our evaluation framework. First, we justify the design of the evaluation framework by reviewing
literature on persuasion from social psychology as well as previous work on evaluating natural language generation
techniques. Next, we introduce and motivate the user task at the core of the framework. In particular, we illustrate
how, in the context of this task, the effectiveness of an argument can be assessed by measuring its effects on user’s
behaviors, beliefs and attitudes. Section 3 describes the experiment we ran within the evaluation framework and in
Section 4 we discuss related work on generating and evaluating evaluative arguments.

2. Generating evaluative arguments

The generation of evaluative arguments has been extensively investigated in the past. Yet, the computational models
developed in previous work only cover sub-parts of the generation process. For instance, [35] provided a sophisticated
approach only to content selection, while [23] was mainly limited to content realization. Furthermore, all earlier
models were not informed by argumentation theory [42], a theory, rooted in rhetoric, providing guidelines on how
effective arguments are to be generated.

In this section we present GEA, the first computational model that covers all aspects of generating evaluative
arguments in a principled way, by effectively integrating general principles and techniques from argumentation theory
and computational linguistics. GEA is a rather complex computational model. In this section, we describe its design
and development in a top-down fashion. First, we illustrate how GEA specializes the pipeline architecture typically
adopted in Natural Language Generation (NLG) systems and introduce the basic algorithms and knowledge structures.
Then, we discuss a set of guidelines from argumentation theory on which an effective argumentation strategy can be
based. After that, we introduce the quantitative model used in GEA to represent the user’s preferences and describe
an argumentation strategy that tailors the content as well as structure of an evaluative argument to such a model. The
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Fig. 1. The GEA architecture as a specialization of the generic NLG pipeline architecture.

section concludes with a detailed description of how GEA realizes the content selected by the argumentation strategy
in natural language.

2.1. The architecture of the Generator of Evaluative Arguments (GEA)

Text generation involves two fundamental tasks: a process that selects and organizes the content of the text (deep
generation), and a process that expresses the selected content in natural language (surface generation). GEA, like
most previous work in NLG, makes the assumption that deep generation should strictly precede surface generation,
and adopts the resulting pipeline architecture [50]. In this architecture (see center of Fig. 1 from top to bottom) a text
planner selects and organizes content from a domain model by applying a communicative strategy to achieve a set of
communicative goals, which are given as input. The output of text planning is a text plan, a data structure that spec-
ifies: the rhetorical structure of the text, the propositions that the text should convey and a partial order among those
propositions. Then, a text Micro-Planner packages the selected content into sentences and selects words and syntactic
structures to effectively express that content. Finally, a Sentence Realizer runs the output of the Micro-Planner through
a computational grammar of English that produces English text. Notice that during both text planing and microplan-
ning the content, the structure and the phrasing of the text can be tailored to a model of the communicative context
(e.g., a user model).

Fig. 1 shows how GEA specializes the standard pipeline architecture for a generic NLG system. GEA specific
features are shown as grey boxes in the figure and are in italics in the following text. The input to GEA is an ab-
stract evaluative communicative goal expressing that the user attitude toward an entity in the domain of interest
(e.g., a house in the real-estate domain) should be increased either in a positive or in a negative direction, with posi-
tive/negative meaning that the user should like/dislike the entity. Given an abstract communicative goal, the Longbow
text planner [65] selects and arranges the content of the argument by applying a set of communicative strategies that
implement an argumentation strategy based on guidelines for content selection and organization from argumentation
theory (e.g., [42]). Two knowledge sources are involved in this process of goal and action decomposition (see Fig. 1):
(i) A domain model representing entities and their relationships in a specific domain. (ii) An additive multi-attribute
value function (AMVF), which is a decision-theoretic model of the user’s preferences [14].1

1 Currently, GEA is not a component of a dialogue system, so it is not sensitive to a dialogue history.
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Next, the text plan is passed to the GEA microplanner which performs aggregation and lexicalization, and generates
referring expressions. Aggregation, the packaging of semantic information into sentences, is performed according to
standard techniques [50]. For lexicalization, the selection of lexical items to express the desired meaning, the GEA
microplanner selects words to express evaluations by applying a decision tree that extends previous work on realizing
evaluative statements [22]. Decisions about cue phrases (to express discourse relationships among text segments)
are implemented as another decision tree based on features suggested in the literature (e.g., [36]). The generation
of referring expressions in GEA is straightforward; an entity is always referred to either by its proper noun or by a
pronoun. For pronominalization (deciding whether to use a pronoun or not to refer to an entity), a simple strategy
based on centering theory [27] is applied. Finally, the output of text microplanning is unified by the GEA sentence
realizer (FUF) with the Systemic Unification Realization Grammar of English (SURGE) [24].

We will now describe in detail the three key challenges in developing GEA: the design of the argumentation
strategy, the development of the model of the users’ preferences, and the design of the microplanner.

2.2. An argumentation strategy based on user preferences

2.2.1. Guidelines from argumentation theory
An argumentation strategy specifies what content should be included in the argument and how it should be arranged.

This comprises several decisions: what represents supporting (or opposing) evidence for the main claim, where to
position the main claim of the argument, what supporting (or opposing) evidence to include and how to order it, and
how to order supporting and opposing evidence with respect to one another. Argumentation theory has developed
guidelines specifying how these decisions can be effectively made (see [16,42,44,45] for details; see also [41] for
an alternative discussion of some of the same guidelines). In this section, we describe the guidelines in detail. In
Section 2.2.3 we will provide computational versions of these guidelines.

(a) What represents supporting (or opposing) evidence for a claim and how to determine its strength: Guidelines for
this decision vary depending on the argument type. Limiting our analysis to evaluative arguments, argumentation
theory indicates that supporting (or opposing) evidence and its strength should be determined according to a
model of the reader’s values and preferences. For instance, the risk involved in a game can be used as strong
evidence for the claim that the reader should like the game, only if the reader likes risky situations a lot.

(b) Positioning the main claim: Claims are often presented up front, usually for the sake of clarity. Placing the claim
early helps readers follow the line of reasoning. However, delaying the claim until the end of the argument can be
effective, particularly when readers are likely to find the claim objectionable or emotionally shattering.

(c) Selecting supporting (and opposing) evidence: Often an argument cannot mention all of the available evidence,
usually for the sake of brevity. Only strong evidence should be presented in detail, whereas weak evidence should
be either briefly mentioned or omitted entirely.

(d) Arranging/ordering supporting evidence: Typically the strongest support should be presented first, in order to
get at least provisional agreement from the reader early on. If at all possible, at least one very effective piece
of supporting evidence should be saved for the end of the argument, in order to leave the reader with a final
impression of the argument’s strength. This guideline, proposed in [42], is a compromise between the climax and
the anti-climax approaches discussed in [43].

(e) Addressing and ordering the counterarguments (opposing evidence): There are three options for this decision:
not to mention any counterarguments, to acknowledge them without directly refuting them, to acknowledge them
and directly refuting them. Weak counterarguments may be omitted. Stronger counterarguments should be briefly
acknowledged, because that shows awareness of the issue’s complexity, as well as a reasonable and broad-minded
attitude. A counterargument, once acknowledged, may also need to be refuted, if the reader agrees with a sub-
stantially different position. Finally, counterarguments should be ordered to minimize their effectiveness: strong
ones should be placed in the middle, weak ones upfront and at the end.

(f) Ordering supporting and opposing evidence: A preferred ordering between supporting and opposing evidence
appears to depend on whether the reader is aware of the opposing evidence. If so, the preferred ordering is
opposing before supporting, and the reverse otherwise.
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Fig. 2. Sample AMVF preference model for UserA (left). Information about sample House-2-33 (right).

Although these guidelines provide information about the types of content to include in an evaluative argument and
how to arrange this content, the design of a computational argumentative strategy requires that the concepts mentioned
in the guidelines be formalized in a coherent computational framework. In particular, we require a model of the
reader’s values and preferences that will allow a system to: identify supporting and opposing evidence (guideline a);
operationally define the term “objectionable claim” (guideline b) using a measure of the discrepancy between the
reader’s initial position and the argument’s main claim;2 measure the strength of supporting or opposing evidence
(guidelines c, d, and e); and represent whether the reader is aware of certain facts (guideline f). We describe such a
model in the next section.

2.2.2. Modeling user preferences with MAUT: AMVFs
One model that satisfies the requirements noted above is the additive multiattribute value function (AMVF), which

is based on multiattribute utility theory (MAUT) [14]. MAUT is widely used in decision theory, where it was originally
developed, and has become a common choice in the field of artificial intelligence and intelligent user interfaces
[2,31,39]. Models similar to AMVF have also proven useful in psychology, in particular for the study of consumer
behavior [56]. A critical aspect of AMVFs is that they can be elicited from people in a reliable and efficient way
[1,21].

As their name suggests, multi-attribute utility models are based on the notion that if something is valued, it is valued
for multiple reasons [34]. An AMVF is a model of an individual’s values and preferences with respect to entities in a
given class. To build an AMVF for a particular domain, we must identify the attributes that contribute to users’ overall
assessment of entities, and determine the relative importance of each attribute for particular users.

More formally, an AMVF consists of a value tree and a set of component value functions. A value tree is a decom-
position of an entity’s value into a hierarchy of aspects of the entity, called objectives in decision theory, in which the
leaves of the value tree correspond to primitive objectives. For example, Fig. 2 (left side) shows a value tree for the
real estate domain, in which the value of a house is a combination of the values of its location, amenities, and quality.
The value for amenities is further broken down into values for the primitive objectives garden-size, porch-size and
deck-size. Location and quality are also broken down into more primitive objectives. A component value function for
a primitive objective expresses the preferability of each value for that objective as a number in the interval [0,1], with
the most preferable value mapped to 1, and the least preferable value to 0.3 For instance, in Fig. 2 the value modern

2 An operational definition for “emotionally shattering” is outside the scope of this work.
3 For illustration, three component value functions are shown (as text boxes) in Fig. 2.
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of the primitive objective architectural-style is the most preferred by UserA, and a distance-from-park of 1 mile has
preferability (1 − (1/3.2 ∗ 1)) = 0.69.

The arcs in the value tree are weighted to represent how valuable it would be for the decision maker to move from
the worst to the best level of an objective (with respect to doing the same for its siblings). For instance in Fig. 2,
UserA would consider moving from a deco house to a modern house as slightly more valuable than moving from a
house with a view on other houses to a house with a view on a river (cf. weight for Architectural-style is 0.15, whereas
weight for View-object is 0.12).

Formally, an AMVF predicts the value v(e) of an entity e as follows:

v(e) = v(x1, . . . , xn) =
n∑

i=1

wivi(xi),

where

• (x1, . . . , xn) is the vector of primitive objective values for an entity e,
• ∀ primitive objective i, vi is the component value function and wi is its weight, with 0 � wi � 1 and

∑n
i=1 wi = 1;

wi is equal to the product of all the weights on the path from the root of the value tree to the primitive objective i.

