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The Polyakov loop potential serves to distinguish between the confined hadronic and the deconfined
quark–gluon plasma phases of QCD. For N f = 2 + 1 quark flavors with physical masses we determine the
Polyakov loop potential at finite temperature and density and extract the location of the deconfinement
transition. We find a crossover at small values of the chemical potential running into a critical end-point
at μ/T > 1.
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1. Introduction

In recent years much progress has been made in our under-
standing of the phase structure of QCD at finite temperature and
density. This understanding has been achieved with a variety of
methods ranging from first principle lattice and continuum com-
putations to elaborate model studies.

At vanishing density all these methods by now converge quan-
titatively leaving only a few open fundamental questions, e.g. the
order of the phase transitions in different regions of the Columbia
plot. In turn, at finite density, progress has been hampered by sev-
eral intricate problems. On the lattice one has to face the sign
problem which so far has made it impossible to access chemical
potentials with μ/T > 1 [1,2]. First principle continuum computa-
tions with functional methods, such as Dyson–Schwinger equations
(DSE) and functional renormalization group (FRG) equations, are
based on an expansion of the theory in terms of quark–gluon
correlation functions. Hence at finite density they have to cope
with the increasingly complicated ground state structure of QCD
in terms of these correlation functions. Finally, low energy effec-
tive models are usually anchored and benchmarked at the vacuum
and thermal physics at vanishing density. In turn, the more im-
portant the density fluctuations get, the less quantitative are the
results.

Facing these problems, it is apparent that progress in our un-
derstanding of QCD at finite temperature and density is probably
best achieved by a combination of the different methods at hand.
In the present work we push forward the functional continuum
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approach towards the phase diagram of QCD supplemented with
results from lattice QCD. We determine, for the first time, the
Polyakov loop potential at finite temperature and real chemical po-
tential.

2. The phase diagram with functional methods

In the past decade continuum quark and gluon correlations
functions have been computed with the help of functional equa-
tions for the effective action of QCD. These works have been
mostly performed in (background) Landau gauge,

D̄μ Aμ = 0, with D̄μ = ∂μ − ig Āμ, (1)

where Ā is chosen to be the expectation value of the gauge field,
Ā = 〈A〉. Note that correlation functions in ordinary Landau gauge
are directly related to those in background Landau gauge by sim-
ply substituting plain momentum p2 with background covariant
momentum, p2 → −D̄2, for a detailed discussion see [3,4]. In this
approach the Polyakov loop variable

L = 1

Nc
trfund P (�x), with P (�x) = Peig

∫ β
0 dx0 A0(x0,�x), (2)

in the fundamental representation, evaluated at the minimum of
the Polyakov loop effective potential V [A0], is an order parame-
ter for confinement in the heavy quark limit [3,5]. The effective
potential is defined from the effective action Γ , evaluated at con-
stant background fields Aconst

0 and vanishing gauge fields,

V
[

Aconst
0

] := 1
Γ

[
Aconst

0 ;0
]
. (3)
βV

under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by

https://core.ac.uk/display/81210133?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.physletb.2014.03.057
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/j.physletb.2014.03.057
http://creativecommons.org/licenses/by/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2014.03.057&domain=pdf


274 C.S. Fischer et al. / Physics Letters B 732 (2014) 273–277
Fig. 1. DSE for the background gluon one-point function. Large circles indicate
dressed propagators and vertices, and S stands for the classical action, see [4].

Fig. 2. Functional flow for the effective action of QCD. Crosses indicate insertions of
the functional cut-off. The field φ combines quark, ghost and gluon fields.

The minimum of V [A0] singles out the expectation value of the
gauge field in the background Landau gauge, 〈A0〉. The related or-
der parameter satisfies

L
[〈A0〉

]
�

〈
L[A0]

〉
(4)

within an appropriate (re)normalization of 〈L[A0]〉, see [3–6]. This
inequality holds true for both, Yang–Mills theory and fully dynam-
ical QCD. In the presence of a phase transition both sides vanish
at Tc and the inequality (4) is saturated below Tc . In turn, in
the presence of a crossover we expect the crossover temperature
computed from L[〈A0〉] to be lower than the one computed from
〈L[A0]〉.

