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Influenza virus mRNAs contain a 5′-cap structure followed by short cell-derived heterogeneous oligonucleo-
tides and they are polyadenylated. However, selective translation of viral mRNAs occurs upon infection. Thus,
we have studied whether differential requirements for the eIF4F components on viral and cellular translation
could mediate this selectivity. We have previously reported that influenza virus infection proceeds efficiently
upon functional impairment of the cap-binding factor eIF4E. Now, the requirements for the eIF4A helicase and
the eIF4G scaffolding factor have been examined. The two proteins are essential for viral translation both in in
vivo and in vitro analysis. Consequently, viral mRNAs do not contain cis-acting signals that could mediate
eIF4A and eIF4G independence and trans-acting viral proteins do not replace their function. Thus, eIF4A and
eIF4G proteins are not responsible for the selective translation of viral mRNAs and the translational shut-off of
cellular protein synthesis observed in influenza virus infected cells.
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Introduction

Due to their limited coding capacity, viruses do not possess the
required components to initiate mRNA translation. Thus, they are
obliged to utilize host cell factors and, therefore, to compete for and
manipulate the translation apparatus to their own benefit. Initiation
of translation is a major target for the regulation of gene expression
(Gray and Wickens, 1998; Pestova et al., 2001) and viruses have
evolved numerous unconventional mechanisms to recruit the cellular
translational machinery to the viral messengers. Translation initiation
of most cellular mRNAs requires an active eIF4F complex and this
requirement has provided viruses with a readily accessible target and
opportunity to block host-cell protein synthesis. Cellular mRNAs
possess a 7-methyl guanine structure (cap) at their 5′ ends, which
plays a critical role in the recruitment of the ribosome to the mRNA.
The cap structure is firstly recognized by eIF4E, the cytosolic cap-
binding protein that allows the subsequent binding of eIF4G and
eIF4A, the other two components of the eIF4F complex. This complex
efficiently recruits the 40S ribosomal subunit by direct interaction of
eIF3 with the eIF4G subunit (for review, see (Gingras et al., 1999))
and, consequently, eIF4F constitutes one of the key factors on the
control of protein synthesis. Accordingly, many viruses have devel-
oped alternative initiation mechanisms that circumvent or decrease
the requirement for this complex. The strategies focused on eIF4F
complex used by the different viruses depend on the nature of the
corresponding viral mRNAs, such aswhether or not they are capped or
uncapped and whether or not their 3′ end are polyadenylated. For
instance, a wide range of picornaviruses encode a protease that
cleaves the eIF4G protein in two, impairing the cap-dependent
translation initiation of cellular mRNAs, whereas cap-independent
initiation of viral mRNAs is preserved via the utilization of internal
ribosome entry sites (IRESs) (see reviews (Bushell and Sarnow, 2002;
Schneider and Mohr, 2003)). Among the strategies used by viruses
whose mRNAs are capped, disruption of the eIF4G–PABP1 interaction
by rotavirus (Piron et al., 1998), displacement of eIF4G–Mnk1
interaction by adenovirus (Schneider and Mohr, 2003; Xi et al.,
2004) or dephosphorylation of eIF4E and 4E-BP1 proteins, which
results in reduced eIF4E–eIF4G association, by vesicular stomatitis
virus (Connor and Lyles, 2002), have been broadly reported and
widely studied.

Influenza virus mRNAs possess a 5′ cap structure and a 3′ polyA
tail. Synthesis of capped and polyadenylated viral mRNAs is
performed by the viral polymerase complex and is primed by short-
capped oligonucleotides of around 10 to 12 nucleotides, which are
scavenged from host cell nuclear mRNAs by viral polymerase
endonuclease activity (Plotch et al., 1981). Following this cell-derived
heterogenous sequence, viral mRNAs contain a common sequence
that many contribute to translational regulation in the infected cell
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(Garfinkel and Katze, 1993). The viral polymerase complex, which is
responsible for both the transcription and replication of the viral
genome, is composed of three subunits named PA, PB1 and PB2. The
PB2 subunit is responsible for the binding to the cap structures (Blaas
et al., 1982), while the endonucleolytic activity required for the cap-
snatching process resides in the PA subunit (Dias et al., 2009).

