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Abstract
In this paper, we analyze some properties of the linear difference operator
A : CT → CT , [Ax](t) = x(t) – V(t)x(t – τ ), and then, by using the coincidence degree
theory of Mawhin, a kind of neutral differential systems with non-constant matrix is
studied. Some new results on the existence of periodicity are obtained. It is worth
noting that V(t) is no longer a constant matrix, which is different from the
corresponding ones of past work.
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1 Introduction
The field of neutral functional equations (in short NFDEs) is making significant break-
throughs in its practice; it is no longer only a specialist’s field. In many practical systems,
models of systems are described by NFDEs in which the models depend on the delays of
state and state derivatives. Practical examples for neutral systems include population ecol-
ogy, heat exchanges, mechanics, and economics; see [–]. In particular, qualitative anal-
ysis such as periodicity and stability of solutions of NFDEs has been studied extensively
by many authors. We refer to [–] for some recent work on the subject of periodicity
and stability of neutral equations.
In the last few years, the stability of neutral systems of various classes with time de-

lays has received an ever-growing interest from many authors. Many sufficient condi-
tions have been proposed to guarantee the asymptotic stability for neutral time delay
systems. We only mention the work of some authors [–]. It is well known that the
existence of periodic solutions of neutral equations and neutral systems is a very ba-
sic and important problem, which plays a role similar to stability. Thus, it is reason-
able to seek conditions under which the resulting periodic neutral system would have
a periodic solution. Much progress has been seen in this direction and many criteria
are established based on different approaches. However, there is no paper for investi-
gating the existence of periodic solutions of neutral system with non-constant matrix.
In addition, to the best of our knowledge, most of the existing results deal with scalar
NFEDs or neutral systems with a constant matrix. For example, in papers [–], based
on Mawhin’s continuation theorem, several types of scalar neutral equations have been
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studied:

d

dt
(
u(t) – ku(t – τ )

)
= f

(
u(t)

)
u′(t) + α(t)g

(
u(t)

)
+

n∑

j=

βj(t)g
(
u
(
t – γj(t)

))
+ p(t),

dN
dt

=N(t)

[

α(t) – β(t)N(t) –
n∑

j=

bj(t)N
(
t – σj(t)

)
–

m∑

i=

ci(t)N ′(t – τi(t)
)
]

,

dN
dt

=N(t)

[

r(t) –
n∑

j=

αj(t) lnN
(
t – σj(t)

)
–

m∑

i=

bi(t)
d
dt

ln
(
t – τi(t)

)
]

,

x′(t) + αx′(t – τ ) = f
(
t,x(t)

)
,

(
u(t) + Bu(t – τ )

)′ = g
(
t,u(t)

)
– g

(
t,u(t – τ)

)
+ p(t).

For a neutral system, we note that Lu and Ge [] studied the following system:

d

dt
(
x(t) –Cx(t – τ̃ )

)
+

d
dt

gradF
(
x(t)

)
+ gradG

(
x
(
t – τ (t)

))
= p(t).

But C is a constant symmetric matrix. The purpose of this paper is to investigate the ex-
istence of periodic solutions to the nonlinear neutral system with non-constant matrix of
the form

d

dt
(
x(t) –C(t)x(t – τ )

)
+

d
dt

gradF
(
x(t)

)
+ gradG

(
x
(
t – γ (t)

))
= p(t), (.)

where x ∈ R
n, C(t) = diag(c(t), c(t), . . . , cn(t)), C(t + T) = C(t); F(x) ∈ C(Rn,R), G(x) ∈

C(Rn,R); p ∈ (R,Rn), p(t + T) = p(t); γ ∈ C(R,R), γ (t + T) = γ (t); T , and τ are given
constants with T > .
Throughout this paper, we use some notation:
() In = {, , . . . ,n}; ∀a = (a,a, . . . ,an)T ∈R

n, |a| = (
∑n

i= |ai|)

 ;

() CT = {x : x ∈ C(R,Rn),x(t + T) = x(t),∀t ∈R} with the norm

|ϕ| = max
t∈[,T]

∣
∣ϕ(t)

∣
∣, ∀ϕ ∈ CT ;

() C
T = {x : x ∈ C(R,Rn),x(t + T) = x(t),∀t ∈R} with the norm

‖ϕ‖ = max
t∈[,T]

{|ϕ|,
∣∣ϕ′∣∣



}
, ∀ϕ ∈ C

T .

Clearly, CT and C
T are Banach spaces.

