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Note
A Short Proof of Chvital’s Watchman Theorem
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This note contains a short proof of Chvatal’s Watchman Theorem using the
existence of a three-coloring of a triangulated polygon.

In 1975 Chvidtal [1}, proved the following result:

THeOREM. If S is a polygon with n vertices, then there is a set T of at most
n/3 points of S such that for any point p of S there is a point g of T with the
segment pq lying entirely in S.

If we think of S as a museum, with paintings on the walls, then the theorem
gives a bound on the number of stationary watchmen required to guard
every part of the museum. We present a simple proof.

Proof. Triangulate S so that no new vertices are added. Every such
triangulation has a coloring with three colors a, b, ¢. Let T} be the set of
vertices colored ¢, and assume that | T, | < | T, | < | T, | . Choosing T = T,
implies | 7| < »/3. Finally, every point ¢ of S lies in some triangle of S, and
every triangle of S has a point p of 7 on it. Since triangles are convex, we have
pgCS.
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