Although influenza virus mRNAs possess a 5′-cap structure, some
experimental evidences strongly suggest that viral mRNAs are not
translated by the classic cellular cap-dependent mechanism. For
instance, influenza virus infection induces a significant dephosphory-
lation of eIF4E and a moderate phosphorylation of eIF4G (Feigenblum
and Schneider, 1993), which have been associated with an inhibition of
the cellular protein synthesis in different situations (Ling et al., 2005;
Ross et al., 2006; Scheper and Proud, 2002). These alterations of the
components of the eIF4F complex may contribute to the host cell
translational shut-off induced by influenza virus in the infected cell.
Moreover, we have previously shown that influenza infection proceeds
efficiently upon functional impairment of the eIF4E factor (Burgui et al.,
2007). In addition, influenza virus polymerase binds to translation
preinitiation complexes and viral infection increases the binding of
eIF4GI factor to cap-structures upon induced eIF4E–eIF4GI disassocia-
tion (Burgui et al., 2007). All together, the observed eIF4E-independence
for viral mRNAs translation, the cap-binding nature of the polymerase
complex and the ability of the viral polymerase to recruit eIF4G to cap
structures, suggest that the viral polymerase could replace the
functionally of eIF4E during infection. However, the contribution of
the two other components of the eIF4F complex to viral translation
remained unknown. In the present study, we have characterized
whether translation of influenza messengers depends on the two
other components of the eIF4F translation initiation factor, eIF4A and
eIF4G proteins, to entirely characterize the dependence for the eIF4F
complex during translation of influenza virus mRNAs.

Results

Influenza virus translation requires functional eIF4A

The eIF4A protein is a member of the DEAD box family of putative
ATPase/helicases and is the RNA helicase component of the eIF4F
complex. eIF4A is recruited to the 5′-end of mRNA molecules by an
interaction with two independent binding sites located in the middle
and C-terminal regions of eIF4G, which increases the RNA-stimulated
helicase activity of eIF4A (Grifo et al., 1984; Korneeva et al., 2000; Pause
et al., 1994). The relative requirement for eIF4Aof a particularmRNAhas
been proposed to be at least partially determined by the level of RNA
structure present in the 5′-end of themRNA (Svitkin et al., 2001). Since
the 5′-UTR sequences of influenza virusmRNAs contain between 20 and
50 nucleotides and according to secondary structure predictions, are
poorly structured, a low requirement for the activity of the eIF4A
helicase on viral transcription might be expected. To analyze the
contribution of eIF4A on viral protein synthesis, different experimental
approaches were used both in in vitro and in vivo assays.

Effect of hippuristanol on in vitro viral mRNA translation

To start characterizing the requirement for eIF4A on influenzamRNA
translation, in vitro translation experiments were performed using
hippuristanol. Hippuristanol is a sterol isolated from the coral Isis
hippuris and identified via a high throughput screening for general
translation inhibitors. It has been shown to block eIF4A-dependent
translation by inhibiting RNA binding, ATPase, and helicase activities by
the interaction with the C-terminal domain of eIF4A (Bordeleau et al.,
2006).Moreover, hippuristanol appears to be highly selective because it
has no effect on other RNA and DNA helicases tested and does not affect
in vitro RNA splicing reactions (Bordeleau et al., 2006).The translation
efficiencyof viralmRNAs isolated from influenza virus infected cellswas
evaluated in the presence or absence of hippuristanol. A dicistronic cap-
CAT:PTV-IRES-Luciferase RNA, containing the eIF4A-independent por-
cine teschovirus internal ribosome entry site (IRES),and rabbit β-globin
mRNA were used as controls. Rabbit reticulocytes extracts were
incubated or not with increasing concentrations of the inhibitor prior
to the addition of in vitro transcribed cap-CAT-PTV:IRES-Luc RNA, rabbit
β-globinmRNA or purified total RNA from influenza infected cells. Viral
mRNAs extracted from infected cells have been synthesized by the viral
polymerase and therefore, they would contain the described heteroge-
neity of the 5′UTR ends. After 90 min of incubation in the presence of
35S-Met, the synthesizedproteinswere analyzed.As canbeseen in Fig. 1,
hippuristanol treatment resulted in a significant inhibition of cap-
dependent CAT and influenza virus protein translation, while the
synthesis of the IRES-dependent luciferase protein was unaffected. In
addition, inhibition of β-globin mRNA translation was observed with
hippuristanol treatment (Supp. Fig. 1A).