The effective potential, or its A0-derivative, can be computed
from the functional DSE and FRG equations, see Fig. 1 and Fig. 2,
respectively. For the FRG this has been put forward in Yang–Mills
theory, [3–6], and in QCD at finite temperature and imaginary
chemical potential in [7]. There, the effective potential V [A0] is
computed solely from the scale-dependent propagators. More re-
cently, a similar computation of the Polyakov loop potential has
also been performed in Coulomb gauge, [8,9]. Related lattice com-
putations can be found in [10–13].

In turn, the DSE-formulation has been put forward in [4]. It
is apparent from Fig. 1, that the effective potential V [A0] can be
computed from the DSE once the ghost, gluon and quark propaga-
tors as well as the three-gluon vertex and ghost-gluon vertex are
known. In the present work we utilize the observation in Ref. [4]
that within an optimized renormalization scheme the two-loop
terms in Fig. 1 are sub-leading at temperatures about Tc . This has
been thoroughly tested for Yang–Mills theory within a comparison
of the DSE results from Fig. 1 with the FRG results from Fig. 2. For
temperatures about Tc the results agree quantitatively. The inclu-
sion of the quark-loop in full QCD does not change this picture.
Moreover, we neglect the A0-dependence of the back-reaction of
the Polyakov loop potential to the chromo-electric propagator in
terms of ∂2

A0
V [A0]. While these back-reaction effects may be cru-

cial for the critical scaling of the chromo-electric component of the
gluon propagator close to the phase transition of pure Yang–Mills
theory [4,14], we expect its influence on the QCD transition to be
small. This needs to be verified in future work.

Within this approximation the A0-dependence solely originates
from the shifted Matsubara frequencies p0 + g A0, and hence the
propagator equations can be solved in Landau gauge. The diagrams
in Fig. 1 and Fig. 2 can be diagonalized in color space leaving us
with

p0 + 2π Tϕm, (5)

where ϕm are the eigenvalues of βg A0/(2π), depending on the
representation. For example, for two-color QCD, the constant tem-
poral gauge field can be rotated into the Cartan subalgebra, A0 =
2π Tϕ/gτ 3, with Cartan generator τ 3. We have the eigenvalues

ϕad ∈ {±ϕ,0}, ϕfund ∈
{
±ϕ

2

}
, (6)

in the adjoint and fundamental representation respectively. The
factors 1/2 in ϕfund carry information on the explicit center-
symmetry breaking of the quarks.

In the physical case of SU(3) we restrict ourselves to 2π Tϕ/gτ 3

in the Cartan subalgebra generated by τ 3, τ 8.1 The corresponding
eigenvalues are given by

ϕad ∈
{
±ϕ,±ϕ

2
,±ϕ

2
,0,0

}
, ϕfund ∈

{
±ϕ

2
,0

}
, (7)

for more details see [4,6]. Then, the shifted Matsubara frequencies
p0 + g A0 read after diagonalization,

2π T (n + ϕad), and 2π T

(
n + 1

2
+ ϕfund

)
, (8)

for ghost, gluon in the adjoint representation and the quark in the
fundamental representation respectively. The additive nature of the
loop representation in Fig. 1 and Fig. 2 leads to the simple form

V (ϕ) = V glue(ϕ) + V quark(ϕ). (9)

Here, V glue, contains all contributions from the gluon and ghost
diagrams in the DSE and FRG, see Figs. 1, 2.

In the present approximation, i.e. without the back-reaction of
V [A0] to the chromo-electric gluon (as detailed above), all dia-
grams contributing to V glue involve only traces and contractions in
the adjoint representation, and hence the eigenvalues ϕad in (6),
(7). In turn, the matter contribution, V quark, involves only traces
and contractions in the fundamental representation, and hence the
eigenvalues ϕfund in (6), (7). With (8) this leads to the periodicities

V glue(ϕ + 2) = V glue(ϕ), V quark(ϕ + 2) = V quark(ϕ), (10)

for the physical case of SU(3). For comparison we also quote the
SU(2)-case where we have

V glue(ϕ + 1) = V glue(ϕ), V quark(ϕ + 2) = V quark(ϕ). (11)