A function vo(e) can also be defined for each objective. When applied to an entity, this function returns the value
of the entity with respect to that objective. For instance, assuming the value tree shown in Fig. 2, we have:

vQuality(e) = (
wView-Quality ∗ vView-Quality(e)

)

+ (
wView-Object ∗ vView-Object(e)

)

+ (
wArchitectural-Style ∗ vArchitectural-Style(e)

)

+ (
wAppearance-Quality ∗ vAppearance-Quality(e)

)
.

Thus, given an AMVF for a particular user, it is possible to compute how valuable an entity is to that individual.
Furthermore, it is possible to compute how valuable any objective (i.e., any aspect of that entity) is for that person.
All of these values are expressed as a number in the interval [0,1].

In general, when uncertainty is present, a user’s valuation of an entity can be represented as a linear combination
of her preferences for the primitive objectives (i.e., as an AMVF) only in cases where these preferences satisfy the
condition of additive independence. That is, each objective is assumed to be independent of all the others. However,
standard heuristic tests with users have shown that additive models are a good approximation of people’s preferences
under conditions of certainty [21]. Thus, AMVFs can safely be used either in situations with no uncertainty or in
uncertain situations once additive independence has been verified.

Edwards and Barron [21] have shown that AMVFs can be elicited from people in a reliable and efficient way. They
devised SMARTER, a simple procedure for eliciting objective weights and component value functions from users.

Objective weights are user-specific, reflecting individual preferences about tradeoffs between entities in the domain.
To elicit the weights, SMARTER asks the user to perform a series of easy assessments, N − 1 for N objectives, from
which a user-specific ranking of the objectives can be generated. From such a ranking, the weights can be computed
according to the following formula, which specifies the weight of the kth objective as:

wk = (1/K)

K∑

i=k

(1/i).

There is considerable experimental evidence indicating that simple attribute ranking is both more efficient than,
and nearly as accurate as, traditional more time-consuming methods in which weights are directly elicited from users.
Traditional methods require k ∗ (N − 1) assessments for N objectives, with k possibly quite large [14]. Moreover,
the resulting efficiency gain does not appear to penalize accuracy. Simulation studies have shown that SMARTER
introduces only a 2% utility loss [1].

The elicitation of component value functions in SMARTER is simplified as follows. If the function specifies the
preferability of a continuous objective (e.g., garden-size) the user needs only to choose among essentially three basic
possibilities: the function either increases linearly across the whole value range, decreases linearly across the whole
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value range, or increases linearly on a sub-interval and then decreases linearly on its complement. If the function
specifies the preferability of a discrete objective (e.g., architectural-style), it can be acquired in a manner similar to
the way in which weights are elicited, i.e., by having the user rank all the possible values.

SMARTER makes several simplifying assumptions. Nevertheless, it is remarkably effective. Ref. [12] shows that
models developed using SMARTER return evaluations that correlate highly with experts’ holistic judgements (Pear-
son’s coefficient 0.68; p < 0.001).

2.2.3. Operationalizing the argumentation strategy
Presenting an evaluative argument is an attempt to persuade the reader that a value judgement applies to an entity.

The value judgement, also called the argumentative intent, can either be positive (in favor of the subject), or negative
(against the subject).4 The subject can be a single entity (e.g., “Ulysses is a very good book”), the difference between
two entities (e.g., “Vancouver is somewhat better than Seattle”), or any other form of comparison among entities in
a set (e.g., “Vancouver is the best city in North America”). We now describe how we can use the information in an
AMVF to operationalize the guidelines presented in Section 2.2.1.

Guideline (a): Given a user’s AMVF, it is straightforward to establish what represents supporting or opposing
evidence for an argument with a given argumentative intent and a given subject. If the argumentative intent is positive,
objectives for which the subject has positive value can be used as supporting evidence, whereas objectives for which
the subject has a negative value can be used as opposing evidence (the opposite holds when the argumentative intent
is negative). The value of different subjects can be reasonably measured as follows. If the subject is a single entity e,
the value of the subject for an objective o is vo(e), and it is positive when it is greater than 0.5, the midpoint of [0,1]
(negative otherwise). In contrast, if the subject is a comparison between two entities (e.g., v(e1) > v(e2)), the value of
the subject for an objective o is [vo(e1) − vo(e2)], and it is positive when it is greater than 0 (negative otherwise).

Guideline (b): Since argumentative intent is a value judgement, we can reasonably assume that instead of being
simply positive or negative, it may be specified more precisely as a number in the interval [0,1] (or as a specification
that can be normalized to a value in this interval). Then, the term “objectionable claim” can be operationally defined.
If we introduce a measure of discrepancy (MD) as the absolute value of the difference between the argumentative
intent and the reader’s expected value of the subject before the argument is presented (based on her AMVF), a claim
becomes more and more “objectionable” for a reader as MD moves from 0 to 1.

Guidelines (c) (d) (e): The strength of the evidence in support of (or opposition to) the main argument claim is
critical in selecting and organizing the argument content. To define a measure of the strength of support (or opposition),
we adopt and extend previous work on explaining decision theoretic advice based on an AMVF. Klein [35] presents
explanation strategies (not based on argumentation theory) to justify the preference of one alternative from a pair. In
these strategies, the compellingness of an objective measures the objective’s strength in determining the overall value
difference between the two alternatives, other things being equal. And an objective is notably-compelling? (i.e., worth
mentioning) if it is an outlier in a population of objectives with respect to compellingness. The formal definitions are:

compellingness(o, a1, a2) = w(o, root)
∣∣[vo(a1) − vo(a2)

]∣∣,

where

• o is an objective, a1 and a2 are alternatives,
• w(o, root) is the product of the weights of all the links on the path from o to the root objective of the value tree,
• vo is the component value function for leaf objectives (i.e., attributes), and it is the recursive evaluation over

children(o) for non-leaf objectives (w(o,o′) is the weight on the link from o′ to o):

vo(a) =
∑

o′∈children(o)

w(o, o′)vo′(a),

notably-compelling?(o,opop, a1, a2) ≡ compellingness(o, a1, a2) > μx + kδx,

4 Arguments can also be neutral. However, in this paper we do not discuss arguments with a neutral argumentative intent.
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Fig. 3. Sample population of objectives represented by dots and ordered by their compellingness.

where

• o, a1 and a2 are defined as in the previous definition; opop is an objective population (e.g., siblings(o)), and
|opop| > 2,

• X = {x = compellingness(p, a1, a2) | p ∈ opop},
• μx is the mean of X, δx is the standard deviation.

We have adopted compellingness as our measure of the strength for supporting or opposing evidence. We have
adopted notably-compelling? as a decision criterion for including a piece of evidence in the argument. Notice that
the definition of notably-compelling? relies on a constant k which determines a lower bound of compellingness for
an objective to be included in an argument. So, by setting the constant k to different values, it is possible to control,
in a principled manner, the number of objectives (i.e., pieces of evidence) that are included in an argument, thus
controlling the degree of conciseness of the generated arguments. As shown in Fig. 3, for k = 0 only objectives with
compellingness greater than the average compellingness in a population are included in the argument (4 in the sample
population). For higher positive values of k fewer objectives are included (only 2, when k = 1), and the opposite
happens for negative values (8 objectives are included, when k = −1).

The concepts compellingness and notably-compelling? were defined to support arguments that one entity is more
valuable than another. We have defined similar measures for arguing the value of a single entity, which we have
termed s-compellingness and s-notably-compelling?. An objective can be s-compelling either because of its strength
or because of its weakness in contributing to the value of an alternative. So, if m1 measures how much the value
of an objective contributes to the overall value difference of an alternative from the worst possible case5 and m2
measures how much the value of an objective contributes to the overall value difference of the alternative from the best
possible case, we define s-compellingness as the greatest of the two quantities m1 and m2. Following the terminology
introduced in the two previous equations we have:

s-compellingness(o, a) = w(o, root) ∗ max
[
vo(a),

[
1 − vo(a)

]]
.

We give to s-notably-compelling? a definition analogous to the one for notably-compelling?

s-notably-compelling?(o,opop, a) ≡ s-compellingness(o, a) > μx + kδx.

In s-notably-compelling? the constant k plays the same role as in notably-compelling?: by setting the constant k to
different values, it is possible to control the degree of conciseness of the generated arguments.

Guideline (f): An AMVF does not represent whether the reader is or is not aware of certain facts. We assume this
information is represented elsewhere.

2.2.4. The argumentation strategy
We have applied the guidelines from argumentation theory and the corresponding formal definitions described in

the previous section to develop the argumentative strategy shown in Fig. 4. The steps in the strategy are marked with

5 aworst is an alternative such that ∀o vo(aworst) = 0, whereas abest is an alternative such that ∀o vo(abest) = 1.
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Argue(subject, Root, ArgInt, k)
;; (A) assignments
If subject = single-entity = e then SVoi

= voi
(e)

Measure-of-strength = s-compellingness
Worth-mention? = s-notably-compelling?

Else If subject = e1, e2 then SVoi
= [voi

(e1) − voi
(e2)]

Measure-of-strength = compellingness
Worth-mention? = notably-compelling?

;; (B) content selection
Eliminate all objectives oi |¬Worth-mention? (oi , siblings(oi ), subject,Root) ;guideline(c)
AllEvidence ← children(Root)
AllInFavor ← all o|o ∈ AllEvidence ∧ (SVo ≈ ArgInt) ;guideline(a)
SecondBestObjInFavor ← second most compelling objective o|o ∈ AllInFavor
RemainingObjectivesInFavor ← AllInFavor – SecondBestObjInFavor
ContrastingObjectives ← AllEvidence – AllInFavor ;guideline(a)

;; (C) ordering constraints
AddOrdering(Root ≺ AllEvidence) ;; we assume MD = 0, so claim is not objectionable ;guideline(b)
If Aware(User, ContrastingObjectives) then ;guideline(f)

AddOrdering(ContrastingObjectives ≺ AllInFavor)
Else AddOrdering(ContrastingObjectives 
 AllInFavor);
AddOrdering(RemainingObjectivesInFavor ≺ SecondBestObjInFavor) ;guideline(d)
Sort(RemainingObjectivesInFavor; decreasing order according to Measure-of-strength) ;guideline(d)
Sort(ContrastingObjectives; strong ones in the middle, weak ones upfront and at the end) ;guideline(e)

;; (D) steps for expressing or further argue the content
Express-Value(subject, Root, ArgInt)
For all o ∈ ContrastingObjectives, Express-Value(subject, o, SVo) ;guideline(e)
For all o ∈ AllInFavor, If ¬ leaf(o) then Argue(subject, o, SVo , k)

Else Express-Value(subject, o,SV0)

Legend: (a ≺ b) ↔ a preceeds b

(ν1 ≈ ν2) ↔ ν1 and ν2 are both positive or negative values
(see Section guideline (a) for what this means for different subjects)

SVoi
: function computing the subject value for objective oi

Fig. 4. The argumentation strategy.

the guideline they are based on. The strategy is designed for generating arguments which present an evaluation of
the subject equivalent to the one that the reader would be expected to hold given her model of preferences (i.e., the
argumentative intent is equal to the expected value, so MD = 0).6

We now examine the strategy in detail, after introducing necessary terminology. The strategy is called Argue and
takes four arguments (first line in Fig. 4). The subject is the entity (or entities) that is to be evaluated or compared,
and can be either a single entity or a pair of entities in the domain of interest. Root can be any objective in the value
tree for the evaluation (e.g., the overall value of a house, its location, its amenities). ArgInt is the argumentative intent
of the argument, a number in [0,1], with 0 meaning the worst and 1 the best. The constant k, part of the definitions of
notably-compelling? and s-notably-compelling?, determines the degree of conciseness of the argument.