Effect of eIF4A dominant negative mutants in vitro

Next, to further characterize the requirement for eIF4A and confirm
the previous results, in vitro experiments were carried out using
different dominant negative mutants of eIF4A. Three different mutants
were used: DQAD, R362Q and PRRVAA. DQAD has a mutation in the
ATPase Bmotif of eIF4A, which results in inactivation of the ATPase and
helicase activities (Pause et al., 1994). Mutant R362Q in the conserved
362 arginine of the C-terminal region of eIF4A, exhibits drastically
reduced RNA binding and no RNA helicase activity (Pause et al., 1993).
The dominant negative PRRVAA contains amutation in the conserved Ia
region (PTRELA to PRRVAA) and is inactive in ATP hydrolysis and RNA
unwinding activities (Svitkin et al., 2001). The wild type or different
mutants forms of eIF4Awere purified from bacteria as described (Chard
et al., 2006) and added to the reticulocyte lysates at different
concentrations. In vitro transcribed cap-CAT:PTV-IRES-Luc RNA, rabbit
β-globin mRNA or purified total RNA from infected cells were added to
these extracts and the in vitro labeled proteins were analyzed. Addition
of wild type eIF4A did not inhibit protein translation, while the addition
of any of the eIF4A mutants resulted in a dramatic reduction in cap-
dependent CAT and influenza virus proteins synthesis (Fig. 2) or β-
globin mRNA translation (Supp. Fig. 1B) without affecting the IRES-
mediated translation of the luciferase protein (Fig. 2).

Collectively, thesedata indicate that, although the 5′UTRof influenza
messengers are short and should not be highly structured, the helicase
activity of eIF4A is required for in vitro viral mRNAs translation.

Effect of hippuristanol in in vivo experiments

Although isolated viral mRNAs behaved as cellular capped tran-
scripts in the in vitro translation assays, the activity of eIF4A could be
replaced by a viral protein in the infected cell. In order to evaluate this
possibility, we examined the effect of hippuristanol treatment on
influenza virus protein synthesis in vivo. Due to its ability to inhibit cap-
dependent translation, hippuristanol can be cytotoxic when cells are
treated with high concentrations for long periods of time. In order to
control for any indirect effects caused by a decrease in cell viability, the
cytotoxicity of hippuristanol was evaluated. The viability of HEK293T
cells was examined after 10 h exposure to increasing concentrations
(0.03–1 μM) of the inhibitor using Cell Titer-Blue (Fig. 3A). The viability
of the cell cultures was not significantly reduced at the different
concentrations of hippuristanol assayed.

Next we assayed the hippuristanol effect on cellular translation and
eIF4A-independent PTV-IRES activity as control. Thus, HEK293T cells
were treated with hippuristanol for 1 h (0.5 and 1 μM concentration)
and then were left untransfected or transfected with an in vitro
transcribed PTV-IRES-luciferase RNA. 8 h post-transfection, luciferase
activity was measured and compared with the general cellular
translation quantified by 35S-Met incorporation (Fig. 3B). As expected,



Fig. 1. In vitro translation of influenza virus mRNA is inhibited by the eIF4A small molecule inhibitor hippuristanol. Rabbit reticulocyte lysates were pretreated with either DMSO (−)
or the eIF4A inhibitor hippuristanol at final concentrations of 1.25, 2.5, and 5 μM. The proteins synthesized from bicistronic cap-CAT:PTV-IRES-Luc or total RNA extracted from
influenza infected cell 6 hpi were metabolically labeled and examined by SDS gels. The effect of the inhibitor was quantified by35S-Met incorporation and translation efficiency was
expressed as a percentage of the translation in the untreated extracts.
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cellular translation was significantly reduced upon hippuristanol
addition, while PTV-IRES-mediated luciferase expression was slightly
increased in these conditions, indicating that hippuristanol inhibits
eIF4A-dependent translation initiation without affecting the general
translation capacity of the treated cells. These results are in agreement
with previously published data (Bordeleau et al., 2006), and the
enhancement in luciferase expression upon eIF4A inhibition could
reflect a reduction in the competition and an increase in the accessibility
of the PTV-IRES-Luc RNA to the protein synthesis machinery.

To evaluate the effect of hippuristanol on influenza infection,
HEK293T cells were treated with the inhibitor at 1 μM concentration
for 1 h and either mock-infected or infected with influenza virus at
3 pfu/cell. The hippuristanol concentration in the culture medium was
maintained over the duration of experiment. At various times post
infection, the cells were metabolically labeled with 35S-Met for 1 h and
the synthesized proteins were analyzed by SDS-polyacrylamide gels
(Fig. 3C). Both, cellular and viral protein synthesis were severely
reduced by the hippuristanol treatment indicating that, besides the
observed in vitro requirement, eIF4A is also essential for a correct
influenza protein synthesis. Therefore, influenza virus mRNAs transla-
tion occurs following the behavior of a conventional cap-dependent
pathway in respect to the eIF4A helicase activity.

