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Abstract In the present article, a modified Leslie-Gower predator-prey model with double Allee

effect, affecting the prey population, is proposed and analyzed. We have considered both strong

and weak Allee effects separately. The equilibrium points of the system and their local stability have

been studied. It is shown that the dynamics of the system are highly dependent upon the initial con-

ditions. The local bifurcations (Hopf, saddle-node, Bogdanov-Takens) have been investigated by

considering sufficient parameter(s) as the bifurcation parameter(s). The local existence of the limit

cycle emerging through Hopf bifurcation and its stability is studied by means of the first Lyapunov

coefficient. The numerical simulations have been done in support of the analytical findings. The

result shows the emergence of homoclinic loop. The possible phase portraits and parametric dia-

grams have been depicted.
� 2016 Ain Shams University. Production and hosting by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The predator-prey interactions are the most challenging areas
of the population ecology. It’s universal existence and

importance has attracted the Ecologists, Mathematicians and
Biologists during the last few decades. A pioneer work
Lotka-Volterra predator-prey model, proposed by Lotka [1]
and Volterra [2] independently, is the first and simplest math-

ematical model. The Lotka-Volterra predator-prey model has
neglected many real situations and complexities, so a number
of changes in the model have been done by the researchers
to improve the realism. Leslie and Gower [3] proposed a

predator-prey model, the so-called Leslie-Gower predator-
prey model, in which the predator growth function is different
from the predator predation function. They assumed that the

predator growth is described by a function of the ratio of
predators and their prey. Hsu and Huang [4] studied this
model and showed that the system has unique positive equilib-

rium which is globally asymptotically stable under all biologi-
cally admissible parameters. May [5] improved the Leslie-
Gower predator-prey model by replacing the Holling type-I
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functional response by Holling type-II. This model has been
studied extensively by many researchers [4,6–10]. Many
authors have used this model to study the real world problems,

for example Caughley [11] used this system to model the bio-
logical control of the prickly-pear cactus by the moth Cacto-
blastis cactorum, Wollkind and Logan [12] and Wollkind

et al. [13] used this system to model the predator-prey mite out-
break interactions on fruit trees in Washington State. One of
the main demerits of this model is that at low densities of prey

population, predator population cannot switch to alternative
prey since its growth will be limited by the fact that its most
favorite food, the prey, is absent or is in short supply [14].
Aziz-Alaoui and Daher Okiye [15] has taken care of this situ-

ation and improved the model, known as modified Leslie-
Gower predator-prey model.

Allee effect, a mechanism leading to a positive relationship

between a component of individual fitness and the number or
density of conspecifics [16,17], has been observed in different
organisms such as vertebrates, invertebrates, and plants [18].

This effect has also been called a negative competition effect
[19] in population dynamics or depensation [20–22] in fisheries
sciences. The Allee effect may be one of the simple causes for

the complex, richer and varied dynamics in predator-prey sys-
tem. In [23,24] authors discussed the stabilizing or destabilizing
effects and bifurcations on the predator-prey systems subject
to Allee effect. A large variety of different biological phenom-

ena may exhibit Allee effect dynamics [18, Table 1], [25,
Table 2.1]. Two main types of Allee effects are well known,
namely the strong Allee effect and the weak Allee effect. The

main difference between the two is that the strong Allee effect
includes a population threshold below which the population
experiences extinction while the weak Allee effect does not

have a threshold [20,26]. A number of mathematical forms
have been introduced to model the Allee effect [18], and most
of them are topologically equivalent [27]. Recent ecological

research suggests the possibility that two or more Allee effects
generate mechanisms acting simultaneously on a single popu-
lation [18, Table 2], especially in renewable resources [28].
The combined influence of some of these phenomena has been

named as the multiple (double) Allee effects [18,25,29,30]. The
double Allee effect affecting the species has been seen in wild
life ecosystem [18] and in marine ecosystem as well [31].

Gonzlez-Olivares et al. [32] considered that the growth of prey
is affected by double Allee effect in Lotka-Volterra predator-prey
model [33]. They proved the existence of two limit cycles by

means of the Lyapunov quantities whenever the Allee effect is
either strong or weak. Huincahue-Arcos and Gonzlez-Olivares
in [34] studied the modified Rosenzweig-MacArthur predation
model [33] in which two Allee effects affect the prey population.

The authors [34] determined certain parametric conditions for
which the unique interior equilibrium point is locally asymptoti-
cally stable or the existence of at least one stable limit cycle gen-

erated through Hopf bifurcation. Flores and Gonzalez-Olivares
[35] studied a ratio-dependent predator-prey model with double
Allee effect on the prey, and discussed the stability and bifurca-

tion analysis. Feng and Kang [36] studied the stability and bifur-
cation of the modified Leslie-Gower predator-prey model with
Allee effects in both predator and prey species. They also showed

that the double Allee effects greatly alter the outcome of the sur-
vival of both species. Pal and saha [37] studied the stability and
bifurcation analysis of a ratio dependent predator-prey system
with a double Allee effect in prey population growth.
Please cite this article in press as: Singh MK et al., Bifurcation analysis of modified
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The motive of this work is to investigate the dynamical
behavior of the modified Leslie-Gower predator-prey model
with double Allee effect in growth of prey population. It is

assumed that the extent to which the environment provides
protection to both the predator and prey is the same. The rest
of the paper is organized as follows: in Section 2, the mathe-

matical model is formulated, boundedness of solutions and
existence of a positively invariant and attracting set are shown.
In Section 3, the conditions to the existence of possible equilib-

ria of the system and their local stability are established. In
Section 4, Hopf, saddle-node and Bogdanov-Takens bifurca-
tions are discussed. In Section 5, numerical simulations and
phase portrait diagrams are given to validate our analytical

findings. Finally, a brief discussion is given in Section 6.

2. Model equations

We consider the following bidimensional predator-prey system

dN
dT

¼ rN 1� N
K

� �� aNP
a1þN

;

dP
dT

¼ sP 1� bP
a2þN

� �
;

8<
: ð2:1Þ

with the initial conditions Nð0Þ > 0;Pð0Þ > 0, where NðTÞ and
PðTÞ are respectively, prey and predator density at time T.
r;K; a; s; b are positive parameters, which represent intrinsic
growth rate of prey, carrying capacity of prey in the absence
of predator, maximal predator per capita consumption rate,

intrinsic growth rate of predator, measure of the food quality
that the prey provides for conversion into predator birth
respectively, and a1 and a2 measure the extent to which the

environment provides protection to prey and predator respec-
tively. The system (2.1) is proposed by Aziz-Alaoui and Daher
Okiye [15] and studied in [38–41].