2 Main lemmas
Lemma . [] If |c(t)| �= , then operator A has a continuous inverse A–

 on CT , satisfy-
ing

()
[
A–
 f

]
(t) =

⎧
⎨

⎩
f (t) +

∑∞
j=

∏j
i= c(t – (i – )τ )f (t – jτ ), c < ,∀f ∈ CT ,

– f (t+τ )
c(t+τ ) –

∑∞
j=

∏j+
i=


c(t+iτ ) f (t + jτ + τ ), σ > ,∀f ∈ CT ,
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()
∫ T



∣∣[A–
 f

]
(t)

∣∣dt ≤
⎧
⎨

⎩


–c

∫ T
 |f (t)|dt, c < ,∀f ∈ CT ,


σ–

∫ T
 |f (t)|dt, σ > ,∀f ∈ CT ,

()
∥∥A–

 f
∥∥
 ≤

⎧
⎨

⎩

|f |
–c

, c < ,∀f ∈ CT ,
|f |
σ– , σ > ,∀f ∈ CT .

Here

c = max
t∈[,T]

∣∣c(t)
∣∣, σ = min

t∈[,T]
∣∣c(t)

∣∣.

Let

A : CT −→ CT , [A](t) = x(t) –V (t)x(t – τ ),

where ∀t ∈ R, V (t) ∈ C
T is a real symmetric matrix.

We will give some properties of A.

Lemma . Suppose that λ(t),λ(t), . . . ,λn(t) are eigenvalues of V (t). Then the operator
A has continuous inverse A– on CT , satisfying

()
∫ T



∣
∣[A–f

]
(t)

∣
∣dt ≤

⎧
⎨

⎩

(
∑n

i=


(–λi,L)
) 

∫ T
 |f (t)|dt, λi,L < ,∀f ∈ CT ,

(
∑n

i=


(–λi,l)
) 

∫ T
 |f (t)|dt, λi,l > ,∀f ∈ CT ,

()
∣∣[A–f

]∣∣
 ≤

⎧
⎨

⎩

(
∑n

i=


(–λi,L)
)  |f |, λi,L < ,∀f ∈ CT ,

(
∑n

i=


(–λi,l)
)  |f |, λi,l > ,∀f ∈ CT ,

where

λi,L = max
t∈[,T]

∣∣λi(t)
∣∣, λi,l = min

t∈[,T]
∣∣λi(t)

∣∣, i ∈ In.

Proof () Since V (t) is a real symmetric matrix, there exists an orthogonal matrix U(t)
such that

U(t)V (t)UT (t) = Eλ(t) = diag
(
λ(t),λ(t), . . . ,λn(t)

)
.

Consider the system

x(t) –V (t)x(t – τ ) = f (t),

where we have equivalence to

y(t) – Eλ(t)y(t – τ ) = f̃ (t), (.)

where f̃ (t) = U(t)f (t), y(t) = U(t)x(t). On the other hand, a component of the vector in
system (.) is

yi(t) – λi(t)yi(t – τ ) = f̃i(t), i ∈ In.
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From Lemma ., we have

yi(t) =

⎧
⎨

⎩
f̃i(t) +

∑∞
j=

∏j
k= λi(t – (k – )τ )̃fi(t – jτ ), λi,L < ,

– f̃i(t+τ )
λi(t+τ ) –

∑∞
j=

∏j+
k=


λi(t+kτ )

f̃i(t + jτ + τ ), λi,l > .
(.)

Thus, A– exists and

A– : CT → CT , A–f (t) = x(t) =UT (t)y(t), t ∈ [,T]. (.)

When λi,L < , by (.) we get

∣
∣yi(t)

∣
∣ ≤ maxt∈[,T] |̃fi(t)|

 – λi,L
, i ∈ Ii,

i.e.,

max
t∈[,T]

∣∣yi(t)
∣∣ ≤ maxt∈[,T] |̃fi(t)|

 – λi,L
, i ∈ Ii.

Thus, by (.) we have

∣∣A–f
∣∣
 = max

t∈[,T]
∣∣UT (t)y(t)

∣∣ = max
t∈[,T]

∣∣y(t)
∣∣ = max

t∈[,T]

( n∑

i=

yi (t)

) 


≤
( n∑

i=

max
t∈[,T]

yi (t)

) 


≤
( n∑

i=

maxt∈[,T] |̃fi(t)|
( – λi,L)

) 


≤
( n∑

i=


( – λi,L)

) 


|̃f | =
( n∑

i=


( – λi,L)

) 


|Uf |

=

( n∑

i=


( – λi,L)

) 


|f |.