Influenza virus translation requires functional eIF4G

The eIF4Gproteinhas a pivotal rolewithin the eIF4F complex, since it
is a scaffold protein that possesses binding sites for eIF4E, eIF4A, polyA
bindingprotein1 andMnk1 kinase (Fig. 5A). In addition, it directly binds
eIF3, the factor that mediates ribosome recruitment. Thus, eIF4G plays
an essential role by acting as a molecular focal point upon which the
translation initiation complex is assembled, bringing together the
mRNA and ribosome. Co-infection experiments revealed that influenza
virus do not progress in poliovirus infected cells (Garfinkel and Katze,
1992), inwhicheIF4G is cleavedby thepoliovirus2Aprotease.However,
as poliovirus infection results in many intracellular changes, the
previous experiments do not exclude that some of the observations
may be the result of alterations non-directly related with translation
initiation. Thus, to directly analyze the requirements for the different
eIF4F components on influenza translation, the contribution of eIF4G
was evaluated both in in vitro and in vivo.

In vitro requirements for eIF4G factor on influenza virus mRNA translation

The eIF4G factor is structurally divided in an N-terminal domain,
which contains the eIF4E binding site required for cap-dependent
translation, and a C-terminal domain, which mediates the association
with the eIF3 complex and the ribosome recruitment. Several viral
proteases, including the L-protease from foot andmouse disease virus,
cleave eIF4G in two, separating the eIF4E and the eIF3 binding sites,
inhibiting cap-dependent translation and permitting a cap-indepen-
dent translation. To analyze whether translation of viral mRNAs could
take place upon eIF4G cleavage, in vitro experiments were performed.
Rabbit reticulocyte lysates were incubated with increasing amounts of
purified L-protease from foot and mouth disease virus. In vitro
transcribed cap-CAT:EMCV-IRES-Luc RNA, rabbit β-globin mRNA or
RNAs isolated from influenza virus infected HEK293T cells were added
and after metabolic labeling, the synthesized proteins were examined.
As can be seen in Fig. 4A, L-protease efficiently cleaved eIF4GI,
resulting in the separation of the N and C-terminal domains. As
expected, whereas IRES-mediated luciferase synthesis was unaffected
by eIF4G cleavage (Fig. 4B, left panel), cap-dependent translation of
the CAT gene (Fig. 4B, left panel) and β-globin (Supp. Fig. 1C)
decreased as the concentration of L-protease was increased. Similarly,
the translation of influenza virus proteins decreased concomitantly
with the increase in the protease concentration (Fig. 4B, right panel).
Therefore, the translation of influenza virus mRNAs depends on an
intact eIF4G protein, at least in vitro, confirming that cis-acting
sequences resembling an IRES element that would confer indepen-
dence of eIF4Gare not present in its mRNAs.

Specific requirement for eIF4G isoforms on in vivo influenza mRNA
translation

The eIF4G protein is expressed in mammalian cells as two main
isoforms, namely eIF4GI and eIF4GII, which share 46% identity at the
aminoacid level. A schematic representation of bothproteins is depicted
in Fig. 5A. To date, no clear evidence has been found for differential
activities between eIF4GI and eIF4GII, since the two proteins can
functionally complement each other in various translation assays
(Coldwell and Morley, 2006; Prevot et al., 2003). However, some data
support the notion that, although eIF4GI and eIF4GII can be at least in
part functionally interchangeable, there are differences in their response
to several signals that regulate translational, such as the selective
recruitment of eIF4GII to eIF4F complex during megakaryocytic
differentiation (Caron et al., 2004).