We consider the following multiple Allee effect in the prey
species.

dN

dT
¼ rN 1�N

K

� �
1�mþ n

Nþ n

� �
; ð2:2Þ

where m is the Allee threshold and n > 0 is the auxiliary
parameter with m > �n. The above equation can be written as

dN

dT
¼ rN

Nþ n
1�N

K

� �
ðN�mÞ ð2:3Þ

In Eq. (2.3), the intrinsic growth rate of the species is
affected by two Allee effects; the factor mðNÞ ¼ N�m [42–

44] and the other is the hyperbolic function rðNÞ ¼ rN
Nþn

, which

can be interpreted as an approximation of a population
dynamics where the differences between fertile and non-

fertile are not explicitly modeled. It is assumed in [45] that this
factor indicates the impact of the Allee effect due to the non-
fertile population n. The Allee effect in the above equation is

strong if m > 0 and weak if m < 0. Moreover, the auxiliary
parameter n affects the overall shape of the per-capita growth
curve of the prey (see Fig. 1).

With the assumption that the extent to which the environ-
ment provides protection to both predator and prey is the
same, that is, a1 ¼ a2 ¼ a [40,41,46] and using Eq. (2.3), the

model (2.1), reduces to

dN
dT

¼ rN
Nþn

1� N
K

� �ðN�mÞ � aNP
aþN

;

dP
dT

¼ sPð1� bP
aþN

Þ;

(
ð2:4Þ
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Figure 1 Per-capita growth rate of population of a single species. (a) Strong Allee effect ðm > 0Þ. (b) Weak Allee effect ðm < 0Þ. (c)
Affect of n on the shape in double Allee effect.
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On introducing the non-dimensional variables:

N ¼ Kx; P ¼ Ky
b
; T ¼ 1

r
t, in system (2.4), we obtain
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dx
dt
¼ xð1�xÞðx�bÞ

ðxþhÞ � nxy
cþx

;

dy
dt
¼ qy 1� y

cþx

� �
;

8<
: ð2:5Þ
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with the initial conditions: xð0Þ > 0; yð0Þ > 0, where

b ¼ m
K
; h ¼ n

K
; n ¼ a

br
; q ¼ s

r
, and c ¼ a

K
.

The positivity and the boundedness of the solutions of the

system (2.5) starting from an interior point of the first quad-
rant are proved below.

On integrating the first equation of the system (2.5), we get

xðtÞ ¼ xð0Þ exp
Z t

0

ð1� xðsÞÞðxðsÞ � bÞ
ðxðsÞ þ hÞ � nyðsÞ

cþ xðsÞ
� �

ds

� 	
;

ð2:6Þ
which is always nonnegative as xð0Þ > 0. Similarly from sec-
ond equation of the system (2.5), we get

yðtÞ ¼ yð0Þ exp q
Z t

0

1� yðsÞ
cþ xðsÞ

� �
ds

� 	
; ð2:7Þ

which is always nonnegative as yð0Þ > 0. Therefore, all the
solutions of the system (2.5) starting from an interior point

of the first quadrant will remain in the first quadrant for all
future time. Moreover, the solution trajectories starting from
a point on the positive xðyÞ-axis will remain within the positive

xðyÞ-axis for all future times. Hence, the set R2
þ ¼ fðx; yÞ :

x; y P 0g is an invariant set.

Now, we shall prove the boundedness of solutions of the
system (2.5). We consider ðxðtÞ; yðtÞÞ be any positive solution
of the system (2.5), satisfies the initial conditions. There arise

the following two cases;
Case I. We suppose xð0Þ 6 1 and we claim xðtÞ 6 1 for all

t P 1. Otherwise, there are two positive real numbers t1 and t2
such that t2 > t1; xðt1Þ ¼ 1 and xðtÞ > 18t 2 ðt1; t2Þ. Then for
all t 2 ðt1; t2Þ the Eq. (2.6), can be written as

xðtÞ ¼ xð0Þ exp
Z t1

0

ð1� xðsÞÞðxðsÞ � bÞ
ðxðsÞ þ hÞ � nyðsÞ

cþ xðsÞ
� �

ds

� 	

� exp

Z t2

t1

ð1� xðsÞÞðxðsÞ � bÞ
ðxðsÞ þ hÞ � nyðsÞ

cþ xðsÞ
� �

ds

� 	

¼ xðt1Þ exp
Z t2

t1

ð1� xðsÞÞðxðsÞ � bÞ
ðxðsÞ þ hÞ � nyðsÞ

cþ xðsÞ
� �

ds

� 	
< xðt1Þ;

because ð1�xðsÞÞðxðsÞ�bÞ
ðxðsÞþhÞ � nyðsÞ

cþxðsÞ

� �
< 0 for all t 2 ðt1; t2Þ which con-

tradicts our hypothesis. Thus xðtÞ 6 1 for all t P 0.
Case II. Next, we suppose xð0Þ > 1, then as long as

xðtÞ P 1

xðtÞ¼ xð0Þexp
Z t

0

ð1�xðsÞÞðxðsÞ�bÞ
ðxðsÞþhÞ � nyðsÞ

cþxðsÞ
� �

ds

� 	
< xð0Þ;

because ð1�xðsÞÞðxðsÞ�bÞ
ðxðsÞþhÞ � nyðsÞ

cþxðsÞ

� �
< 0 for xðtÞ P 1. Hence, from

the cases I and II, every positive solution holds

xðtÞ 6 maxfxð0Þ; 1g � M1 for all t P 0.
From second Eq. of the system (2.5)

dy

dt
6 qy 1� y

cþM1

� �
;

then

yðtÞ 6 maxfyð0Þ; cþM1g 8t P 0:

Thus, the above discussion can be concluded as follows:
Please cite this article in press as: Singh MK et al., Bifurcation analysis of modified
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Lemma 1.

(a) All the solutions of the system (2.5) with its initial condi-
tions are defined on ½0;1Þ and remain positive for all

t P 0.
(b) All the solutions of the system (2.5) with its initial condi-

tions are bounded for all t P 0.
3. Equilibrium points and qualitative analysis

The equilibrium points of the system (2.5) are the points of

intersection of the prey zero growth isocline (dx
dt
¼ 0) and

predator zero growth isocline (dy
dt
¼ 0) which lie in first quad-

rant, that is, positive solutions of the following system

dx

dt
¼ dy

dt
¼ 0: ð3:1Þ
3.1. Strong Allee effect

The equilibrium points of the system (2.5) in case of strong

Allee effect (b > 0) are

(a) E0 ¼ ð0; 0Þ;
(b) E1 ¼ ð1; 0Þ;
(c) Eb ¼ ðb; 0Þ;
(d) Ec ¼ ð0; cÞ;
(e) If 1þ b > n, the system (2.5), has two positive interior

equilibrium points E�
1 ¼ ðx�1; y�1Þ and E�

2 ¼ ðx�2; y�2Þ
whenever 1þb�n

2

� �2
> bþ nh; a double multiple positive

interior equilibrium point E� ¼ ðx�; y�Þ ¼
1þb�n

2
; cþ 1þb�n

2

� �
whenever 1þb�n

2

� �2¼bþnh, where

x�1 ¼ 1þb�nþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þb�nÞ2�4ðbþnhÞ

p
2

; x�2 ¼ 1þb�n�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þb�nÞ2�4ðbþnhÞ

p
2

;

y�1 ¼ cþ x�1 and y�2 ¼ cþ x�2.