The Express-Value function, used at the end of the strategy, indicates that the objective applied to the subject must
be realized in natural language with a certain argumentative intent.

In the first part of the strategy (A in the figure), depending on the nature of the subject, an appropriate measure
of evidence strength is assigned, along with the appropriate predicate that determines whether a piece of evidence
is worth mentioning. After that (in part (B)), only evidence that is worth mentioning is assigned as supporting or
opposing evidence by comparing its value to the argument intent. In part (C) ordering constraints from argumentation

6 An alternative strategy, for generating arguments whose argumentative intent was greater (or lower) than the expected value could also be
defined in our framework. This strategy would boost the evaluation of supporting evidence and include only weak counterarguments, or omit them
entirely (the opposite if the target value was lower than the expected value).
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Fig. 5. Text plan, segmentation structure and corresponding argument generated by GEA about House-2-33, tailored to UserA with k = −0.3.
UserA’s model and the information about House-2-33 are shown in Fig. 2.

theory are applied. Notice that we assume a predicate Aware that is true when the user is aware of a certain fact, false
otherwise.

Finally, in part (D), the argument claim is expressed in natural language by calling the ExpressValue function,
which realizes the objective Root applied to subject with the argument intent ArgInt. Then, the opposing evidence
(i.e., ContrastingSubObjectives), that must be considered, but not in detail, is also expressed in natural language. In
contrast, supporting evidence is presented in detail, by recursively calling the strategy on each supporting piece of
evidence whose corresponding objective is not a leaf of the value tree.

The argumentation strategy has been implemented as a library of communicative action decompositions for the
Longbow discourse planner [66]. As shown in Fig. 1, the application of the argumentation strategy produces a text
plan for an evaluative argument tailored to a given user. For instance, when the argumentation strategy is applied to
the preference model and the entity introduced in Fig. 2, (i.e., subject = House-2-33, Root = HouseValue for UserA),
with ArgIntent = 0.6, and k = −0.3, the text plan shown in Fig. 5(a) is generated.

The leaves of the text plan express the propositions that the argument should convey (e.g., 〈Assert that the Quality
of House-2-33 has for UserA a value 0.82〉7). Note that only a subset of the objectives in the original AMVF are
included in the plan. These are the s-notably-compelling objectives that were selected in part (B) of the strategy. The
nodes of the text plan (i.e., the communicative actions) are also ordered (e.g., the action Assert-opposing-props should
be performed before Assert-props-in-favor). These ordering relations were established in part (C) of the strategy. Fi-
nally, the text plan specifies the rhetorical structure of the argument. This structure is expressed by the hierarchical
decomposition of the text plan and the rhetorical relations of evidence and concession between elements in the hier-
archy. The plan hierarchical decomposition is generated in part (D) of the strategy by the recursive calls, while the
rhetorical relations are determined in part (B) (guideline (a)).

7 As in the AMVF, values are expressed in the [0,1] interval, with 1 corresponding to best possible, and the 0 to worst possible.
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2.3. GEA microplanner

The output of the argumentation strategy is a text plan indicating the propositions to include in the argument and
the overall structure the argument should take. This text plan is then passed to the microplanner (see Fig. 1) which
performs aggregation, lexicalization and referring expression generation. To illustrate GEA’s microplanner, we will
describe how the sample text plan in Fig. 5(a) is realized into the corresponding argument shown in Fig. 5(b).8

A key aspect of the text plan for microplanning is the specification of discourse segments. Note that each node
in the plan that participates in a rhetorical relation corresponds to a discourse segment. In Fig. 5(a), each discourse
segment is marked with a 〈seg〉 label and corresponding portions of text in Fig. 5(b) are enclosed in angle brackets.
Segments are internally structured and consist of an element that most directly expresses the discourse purpose of the
segment (the element at the head of the relation arrows in the figure) and any number of constituents supporting that
purpose.9 We now illustrate each microplanning task in detail.

Lexicalization proper (i.e., no discourse cue selection): Lexicalization is the task of selecting words and associated
syntactic structures to express semantic information. The GEA microplanner performs a simple form of lexical choice.
For each proposition in the text plan it chooses the most appropriate proto-phrase to express that proposition. This
decision is based on the objective of the proposition and its value for the current user. For example, in the sample
text plan in Fig. 5(a), the proposition (Location House-2-33 0.6) is mapped to a proto-phrase which (after pronomi-
nalization) is realized as “it has a reasonable location”, while the proposition (Distance-shopping House-2-33 0.84)
is mapped to a proto-phrase which is realized as “it offers easy access to the shops”. Mapping to proto-phrases is
implemented by decision trees. Fig. 6(top) shows a portion of the decision tree for mapping the objectives to proto-
phrases. Because there is no linguistic theory indicating how to realize the numeric intervals in natural language, we
have based the choice of adjectives (e.g., “reasonable”, “excellent”) on our own estimates.

In practice, lexicalization proper in GEA is implemented in the Functional Unification Framework (FUF) by ex-
tending previous work on realizing evaluative statements [22]. The decision tree, partially shown in Fig. 6(top), is
represented as a FUF grammar, while the selection and instantiation of the template to express a proposition is per-
formed by unifying that proposition with the grammar.

Aggregation: Aggregation is the task of packaging semantic information into sentences. Three basic types of ag-
gregation can be identified [50]. In simple conjunction, two or more informational elements are combined within a
single sentence by using a connective such as “and”. For instance, two informational elements that could be realized
independently as (a1) “House B-11 is far from a shopping area” and (a2) “House B-11 is far from public transporta-
tion” can be combined and realized as the single sentence “a1 and a2”. In conjunction via shared participants, two
or more informational elements that share argument positions and are filled with the same content are combined to
produce a surface form where the shared content is realized only once. For instance, the two informational elements
aggregated above in a simple conjunction could be combined in a conjunction via shared participants as “House B-11
is far from a shopping area and public transportation”. Finally, in syntactic embedding, an informational element that
might have been realized as a separate major clause is instead realized as a constituent embedded into some other re-
alized element. For instance, two informational elements that could be realized independently as “House B-11 offers
a nice view” and “House B-11 offers a view of the river” can be combined and realized as “House B-11 offers a nice
view of the river”.

GEA performs both aggregation via shared participants and by syntactic embedding. To ensure argument coher-
ence, aggregation is only attempted between objectives that are related to a claim by the same rhetorical relation type
(evidence or concession). This is consistent with a heuristic proposed in [55] which addresses the question of when
aggregation is (not) desirable, namely, “Do not express more than one type of rhetorical relation within a single sen-
tence.” In our example, we have only one aggregation between the Location and Neighborhood objectives, which are
both related to the main claim by a relation of type evidence. Note that (Neighborhood is related to the main claim

8 The text plan does not include the objective Crime (which is included in the argument). The reason is that the current implementation of the
argumentation strategy only processes objectives of depth < 3 in the AMVF. The objective Crime is reintroduced in the argument by subsequent
processing in an ad hoc fashion.

9 The main element and the supporting elements are given different names in different discourse theories. In this paper we call the main component
of a relation the core and the supporting elements the contributors.
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Fig. 6. Portions of the decision trees used by the micro-planner for lexical choice (top) and for discourse cue selection (bottom).

through a chain of two evidence relations (see plan in Fig. 5(a)). The two propositions are aggregated by syntactic
embedding.

Cue phrase generation: Although substantial research effort has been devoted to the development of a computa-
tional theory of discourse cue usage (e.g., [19,29,36,37,61]), a comprehensive theory is still lacking, and many open
questions remain. Nevertheless, there is considerable consensus in the field about what factors may influence the usage
of discourse cues. These include features that characterize the relationship (e.g., intentional, informational, syntactic)
between the core and the contributor, features of the segment structure in which the core and contributor appear, and
features related to the embedding within or outside a segment. Lacking a comprehensive theory, developers of NLG
systems typically follow the methodology of devising, for the genre of interest, a specialized algorithm which relies
on a carefully selected subset of these features [50]. In GEA, cue phrase selection and placement are implemented
as a decision tree taking into account the following features, which have been suggested in the literature: (a) the in-
tentional relationship between the core and the contributor, (b) the overall structure of the segment in which core and
contributor appear (including the position of core and contributor(s) within the segment), and (c) the relationship in
which the core and contributor segment itself is involved. For example, if by applying the portion of the decision tree
shown in Fig. 6(bottom) to the text plan for our example, the reader can verify why “Even though” is used to mark
the only concession in our sample argument.

Pronominalization: Most pronominalization algorithms in NLG rely on the notion of the “focus” or “center” of a
sentence [50]. GEA decides whether to use a pronoun to refer to the evaluated entity by applying a simple strategy
inspired by centering [27]. Centering theory indicates that the entity providing a link to the previous discourse in
a locally coherent discourse (i.e., a discourse segment) should preferentially be realized as a pronoun rather than
a repeated definite description.10 Since in GEA the entity providing a link to the previous discourse is always the
entity being evaluated by the argument, a straightforward application of centering would imply that within a discourse
segment successive references to that entity are realized as pronouns, while at the beginning of a new segment a
definite description is used to mark the segment boundary. For the arguments generated by GEA, we noticed that
although the centering-based pronominalization policy works well for references within a segment, it is too restrictive
for references at a segment boundary. In particular, it appears that a definite description at the beginning of a new
segment is cumbersome and unnecessary when the segment boundary is already explicitly marked by a discourse

10 This thesis has been empirically verified in [25].
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cue, and a pronoun has not been used to refer to the entity in the previous sentence. So, GEA realizes the entity as
a pronoun not only within a segment, but also in the situation just described. Clearly, the application of this strategy
requires information about how the argument will be segmented in the final text. As described previously, the text
plan expresses text segmentation: the core or contributor of each rhetorical relation corresponds to a segment. In
Fig. 5(a), each discourse segment is marked with a 〈seg〉 label. The corresponding text in Fig. 5(b) contains five
segment boundaries: [b1 . . . b5]. For illustration, the pronominalization strategy is applied to the segment boundary b1
as follows: b1 is explicitly marked by the discourse cue “in fact” and a pronoun has not been used in the sentence
preceding b1 to refer to House-2-23. Thus, a pronoun is used to refer to that entity in the following sentence.

2.4. GEA: Summary and portability

GEA has been implemented as a complete and modular NLG system for generating user tailored evaluative argu-
ments. We have seen how GEA covers all aspects of the process of generating evaluative arguments, from selecting
and organizing the content of the argument, to expressing the selected content in natural language. For content se-
lection and organization, GEA applies an argumentation strategy based on guidelines from argumentation theory. To
express the content in natural language, GEA relies on a set of techniques that extend and integrate previous work in
computational linguistics on microplanning and realizing evaluative arguments. Finally, a quantitative model of the
user preferences expressed as an AMVF is the key knowledge source used by GEA in tailoring the content, organiza-
tion and phrasing of the generated arguments to its users. The GEA implementation is largely domain independent. To
port the system to a new domain, the implementor needs only to specify: (i) a value decomposition for each relevant
entity (i.e., an AMVF in which the weights and the component value functions are not specified). (ii) a decision tree
for lexicalization proper, like the one partially shown in Fig. 6(bottom), and (iii) an indication of which objectives can
be aggregated and what type of aggregation is allowed (e.g., distance objectives can be aggregated by conjunction via
shared participants).