It is worth noting that a differential role for eIF4GI and eIF4GII in
influenza virus mRNA translation cannot be inferred from previous
work using co-infection or in vitro experiments, as viral proteases
(including the poliovirus 2A protease) efficiently cleaves both isoforms.
In order to evaluate the role of eIF4G and the specific contribution of



Fig. 2. In vitro translation of influenza virus mRNA is inhibited by eIF4A dominant negative mutants.(A)The sequence of eIF4A is schematically represented indicating the more
relevant conserved regions. The position of the different mutations in the three negative dominants (DQAD, R362Q and PRRVAA) is shown in red. (B)Rabbit reticulocyte lysates were
preincubated with either control buffer or recombinant eIF4A dominant negative mutants (1, 2, 4 μg of protein per reaction) and the effect on control dicistronic cap-CAT:PTV-IRES-
Luc or total RNA extracted from influenza infected cell 6 hpi was assayed. The levels of translation observed were quantified by phosphorimaging and expressed as a percentage of
the untreated control lysate.
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eIF4GI and eIF4GII to viral translation in vivo, we performed RNA
silencing experiments using siRNAs designed to discriminate between
eIF4GI and eIF4GII mRNAs. Cultured A549 cells were transfected with
specific siRNAs for eIF4GI or eIF4GII or with a random siRNA sequence
and the effectiveness of the silencing was evaluated by measuring the
accumulation levels of these proteins in the corresponding silenced cells
(Fig. 5B). Twenty-fourhours after the siRNAs transfection, the cellswere
re-transfected to improve the silencing efficiency and 48 h after from
the last transfection, mock-infection, or infection with influenza virus
was carried out. To discard possible indirect effects on influenza virus
translation derived from variations in the amount/activity of other
factors that could significantly reduce translation initiation efficiency,
infectionwith vesicular stomatitis virus (VSV) was used as control, as it
is able to initiate protein synthesis in the absence of eIF4G (Connor and
Lyles, 2002). The cells were metabolically labeled at different times
post-infection with 35S-Met for 1 h and the synthesized proteins were
analyzed in SDS-polyacrylamide gels. Quantitative analyses of the
translation efficiency of cellular mRNAs after silencing of eIF4G showed
that the siRNA directed against the eIF4GI isoform produced an
inhibition of 40–60%, whereas the silencing of the eIF4GII isoform
inhibited the cellularmRNAs translationbyonly 15–20% (Fig. 5C,Mock).
When translation of influenza virus mRNAs was analyzed, we observed
an inhibition on viral protein translation thatmainly correlatedwith the
observed decrease on cellular translation by each specific siRNA (Fig. 5C,
Flu).It should be mentioned that the particular contribution of eIF4G
isoforms on cellular protein synthesis is not yet well established and
varies according to the mRNA analyzed (Castello et al., 2006). In
agreement with our previous publications (Welnowska et al., 2009),

image of Fig.�2


Fig. 3. The eIF4A inhibitor hippuristanol inhibits influenza virus translation. (A) The viability of HEK293T cellswas examined after 10 h exposure to increasing concentrations (0.03–1 μM)
of hippuristanol using Cell Titer-Blue (Promega). Cell viability is expressed as percentage of the untreated cells. (B) HEK293T cells were treated with hippursitanol for 1 h (0.5 and 1 μM
concentration) and then transfectedwith an in vitro transcribed PTV-IRES-luciferasemRNA. 8 h post-transfection, luciferase activitywasmeasured and comparedwith the general cellular
translation determined by 35S-Met incorporation. Translation efficiency is expressed as a percentage of the untreated control cells. (C) HEK293Tcells were treated with DMSO (−) or
hippuristanol (1 μM)(+) for 1 h and eithermock-infected or infectedwith influenza virus at 3 pfu/cell. The hippuristanol concentration in the culturemediumwasmaintained all over the
experiment. At different hpi, the cells were metabolically labeled with 35S-Met for 1 h and the synthesized proteins were analyzed by SDS-polyacrylamide gels. The cellular and viral
proteins (*) synthesized were quantified by phosphorimaging and translation efficiency was expressed as a percentage of the untreated control lysate.
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VSV protein synthesis was not affected in these conditions (Fig. 5D),
suggesting that silencing specifically inhibited eIF4G-dependent initi-
ationwithout affecting general translation capacity of the silenced cells.