Thus, the number and location of equilibrium points of sys-
tem (2.5) can be described by the following lemma.

Lemma 2. If 1þ b > n, the system (2.5), has

(a) Four equilibrium points E0;E1;Eb and Ec whenever
1þb�n

2

� �2
< bþ nh.

(b) Five equilibrium points E0;E1;Eb;Ec and E� whenever
1þb�n

2

� �2 ¼ bþ nh.
(c) Six equilibrium points E0;E1;Eb;Ec;E�

1 and E�
2 whenever

1þb�n
2

� �2
> bþ nh.

Next, we discuss the dynamics of system (2.5) in the neigh-
borhood of each feasible equilibria.

Theorem 1.

(a) The equilibrium point E0 is always a saddle point.

(b) The equilibrium point E1 is always a saddle point.
(c) The equilibrium point Eb is always an unstable point.

(d) The equilibrium point Ec is always a stable point.
Leslie-Gower predator-prey model with double Allee effect, Ain Shams Eng J

http://dx.doi.org/10.1016/j.asej.2016.07.007


Bifurcation analysis of modified Leslie-Gower predator-prey model 5
(e) The equilibrium point E�
1, if exists, it is a stable point if

x�1
1þb�n�2x�

1

x�
1
þh þ n

cþx�
1

� �
� q < 0.

(f) The equilibrium point E�
2, if exists, is always a saddle

point.

(g) The equilibrium point E�, if exists, is a degenerate
singularity.

Proof 1.

(a) The Jacobian matrix of the system (2.5) at the equilib-
rium point E0 is

JE0
¼ � b

h 0

0 q

" #
;

Please
(2016),
which confirms that the equilibrium point E0 is a saddle
point as 0 < b < 1.
(b) The Jacobian matrix of the system (2.5) at the equilib-
rium point E1 is

JE1
¼ � 1�b

1þh � n
1þc

0 q

" #
;

which confirms that the equilibrium point E1 is a saddle
point.
(c) The Jacobian matrix of the system (2.5) at the equilib-

rium point Eb is

JEb
¼ b 1�b

bþh � bn
cþb

0 q

" #
;

which confirms that the equilibrium point Eb is an

unstable point.
(d) The Jacobian matrix of the system (2.5) at the equilib-
rium point Ec is

JEc ¼
�b
h � n 0

q �q

" #
;

which confirms that the equilibrium point Ec is a stable

point.
(e) The Jacobian matrix of the system (2.5) at an interior
equilibrium point Eðx; yÞ (say) is

JE ¼ x 1þb�n�2x
xþh þ n

cþx

� �
� nx

cþx

q �q

" #
: ð3:2Þ
detðJEÞ¼�qx1þb�n�2x
xþh and trðJEÞ¼x 1þb�n�2x

xþh þ n
cþx

� �
�q.

We have, detðJE�
1
Þ>0. Thus equilibrium point E�

1 is

stable, if x�
1

1þb�n�2x�
1

x�
1
þh þ n

cþx�
1

� �
�q<0.
(f) From (3.2), detðJE�
2
Þ < 0 which confirms that the equilib-

rium point E�
2 is a saddle.

(g) From (3.2), detðJE� Þ ¼ 0, so the equilibrium point E� is a
degenerate singularity. h

It is proved in Theorem 1(g) that the interior equilibrium
point E� is a degenerate singularity, and so, the system may
have complicated properties in the neighborhood of the point

E�. In the following, the dynamics of the system (2.5) in the
neighborhood of the equilibrium point E� have been discussed.
cite this article in press as: Singh MK et al., Bifurcation analysis of modified
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Theorem 2. The interior equilibrium point E�, if exists, it is

(a) a saddle node whenever nx�
cþx� – q holds.

(b) a cusp of codimension 2 whenever nx�
cþx� ¼ q and

nc
ðx�þcÞ2 � 2 x�

x�þh – 0 hold.

Proof 2.

(a) First, we use the transformation x̂ ¼ x� x�; ŷ ¼ y � y�

to shift the equilibrium point E� of the system (2.5) to

the origin and then expand the right-hand side of system
as a Taylor series, the system (2.5) can be rewritten as

dx̂
dt
¼ nx�

cþx� x̂� nx�
cþx� ŷþ a20x̂2 þ a11x̂ŷþ ojðx; yÞ3j;

dŷ
dt
¼ qx̂� qŷ� q

cþx� x̂
2 þ 2q

cþx� x̂ŷ� q
cþx� ŷ

2 þ ojðx; yÞ3j;

8><
>:

ð3:3Þ
Leslie-
where a20 ¼ nc
ðcþx�Þ2 � x�

x�þh ; a11 ¼ � nc
ðx�þcÞ2.

If nx�
cþx� – q, the trðJE� Þ– 0 while detðJE� Þ ¼ 0. Hence,

the equilibrium point E� is a saddle node.
(b) Now, we consider nx�
cþx� ¼ q, then the system (3.3) reduces

to

dx̂
dt
¼ qx̂� qŷþ a20x̂2 þ a11x̂ŷþ ojðx; yÞ3j;

dŷ
dt
¼ qx̂� qŷ� q

cþx� x̂
2 þ 2q

cþx� x̂ŷ� q
cþx� ŷ

2 þ ojðx; yÞ3j:

8><
>:

ð3:4Þ

On introducing the variable s ¼ qt, the system (3.4)

reduces to the following system
dx̂
ds ¼ x̂� ŷþ â20x̂2 þ â11x̂ŷþ ojðx; yÞ3j;

dŷ
ds ¼ x̂� ŷ� 1

cþx� x̂
2 þ 2

cþx� x̂ŷ� 1
cþx� ŷ

2 þ ojðx; yÞ3j;

8><
>:

ð3:5Þ

where â20 ¼ 1

q a20 and â11 ¼ 1
q a11.