Obviously,

∫ T



∣∣A–f (t)
∣∣dt ≤

( n∑

i=


( – λi,L)

) 
 ∫ T



∣∣f (t)
∣∣dt.

() Similar to the above proof, when λi,l > , we get

∣
∣A–f

∣
∣
 ≤

( n∑

i=


( – λi,l)

) 


|f |,

∫ T



∣∣A–f (t)
∣∣dt ≤

( n∑

i=


( – λi,l)

) 
 ∫ T



∣∣f (t)
∣∣dt. �

Let X and Y be two Banach spaces and let L : D(L) ⊂ X → Y be a linear operator, a
Fredholm operator with index zero (meaning that ImL is closed in Y and dim KerL =
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codim ImL < +∞). If L is a Fredholm operator with index zero, then there exist contin-
uous projectors P : X → X, Q : Y → Y such that ImP = KerL, ImL = KerQ = Im(I – Q),
and LD(L)∩KerP : (I – P)X → ImL is invertible. Denote by Kp the inverse of LP .
Let 	 be an open bounded subset of X, a map N : 	 → Y is said to be L-compact in 	

if QN(	) is bounded and the operator Kp(I –Q)N(	) is relatively compact. We first give
the famous Mawhin continuation theorem.

Lemma . [] Suppose that X and Y are two Banach spaces and L : D(L) ⊂ X → Y
is a Fredholm operator with index zero. Furthermore, 	 ⊂ X is an open bounded set and
N : 	 → Y is L-compact on 	. If all the following conditions hold:
() Lx �= λNx, ∀x ∈ ∂	 ∩D(L), ∀λ ∈ (, ),
() Nx /∈ ImL, ∀x ∈ ∂	 ∩ KerL,
() deg{QN ,	 ∩ KerL, } �= ,

then the equation Lx =Nx has a solution on 	 ∩D(L).

3 Main results
Theorem . Suppose that

∫ T
 p(t)dt = , ϕ(t) is a nonzero periodic solution of (.) and

there exists a constant M >  such that

(H) ∀i ∈ In, ∂G
∂xi

is bounded in the set � (or �), where

� =
{
x : x = (x,x, . . . ,xn) ∈R

n,xi ∈ (–∞,M],xj ∈ R, j ∈ In – {i}},
� =

{
x : x = (x,x, . . . ,xn) ∈ R

n,xi ∈ [–M,∞),xj ∈R, j ∈ In – {i}}.

(H) xi ∂G
∂xi

>  (or < ), whenever |xi| >M, i ∈ In.

(H) Suppose thatμ,μ, . . . ,μn are eigenvalues of ∂F(v)
∂x , v ∈R

n, and there exists a constant
λF ≥  such that

max
{|μ|, |μ|, . . . , |μn|

} ≤ λF .

Then system (.) has at least one T-periodic solution, if λ,i < 
 (or σ,i > ), (λ,iTn +

nλ,i
√
n)T + λ,i < , and τ =mT ,m ∈ Z, where

λ,i = max
t∈[,T]

{∣∣ci(t)
∣∣, i ∈ In

}
, λ,i = max

t∈[,T]
{∣∣c′i(t)

∣∣, i ∈ In
}
,

λ,i = max
t∈[,T]

{∣∣c′′i (t)
∣∣, i ∈ In

}
, σ,i = min

t∈[,T]
{∣∣ci(t)

∣∣, i ∈ In
}
.

Proof Define

A : CT → CT , [Ax](t) = x(t) –C(t)x(t – τ ), ∀t ∈R,

N : C
T → CT , (Nx)(t) = –

d
dt

gradF
(
x(t)

)
– gradG

(
x
(
t – γ (t)

))
+ p(t),

L :D(L)⊂ CT → C
T , Lx = (Ax)′′,
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where D(L) = {x : x ∈ C
T ,x′′ ∈ C(R,Rn)}. Then system (.) obeys the operator equation

Lx =Nx. We have (x(t) –C(t)x(t – τ ))′′ = , ∀x ∈ KerL. Then

x(t) –C(t)x(t – τ ) = c̃t + c̃,

where c̃, c̃ ∈ R
n. Since x(t) – C(t)x(t – τ ) ∈ CT , we have c̃ = . Let ϕ(t) ∈ C(R,Rn) be a

nonzero periodic solution of

x(t) –C(t)x(t – τ ) = I, (.)

then |ϕ(t)| >  and
∫ T
 ϕ(t)dt �= , where I is an unit matrix. We get

KerL =
{
aϕ(t) : a ∈ R

}
, ImL =

{
y : y ∈ CT ,

∫ T


y(s)ds = 

}
.