Since a significant reduction on viral mRNAs translation was
observed upon eIF4GI silencing, we asked whether accumulation of
viral proteins, which represents the summative effects on viral protein
synthesis of each translation event, would be more substantially
reduced in these conditions. To examine the accumulation of influenza
virus proteins, the amount of PB2 polymerase subunit was determined
at 6 hpi by Western-blot in control or eIF4G silenced cells (Fig. 6A). In
addition, immunofluorescence analyses were performed in parallel to
evaluate the presence and distribution of PB2 protein (Fig.6B). The
inability of the eIF4GII antibody to detect the native protein did not
allow performing similar analysis with this isoform. The results showed

image of Fig.�3


Fig. 4. In vitro translationof influenzavirusmRNA requires intacteIF4G.Rabbit reticulocyte lysateswerepreincubatedwithorwithout recombinantFMDVLbprotease at afinal concentration
of 1, 5 and25 μg/ml. Samples of treated lysateswere eitherWestern blottedwith anti-eIF4GI (A) or used to translate control dicistronic cap-CAT:EMCV-IRES-Luc or total RNAextracted from
influenza infected cell 6 hpi. (B) The effects on translation were quantified by phosphorimaging and expressed as a percentage of the translation levels observed in non-treated control.
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a decrease of around 10 fold on PB2 accumulation upon eIF4GI silencing
and, accordingly, PB2 was barely detectable by immunofluorescence in
eIF4GI-silenced cells. These data suggest that eIF4GI is an absolute
requirement for efficient influenza virus infection.

Discussion

Undoubtedly, the control of viral proteins synthesis in the host-cell is
a key mechanism that viruses utilize to the benefit of their replication
cycle and, at the same time, to regulate host cell gene expression. As
mentioned, the control of the translation initiation step and, specifically,
of the eIF4F factor is a mechanism widely used by numerous viruses.
Accordingly,we have previously proposed an alternative cap-dependent
mechanism used to initiate influenza virus mRNAs translation based on
the observed normal progression of influenza virus infection during
functional impairment of cap-binding eIF4E factor (Burgui et al., 2007).
In that model, the influenza polymerase, bound to the viral 5′UTR
common sequence, would remain associated to the capped 5′end of the
viral mRNAs, functionally replacing eIF4E and recruiting translation
initiation complexes. The proposed mechanism could also contribute to
the host-cell shut-off observed in the infected cell. However, in addition
to the reported eIF4E independence, other differential requirements
between cellular and viral mRNAs for the other components of the eIF4F
complex could occur, cooperatively resulting in the reported selective
translation of influenza mRNAs in the infected cells.

Dependence of eIF4A helicase

Here, we provide evidence that translation of influenza virusmRNAs
is fully dependent on a functional eIF4A factor both, in in vivo and in vitro
studies. Since potential secondary structures in the 5′ UTR need to be
resolved for landing and scanning of the small ribosomal subunit, the
relative requirements for eIF4A are thought to correlatewith the degree
of RNA structure contained at the 5′ end of the corresponding mRNA
(Svitkin et al., 2001). Interestingly, dependence of eIF4A occurs even
though the 5′ end of influenza virusmRNAs is rather short and probably
not highly structured. These results are in agreement with previous
reports suggesting additional roles for eIF4A, such as its activity
enhancing ribosome binding to unstructured mRNAs (Pestova and
Kolupaeva, 2002). In addition, since the mRNAs in the cytoplasm are
associated with proteins, it has been proposed that the eIF4A helicase
activity could work removing proteins from the 5′ UTR of the RNA–
protein complexes (Jankowsky et al., 2001). Some of the activities
proposed for eIF4A are clearly required for efficient influenza virus
mRNA translation, but the precise role of eIF4A in the process remains
elusive. Moreover, the reported high abundance of eIF4A inmammalian
cells (Hershey, 1994) makes unlikely that competition for this factor
between cellular and viral mRNAs would contribute to the shut-off and
the selective translation of influenza virus mRNAs in the infected cell.