Now, on using the transformation x1 ¼ x̂; x2 ¼ x̂� ŷ,

the system (3.5) reduces to the following system
dx1
ds ¼ x2 þ a20x2

1 � â11x1x2 þ ojðy1; y2Þ3j;

dx2
ds ¼ a20x2

1 � â11x1x2 þ 1
x�þcx

2
2 þ ojðy1; y2Þ3j;

8><
>: ð3:6Þ
where a20 ¼ â20 þ â11.
On using the transformation y1 ¼ x1; y2 ¼ x2

� 1
x�þcx1x2, the system (3.6) reduces to
dy1
ds ¼ y2 þ a20y21 þ a11y1y2 þ ojðy1; y2Þ3j;
dy2
ds ¼ a20y21 � â11y1y2 þ ojðy1; y2Þ3j;

(
ð3:7Þ
where a11 ¼ 1
x�þc � â11

� �
.

Finally, using the transformation z1 ¼ y1 � 1
2
a11y21;

z2 ¼ y2 þ a20y21 þ ojðz1; z2Þ3j, the system (3.7) reduces to
dz1
ds ¼ z2;

dz2
ds ¼ a20y21 þ ð2a20 � â11Þy1y2 þ ojðz1; z2Þ3j:

(
ð3:8Þ
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Please
(2016),
Since a20 ¼ � x�
qðx�þhÞ – 0 and if 2a20 � â11 ¼ 1

q
nc

ðx�þcÞ2 �
�

2 x�
x�þhÞ– 0, the origin in z1z2 plane is a cusp of codimen-

sion 2, that is, E� in xy-plane is a cusp of codimension 2.

h

3.2. Weak Allee effect

The equilibrium points of the system (2.5) in case of weak

Allee effect (b < 0) are

(a) e0 ¼ ð0; 0Þ;
(b) e1 ¼ ð1; 0Þ;
(c) ec ¼ ð0; cÞ;
(d) If bþ n < 1, the system (2.5), has two positive interior

equilibrium points e�1 ¼ ðx1; y1Þ and e�2 ¼ ðx2; y2Þ when-

ever 1�b�n
2

� �2 þ b > nh > b; a double multiple positive

interior equilibrium point e� ¼ ðx�; y�Þ ¼ 1�b�n
2

; cþ�
1�b�n

2
Þ whenever 1�b�n

2

� �2 þ b ¼ nh > b, has a unique

positive interior equilibrium point e� ¼ ðx3; y3Þ whenever
b > nh, has a unique positive interior equilibrium point
e ¼ ðx4; y4Þ ¼ ð1� b� n; 1þ c� b� nÞ whenever

b ¼ nh, where x1 ¼ 1�b�nþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�b�nÞ2�4ðnh�bÞ

p
2

; x2 ¼
1�b�n�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�b�nÞ2�4ðnh�bÞ

p
2

; x3 ¼ 1�b�nþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�b�nÞ2�4ðnh�bÞ

p
2

; y1 ¼
cþ x1; y2 ¼ cþ x2 and y3 ¼ cþ x3.

Thus, the number and location of equilibrium points of sys-
tem (2.5) can be described by the following lemma.

Lemma 3. If bþ n < 1, the system (2.5), has

(a) Three equilibrium points e0; e1 and ec whenever
1�b�n

2

� �2
< nh� b and nh > b.

(b) Four equilibrium points e0; e1; ec and e� whenever
1�b�n

2

� �2 þ b ¼ nh > b.
(c) Four equilibrium points e0; e1; ec and e� whenever b > nh.
(d) Four equilibrium points e0; e1; ec and e whenever b ¼ nh.
(e) Five equilibrium points e0; e1; ec; e�1 and e�2 whenever

1�b�n
2

� �2 þ b > nh > b.

The dynamics of system (2.5) in the neighborhood of each

feasible equilibria are concluded in the following.

Theorem 3.

(a) The equilibrium point e0 is always an unstable point.

(b) The equilibrium point e1 is always a saddle point.
(c) The equilibrium point ec is asymptotically stable whenever

b < nh and a saddle whenever b > nh.
(d) The equilibrium point e�1, if exists, is a stable point if

x1
1�b�n�2x1

x1þh þ n
cþx1

� �
� q < 0.

(e) The equilibrium point e�2, if exists, is always a saddle

point.
(f) The equilibrium point e�, if exists, is a stable point if

x3
1�b�n�2x3

x3þh þ n
cþx3

� �
� q < 0.
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(g) The equilibrium point e, if exists, is a stable point if

x4
1�b�n�2x4

x4þh þ n
cþx4

� �
� q < 0.

(h) The equilibrium point e�, if exists, is a degenerate singu-
larity. Moreover, it is
Leslie-
(1) a saddle node whenever nx�
cþx�

– q holds.

(2) a cusp of codimension 2 whenever nx�
cþx�

¼ q and
nc

ðx�þcÞ2 � 2 x�
x�þh – 0 hold.
The proof of Theorem 3 is similar to Theorems 1 and 2.

4. Bifurcation analysis

This section concerns with the bifurcation analysis, occurring
in system (2.5). It has been shown that for certain parametric
conditions some of the equilibrium points may be hyperbolic

or degenerate singularities, and hence, system may undergoes
to some bifurcations.

4.1. Strong Allee effect

4.1.1. Hopf bifurcation

In Theorem 1, it is proved that the interior equilibrium point
E�

2, if exists, is always a saddle point while E�
1, if exists, is stable

whenever x�
1

1þb�n�2x�
1

x�
1
þh þ n

cþx�
1

� �
< q. If x�

1

1þb�n�2x�
1

x�
1
þh þ n

cþx�
1

� �
¼ q,

the trace of the Jacobian matrix JE�
1
is zero and determinant

is positive which confirms that the eigenvalues of the Jacobian

matrix JE�
1
are purely imaginary, that is, the equilibrium point

E�
1 is either a weak focus or a center. Now, we show that sys-

tem (2.5) undergoes to a Hopf bifurcation. Consider q be the
Hopf bifurcation parameter, then the threshold magnitude

q ¼ q½hf� ¼ x�
1

1þb�n�2x�
1

x�
1
þh þ n

cþx�
1

� �
exists, which satisfies

detðJE�
1
Þ > 0 and trðJE�

1
Þ ¼ 0. Also at q ¼ q½hf�, we have

@

@q
ðtrE�

1Þ ¼ �1 – 0:

Thus the transversality condition of Hopf bifurcation
holds, which ensures that the system (2.5) undergoes to a Hopf
bifurcation at the equilibrium point E�

1.

