Note

A Short Proof of Chvátal's Watchman Theorem

Steve Fisk
Department of Mathematics, Bowdoin College, Brunswich, Maine 04011
Communicated by the Editors
Received October 27, 1977

Abstract

This note contains a short proof of Chvatal's Watchman Theorem using the existence of a three-coloring of a triangulated polygon.

In 1975 Chvátal [1], proved the following result:
Theorem. If S is a polygon with n vertices, then there is a set T of at most $n / 3$ points of S such that for any point p of S there is a point q of T with the segment pq lying entirely in S.

If we think of S as a museum, with paintings on the walls, then the theorem gives a bound on the number of stationary watchmen required to guard every part of the museum. We present a simple proof.

Proof. Triangulate S so that no new vertices are added. Every such triangulation has a coloring with three colors a, b, c. Let T_{k} be the set of vertices colored a, and assume that $\left|T_{a}\right| \leqslant\left|T_{b}\right| \leqslant\left|T_{c}\right|$. Choosing $T=T_{a}$ implies $|T| \leqslant n / 3$. Finally, cvcry point q of S lics in some triangle of S, and every triangle of S has a point p of T on it. Since triangles are convex, we have $p q \subset S$.

Reference

1. V. Chvítal, A combinatorial theorem in plane geometry, J. Combinatorial Theory B 18 (1975), 39-41.