Dependence of eIF4G

A wide variety of animal viruses such as picornaviruses, retroviruses
and calicivirus express proteases that induce the cleavage of eIF4GI or/
andeIF4GII proteinsamongother translation initiation factors (Schneider
and Mohr, 2003). These viruses have provided very valuable tools to
examine the specific roles of these eIF4G isoforms on the viral induced
cellular shut-off and, in addition, to establishing their specific contribu-
tion to viral infection. Several reports revealed that hydrolysis of eIF4GI is
not sufficient to fully inhibit host cell translation (Bonneau and
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Fig. 5. In vivo translation of influenza virus mRNA requires eIF4G. (A) Schematic representation of eIF4GI and eIF4GII. N-terminal domains that mediate interaction with other
proteins are represented in purple, while C-terminal interaction domains are represented in green. (B) A549 cells were transfected with specific silencers for eIF4GI or eIF4GII or with
a random siRNA sequence and western-blot analysis was performed to control the efficiency of eIF4GI and eIF4GII silencing. Silenced cells where then either mock-infected or
infected with influenza virus (C) or vesicular stomatitis virus (D) at 3 pfu/cell. At different hpi, the cells were metabolically labeled with 35S-Met for 1 h and the synthesized proteins
were analyzed by SDS-polyacrylamide gels. The cellular and viral proteins (*) synthesized were quantified by phosphorimaging and translation efficiency was expressed as a
percentage of the untreated control lysate.
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Sonenberg, 1987; Castello et al., 2006; Keiper and Rhoads, 1997). In
addition, degradationof eIF4GII correlateswith the abrogationofhost cell
protein translation in poliovirus and rhinovirus-infected cells, as well as
in apoptotic cells (Gradi et al., 1998; Marissen et al., 2000; Svitkin et al.,
1999). Therefore, it seems that cleavage of both eIF4G isoforms
contribute to the viral-induced cellular shut-off indicating that transla-
tionof cellularmRNAs rely onbotheIF4G factorswithdifferent degrees of
contribution. Accordingly, it has been reported that translation of de novo
synthesized mRNAs is highly dependent on eIF4GI integrity, whereas
ongoing translationmainlydependenton eIF4GII integrity (Castello et al.,
2006).

Influenza virus mRNA translation shows a similar degree of eIF4G
dependence to that observed for host-cell mRNAs in infected A549cells
(Fig. 5). Previous reports have quantified the relative amount of the two
eIF4G isoforms in HeLa cells, and eIF4GI is the most abundant
constituting around the 80% of the total eIF4G in the cell (Svitkin et al.,
1999). With this information, if A549 cells behave similar, it seems
plausible that an important inhibition on viral mRNAs translation takes
place upon eIF4GI knock-down since it would represent a drastic
reduction in the total amount of eIF4G factor. However, both eIF4G
isoforms clearly contribute to efficient translation of influenza virus
mRNAs that seems undistinguishable of the behavior of host-cell
mRNAs.

Concluding remarks

The requirements of influenza virus mRNAs translation for the
eIF4F components have shown that a functional cellular cap-binding
factor eIF4E is dispensable (Burgui et al., 2007), whereas the eIF4A
helicase and the eIF4G protein are absolutely needed (this report).
Influenza virus infection induces an important cellular shut-off where
the inhibition of translation initiation of host-cell mRNAs plays an
important role (Katze et al., 1986). Thus, those alterations relatedwith
the impairment of eIF4E probably represent the most important viral
induced activity in the process, as our data indicate that impairment of
eIF4A or eIF4G would not allow efficient influenza infection.

Materials and methods

Biological materials

The HEK293T and A549 cell lines and the vesicular stomatitis virus
and the influenza virus A/Victoria/3/75 (VIC) strain were used
throughout these studies. L-protease was kindly provided by T. Skern.
Hippuristanolwas kindly provided by J. Pelletier. Rabbitβ-globinmRNA
was acquired from Sigma. Complete protease inhibitors and RNase
(human placenta RNAse inhibitor) inhibitor were acquired from Roche.

Transfection and virus infection

All infections were carried out at a multiplicity of infection of 3 pfu/
cell. Transfection of in vitro synthesized PTV-IRES-Luc mRNA in
HEK293T cells was performed using Lipofectamine 2000 (Invitrogen).
For eIF4G silencing A549cells were transfected twice (0 and 24 h) with
25 nMof control siRNAs (siControl), specific siRNA for eIF4GI (si4GI-31)
[CCCAUACUGGAAGUAGAAGTT] (Coldwell andMorley, 2006) or eIF4GII
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Fig. 6. Effect of eIF4G silencing on viral protein accumulation. A549 cells were transfectedwith specific silencers for eIF4GI or eIF4GII or with a random siRNA sequence and either mock-
infected or infectedwith influenza virus at 3 pfu/cell. At 6 hpi, cells were used to determine the amount of PB2 polymerase subunit byWestern-blot (A) or immunofluorescence (only for
eIF4GI silenced cells) (B).
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(si4GII-2) [CAAAGACCTGGACTTTGAA] (Welnowska et al., 2009) using
Lipofectamine 2000 (Invitrogen) according to the manufacturer's
recommendations.