Now, in order to discuss the stability of limit cycle, the first
Lyapunov number r at interior equilibrium point E�

1ðx�
1; y

�
1Þ of

the system (2.5) is computed by using the procedure as given in
[47]. Let x ¼ u� x�

1; y ¼ v� y�1, the system (2.5), in the vicin-

ity of origin, can be written as

du

dt
¼ a10uþ a01vþ a20u

2 þ a11uvþ a02v
2 þ a30u

3 þ a21u
2v

þ a12uv
2 þ a03v

3 þ Pðu; vÞ;

dv

dt
¼ b10uþ b01vþ b20u

2 þ b11uvþ b02v
2 þ b30u

3 þ b21u
2v

þ b12uv
2 þ b03v

3 þQðu; vÞ;

where a10 ¼ x�
1

1þb�n�2x�
1

x�
1
þh þ n

cþx�
1

� �
, a01 ¼ � nx�

1

cþx�
1

,

a20 ¼ hð1þb�n�2x�
1
Þ

ðhþx�
1
Þ2 � x�

1

x�
1
þh þ nc

ðx�
1
þcÞ2, a11 ¼ � nc

ðx�
1
þcÞ2, a02 ¼ 0,

a30 ¼ hð�1�bþnþ2x�
1
Þ

ðx�
1
þhÞ3 � h

ðx�
1
þhÞ2 �

nc
ðx�

1
þcÞ3, a21 ¼ nc

ðx�
1
þcÞ3, a12 ¼ 0,
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a03 ¼ 0, b10 ¼ q, b01 ¼ �q, b20 ¼ � q
cþx�

1

, b11 ¼ 2q
cþx�

1

,

b02 ¼ � q
cþx�

1

,b30 ¼ q
ðcþx�

1
Þ2, b21 ¼ � 2q

ðcþx�
1
Þ2, b12 ¼ q

ðcþx�
1
Þ2, b03 ¼ 0,

Pðu; vÞ ¼ P1
iþj¼4aiju

iv j and Qðu; vÞ ¼ P1
iþj¼4biju

iv j.

Hence the first Lyapunov number r for the planer system is

r ¼ � 3p

2a01D
3=2

a10b10ða211 þ a11b02 þ a02b11Þ
��

þ a10a01ðb211 þ a20b11 þ a11b02Þ þ b210ða11a02 þ 2a02b02Þ

� 2a10b10ðb202 � a20a02Þ � 2a10a01ða220 � b20b02Þ

� a201ð2a20b20 þ b11b20Þ þ ða01b10 � 2a210Þðb11b02 � a11a20Þ


� ða210 þ a01b10Þ½3ðb10b03 � a01a30Þ þ 2a10ða21 þ b12Þ
þ b10a12 � a01b21Þ�ð g;

where D ¼ qx�
1

ðhþx�
1
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ b� nÞ2 � 4ðbþ nhÞ

q
. Therefore, the

subcritical Hopf bifurcation exists if r > 0 and supercritical
Hopf bifurcation exists if r < 0.

From the above discussion, we conclude that

Theorem 4. The system (2.5) undergoes a Hopf bifurcation with
respect to bifurcation parameter q around the point E�

1, if exist,

whenever x�1
1þb�n�2x�

1

x�
1
þh þ n

cþx�
1

� �
¼ q and an unstable (stable)

limit cycle arises around the point E�
1 if r > 0 (r < 0).
4.1.2. Saddle-node bifurcation

In Section 3, it is shown that if 1þ b > n, the system (2.5) has
two positive interior equilibrium points E�

1 and E�
2 whenever

1þb�n
2

� �2
> bþ nh and these two interior equilibrium points

coincide with each other and a unique interior equilibrium

point E� is obtained whenever 1þb�n
2

� �2 ¼ bþ nh. Also the sys-

tem (2.5) has no positive interior equilibrium points whenever
1þb�n

2

� �2
< bþ nh. The annihilation of positive interior equilib-

rium points are may be due to the occurrence of saddle-node

bifurcation at the interior equilibrium point, whenever the

parameter h crosses the critical value h ¼ h½SN� ¼
1
n

1þb�n
2

� �2 � b
� �

. In Theorem 2 it is shown that the unique inte-

rior equilibrium point E� is a saddle node whenever nx�
cþx� – q.

To ensure that the system (2.5) undergoes to a saddle-node

bifurcation we use Sotomayor’s theorem [47]. The parameter
h is taken as the bifurcation parameter.

Since detðJE� Þ ¼ 0, therefore one eigenvalue of the Jacobian

matrix JE� is zero. If trðJE� Þ < 0, the other eigenvalue has neg-
ative real part. Suppose v and w be the eigenvectors corre-

sponding to zero eigenvalue of the matrix JE� and JTE�

respectively, then

V ¼ 1

1

� 	
; W ¼ 1

� nx�
x�þc

" #
:

Now we have,

WTFhðE�; h½SN�Þ ¼ � x�ð1� bþ nÞð1þ b� nÞ
2ðx� þ h½SN�Þ2

– 0;

as 1þ b� n > 0; 1� bþ n > 0;
Please cite this article in press as: Singh MK et al., Bifurcation analysis of modified
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WT½D2FðE�; h½SN�ÞðV;VÞ� ¼ � 2x�

x� þ h½SN� – 0:

where

FhðE�; h½SN�Þ ¼ � x�ð1�x�Þðx��bÞ
ðx�þh½SN�Þ2

0

" #
; D2FðE�; h½SN�Þ ¼ � 2x�

x�þh½SN�

0

� 	

Thus the transversality condition for saddle-node bifurca-

tion are satisfied. The above discussion can be summarized as

Theorem 5. The system (2.5) undergoes a saddle-node bifurca-
tion with respect to the bifurcation parameter h around the

equilibrium point E� whenever 1þ b > n; h ¼ 1
n

1þb�n
2

� �2

� b

� �
and nx�

cþx� – q.
4.1.3. Bogdanov-Takens bifurcation

In Theorem 5, it is proved that the system (2.5) undergoes a
saddle-node bifurcation at the equilibrium point E�, if exist,

whenever nx�
cþx� – q, that is, trðJE� Þ– 0. Now, we consider

trðJE� Þ ¼ 0. In this case the Jacobian matrix JE� has double

zero eigenvalues but the Jacobian matrix JE� is not a zero
matrix. So, here is a chance of co-dimension 2 bifurcation
(Bogdanov-Takens bifurcation). In Theorem 2, it is shown that
the equilibrium point E� is a cusp of co-dimension 2 whenever
nx�
cþx� ¼ q, and nc

ðx�þcÞ2 � 2 x�
x�þh – 0. Now, choose n and q as the

bifurcation parameter as they are important from the ecologi-

cal point of view. The Bogdanov-Taken point (in brief, BT-
point) in the parameter space is the intersection point of the
saddle-node bifurcation curve and the Hopf-bifurcation curve.

We use the algorithm given in [48] to prove the non-degeneracy
conditions of Bogdanov-Takens bifurcation.

Suppose the bifurcation parameters n and q vary in a small
domain of BT-point ðn0; q0Þ, and let ðn0 þ k1; q0 þ k2Þ be a

point in the neighborhood of the BT-point ðn0; q0Þ where
k1; k2 are small. Thus, the system (2.5) reduces to

dx
dt
¼ xð1�xÞðx�bÞ

xþh � ðnþk1Þxy
xþc ;

dy
dt
¼ ðqþ k2Þy 1� y

xþc

� �
:

8<
: ð4:1Þ

The system (4.1) is C1 smooth with respect to the variables
x; y in a small neighborhood of ðn0; q0Þ.