Obviously, ImL is closed inCT and dim KerL = codim ImL = n. So L is a Fredholmoperator
with index zero. Define continuous projectors P, Q:

P : CT → KerL, (Px)(t) =
∫ T
 x(t)ϕ(t)dt
∫ T
 ϕ dt

ϕ(t)

and

Q : CT → CT / ImL, Qy =

T

∫ T


y(s)ds.

Let

LP = L|D(L)∩KerP :D(L)∩ KerP → ImL,

then

L–P = KP : ImL →D(L)∩ KerP.

Since ImL ⊂ CT and D(L)∩ KerP ⊂ C
T , KP is an embedding operator. Hence KP is a com-

pletely continuous operator in ImL. By the definitions ofQ andN , one knows thatQN(	)
is bounded on 	. Hence the nonlinear operator N is L-compact on 	. We complete the
proof by three steps.
Step . Let 	 = {x ∈ D(L)⊂ C

T : Lx = λNx,λ ∈ (, )}. We show that	 is a bounded set.
We have Lx = λNx ∀x ∈ 	, i.e.,

d

dt
(
x(t) –C(t)x(t – τ )

)
+ λ

d
dt

gradF
(
x(t)

)
+ λgradG

(
x
(
t – γ (t)

))
= λp(t). (.)

Integrating both sides of (.) over [,T], we have

∫ T


gradG

(
x
(
t – γ (t)

))
dt = ,

http://www.boundaryvalueproblems.com/content/2014/1/151
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i.e., ∀i ∈ In,

∫ T



∂G(x(t – γ (t)))
∂xi

dt = . (.)

Let ∂G
∂xi

be bounded in � and

xi
∂G
∂xi

> , whenever |xi| >M. (.)

Let

E =
{
t : t ∈ [,T],x

(
t – γ (t)

) ≤ M
}
, E =

{
t : t ∈ [,T],x

(
t – γ (t)

)
>M

}
.

By assumption (H), if xi ≤ M, there exists a constant M >  such that | ∂G
∂xi

| ≤ M. From
(.) and (.), we get

∫

E

∣
∣∣∣
∂G(x(t – γ (t)))

∂xi

∣
∣∣∣dt =

∫

E

∂G(x(t – γ (t)))
∂xi

dt ≤
∫

E

∣
∣∣∣
∂G(x(t – γ (t)))

∂xi

∣
∣∣∣dt ≤ MT .

Thus

∫ T



∣∣
∣∣
∂G(x(t – γ (t)))

∂xi

∣∣
∣∣dt =

∫

E

∣∣
∣∣
∂G(x(t – γ (t)))

∂xi

∣∣
∣∣dt +

∫

E

∣∣
∣∣
∂G(x(t – γ (t)))

∂xi

∣∣
∣∣dt ≤ MT ,

i.e.,

∫ T



∣∣gradG
(
x
(
t – γ (t)

))∣∣dt =
∫ T



[ n∑

i=

(
∂G(x(t – γ (t)))

∂xi

)
] 



dt

≤
∫ T



[ n∑

i=

∣
∣∣∣
∂G(x(t – γ (t)))

∂xi

∣
∣∣∣

]

dt

≤ nMT . (.)

We claim that there exists a point t ∈R such that

∣∣xi(t)
∣∣ ≤ M. (.)

In fact, for ∀t ∈ [,T], we have xi(t – γ (t)) >M, and by (.), we have
∫ T


∂G(x(t–γ (t)))
∂xi

dt > ,
which is a contradiction; see (.). So there must be a point ξ ∈ [,T] such that

xi
(
ξ – λ(ξ )

) ≤ M. (.)

Similar to the above proof, there must be a point η ∈ [,T] such that

xi
(
η – γ (η)

) ≥ –M. (.)

http://www.boundaryvalueproblems.com/content/2014/1/151
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() If xi(ξ – γ (ξ ))≥ –M, by (.) we have

∣
∣xi

(
ξ – λ(ξ )

)∣∣ ≤ M.