3. Evaluating evaluative arguments

The goal of the work presented in this paper is to complete a research cycle that starts by designing a computa-
tional model and ends by empirically testing the design of the model. In the previous sections, we described GEA, a
computational model for generating evaluative arguments tailored to the user’s preferences. In this section we present
an evaluation framework in which the effectiveness of the evaluative arguments generated by GEA can be measured
with real users. Our framework is based on principles and techniques from social psychology, NLG, decision theory
and human computer interaction. We first discuss literature from social psychology on persuasion and argument ef-
fectiveness. Next, we examine previous work on evaluating NLG techniques. Finally, we describe the architecture of
our evaluation framework and its rationale.

3.1. Research in psychology on persuasion and argument effectiveness

In social psychology and communication theory, attitudes, beliefs and persuasion are defined as follows [45]:

• Attitudes are evaluative tendencies regarding some feature of the environment that are typically phrased in terms
of like and dislike or favor and disfavor.

• Beliefs are assessments that something is or is not the case.
• Persuasion involves an intentional communicative act that attempts to affect the current or future behavior of the

addressees by creating, changing or reinforcing addressees’ attitudes and beliefs.

The focus of this work is on evaluative arguments that attempt to change or reinforce users’ attitudes (vs. beliefs).
Thus, beliefs will not be discussed further in this paper.

Since the goal of evaluative arguments is to affect behavior by affecting attitudes, it follows that their effectiveness
can be tested by comparing measurements of subjects’ attitudes or behavior before and after their exposure to the
argument. For instance, to compare the effectiveness of two arguments that, by positively evaluating the state of being
fit, attempt to change a person’s amount of daily exercise (a behavior), we can perform an experiment in which we
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(a) How would you judge house B-11?
(The more you like the house the closer you should put a cross to “good choice”.)
bad choice : _ _ _ : _ _ _ : _ _ _ : _ _ _ : _ _ _ : _ _ _ : _ _ _ : _ _ _ : _ _ _ : good choice

(b) How sure are you that you have selected the best house for you among the
ones available?
unsure : _ _ _ : _ _ _ : _ _ _ : _ _ _ : _ _ _ : _ _ _ : _ _ _ : _ _ _ : _ _ _ : sure

Fig. 7. Sample self-reports.

compare the amount of daily exercise in two groups of subjects before and after participants have been exposed to one
or the other of the evaluative arguments.

In many experimental situations, however, measuring effects on overt behavior can be problematic, and therefore
research on persuasion is often based on measurements of attitudes or declarations of behavioral intentions [45]. The
most common technique for measuring attitudes is the semantic differential self-report, in which subjects are presented
with a scale whose endpoints are bipolar terms (e.g., “good choice” vs. “bad choice”), usually separated by seven or
nine equal spaces that participants use to evaluate an attitude or belief statement (see Fig. 7 for examples).

Ref. [45] also suggests that some individuals may be naturally more resistant to persuasion than others, and thus
individual differences must be taken into account when studying persuasion. Features of individuals that seem to
be important in this respect are: argumentativeness (tendency to argue), intelligence, self-esteem, and the need for
cognition (tendency to engage in and to enjoy effortful cognitive endeavours) [4,30]. Therefore, it is crucial to control
for these variables when attempting to evaluate the persuasiveness of an argument.

Finally, an argument can also be evaluated by the addressee with respect to dimensions of quality, such as coher-
ence, content, organization, writing style and convincingness. However, evaluations based on judgements along these
dimensions are clearly weaker than evaluations measuring actual attitudinal and behavioral change [48].

3.2. Evaluation of NLG models

Three main methods have been proposed in the literature for the purpose of evaluating approaches to natural
language generation: human judges, corpus-based evaluation, and task efficacy. All have their shortcomings, and it is
important to choose the appropriate method to test the hypothesis that one is interested in. We now present a critical
overview of the three methods and clarify why task efficacy is the most appropriate for testing the effectiveness of
evaluative arguments that are tailored to a model of the user’s preferences.

The human judges evaluation method requires a panel of judges to score outputs of a number of different generation
models [5,6,17,40,59]. To compare models, each judge in a panel is given outputs generated by each of the models,
and asked to rate the outputs on dimensions of text quality, such as coherence, content, organization, writing style and
correctness. Note that the writers of the text may be humans, natural language generation systems, or a combination
of the two. Indeed, it is common to pit NLG systems against human writers. Clearly, to guard against any biases
the judges might have, they must be unaware of which text is generated by which model. Having a panel of judges
combats (but does not eliminate) the inherent subjectivity of human judgement of natural language. The rationale
is that, although multiple judges rarely reach a consensus, their collective opinion can provide persuasive evidence
about significant differences between different models. The main limitation of this approach is that it requires the
specification of the texts to be evaluated to be simple enough to be easily articulated to the judges. This was the case
in [40], where judges were told that each text was meant to be a general explanation of a given biological entity
or process aimed at freshman biology students. For applications in which the input to the generation process must
include a detailed characterization of the context (e.g., interactive applications in which output must be tailored to a
complex user model or a history of previous interaction), it can be extremely difficult for the judges to fictitiously
place themselves in the specific context in order to judge the texts.11 As we have seen in the previous section, the
input to GEA is complex. It consists of a possibly complex and novel argument subject (e.g., a new house with a

11 See [6] for an illustration of how the specification of the context can become extremely complex when human judges are used to evaluate
content selection strategies for a dialogue system.
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large number of features), and a complex model of the user’s preferences. Therefore, the human judges method is not
deemed appropriate to evaluate GEA.

The corpus-based evaluation method can be applied when a corpus of input/output pairs is available [53]. The input
consists of all relevant knowledge sources and the output can be either textual, graphical or multimedia. A portion
of the corpus (the training set) is used to develop a computational model capable of generating the output from the
corresponding input. The remainder of the corpus (the testing set) is used to evaluate the model. The model is evaluated
by verifying each pair in the testing set to determine whether the output produced by the model applied to the input
matches the corresponding output in the pair. The main advantage of the corpus-based method is that it does not
require subjective human judgements about the quality of the generated text. However, it requires a large corpus of
input/output pairs. In many cases, there is no extant corpus, and as the complexity of the input specification increases,
the effort that would be required to create such a corpus becomes prohibitive. As discussed above, GEA makes use of
a rich input representation, which includes an argument subject with many features, and a complex user model, and
hence it was not possible to create such a corpus. Indeed, it is not even clear how one would go about it without using
a generator such as GEA.

Arguably, all natural language processing tools are components of larger systems that are designed to assist users
engaged in tasks, and therefore a natural and extremely informative way to evaluate their effectiveness is by experi-
menting with users performing those tasks [33]. This evaluation method is called task efficacy. As an early example
of task efficacy evaluation in NLG consider [60]. In this study, an explanation generation model for a medical belief
network was proven to be effective by showing that the explanations it generated improved diagnostic accuracy and
increased user confidence in the final diagnosis. In general, the task efficacy evaluation method allows one to evalu-
ate a generation model not by explicitly evaluating its output, but rather by measuring the output’s effects on users’
behaviors, beliefs and attitudes in the context of the task. The only requirement for this method is the specification
of a sensible task. However, since task efficacy, to achieve sufficient statistical power, typically requires involving a
large number of users in the evaluation, it is often considered the most expensive and difficult-to-organize method.
Nevertheless, because the applicability of other methods is rather limited, task efficacy is becoming a common choice
in NLG research [15,18,51,64], and forms the basis for the evaluation framework we have developed.

3.3. The evaluation framework

3.3.1. The user task
Generally speaking, a suitable task for evaluating evaluative arguments should be one in which (a) the user is

required to perform evaluations and comparisons of objects in order to complete the task; and (b) presenting the user
with evaluative arguments in the context of the task may change how the user performs the task along measurable
dimensions.

A rather basic and frequent task satisfying these requirements is preferential choice: a selection task that has been
extensively studied in decision analysis. It consists of having the decision-maker select a subset of preferred objects
(e.g., houses) out of a set of possible alternatives by considering trade-offs among multiple objectives (e.g., house
location, house quality) and by evaluating the objects with respect to their values for a set of primitive attributes
(e.g., distance from work, size of the garden). The task we have devised for the evaluation framework is an extension
of preferential choice and comprises two subtasks. As shown in Fig. 8, at the start of the first subtask the user is
presented with information about a set of alternatives. Next, she is asked to select a subset of n preferred alternatives
and to order them by preference in what is called a “Hot List”. In the second subtask the user is presented with an
evaluative argument about a new instance (not included in the initial set of alternatives), and she is asked whether she
wants to include it in her Hot List. If the user’s answer is affirmative, she has to decide where to place the new instance
in the ordered Hot List. Finally, the user fills out a questionnaire about her attitudes and beliefs about the new instance
and the decision task.

3.3.2. The data exploration environment
In our evaluation framework, the user performs this task by using a system for interactive data exploration and

analysis (IDEA) [54]. The IDEA environment facilitates the user’s autonomous exploration of the set of alternatives
and the performance of the two subtasks in the real-estate domain. We chose this domain because it is familiar to
almost everyone, but still presents a challenging decision task. The design of the IDEA system was inspired by the
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Fig. 8. User task at the core of the evaluation framework.

HomeFinder prototype [63] and details of the interface were refined by iterative evaluation with HCI experts and pilot
subjects. The interface is shown in Fig. 9 (the reader should ignore the argument about NewHouse-3-26 for now).
The user can visually inspect many aspects of the set of houses in the map, the bar charts and the table (14 distinct
attributes, including 1 attribute of the street on which the house is located, and 2 attributes of the neighborhood).
Furthermore, the user can explore this information by applying powerful interactive techniques including dynamic-
queries, drag-and-drop and painting [54].

3.3.3. The evaluation framework
Fig. 10 illustrates the architecture of the evaluation framework, which consists of four main sub-systems: the IDEA

system, the User Model Refiner, the New Instance Generator and GEA. The framework assumes that a model of the
user’s preferences (an AMVF) has been previously acquired from the user, to assure a reliable initial model. The
user is assigned the task of selecting from the dataset the four most preferred alternatives by placing them in a “Hot
List” (see Fig. 9, upper right corner) ordered by preference. When the user feels that the task is accomplished, the
ordered list of preferred alternatives is saved as her Preliminary Hot List (Fig. 10(2)). Then, the User Model Refiner
refines the initial model, making any adjustments necessary to make the model consistent with the preferences that the
user expressed by creating her Hot List (Fig. 10(3)). This refinement process produces a Refined Model of the User’s
Preferences by heuristically adjusting the model weights. Then a New Instance (NewI) is designed on the fly by the
New Instance Generator to be preferable for the user given her refined preference model (Fig. 10(4)). More precisely,
the new instance is designed so that its value for the user is the average of the values of the two instances with the
highest values in the HotList.