Western blotting

Western blotting was performed as described previously (Aragón
et al., 2000). The following primary antibodies were used: for
translation initiation factor eIF4GI, a mixture of four rabbit polyclonal
antibodies (1:8000 each) (Aragón et al., 2000); for eIF4GII, a mixture
of two rabbit polyclonal antibodies against the N-terminal and C-
terminal regions (a gift from N. Sonenberg) (1:750 each);for PABP1
protein, a rabbit antiserum raised against GST–PABP1 fusion protein
(1:1000) (Burgui et al., 2003); for eIF4A, a goat polyclonal antibody
(1:200) from Santa Cruz; for eIF4E, a monoclonal antibody from
Transduction Laboratories(1:2.000); and for ß-tubulin, a mouse
monoclonal antibody (1:50,000) from Sigma.

In vitro translation

For in vitro translation reactions, transcription of control capped
dicistronic mRNA was prepared from XhoI linearized pGEM-Cap-CAT:
EMCV-IRES-Luc (which expresses the IRES element of the encepha-
lomyocarditis virus) (Pisarev et al., 2004) or pGEM-Cap-CAT:PTV-
IRES-Luc (which expresses the IRES element of the porcine tescho-
virus) in the eIF4A studies since this last IRES is insensitive to eIF4A
(Chard et al., 2006), using the Megascript transcription system
(Ambion). 7-mGTP cap 0 structure addition was performed using
ScriptCapTM m7G Capping System (Epicentre Biotechnologies) and
mRNAwas poly-adenylated using poly-A polymerase (PAP) following
the supplier recommendations. RNA was purified by lithium chloride
precipitation, resuspended in RNA Storage Buffer (Ambion) and
quantified by spectrophotometry. To obtain influenza virus RNAs for
in vitro translation reactions, cytosolic extracts of infected cells were
obtained 6 hpi. Total RNA was isolated from the extracts using
Ultraspec reagent (Biotecx Laboratories), resuspended in RNA Storage
Buffer and quantified by spectrophotometry.

In vitro translation reactions were performed using the Flexi rabbit
reticulocyte lysate (RRL) system (Promega), using 200 μg/ml of
cytosolic RNA from influenza infected cells, 80 μg/ml of rabbit β-
globin mRNA or 10 μg/ml of control dicistronic RNAs. These
concentrations of RNA were previously determined to give a linear
yield of translated product over the time course of the translation
(90 min). In reactions that required the addition of L-protease, the
wild type or the dominant negative mutant forms of eIF4A or
hippuristanol, the reactions were preincubated with the recombinant
proteins or with the eIF4A inhibitor at 30 °C for 15 min prior to the
addition of RNA. After 90 min, the reactions were terminated by the
addition of SDS-PAGE sample buffer and subsequently resolved on
12.5% SDS-gels.
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In vivo metabolic labeling

For continuous labeling of synthesizing proteins, after 1 h depletion
in methionine free medium, HEK293T and A549 cells were incubated
with medium containing 50 μCi/ml of 35S-Met during 1 h at the
indicated times.

Luciferase determination

Luciferase activity was determined using Luciferase Assay System
(Promega), according to the manufacturer's recommendations.

In vivo hippuristanol assays

First, HEK293T cultured cells, were treated with 30 nM to 1 μM
hippuristanol supplemented medium and after 10 h of treatment, cell
viability was determined using CellTiter-Blue Cell Viability Assay
(Promega). To evaluate hippuristanol effects on PTV-IRES activity,
HEK293T cells were treated with hippursitanol for 1 h (0.5 and 1 μM
concentration) and then transfected with an in vitro transcribed PTV-
IRES-luciferase RNA. 8 h post-transfection, luciferase activity and
general 35S-Met incorporation were determined. To assess hippurista-
nol effect on influenza virus protein synthesis, HEK293T cells were
pretreatedwith hippuristanol (30 nmto1 μM)orMe2SOas a control for
1 h prior to infection. Infections were carried out in the presence of
hippuristanol or Me2SO for 6 h at 37 °C, after which metabolic labeling
was performed.

Immunofluorescence

A549 cells were fixed in 4% paraformaldehyde, permeabilized, and
incubated with the following primary antibodies: rabbit polyclonal
antibodies raised against eIF4GI (Aragón et al., 2000) at 1:500 dilution
and mouse monoclonal antibodies 8 and 28 against PB2 (Bárcena
et al., 1994) at 1:5 dilution. Microscopy was performed with a Zeiss
LSM510 inverted confocal laser-scanning microscope (Bio-Rad/Zeiss)
with 63×/1.4 oil Plan-Apochromat.

Supplementarymaterials related to this article can be found online
at doi:10.1016/j.virol.2011.02.012.
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