Let t = ξ – γ (ξ ). This proves (.).
() If xi(ξ – γ (ξ )) < –M, from (.) and the fact that xi(t) is continuous on R, there is a

point t between ξ – γ (ξ ) and η – γ (η) such that |xi(t)| ≤ M. This also proves (.). Let
t = kπ + t, k ∈ Z, t ∈ [,T]. Then |xi(t)| = |xi(t)| ≤ M. Hence we get

∣
∣xi(t)

∣
∣ = max

t∈[,T]

∣∣
∣∣xi(t) +

∫ t

t
x′
i(s)ds

∣∣
∣∣ ≤ ∣

∣xi(t)
∣
∣ +

∫ T



∣
∣x′

i(s)
∣
∣ds ≤ M +

∫ T



∣
∣x′(s)

∣
∣ds,

|x| ≤ √
n
(
M +

∫ T



∣∣x′(s)
∣∣ds

)
≤ √

n
(
M + T




(∫ T



∣∣x′(s)
∣∣ ds

) 

)
.

Multiplying the two sides of system (.) by xT (t) and integrating them over [,T], com-
bining with τ =mT , by (.) we have

–
∫ T



∣∣x′(t)
∣∣ dt + λ,i

∫ T



∣∣x(t)
∣∣ dt + nλ,i|x|

∫ T



∣∣x′(t)
∣∣dt + λ,i

∫ T



∣∣x′(t)
∣∣ dt

+ λ

∫ T


xT (t)gradG(x

(
t – γ (t)

)
dt – λ

∫ T


xT (t)p(t)dt ≥ ,

i.e.,

( – λ,i)
∫ T



∣∣x′(t)
∣∣ dt ≤ λ,iTn

(
M +

∫ T



∣∣x′(t)
∣∣dt

)

+ nλ,i
√
n
(
M +

∫ T



∣∣x′(t)
∣∣dt

)∫ T



∣∣x′(t)
∣∣dt

+
(|p| + nM

)
T

(
M +

∫ T



∣
∣x′(t)

∣
∣dt

)

= (λ,iTn + nλ,i
√
n)

(∫ T



∣∣x′(t)
∣∣dt

)

+
(
λ,iTnM + nλ,i

√
nM + |p|T + nMT

)∫ T



∣∣x′(t)
∣∣dt

+ λ,iTnM +
(|p| + nM

)
TM

≤ (λ,iTn + nλ,i
√
n)T

∫ T



∣
∣x′(t)

∣
∣ dt

+
(
λ,iTnM + nλ,i

√
nM + |p|T + nMT

)
T




×
(∫ T



∣∣x′(t)
∣∣ dt

) 

+ λ,iTnM +

(|p| + nM
)
TM. (.)

From (.) and (λ,iTn + nλ,i
√
n)T + λ,i < , there is a constantM >  such that

∫ T



∣
∣x′(t)

∣
∣ dt ≤ M. (.)

http://www.boundaryvalueproblems.com/content/2014/1/151
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In view of (.) and (.), we get

|x| ≤ √
n
(
M + T


M




)
:=M. (.)

From Lemma ., (Ax(t))′′ = Ax′′(t) – C′(t)x′(t – τ ) –C′′(t)x(t – τ ) and (.), if λ,i < 
 , we

have

x′′(t) +A–
[
λ
d
dt

gradF
(
x(t)

)
+ λgradG

(
x
(
t – γ (t)

))]

= A–[C′(t)x′(t – τ ) +C′′(t)x(t – τ ) +A–(λp(t)
)]
,

∫ T



∣
∣x′′(t)

∣
∣dt ≤

( n∑

i=


( – λ,i)

) 


(.)

×
(∫ T



∣∣
∣∣
∂F(x(t)

∂x

∣∣
∣∣
∣
∣x′(t)

∣
∣dt +

∫ T



∣
∣gradG

(
x
(
t – γ (t)

))∣∣dt

+ Tλ,i

∫ T



∣∣x′(t)
∣∣dt + Tλ,i|x| + T |p|

)
.

From assumption (H) and (.)-(.), we get

∫ T



∣
∣x′′(t)

∣
∣dt

≤
( n∑

i=


( – λ,i)

) 
 (

λFT

M



 + nMT + Tλ,iT


M



 + Tλ,iM + T |p|

)
.

So there exists a constantM >  such that

∫ T



∣
∣x′′(t)

∣
∣dt ≤ M. (.)