At this point, the stage is set for argument generation. Given the Refined Model of the User’s Preferences, the Ar-
gument Generator produces an evaluative argument about NewI tailored to the model (Fig. 10(5)), which is presented
to the user by the IDEA system (Fig. 10(6)) (see also Fig. 9 for an example). The argument goal is to persuade the
user that NewI is worth being considered. Notice that all the information about NewI is also presented graphically.

Once the argument is presented, the user may (a) decide to immediately introduce NewI into her Hot List, (b) decide
to further explore the dataset, possibly making changes and adding NewI to the Hot List, or (c) do nothing. Fig. 9 shows
the display at the end of the interaction, when the user, after reading the argument, has decided to introduce NewI into
the Hot List in first position (Fig. 9, top right).

When the user decides to stop exploring, and can thus be assumed to be satisfied with the selections in the hot list,
measures related to the argument’s effectiveness can be assessed (Fig. 10(7)).
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Fig. 9. The IDEA environment display (at the end of the interaction).

Fig. 10. Architecture of the evaluation framework.
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(a) How would you judge the houses in your Hot List?
1st house

bad choice : _ _ _ : _ _ _ : _ _ _ : _ _ _ : _ _ _ : _ _ _ : _ _ _ : _X_ : _ _ _ : good choice
2nd house (New house) }

bad choice : _ _ _ : _ _ _ : _ _ _ : _ _ _ : _ _ _ : _ _ _ : _X_ : _ _ _ : _ _ _ : good choice
3rd house

bad choice : _ _ _ : _ _ _ : _ _ _ : _ _ _ : _ _ _ : _ _ _ : _X_ : _ _ _ : _ _ _ : good choice
4th house

bad choice : _ _ _ : _ _ _ : _ _ _ : _ _ _ : _X_ : _ _ _ : _ _ _ : _ _ _ : _ _ _ : good choice

Fig. 11. Sample self-report of user’s satisfaction with houses in Hot List1.

3.3.4. Measures of argument effectiveness
Measures of argument effectiveness are obtained either from the record of the user’s interaction with the system or

from user self-reports in a final questionnaire (see Fig. 7 for an example of self-report) and include:

• Measures of behavioral intentions and attitude change: (a) whether or not the user adopts NewI; (b) in which posi-
tion in the Hot List she places it; (c) how much she likes NewI and the other objects in the Hot List. Measures (a)
and (b) are obtained from the record of the user interaction with the system, whereas measures in (c) are obtained
from user self-reports.

• A measure of the user’s confidence that she has selected the best for her in the set of alternatives. This measure
and the ones below are all obtained from user self-reports.

• A measure of argument effectiveness derived by explicitly questioning the user at the end of the interaction about
the rationale for her decision [48]. This can provide valuable information about which aspects of the argument
were most influential in the user’s decision making.

• Additional measures of argument effectiveness are derived by explicitly asking the user at the end of the inter-
action to judge the argument with respect to several dimensions of quality, such as content, organization, writing
style and convincingness. However, evaluations based on judgements along these dimensions are clearly weaker
than evaluations measuring actual behavioral and attitudinal changes [48].

A closer analysis of the measures of behavioral intentions and attitude change indicates that the measures in (c) are
simply a more precise version of measures (a) and (b). In fact, not only do they assess, like (a) and (b), a preference
ranking among the new alternative and the other objects in the Hot List, but they also offer two additional critical
advantages: (i) Self-reports allow a subject to express differences in satisfaction more precisely than by ranking. For
instance, in the self-report shown in Fig. 11, the subject was able to specify that the first house in the Hot List was only
one unit of satisfaction better than the house following it in the ranking, while the third house was two unit better than
the house following it. (ii) Self-reports do not force subjects to express a total order between the houses. For instance,
in Fig. 11 the subject was allowed to express that the second and third houses in the Hot List were equally good for
her.

Furthermore, measures of satisfaction obtained through self-reports can be combined in a single, statistically sound
measure that concisely expresses how much the subject liked the new house with respect to the other houses in the
Hot List. This measure is the z-score of the subject’s self-reported satisfaction with the new house, with respect to
the self-reported satisfaction with the houses in the Hot List. The z-score for an item, xi indicates how far and in
what direction, that item deviates from the mean of a population X, measured in units of the distribution’s standard
deviation.

Formally:

xi ∈ X; z(xi) = (
xi − μ(X)

)
/σ(X).

For instance, the satisfaction z-score for the new instance, given the sample self-reports shown in Fig. 11, would be:
[7−μ(8,7,7,5)]/σ(8,7,7,5) = 0.2. Note that the satisfaction z-score for the new instance ranges in the [−1.5,+1.5]
interval. It is equal to the min value −1.5 when the new instance is scored 0 while all the other instances are scored 9,
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it is equal to the max value +1.5 when the new instance is scored 9 while all the other instances are scored 0, and it is
equal to the mid point 0 when all the instances (including the new one) are equally scored.

Z scores, sometimes called “standard scores”, are especially useful when comparing the relative standings of items
from distributions with different means and/or different standard deviations. The satisfaction z-score precisely and
concisely integrates all the measures of behavioral intentions and attitude change. We have used satisfaction z-scores
as our primary measure of argument effectiveness.

To summarize, our evaluation framework supports users in performing a realistic task by interacting with an IDEA
system. In the context of this task, an evaluative argument is generated by GEA and measurements of the argument’s
effectiveness are collected.

4. The experiment

In the previous section, we proposed a task-based framework for evaluating evaluative arguments. In the context
of this task, an evaluative argument is generated by GEA and measurements are collected on its effectiveness. In this
section, we report the results of an experiment run within this framework.

The design and development of GEA is based on several assumptions about what is necessary in order to generate
effective evaluative arguments:

(1) Supporting and opposing evidence for the main evaluative claim should be identified and arranged according
to a model of the reader’s values and preferences. In GEA, it is assumed that such a model can be effectively
represented as an AMVF, a quantitative model of preferences originally developed in decision theory.

(2) Evaluative arguments should be concise, presenting only pertinent and cogent information.
(3) Supporting and opposing evidence for the main evaluative claim should be carefully arranged according to the

argumentative strategy presented in Section 2.2.3.
(4) The microplanning tasks, in their specific instantiation as described in Section 2.3, contribute to argument effec-

tiveness.

Naturally, all these assumptions can be questioned and should be empirically tested. With respect to the first as-
sumption, the question is whether a user specific AMVF is an effective model for tailoring evaluative arguments. As
for the second assumption, nobody disputes that an argument, for the sake of brevity, should present only pertinent and
cogent information. However, it remains an open question what the most effective degree of conciseness is. Concern-
ing the third assumption, the argumentative strategy presented in Section 2.2.3 implements a set of guidelines from
argumentation theory. However, alternative strategies could be more effective in specific situations or for a particular
class of users. Finally, with respect to the fourth assumption, although it is generally accepted that some form of
microplanning is needed to produce effective text, it is conceivable that implementations of the microplanning tasks
other than the ones devised for GEA could be more effective.

The experiment we performed focuses on the empirical questions related to the first two assumptions; namely,
whether a user specific AMVF is an effective model for tailoring evaluative arguments and what is the most effective
degree of conciseness for evaluative arguments. To test the first assumption, we have compared the effectiveness of
arguments tailored to the user’s AMVF with the effectiveness of arguments tailored to a default AMVF, for whom all
aspects of a house are equally important (i.e., all the weights in the AMVF are equal). To test the second assumption,
as a preliminary attempt to determine an optimal level of conciseness for evaluative arguments, we have compared the
effectiveness of arguments generated by our argument generator at two different levels of conciseness (i.e., for two
values of the constant k, which controls argument conciseness in GEA as discussed in Section 2.2.3).

4.1. Experiment design and procedure

To address these questions, we designed a between-subjects experiment with four experimental conditions:

No-Argument: This is the baseline condition. In this condition, once subjects have completed the selection task, they
are simply informed that a new house came on the market. No evaluative argument about the new house is
presented to the subject. Information about the new house is only presented graphically.
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Fig. 12. Hypotheses on experiment outcomes.

Tailored-Concise: In this condition, once subjects have completed the selection task, they are presented with an
evaluative argument about the new house tailored to their preferences and at a level of conciseness that
we hypothesize to be optimal. Our assumption is that in our domain an effective argument should contain
slightly more than half of the available evidence. By running the generator with different values for k on
the user models of the pilot subjects, we found that this corresponds to k = −0.3. In fact, with k = −0.3
the arguments contained on average 10 pieces of evidence out of the 19 available (the AMVF contains 19
objectives).

Non-Tailored-Concise: In this condition, once subjects have completed the selection task, they are presented with an
evaluation of the new house that, instead of being tailored to their preferences, is tailored to the preferences of
a default average user, for whom all aspects of a house are equally important (i.e., all weights in the AMVF
are the same). A similar default preference model is used for comparative purposes in [57]. The level of
conciseness is still the one we hypothesize to be optimal (i.e., k = −0.3).

Tailored-Verbose: In this condition, once subjects have completed the selection task, they are presented with an
evaluation of the new house tailored to their preferences, but at a level of conciseness that we hypothesize to
be too low. We chose (k = −1), which in our analysis of the pilot subjects, corresponded on average to 16
pieces of evidence out of the possible 19.

In the four conditions, all the information about the new house is also presented graphically, so that no informa-
tion is hidden from the user (see the new house House-3-26 in Fig. 9 for an example). And once the new house is
introduced, subjects are free to perform data exploration to see how it compares to their Hot List choices.

Our hypotheses about the outcomes of the experiment are summarized in Fig. 12. We expect arguments generated
for the Tailored-Concise (TC) condition to be more effective than arguments generated for both the Non-Tailored-
Concise (NTC) and Tailored-Verbose (TV) conditions. We also expect the TC condition to be somewhat better than
the No-Argument (NA) condition, but to a lesser extent, because subjects, in the absence of any argument, may spend
more time further exploring the dataset, therefore reaching a more informed and balanced decision. Finally, we do not
have strong hypotheses about comparisons of argument effectiveness among the No-Argument, Non-Tailored-Concise
and Tailored-Verbose conditions.

The experimental procedure is summarized in Fig. 13. It consists of two phases. In the first phase, the subject
fills out three online questionnaires. One questionnaire implements the SMARTER elicitation method from decision
theory (see Section 2.2.2) to effectively acquire an AMVF model of the subject’s preferences [21]. In our experiment,
we can safely assume that the user preferences can be represented as an AMVF because there are no uncertain aspects
in the user selection task.

The other two questionnaires assess the subject’s argumentativeness (tendency to argue) [30], and need for cog-
nition (tendency to engage in and to enjoy effortful cognitive endeavours) [3]. These are two key individual features
that research in persuasion has shown to influence people’s reaction to arguments [45]. Any experiment in persuasion
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Fig. 13. Experimental procedure.

should control for these variables. In the second phase of the experimental procedure (see Fig. 13), to control for other
possible confounding variables (including intelligence and self-esteem), the subject is randomly assigned to one of
the experimental conditions. Then, the subject interacts with the evaluation framework, and at the end of the inter-
action the subject fills out a final questionnaire in which measures of the argument effectiveness are collected (see
Section 2.3.4).