Define x1 ¼ x� x�; x2 ¼ y� y�, then the system (4.1)

reduces to

dx1
dt

¼ a00 þ a10x1 þ a01x2 þ a20x
2
1 þ a11x1x2 þ R1ðx1; x2Þ;

dx2
dt

¼ b10x1 þ b01x2 þ b20x
2
1 þ b11x1x2 þ b02x

2
2 þ R2ðx1; x2Þ;

8><
>:

ð4:2Þ
where a00 ¼ �k1x�, a10 ¼ x�ðnþk1Þ

x�þc � k1, a01 ¼ � ðnþk1Þx�
x�þc , a20 ¼

� x�
x�þh þ ðnþk1Þc

ðx�þcÞ2, a11 ¼ � ðnþk1Þc
ðx�þcÞ2, b10 ¼ qþ k2, b01 ¼ �ðqþ k2Þ,

b20 ¼ � qþk2
x�þc, b11 ¼ 2ðqþk2Þ

x�þc , b02 ¼ � qþk2
x�þc and R1;R2 are the power

series in ðx1; x2Þ with powers xi
1x

j
2 satisfying iþ j P 3.

Let us introduce the affine transformation y1 ¼ x1; y2 ¼
ax1 þ bx2 a ¼ ðnþk1Þx�

x�þc ; b ¼ � ðnþk1Þx�
x�þc

� �
in the system (4.2), we

get
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dy1
dt

¼ y2 þ n00ðkÞ þ n10ðkÞy1 þ n01ðkÞy2 þ n20ðkÞy21
þn11ðkÞy1y2 þ R1ðy1; y2Þ;

dy2
dt

¼ g00ðkÞ þ g10ðkÞy1 þ g01ðkÞy2 þ g20ðkÞy21 þ g11ðkÞy1y2
þg02y

2
2 þ R2ðy1; y2Þ;

8>>>><
>>>>:

ð4:3Þ
where n00ðkÞ ¼ �k1x�, n10ðkÞ ¼ �k1, n01 ¼ k1

n , n20ðkÞ ¼ � x�
x�þh,

n11ðkÞ ¼ ðnþk1Þc
ðx�þcÞnx�, g00ðkÞ ¼ �ak1x�, g10ðkÞ ¼ �ak1, g01ðkÞ ¼

� k1x�
x�þh þ k2 þ q

� �
, g20ðkÞ ¼ � nðx�Þ2

ðx�þcÞðx�þhÞ, g11ðkÞ ¼ ðnþk1Þc
ðx�þcÞ2,

g02ðkÞ ¼ qþk2
nx� and R1;R2 are the power series in ðy1; y2Þ with

powers yi1y
j
2 satisfying iþ j P 3.

The non-degeneracy conditions of Bogodanov-Takens

bifurcation [48] are

ðnþk1Þx�
x�þc � ðnþk1Þx�

x�þc

q �q

" #
– h2�2;

2n20ð0Þ þ g11ð0Þ – 0;

g20ð0Þ – 0:

We have

2n20ð0Þ þ g11ð0Þ ¼
nc

ðx� þ cÞ2 � 2
x�

x� þ h
;

g20ð0Þ ¼ � nðx�Þ2
ðx� þ cÞðx� þ hÞ – 0:
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Figure 2 Strong Allee effect: b ¼ 0:4; c ¼ 0:1; n ¼ 0:1;q ¼ 0:2. (a) T

changes with h. All parabola are the prey nullcline for different values

dashed parabola h ¼ 0:225 and for dotted parabola h ¼ 0:5. (b) Ph

trajectories are the separatrix. (c) and (d) are the bifurcation diagram of

and the lower curve stands for unstable equilibrium.
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Thus the non-degeneracy condition of the Bogdanov-

Takens bifurcation satisfy whenever nc
ðx�þcÞ2 � 2 x�

x�þh – 0. We

can summarized as

Theorem 6. The system (2.5) undergoes a Bogdanov-Takens
bifurcation with respect to the bifurcation parameter n and q
around the equilibrium point E� whenever 1þ b > n; h ¼
1
n

1þb�n
2

� �2

� b

� �
; nx�
cþx� ¼ q and nc

ðx�þcÞ2 � 2 x�
x�þh – 0.
4.2. Weak Allee effect

As discussed in case of strong Allee effect the system (2.5) exhi-
bits Hopf, saddle-node and Bogdanov-Taken bifurcations in
case of weak Allee effect with respect to the corresponding

parameter(s) which are concluded in the following theorem.
The proof of these theorems are omitted for the sake of
brevity.

Theorem 7. The system (2.5) undergoes

(a) a hopf bifurcation with respect to bifurcation parameter q
around the point

(1) e�1 if x1
1�b�n�2x1

x1þh þ n
cþx1

� �
¼ q and unstable (stable) limit

cycle arises around the point e�1 if r > 0ðr < 0Þ.
(2) e� if x3

1�b�n�2x3
x3þh þ n

cþx3

� �
¼ q and unstable (stable) limit

cycle arises around the point e� if r > 0ðr < 0Þ.
E
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his diagram shows how the number of interior equilibrium points

of h and line is predator nullcline. For solid parabola h ¼ 0:05 for

ase portrait diagram of system (2.5) for h ¼ 0:225. The dotted

the system (2.5). The upper curve stands for the stable equilibrium
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(3) e if x4
1�b�n�2x4

x4þh þ n
cþx4

� �
¼ q and unstable (stable) limit

cycle arises around the point e if r > 0ðr < 0Þ.

(b) a saddle-node bifurcation with respect to the bifurcation

parameter h around the equilibrium point e� whenever

bþ n < 1; h ¼ 1
n

1�b�n
2

� �2 þ b
� �

and nx�
cþx�

– q.

(c) a Bogdanov-Takens bifurcation with respect to the bifur-

cation parameter n and q around the equilibrium point

e� whenever bþ n < 1; h ¼ 1
n

1�b�n
2

� �2 þ b
� �

; nx�
cþx�

¼ q and

nc
ðx�þcÞ2 � 2 x�

x�þh – 0.
5. Numerical simulation

In this section numerical simulations are carried out to support

the analytical results obtained above. The MATHEMATICA
7:0 software has been used to plot phase portrait diagrams.