Since x(t) ∈ C
T ,

∫ T
 x′(t)dt = , there is a constant vector α ∈ R

n such that x′(α) = ; then
by (.) we get

∣
∣x′(t)

∣
∣ ≤

∫ T



∣
∣x′′(t)

∣
∣dt ≤ M.

Thus

∣
∣x′∣∣

 ≤ M.

Step . Let 	{x ∈ KerL : QNx = }, we shall prove that 	 is a bounded set. We have
x(t) = aϕ(t), a ∈R ∀x ∈ 	; then

∫ T


gradG

(
aϕ

(
t – γ (t)

))
dt =

∫ T


gradG

(
aϕ(t)

)
dt = . (.)
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When λ,i < 
 , i ∈ In, we have

ϕi(t) = A–() =  +
∞∑

j=

j∏

k=

ci
(
t – (k – )τ

)

≥  –
∞∑

j=

j∏

k=

λ,i =  –
λ,i

 – λ,i

=
 – λ,i

 – λ,i
:= δ > .

Then we have

∣∣ϕ(t)
∣∣ ≥ √

nδ.

Thus

a ≤ M√
nδ

.

Otherwise, if, ∀t ∈ [,T], |aϕ(t)| >M, then from assumption (H), we have

∂G(aϕ(t))
∂xi

>  (or < ), i ∈ In,

which is a contradiction; see (.). When σ,i > , i ∈ In, we have

ϕi(t) = A–() = –


ci(t + τ )
–

∞∑

j=

j∏

k=


ci(t + kτ )

≤ –


λi,l
–

∞∑

j=

j+∏

k=


λ,i

= –


λi,l – 
:= γ < .

Then we have

∣∣ϕ(t)
∣∣ ≥ √

n|γ |.

Thus

a ≤ M√
n|γ | .

Otherwise, if ∀t ∈ [,T], |aϕ(t)| >M, then from assumption (H), we have

∂G(aϕ(t))
∂xi

>  (or < ), i ∈ In,

which is a contradiction; see (.). Hence 	 is a bounded set.
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Step . Let 	 = {x ∈ C
T : |x| < nM + , |x′| < nM + }, then 	 ∪ 	 ⊂ 	, ∀(x,λ) ∈

∂	 × (, ), and from the above proof, Lx �= λNx is satisfied. Obviously, condition () of
Lemma . is also satisfied. Now we prove that condition () of Lemma . is satisfied.
We have |x| = |aϕ|, a ∈ R, ∀x ∈ ∂	 ∩ KerL. There at least exists a i ∈ In such that
|xi | >M. When xi >M, take the homotopy

H(x,μ) = μx + ( –μ)QNx, x ∈ 	 ∩ KerL,μ ∈ [, ].

Then, by using assumption (H), we have H(x,μ) �= . When xi < –M, take the homotopy

H(x,μ) = –μx – ( –μ)QNx, x ∈ 	 ∩ KerL,μ ∈ [, ].

We also have H(x,μ) �= . Then by degree theory,

deg{QN ,	 ∩ KerL, } = deg
{
H(·, ),	 ∩ kerL, 

}

= deg
{
H(·, ),	 ∩ kerL, 

}

= deg{I,	 ∩ kerL, } �= .

Applying Lemma ., we reach the conclusion. �

Remark . When 
 ≤ λ,i <  or σ,i < , there are no existence results for periodic so-

lutions for system (.). We hope that there is interest in doing further research on this
issue.

As an application, we consider the following system:

d

dt
(
x(t) –C(t)x(t – π )

)
+

d
dt

gradF
(
x(t)

)
+ gradG

(
x(t –  cos t)

)
= p(t), (.)

where

x(t) =
(
x(t),x(t)

)T , τ = π , γ (t) =  cos t, C(t) = diag

(
sin t
,

,
cos t
,

)
,

F(x) =

π

(
x + xx + x + x + x + 

)
, G(x) =

√
π

(x + x),

p(t) = (sin t, cos t)T .

Clearly, system (.) is a particular case of system (.). Obviously,

gradG(x) =
√
π

(x,x)T ,
∂F(v)
∂x

=

(

π


π


π


π

)

.

Here assumptions (H)-(H) are all satisfied. In addition,

T = π , λ,i = λ,i = λ,i =


,
, n = ,

(λ,iTn + nλ,i
√
n)T + λ,i ≈ . < .

http://www.boundaryvalueproblems.com/content/2014/1/151
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By using Theorem ., when λ,i < 
 , we know that system (.) has at least one π-

periodic solution.
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