The experiment was first performed with 8 pilot subjects to refine and improve the experimental procedure. The
instructions, the final questionnaire, and the script followed by the experimenter in presenting the IDEA system were
checked for clarity.12 Once the experimental procedure was sufficiently stable, we ran a formal experiment involving
40 subjects, 10 in each experimental condition. Each subject had only one interactive section with the evaluation
framework.

4.2. Experiment results

During the analysis of the experimental outcomes, the data for four subjects were eliminated. One subject was
eliminated from the TC condition because s/he was an outlier for the self-report measure indicating the subject’s
confidence in her decision process (the score was more than 3 standard deviations below the average). Another subject
was eliminated from the NTC condition because s/he was an outlier for the “need for cognition” measure (the score
was more than 2.5 standard deviations below the average); and also this subject’s self-reports of satisfaction with the
instances in the HotList were inconsistent with their explicit ranking (in the HotList). Finally, two more subjects were
eliminated because their satisfaction self-report score for all the instances in the HotList and for the new instance was
the maximum possible (i.e., 9 on the 1–9 scale). We consider this as an extremely anomalous situation for two reasons.
First, and most importantly, because, as all the instances in the HotList were scored 9, the new instance had no chance
to obtain a positive z-score (i.e., we are facing a kind of ceiling effect). Secondly, the fact that these two subjects gave
all five instances the top score indicates that they have rather nondiscriminatory preferences. One of these two subjects
was in the TC condition, the other in the NA condition.

4.2.1. Effectiveness comparisons
As discussed in Section 3.3.4, by precisely and concisely integrating all the measures of behavioral intentions and

attitude change, the satisfaction z-score is the primary measure of argument effectiveness available in the framework.
We focus on this measure first. Our statistical analysis was based on the Dennett test. This is the appropriate test for

12 The three initial questionnaires are standard ones developed in decision theory and social psychology.
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Table 1
Results for satisfaction z-scores when Tailored-Concise is compared with the other three conditions directionally

Cond-1 Cond-2 Mean difference Std. error Significance
(Cond-1 – Cond-2)

NA (0.273) TC (0.994) −0.720 0.389 0.086
NTC (0.275) TC (0.994) −0.719 0.389 0.087
TV (0.047) TC (0.994) −0.947 0.380 0.023

Table 2
From Logs of the interaction: average time spent by subjects in the four
conditions further exploring the dataset after the new house is presented.
The difference between No-Argument and Tailored-Concise is significant

Condition Time

NA 0 : 03 : 56
NTC 0 : 03 : 37
TC 0 : 02 : 44
TV 0 : 03 : 30

an experiment, like ours, in which there are several groups and the apriori goal is to compare one of them (i.e., TC)
with each of the others [20].13

As shown in Table 1, the satisfaction z-scores obtained in the experiment provide support for our hypotheses. Argu-
ments generated for the TC condition had greater satisfaction z-scores than arguments generated for the TV, NTC and
NA conditions. The difference in effectiveness between arguments generated in the TC condition and arguments gen-
erated in the TV condition was statistically significant (p < 0.05), while the difference in the other two comparisons
TC vs. NTC and NA was only marginally significant (p < 0.1). A possible reason/explanation why these differences
were only marginally significant is our relatively small number of subjects. Another possibility is that the difference
between our uniform default model (for the NTC) and the user specific one (for the TC) was too small. As we will see
in Section 5.2, both possibilities are corroborated by a more recent study.

Remarkably, the TC appears to be better than the NA condition to a greater extent than we expected. We believed
that in the absence of any argument, NA subjects would have spent more time further exploring the dataset, therefore
reaching a more informed and balanced decision (with a satisfaction between TC and TV/NTC). However, although
NA subjects did spend significantly more time further exploring the dataset (see Table 2), this was not enough to
compensate for the lack of an explicit argument.

With respect to the other measures of argument effectiveness that we have considered (i.e., decision confidence,
decision rationale and argument quality), we did not find any significant results.

4.2.2. Possible confounding variables
The design of the experiment takes into account the fact that the effectiveness of an argument is determined not

only by the argument itself, but also by the subjects’ traits such as argumentativeness (Arg), need for cognition (NFC),
self-esteem and intelligence. The reason subjects are randomly assigned to one of the four conditions is precisely to
control for these (and other) possible confounding variables.

As an extra check, the subjects’ Arg and NFC were assessed before running the experiment in order to verify
whether subjects had been successfully randomized to obtain four conditions with equivalent Arg and NFC. At first
glance, the data in Table 3, reporting the means of Arg and NFC for each condition, seem to indicate that randomization
failed, as TC was both the condition with the lowest Arg and the highest NFC (see Table 3). However, when we
consider the differences between the means, it should be noted that they are minimal with respect to the ranges on
which Arg and NFG can vary: (−54,+54) and (−50,+50) respectively. More tellingly, the means for Arg and NFC
are all in the first half of the positive side of the ranges (i.e., moderately high). Since all results in social psychology

13 In previous papers (e.g., [8]) we reported results that were based on applying the t-test in each pairwise comparison. However, we subsequently
realized that the Dunnett test was more appropriate given our experimental design. Furthermore, our prior analysis included two subjects who have
been excluded from the analysis we are reporting in this paper.
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Table 3
Means of Argumentativeness (Arg) and Need for Cognition (NFC) for the four experimental conditions

Condition Arg mean NFC mean

NA 4.7 18.7
NTC 10.9 15
TC 3.8 24.9
TV 10.7 15

on the influence of Arg and NFC on persuasion have considered differences between individuals who scored high vs.
low on these personality traits, we can assume with confidence that Arg and NFC did not substantially influence the
outcome of our experiments.

Unfortunately, because of the limited number of subjects it was not possible to consider all relevant independent
variables (i.e., argument-type, Arg and NFC) in a single generalized linear model.

5. Related work

In previous sections we have discussed related work whenever it was necessary as background for our research. In
this section, we complete our analysis of previous work by focusing on two key aspects that require a more extensive
treatment. First, we examine previous work on content selection and organization for evaluative arguments. Second,
we review related work that either co-occurred or followed research on GEA. In particular, we consider projects that
have extended GEA’s approach and/or evaluated generators of user-tailored evaluative arguments.

5.1. Previous work on content selection and organization for evaluative arguments

Although considerable research has been devoted to content selection and organization for generating evaluative
arguments, all approaches proposed were limited both in the type of evaluative arguments generated, and in the extent
to which they comply with guidelines from the argumentation literature.

Ref. [47] describes a system that uses a measure of evidence strength to tailor evaluations of hotel rooms to its
users. However, this system adopts a qualitative measure of evidence strength (an ordinal scale that appears to range
from very-important to not-important). This limits the ability of the system to select and arrange argument evidence,
because qualitative measures only support approximate comparisons and are notoriously difficult to combine (e.g.,
how many “somewhat-important” pieces of evidence are equivalent to an “important” piece of evidence?).

Refs. [6,13] studied the generation of evaluative arguments in the context of collaborative planning dialogues.
Although they also adopt a qualitative measure of evidence strength, when an evaluation is needed this measure
is mapped into numerical values so that preferences can be compared and combined more effectively. However,
with respect to GEA this work makes two strong simplifying assumptions. It only considers the decomposition of
the preference for an entity into preferences for its primitive attributes (not considering that complex preferences
frequently have a hierarchical structure). Additionally, it assumes that the same dialogue turn cannot provide both
supporting and opposing evidence.

The system described in [7] also employs additive decision models in recommending courses, though the focus
of this work is on dynamically acquiring a model of the student’s preferences. The system’s recommendations are
limited to recommending a single option that is considered better than the user’s current choice. In addition, this work
only addresses the problem of selecting positive attributes to justify the recommendation, and does not consider how
to plan and realize the positive and negative attributes of multiple suggested options.

In [38], Kolln proposes a framework for generating evaluative arguments which is based on a quantitative mea-
sure of evidence strength. Evidence strength is computed on a fuzzy hierarchical representation of user preferences.
Although this fuzzy representation may represent a viable alternative to the AMVF we have discussed in this paper,
Kolln’s proposal is rather sketchy in describing how his measure of strength can be used to select and arrange the
argument content.

Finally, [35] is the previous work most relevant to our proposal. As described in Section 2.2.3, from this work
we have adapted a measure of evidence strength (i.e., compellingness), and a measure that defines when a piece of
evidence is worth mentioning (i.e., notably-compelling?). However, there are two key differences between Klein’s
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Table 4
Contributions of proposed argumentation strategy in context of previous work

Quantitative
measure of
importance

Based on
argumenta-
tion theory

Argument type

Single entity Comparison

[47] no no no yes
[35] yes no no yes
[38] yes no yes no
[6,7] yes no yes no
[Our Strategy] yes yes yes yes

work and ours. Klein only developed strategies for comparison, and these strategies were not based on argumentation
theory.

Table 1 summarizes the contributions of our proposal with respect to previous work on content selection and orga-
nization for generating evaluative arguments. The table considers three dimensions: whether the proposed approach
uses a quantitative vs. a qualitative measure of evidence importance, whether the proposed approach is based on guide-
lines from argumentation theory, and whether the approach covers arguments evaluating a single entity or comparing
two entities. It is clear that our strategy extends previous work in two ways: by covering both arguments evaluating
a single entity, as well as arguments comparing two entities, and by implementing a comprehensive set of guidelines
from argumentation theory

5.2. Related recent work that co-occurred with or followed our research

Several recent projects have extended GEA’s approach and/or evaluated generators of user-tailored evaluative ar-
guments. Overall, evidence from these studies indicates that tailoring an evaluative argument to a user-specific AMVF
does increase its effectiveness. These studies seem to indicate that this hypothesis was only marginally confirmed in
our experiment because we either did not run a sufficient number of subjects or the default model we considered for
the NTC condition was not sufficiently different from the user-specific one.

STOP is a generator of user-tailored smoking cessation letters [51], where tailoring is based on information col-
lected by means of a 4-page multiple choice questionnaire about the smoker’s habits, health concerns and so forth.
The STOP system is especially relevant to our research because one section of the generated letter is an evaluative
argument. More specifically, the letter “motivation paragraph” mentions only user-specific “important” likes and dis-
likes about smoking (e.g., helps me to relax vs. it is expensive). The effectiveness of STOP has been tested in what
is by far the most extensive, longest and costliest task-based evaluation of an NLG system: a clinical trial involving
2553 smokers. In this study, smokers were randomly assigned to three groups which respectively received a tailored
letter, a non-tailored letter and no letter. Effectiveness of tailoring was tested six months later by asking smokers
whether they had quit smoking or not (positive answers were checked through saliva samples). In general, the re-
sults of the STOP evaluation were inconclusive. Although it seems that tailored letters may have been better than
non-tailored ones among smokers for whom quitting was especially difficult, the difference in effectiveness among
the three conditions was not overall statistically significant. With respect to our work, this study does not provide any
positive or negative evidence to the hypotheses we tested in our experiment. Although STOP generates text that is
partially an evaluative argument tailored to the user, it does not follow an approach in which arguments are tailored
to a user-specific AMVF. The aspect of STOP’s evaluation most relevant to our experiment is the detailed analysis of
why the evaluation failed to prove tailoring to be effective. Four possible reasons were considered: (i) tailoring cannot
have much effect in inducing smoking cessation, receiving a letter is what matters not the actual content; (ii) tailoring
should have been based on different or more-complex knowledge about the smokers; (iii) the knowledge of the users
was appropriate but the tailoring was inappropriate; (vi) STOP tailoring has an effect, but only a larger clinical trial
could show it. In practice, the outcome of the STOP evaluation cannot tell us which of these reason(s) is playing a
role. Interestingly, the same could be said of the results of our experiment which showed that the difference between
tailored and non-tailored arguments was only marginally significant. However, as we will see shortly, the outcome of a
recent and more extensive evaluation of MATCH, a system similar to GEA, indicates that tailoring to an AMVF does
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have a significant effect and so the most likely reason for our marginally significant findings is (vi) i.e., an insufficient
number of data-points.