(1) b ¼ 0:4; c ¼ 0:1; n ¼ 0:1; q ¼ 0:2; h ¼ 0:05. The sys-
tem (2.5) has two positive interior equilibrium points;
E�
1ðx�1; y�1Þ ¼ ð0:782288; 0:882288Þ and E�

2ðx�2; y�2Þ ¼
E1
E2

E 1
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Figure 3 Strong Allee effect: b ¼ 0:4; c ¼ 0:1; n ¼ 0:1; h ¼ 0:2. (a) q
stable and E�

2 is saddle. (b) q ¼ 0:009722 an unstable limit c

q ¼ 0:0166067444209415 The diagram shows that the limit cycle co

q ¼ 0:008 E�
1 is unstable point. The Dotted trajectories are the stable

Please cite this article in press as: Singh MK et al., Bifurcation analysis of modified
(2016), http://dx.doi.org/10.1016/j.asej.2016.07.007
ð0:517712; 0:617712Þ. If h ¼ h½SN � ¼ 0:225, the two inte-
rior equilibrium points coincide and the system (2.5)
has only one interior equilibrium point

E�ðx�; y�Þ ¼ ð0:65; 0:75Þ. If h ¼ 0:5, the system (2.5) has
no interior equilibrium point (see Fig. 2a). The phase

portrait diagram for h ¼ h½SN � ¼ 0:225 is depicted in
Fig. 2b in which the equilibrium point E� is stable for

the region lie right to the separatrix (dashed trajectories)
while unstable for the region lie left to separatrix. The
saddle-node bifurcation diagram is depicted in Fig. 2c,
d.

(2) b ¼ 0:4; c ¼ 0:1; n ¼ 0:1; q ¼ 0:2; h ¼ 0:2. The system
(2.5) has two interior equilibrium points;
E�
1ðx�1; y�1Þ ¼ ð0:7; 0:8Þ and E�

2ðx�2; y�2Þ ¼ ð0:6; 0:7Þ. The

equilibrium point E�
2 is always a saddle point and the

equilibrium point E�
1 is stable (see Fig. 3a). If

q ¼ q½hf � ¼ 0:009722222, the system (2.5) undergoes to

a Hopf bifurcation at the point E�
1 and since the first

Lyapunov number r ¼ 2804:28p > 0, an unstable limit

cycle arises around the point E�
1 (see Fig. 3b). If

q ¼ 0:0166067444209, a homoclinic loop is created

around E�
1 (see Fig. 3c). If q ¼ 0:008 the equilibrium

point E�
1 is unstable (see Fig. 3d).
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and unstable manifolds.
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Figure 4 Strong Allee effect: b ¼ 0:3; h ¼ 0:1; c ¼ 0:2. (a) Bifurcation diagram of system (2.5) in nq-space (b) n ¼ 0:17335; q ¼ 0:12793

phase portrait diagram of the system (2.5). (c) n ¼ 0:175;q ¼ 0:05 lies in region I. No interior equilibrium point exist. The equilibrium

point Ec is globally stable. (d) n ¼ 0:170;q ¼ 0:1 lies in region II. Two interior equilibrium points exist. (e) n ¼ 0:169;q ¼ 0:0634 lies in

region III. Two interior equilibrium points exist. (f) n ¼ 0:172;q ¼ 0:05 lies in region IV. Two interior equilibrium points exist.
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(3) b ¼ 0:3; c ¼ 0:2; h ¼ 0:1. The BT bifurcation point in

the nq-space is ðn0; q0Þ ¼ ð0:17335; 0:12793Þ, intersection
point of the saddle-node bifurcation curve and the
Hopf-bifurcation curve and E� ¼ ð0:563325; 0:763325Þ.
The bifurcation diagram in the vicinity of the BT point
in the parameter space is shown in Fig. 4a. A third curve
(dotted curve) coming out from the BT point is a curve
of non-local bifurcation of a formation of a separatrix

loop obtained numerically. Fig. 4b shows that the
unique interior equilibrium point E� is a cusp of codi-
mension 2. If n and q lie in first region

(ðn0; q0Þ ¼ ð0:175; 0:05Þ), the system (2.5) has no interior
equilibrium point (see Fig. 4c). If n and q lie in second
region (ðn0; q0Þ ¼ ð0:170; 0:10Þ), then the system (2.5)

has two interior equilibrium points one is a saddle point
and other is asymptotically stable. The stable manifold
of the saddle equilibrium point serves as separatrix for
the basin of attraction of the axial equilibrium point
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Figure 5 Weak Allee effect: b ¼ �0:05; c ¼ 0:3; n ¼ 0:4; h ¼ 0:3. (a)

stable and e�2 is saddle. (b) q ¼ 0:134615 an unstable limit cycle bifur

diagram shows that the limit cycle collides with the saddle point e�2 to gi

trajectories are the stable and unstable manifolds.

Please cite this article in press as: Singh MK et al., Bifurcation analysis of modified
(2016), http://dx.doi.org/10.1016/j.asej.2016.07.007
Ec and the stable interior equilibrium (see Fig. 4d). If

n and q lie in third region (ðn0; q0Þ ¼ ð0:169; 0:0634Þ),
the system (2.5) has two interior equilibrium points

one is a saddle and other is a stable point surrounded
by an unstable limit cycle. The basin of attraction of
the stable equilibrium point increases in this domain

(see Fig. 4e). If n and q lie in fourth region
(ðn0; q0Þ ¼ ð0:172; 0:05Þ), the system (2.5) has two inte-
rior equilibrium points one is a saddle and other is an

unstable point (see Fig. 4f).
(4) b ¼ �0:05; c ¼ 0:3; n ¼ 0:4; q ¼ 0:3; h ¼ 0:3. The sys-

tem (2.5) has two interior equilibrium points
e�1 ¼ ð0:35; 0:65Þ and e�2 ¼ ð0:2; 0:5Þ. The equilibrium

point e�2 is always a saddle point and the equilibrium

point e�1 is stable (see Fig. 5a). If q ¼ q½hf � ¼ 0:134615,

the system (2.5) undergoes to a Hopf bifurcation at

the point e�1 and since the first Lyapunov number

r ¼ 318:808p > 0, an unstable limit cycle arises around
e1

0.1 0.2 0.3 0.4 0.5 0.6

x

e2
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0.2 0.4 0.6 0.8
x

)

)

q ¼ 0:3 two interior equilibrium points exist. e�1 is asymptotically

cates through Hopf - bifurcation around e�1 (c) q ¼ 0:14681 The

ve a homoclinic loop. (d) q ¼ 0:12 e�1 is unstable point. The Dotted
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the point e�1 (see Fig. 5b). If q ¼ 0:14681, a homoclinic

loop is created around e�1 (see Fig. 5c). If q ¼ 0:12 the

equilibrium point e�1 is unstable (see Fig. 5d).

