Note
A Short Proof of Chvátal’s Watchman Theorem

STEVE FISK

Department of Mathematics, Bowdoin College, Brunswick, Maine 04011
Communicated by the Editors
Received October 27, 1977

This note contains a short proof of Chvátal’s Watchman Theorem using the existence of a three-coloring of a triangulated polygon.

In 1975 Chvátal [1], proved the following result:

Theorem. If S is a polygon with n vertices, then there is a set T of at most $n/3$ points of S such that for any point p of S there is a point q of T with the segment pq lying entirely in S.

If we think of S as a museum, with paintings on the walls, then the theorem gives a bound on the number of stationary watchmen required to guard every part of the museum. We present a simple proof.

Proof. Triangulate S so that no new vertices are added. Every such triangulation has a coloring with three colors a, b, c. Let T_b be the set of vertices colored a, and assume that $|T_a| \leq |T_b| \leq |T_c|$. Choosing $T = T_a$ implies $|T| \leq n/3$. Finally, every point q of S lies in some triangle of S, and every triangle of S has a point p of T on it. Since triangles are convex, we have $pq \subset S$.

Reference