The MATCH system [62] extends GEA’s approach to generating evaluative arguments. MATCH is a multimodal,
speech-enabled dialogue system implemented on a PDA and intended to help people find information about restaurants
and subway routes in New York City. Empirical testing of spoken dialogue systems has shown that presentation of
complex information resulting from a user request is one of the most time-consuming phases of a dialogue. One
of the key research goals behind the MATCH project is to improve the information presentation phase by enabling
the system to select only the most relevant information and to effectively present it. To achieve this goal, MATCH
adopts GEA’s decision-theoretic framework in which user preferences are modelled as AMVFs. Like GEA, MATCH
relies on the user-specific AMVF to generate cogent, concise text whose content and organization is tailored to the
user. The system can generate three different types of user-tailored presentations: recommendations, comparisons
and summaries. A recommendation is an evaluative argument about the best available alternative. A comparison is
an evaluative argument comparing at most five alternatives pointing out reasons for choosing each of them, while
a summary simply provides an overview of a set of alternatives highlighting the attributes for which they are most
(dis)similar. [62] evaluated the effectiveness of these three presentation types in a within-subjects experiment in which
each participant “overheard” a series of dialogues about selecting a restaurant. In each session, the participant was
presented with an argument generated according to one strategy and either tailored to her own model or to the model
of another randomly selected participant (note that tailoring the argument to a randomly chosen user is a much more
extreme choice than using a uniform default model as we did in GEA). At the end of each session the participant
was asked to rate the information quality of the argument on a 0–5 scale. The experiment involved 16 participants.
Because the experimental setting was based on overhearing conversations, it was possible to run a large number
of sessions (64 in the actual experiment) for each participant for a total of 1024 sessions. Since in each session
the participant is asked to express an information quality judgment on the proposed argument, 1024 information
quality judgements were collected in the experiment. Note that this is a much larger number than the 36 judgements
considered in our evaluation of GEA. To obtain the same number of judgments in our between-subjects evaluation
framework we should have run 1024 participants! The results of this study provide further empirical evidence for
the first of the two hypotheses we tested in our experiments; namely, that tailoring evaluative arguments to a user-
specific AMVF increases their effectiveness. A two-way ANOVA for information quality by strategy and model only
showed a significant effect for strategy (F = 127.9, p = 0.0001), with summaries being clearly the least effective
(summaries scored 2.33, comparisons 3.53 and recommendations 4.08). However, when the distance14 between the
randomly selected user model and the participant user model was considered, a paired t-test for information quality by
user model over all strategies was highly significant. In particular when the distance was greater than 0.2 (which left
a set of 464 paired comparisons), tailored presentations were preferred (df = 463, t = 2.61, p = 0.009). Because the
average distance between user models in this study was 0.57, this result indicates that users are sensitive to relatively
small perturbations of their models.

The FLIGHTS system [46] represents the most recent attempt to generate user-tailored evaluative arguments in
spoken dialogue. Like MATCH, FLIGHTS concisely compares complex options (i.e., flights) pointing out the most
relevant information for the intended user. However, FLIGHTS demonstrates that tailoring to user preferences must
be carried out at all levels of information presentation, so that not only is appropriate content selected, but it is
presented appropriately in the current dialogue context, and with intonation that expresses contrasts intelligibly [49].
FLIGHTS employs more sophisticated content planning strategies, capable of generating plans with a richer discourse
structure including the distinctions between theme/rheme given/new and in/definite. This information structure can
then support finer-grain choices in linguistic realization as well as intelligent control of prosody to convey meaning,
following the theory presented in [58]. At the time of this writing, an evaluation of FLIGHTS is planned following
the same experimental design that has been successfully used to test the MATCH system [62].

14 The distance between two AMVFs is defined as the sum, over all attributes, of the absolute values of the difference between the rankings for
each attribute.



950 G. Carenini, J.D. Moore / Artificial Intelligence 170 (2006) 925–952
6. Conclusions and future work

The research presented in this paper is very interdisciplinary. We have integrated and extended principles and tech-
niques form argumentation theory, decision theory, computational linguistics, social psychology and human computer
interaction.

Our research makes three key contributions. First, we have developed a complete computational model for gener-
ating evaluative arguments tailored to the user’s preferences. Second, we have devised and implemented an evaluation
framework in which the effectiveness of evaluative arguments can be measured with real users. Third, within the
framework, we have performed an experiment to test that our proposal for tailoring an evaluative argument to the
user’s preferences increases its effectiveness, and that differences in conciseness significantly influence argument
effectiveness. While the second hypothesis was confirmed in the experiment, the first one was only marginally con-
firmed. However, independent testing by other researchers has recently provided further support for this hypothesis.

A key goal of the research described in this paper was to complete the research cycle that begins with developing
a computational model, devising techniques to evaluate the model, and applying these techniques to actually evaluate
aspects of the model. To achieve this goal, and because of the complexity of the issues involved, we had to limit our
investigation in several ways. Clearly, all limitations are open doors for future research.

More complex arguments: Many naturally occurring arguments consist of a mixture of evaluative arguments and
other basic types of arguments (i.e., factual, causal and recommendation). Although the focus of this work has been
on purely evaluative arguments, the long term goal of our research is to develop testable models for generating argu-
ments that combine causal arguments, evaluative arguments and recommendations. We plan to integrate our work on
generating evaluative arguments from an AMVF with previous work on generating causal arguments from Bayesian
Networks [60,67], as well as previous work on generating recommendations from influence diagrams [32].

Automatic acquisition of linguistic knowledge: Another limitation of our model for generating evaluative arguments
is that the human developer needs to encode most of the linguistic knowledge sources, which include the rhetorical
strategies, the lexicon as well as the sentence-planning strategies (e.g., aggregation, generation of referring expres-
sions). The problem with this human-intensive process is that it is extremely time-consuming, it has to be repeated
for any new domain and most importantly the resulting knowledge tends to be brittle (i.e., its performance abruptly
decreases when unexpected situations arise). To address this problem, we plan to supplement the intuition of the hu-
man developer with a probabilistic, data-driven procedure for the automatic acquisition of linguistic knowledge about
evaluative arguments from text corpora [11,52].

Beyond AMVF: Although an AMVF can reasonably model most people’s preferences in many situations, it does
make strong assumptions of independence across attributes. So, in some settings, it might be necessary to use more
complex models of preferences that take attribute interactions into account. Notice that adopting a different model
of the user’s preferences would require redefining the measure of evidence importance used in the argumentation
strategy to select and order the content of the argument. Also, as an additional difficulty, there are no “simple and
quick” methods from decision theory (similar to SMARTER [21]) to acquire these models. However, a set of novel
techniques that apply machine learning to the problem of preference elicitation may help in this respect [10,28].

Generating multimedia arguments: As we have seen in Section 3.3, in the evaluation framework, the argument
about the new house is presented in the context of a graphical display, which shows all the information about the new
house (and all the information about the other houses). However, there is no integration between the argument and the
display. In the current architecture, GEA generates the evaluative arguments without considering how the information
is displayed graphically. A direction for future work is to study how natural language evaluative arguments can be
integrated with graphics at an increasing level of sophistication:

(i) The information graphic is given and cannot be changed. However, the natural language generator, while planning
the text, can access a representation of how the information is displayed graphically. So, the generated argument
can be enhanced by adding references to the graphics by indicating, for instance, where in the visualization the
user can find the information mentioned in the argument.

(ii) Once the textual argument is planned, graphics can also be enhanced to make the argument more effective. For
instance, information mentioned in the argument can be highlighted in the graphics in a way that indicates its
role in supporting or opposing the argument claims.
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(iii) Graphics and text are planned together to achieve an abstract communicative goal. This sophisticated integration
between text and graphics may require major architectural changes in GEA. However, we have recently made
progress in this area, see [26].

References

[1] F.H. Barron, B.E. Barrett, Decision quality using ranked attribute weights, Management Science 42 (11) (1996) 1515–1523.
[2] J. Blythe, Visual exploration and incremental utility elicitation, in: Proceedings of the National Conference on Artificial Intelligence, 2002,

pp. 526–532.
[3] J.T. Cacioppo, R.E. Petty, C.F. Kao, The efficient assessment of need for cognition, Journal of Personality Assessment 48 (3) (1984) 306–307.
[4] J.T. Cacioppo, R.E. Petty, K.J. Morris, Effects of need for cognition on message evaluation, recall, and persuasion, Journal of Personality and

Social Psychology 45 (4) (1983) 805–818.
[5] C.B. Callaway, J.C. Lester, Narrative prose generation, Artificial Intelligence 139 (2) (2002) 213–252.
[6] S. Carberry, J. Chu-Carroll, Collaborative response generation in planning dialogues, Computational Linguistics 22 (2) (1998) 355–400.
[7] S. Carberry, J. Chu-Carroll, S. Elzer, Constructing and utilizing a model of user preferences in collaborative consultation dialogues, Compu-

tational Intelligence Journal 15 (3) (1999) 185–217.
[8] G. Carenini, J.D. Moore, An empirical study of the influence of user tailoring on evaluative argument effectiveness, in: Proceedings of the

17th International Joint Conference on Artificial Intelligence, Seattle, USA, 2001, pp. 1307–1314.
[9] J. Chai, V. Horvath, N. Nicolov, M. Stys, N. Kambhatla, W. Zadrozny, P. Melville, Natural language assistant: A dialog system for online

product recommendation, AI Magazine 23 (2) (2002) 63–75.
[10] U. Chajewska, D. Koller, D. Ormoneit, Learning an agent’s utility function by observing behavior, in: Proceedings of the Eighteenth Interna-

tional Conference on Machine Learning, 2001, pp. 35–42.
[11] J. Chen, S. Bangalore, O. Rambow, M.A. Walker, Towards automatic generation of natural language generation systems, in: Proceedings of

the 19th International Conference on Computational Linguistics (COLING), Taipei, Taiwan, 2002, pp. 1–7.
[12] C.-F. Chien, F. Sainfort, Evaluating the desirability of meals: An illustrative multiattribute decision analysis procedure to assess portfolios

with interdependent items, Multi-Criteria Decision Analysis 7 (4) (1998) 230–238.
[13] J. Chu-Carroll, S. Carberry, A plan-based model for response generation in collaborative task-oriented dialogues, in: Proceedings of the