(5) b ¼ �0:25; c ¼ 0:3; n ¼ 0:5; q ¼ 0:3; h ¼ 0:45. The

system (2.5) has only one interior equilibrium point
e� ¼ ð0:326556; 0:626556Þ which is always a stable point

(see Fig. 6a). If q ¼ q½hf � ¼ 0:0910797, the system (2.5)
undergoes to a Hopf bifurcation at the point e� and

since the first Lyapunov number r ¼ �173:22p < 0, an
stable limit cycle arises around the point e�1 (see Fig. 6b).

(6) b ¼ �0:225; c ¼ 0:3; n ¼ 0:5; q ¼ 0:5; h ¼ 0:45, then
the system (2.5) has only one interior equilibrium point
e ¼ ð0:275; 0:575Þ which is always a stable point(see

Fig. 7a). If q ¼ q½hf � ¼ 0:13482, the system (2.5) under-
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Figure 7 Weak Allee effect: b ¼ �0:225; c ¼ 0:3; n ¼ 0:4; h ¼ 0:45.

asymptotically stable. (b) q ¼ 0:13482 a stable limit cycle bifurcates th
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Figure 6 Weak Allee effect: b ¼ �0:25; c ¼ 0:3; n ¼ 0:5; h ¼ 0:45. (

asymptotically stable. (b) q ¼ 0:0910797 a stable limit cycle bifurcates
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goes to a Hopf bifurcation at the point e and since the

first Lyapunov number r ¼ �274:131p < 0, an stable
limit cycle arises around the point e (see Fig. 7b).

(7) b ¼ �0:2; c ¼ 0:3; h ¼ 0:6. The BT bifurcation point in

the nq-space is ðn0; q0Þ ¼ ð0:4; 0:16Þ also e� ¼ ð0:2; 0:4Þ.
The bifurcation diagram in the vicinity of the BT point
in the parameter space is shown in Fig. 8a. The blue dot-
ted curve is the Hopf bifurcation curve and the red dot-

ted curve is the non-local bifurcation curve. The Fig. 8b
shows that the unique interior equilibrium point e� is a
cusp of codimension 2. If n and q lie in first region

(ðn0; q0Þ ¼ ð0:45; 0:10Þ), then the system (2.5) has no
interior equilibrium point (see Fig. 8c). If n and q lie
in second region (ðn0; q0Þ ¼ ð0:36; 0:20Þ), then the system

(2.5) has two interior equilibrium points one is a saddle
e
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Figure 8 Weak Allee effect: b ¼ �0:2; c ¼ 0:3; n ¼ 0:5; h ¼ 0:45. (a) Bifurcation diagram of system (2.5) (b) n ¼ 0:4;q ¼ 0:16 phase

portrait diagram of the system (2.5). (c) n ¼ 0:45;q ¼ 0:10 lies in region I. No interior equilibrium point exist. The equilibrium point Ec is

globally stable. (d) n ¼ 0:36; q ¼ 0:20 lies in region II. Two interior equilibrium points exist. (e) n ¼ 0:3;q ¼ 0:2 lies in region III. Only one

interior equilibrium points exist which is globally stable. (f) n ¼ 0:38;q ¼ 0:110355 lies in region IV (region between red and blue curve).

Two interior equilibrium points exist. (g) n ¼ 0:38; q ¼ 0:05 lies in region V. Two interior equilibrium points exist.
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point and other is asymptotically stable (see Fig. 8d). If n
and q lie in third region (ðn0; q0Þ ¼ ð0:30; 0:20Þ), the sys-
tem (2.5) has only one interior equilibrium point which
is globally stable (see Fig. 8e). If n and q lie in fourth

region (ðn0; q0Þ ¼ ð0:38; 0:110355Þ), the system (2.5) has
two interior equilibrium points one is a saddle and other
is an unstable point surrounded by an unstable limit
cycle (see Fig. 8f). If n and q lie in fifth region

(ðn0; q0Þ ¼ ð0:38; 0:05Þ), the system (2.5) has two interior
equilibrium points one is saddle and another is unstable
(see Fig. 8g).

6. Result and discussion

In this article, we have analyzed a bidimensional modified
Leslie-Gower predator-prey model in the presence of double
Allee effect in the prey population, where the protection pro-

vided by the environment for both the prey and predator spe-
cies is the same. From the ecological point of view, multiple
(double) Allee effect has a great importance than single Allee

effect whenever managing threatened or exploited populations
as combined effect accelerates population decline and extinc-
tion risk and more theoretical work are necessary to promote
co-existence of such diverse communities of threatened popu-

lation [37].
The proposed model is shown biologically well-posed in the

sense that any positive solution starts in the first quadrant

remains both non-negative and bounded. The local stability
of the system in different steady states has been discussed. Fur-
ther, the system cannot collapse for any value of parameters as

the origin is never stable. The existence of separatrix curves
(stable manifold of the saddle interior equilibrium point)
which separates the behavior of trajectories of the system is
obtained, implying that dynamics of the system is very sensi-

tive to the variation of the initial conditions. The solutions ini-
tiating from the domain lie to the left of the separatrix curve
tend to the prey free axial equilibrium while the solutions ini-

tiating from the domain lie to the right of the separatrix curve
tend to the positive interior equilibrium which indicates coex-
istence of both species.

The proposed system can have zero, one or two positive
interior equilibrium points through saddle-node bifurcation
as the bifurcation parameter h ¼ n

K
crosses its critical value.

The Sotomayor’s theorem [47] is applied to ensure the exis-
tence of saddle-node bifurcation. Ecologically speaking, if

the ratio of the non-fertile population of prey and the carrying
capacity of prey is below the maximum threshold value, both
the populations co-exist and above the maximum threshold
the prey species suddenly collapse to extinction, and the system

suddenly experiences a transition to a qualitatively exception-
ally. It is found that if two interior equilibrium points exist,
one of them being always a saddle point and other is stable,

unstable or the system undergoes to a Hopf bifurcation around
this point depending upon the parametric conditions. The
emergence of homoclinic loop has been shown through numer-

ical simulation when the limit cycle arising through Hopf
bifurcation collides with a saddle point. The non-degeneracy
conditions of the Bogdanov-Takens bifurcation are also
proved. In both the strong and weak Allee effect the

Bogdanov-Takens bifurcation demonstrates that there is a
Please cite this article in press as: Singh MK et al., Bifurcation analysis of modified
(2016), http://dx.doi.org/10.1016/j.asej.2016.07.007
parametric region in which the predator and prey coexist in
the form of a positive equilibrium or prey species can be driven
to extinction, depends upon the initial values. Moreover, in

strong Allee effect there exists other region in which the preda-
tor and prey coexist in the form of a positive equilibrium for all
initial values lying inside the unstable limit cycle while in weak

Allee effect there exists other region in which predator and
prey coexist in form of a positive equilibrium for any initial
value and also there exists another region in which the preda-

tor and prey coexist in the form of a periodic orbit for all initial
values lying inside the unstable limit cycle.
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