National Conference on Artificial Intelligence, AAAI Press, Menlo Park, CA, 1994, pp. 799–805.
[14] R.T. Clemen, Making Hard Decisions: An Introduction to Decision Analysis, second ed., Duxbury Press, Belmont, CA, 1996.
[15] N. Colineau, C. Paris, K. Vander Linden, An evaluation of procedural instructional text, in: Proceedings International Natural Language

Generation Conference, 2002, pp. 128–135.
[16] E.P.J. Corbett, R.J. Connors, Classical Rhetoric for the Modern Student, Oxford University Press, Oxford, 1999.
[17] V. Demberg, J.D. Moore, Information presentation in spoken dialogue systems, in: Proceedings of the 11th Conference of the European

Chapter of the Association for Computational Linguistics, 2006, pp. 65–72.
[18] B. Di Eugenio, M. Glass, M.J. Trolio, The DIAG experiments: Natural language generation for intelligent tutoring systems, in: Proceedings

International Natural Language Generation Conference, 2002, pp. 120–127.
[19] B. Di Eugenio, J.D. Moore, M. Paolucci, Learning features that predict cue usage, in: Proceedings of the 35rd Annual Meeting of the Associ-

ation for Computational Linguistics, 1997, pp. 80–87.
[20] C.W. Dunnett, A multiple comparison procedure for comparing several treatments with a control, Journal of the American Statistical Associ-

ation 50 (1955) 1096–1121.
[21] W. Edwards, F.H. Barron, SMARTS and SMARTER: Improved simple methods for multiattribute utility measurements, Organizational Be-

havior and Human Decision Processes 60 (1994) 306–325.
[22] M. Elhadad, Using argumentation in text generation, Journal of Pragmatics 24 (1995) 189–220.
[23] M. Elhadad, K.R. McKeown, J. Robin, Floating constraints in lexical choice, Computational Linguistics 23 (2) (1997) 195–239.
[24] M. Elhadad, J. Robin, An overview of SURGE: A reusable comprehensive syntactic realization component, Technical Report 96-03, Depart-

ment of Mathematics and Computer Science, Ben Gurion University, Beer Sheva, Israel, 1996.
[25] P.C. Gordon, B.J. Grosz, L.A. Gilliom, Prounouns, names and the centering of attention in discourse, Cognitive Science 17 (3) (1993)

311–348.
[26] N.L. Green, G. Carenini, S. Kerpedjiev, J. Mattis, J.D. Moore, S.F. Roth, Autobrief: An experimental system for the automatic generation of

briefings in integrated text and information graphics, International Journal of Human-Computer Studies 61 (1) (2004) 32–70.
[27] B.J. Grosz, A.K. Joshi, S. Weinstein, Centering: A framework for modeling the local coherence of discourse, Computational Linguistics 21 (2)

(1995) 203–226.
[28] V. Ha, P. Haddawy, Similarity of personal preferences: Theoretical foundations and empirical analysis, Artificial Intelligence 146 (2) (2003)

149–173.
[29] K.J. Hee, M. Glass, R. Freedman, M.W. Evens, Learning the use of discourse markers in tutorial dialogue for an intelligent tutoring system,

in: Proceedings of the Twenty-Second Annual Conference of the Cognitive Science Society, Philadelphia, USA, 2000, pp. 262–267.
[30] D.A. Infante, A.S. Rancer, A conceptualization and measure of argumentativeness, Journal of Personality Assessment 46 (1982) 72–80.
[31] A. Jameson, R. Schafer, J. Simons, T. Weis, Adaptive provision of evaluation-oriented information: Tasks and techniques, in: Proceedings of

the 14th International Joint Conference on Artificial Intelligence, Montreal, 1995, pp. 1886–1895.
[32] H.B. Jimison, L.M. Fagan, D.R. Shacter, H.E. Shortliffe, Patient-specific explanation in models of chronic disease, Artificial Intelligence in

Medicine 4 (1992) 191–205.



952 G. Carenini, J.D. Moore / Artificial Intelligence 170 (2006) 925–952
[33] K. Sparck Jones, Automatic language and information processing: Rethinking evaluation, Natural Language Engineering 7 (1) (2001) 29–46.
[34] R.L. Keeney, H. Raiffa, Decisions with Multiple Objectives: Preferences and Value Tradeoffs, John Wiley and Sons, New York, 1976.
[35] D.A. Klein, Decision Analytic Intelligent Systems: Automated Explanation and Knowledge Acquisition, Lawrence Erlbaum Associates, 1994.
[36] A. Knott, R. Dale, Using linguistic pheomena to motivate a set of coherence relations, Discourse Processes 18 (1) (1994) 35–62.
[37] A. Knott, C. Mellish, A feature-based account of the relations signalled by sentence and clause connectives, Language and Speech 39 (1996)

143–183.
[38] M.E. Kolln, Employing user attitudes in text planning, in: Proceedings of the 5th European Workshop on Natural Language Generation,

Leiden, The Netherlands, 1995, pp. 163–179.
[39] D. Kudenko, M. Bauer, D. Dengler, Group decision making through mediated discussions, in: Proceedings of the User Modelling Conference,

Johnstown, Pennsylvania, USA, August 2003, pp. 238–247.
[40] J. Lester, B. Porter, Developing and empirically evaluating robust explanation generators: The KNIGHT experiments, Computational Linguis-

tics 23 (1) (1997) 65–101.
[41] D. Marcu, The conceptual and linguistic facets of persuasive arguments, in: ECAI Workshop—Gaps and Bridges: New Directions in Planning

and Natural Language Generation, 1996, pp. 43–46.
[42] K.J. Mayberry, R.E. Golden, For Argument’s Sake: A Guide to Writing Effective Arguments, Harper Collins, College Publisher, 1996.
[43] W.J. McGuire, The nature of attitudes and attitudes change, in: G. Lindzey, E. Aronson (Eds.), The Handbook of Social Psychology, vol. 3,

Addison-Wesley, Reading, MA, 1968, pp. 136–314.
[44] W.J. McGuire, The nature of attitudes and attitudes change, in: G. Lindzey, E. Aronson (Eds.), Handbook of Social Psychology, vol. 3, second

ed., Addison-Wesley, Reading, MA, 1969, pp. 136–314.
[45] M.D. Miller, T.R. Levine, Persuasion, in: An Integrated Approach to Communication Theory and Research, Lawrence Erlbaum Associates,

1996, pp. 261–276.
[46] J.D. Moore, M.E. Foster, O. Lemon, M. White, Generating tailored, comparative descriptions in spoken dialogue, in: Proceedings of the

Seventeenth International Florida Artificial Intelligence Research Society Conference, AAAI Press, 2004, pp. 917–922.
[47] K. Morik, User models and conversational settings: Modeling the user’s wants, in: A. Kobsa, W. Wahlster (Eds.), User Models in Dialog

Systems, in: Symbolic Computation Series, Springer-Verlag, New York, 1989, pp. 364–385.
[48] J.M. Olso, M.P. Zanna, Attitudes and beliefs: Attitude change and attitude behavior consistency, in: R.M. Baron, W.G. Graziano (Eds.), Social

Psychology, Holt, Rinehart and Winston, New York, 1991, pp. 192–225.
[49] S. Prevost, M. Steedman, Specifying intonation from context for speech synthesis, Speech Communication 15 (1994) 139–153.
[50] E. Reiter, R. Dale, Building Natural Language Generation Systems, Cambridge University Press, Cambridge, 2000.
[51] E. Reiter, R. Robertson, L.M. Osman, Lessons from a failure: Generating tailored smoking cessation letters, Artificial Intelligence 144 (1–2)

(2003) 41–58.
[52] E. Riloff, J. Wiebe, Learning extraction patterns for subjective expressions, in: Proc. of the Conf. on Empirical Methods in NL Processing,

Sapporo, Japan, 2003, pp. 105–112.
[53] J. Robin, K. McKeown, Empirically designing and evaluating a new revision-based model for summary generation, Artificial Intelli-

gence 85 (1–2) (1996) 135–179.
[54] S.F. Roth, M.C. Chuah, S. Kerpedjiev, J.A. Kolojejchick, P. Lucas, Towards an information visualization workspace: Combining multiple

means of expression, Human-Computer Interaction Journal 12 (1–2) (1997) 131–185.
[55] D. Scott, C. Sieckenius de Souza, Getting the message across in RST-based text generation, in: R. Dale, C. Mellish, M. Zock (Eds.), Current

Research in Natural Language Generation, Academic Press, New York, 1990, pp. 47–73.
[56] M.R. Solomon, Consumer Behavior: Buying, Having, and Being, Prentice-Hall, Englewood Cliffs, NY, 1998.
[57] J. Srivastava, T. Connolly, L.R. Beach, Do ranks suffice? A comparison of alternative weighting approaches in value elicitation, Organizational

Behavior and Human Decision Process 63 (1) (1995) 112–116.
[58] M. Steedman, Information-structural semantics for English intonation, in: M. Gordon, D. Büring, C. Lee (Eds.), LSA Summer Institute

Workshop on Topic and Focus, Santa Barbara, July 2001, Kluwer Academic, Dordrecht, 2004, pp. 245–264.
[59] A. Stent, A conversation acts model for generating spoken dialogue contributions, Computer Speech and Language 16 (3) (2002) 313–352.
[60] H. J Suermondt, G.F. Cooper, An evaluation of explanations of probabilistic inference, Computers and Biomedical Research (1993) 242–254.
[61] K. Vander Linden, J.H. Martin, Expressing rhetorical relations in instructional text: A case study of the purpose relation, Computational

Linguistics 21 (1) (1995) 29–58.
[62] M.A. Walker, S.J. Whittaker, A. Stent, P. Maloor, J.D. Moore, M. Johnston, G. Vasireddy, Generation and evaluation of user-tailored responses

in multimodal dialogue, Cognitive Science 28 (2004) 811–840.
[63] C. Williamson, B. Shneiderman, The dynamic homefinder: Evaluating dynamic queries in a real-estate information exploration system, in:

B. Shneiderman (Ed.), Sparks of Innovation in Human-Computer Interaction, Ablex Publishing Corp, ACM SIGIR, 1993, pp. 295–308.
[64] R.M. Young, Using Grice’s maxim of quantity to select the content of plan descriptions, Artificial Intelligence 115 (2) (1999) 215–256.
[65] R.M. Young, J.D. Moore, DPOCL: A principled approach to discourse planning, in: Proceedings of the 7th International Workshop on Natural

Language Generation, Kennebunkport, ME, June 17–21, 1994, pp. 13–20.
[66] R.M. Young, J.D. Moore, M.E. Pollack, Towards a principled representation for discourse plans, in: Proceedings of the Sixteenth Annual

Conference of the Cognitive Science Society, Lawrence Erlbaum Associates, Hillsdale, NJ, 1994, pp. 946–951.
[67] I. Zukerman, R. McConachy, K.B. Korb, Bayesian reasoning in an abductive mechanism for argument generation and analysis, in: Proc. AAAI

Conference, 1998, pp. 833–838.