We observe that the periodicity of V quark is independent of Nc in
contrast to that of the glue part. The latter dependence reflects
the fact that V glue is center-symmetric and hence invariant under
Z Nc -transformations. For the simple case of Nc = 2 the Cartan is
one-dimensional and a center transformation entails ϕ → 1 − ϕ
with center-symmetric point ϕ = 1/2. Evidently this is not the
symmetry of the quark potential V quark due to its periodicity, see
(11). The Polyakov loop in the fundamental representation in SU(2)

reads

L(ϕ) = cos(πϕ), (12)

and vanishes at the center-symmetric point ϕ = 1/2.
For Nc = 3 (and higher Nc) a center transformation is a rota-

tion in the Cartan. Accordingly, the explicit center-breaking in the
quark potential is only visible for general gauge fields in the Cartan
sub-algebra, i.e., A0 = A3

0τ
3 + A8

0τ
8, which are not considered here.

Interestingly, for SU(3) the quark potential has the same periodic-
ity w.r.t. ϕ as the glue potential in contradistinction to SU(2). This
may be a helpful property for model applications at finite den-
sity, [15–22], and shall be studied elsewhere. The Polyakov loop in
three-color QCD reads

L(ϕ) = 1

3

(
1 + 2 cos(πϕ)

)
, (13)

1 At finite chemical potential, this involves a center average.
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Fig. 3. The DSE for the quark propagator.

Fig. 4. The truncated gluon DSE for N f = 2 + 1 QCD. The first term is the inverse
quenched propagator.

and vanishes at the confining values ϕ = 2/3,4/3 in the funda-
mental period ϕ ∈ {0,2}. This gives us direct access to an or-
der parameter potential for the confinement–deconfinement phase
transition in a DSE-approach to the phase structure of QCD as put
forward in [23,24]. In the following we will exploit this approach
at finite temperature and density thus providing first insights into
the Polyakov loop potential at finite density.

3. DSE for the quark and gluon propagators

In order to determine the N f = 2 + 1 quark and gluon propa-
gators at finite temperature and chemical potential we have solved
their corresponding DSEs given diagrammatically in Figs. 3 and 4.
In the gluon DSE we work with an approximation neglecting un-
quenching effects in the Yang–Mills part of the equation. Conse-
quently this part can be replaced by the inverse quenched propa-
gator denoted by the diagram with the box labelled ‘YM’ in Fig. 4.
This approximation is valid on the few percent level [24]. For
the quenched gluon propagator one may use corresponding lat-
tice results [14,26–28] or input from an FRG calculation within
Yang–Mills theory [4,29]. We have checked that our results for
the potential and the respective critical temperatures are hardly
affected by this choice. This is a direct consequence of the in-
heritance of the above-mentioned renormalization scheme in the
quenched case [4], allowed by the absence of two-loop diagrams
in the matter sector of the DSE. To make contact with the results
of Ref. [24] in the following we use the lattice results of Ref. [26]
as input. The only other unknown quantity in our system of DSEs is
the fully dressed quark–gluon vertex. Since no reliable calculations
of this quantity at finite temperature are available, we resort to the
model ansatz of Refs. [23,24]. There, the vertex is constructed uti-
lizing information from the Slavnov–Taylor identity of the vertex
as well as constraints due to the perturbative RG running of the
vertex. It has been shown in [24] that such an ansatz is sufficient
to deliver results for the chiral condensate at finite temperature
in good agreement with lattice gauge theory [30]. A further jus-
tification of our quark–gluon interaction is given in Fig. 5. In the
thermal medium, the color-diagonal gluon propagator is given by

Dμν(p) = P L
μν(p)

Z L(p)

p2
+ P T

μν(p)
Z T (p)

p2
, (14)

where the dressing functions Z L and Z T represent the parts with
longitudinal and transversal orientation with respect to the heat
bath and the P T ,L

μν are the corresponding projectors. For three dif-
ferent temperatures these dressing functions are plotted in Fig. 5.
The dashed lines are fits to the quenched lattice data of [26]. The
unquenched results (solid lines), predicted in the DSE framework
[24], are compared with very recent unquenched lattice results
Fig. 5. Quenched and unquenched gluon dressing functions Z L (upper plot) and Z T

(lower plot), see (14), compared to gauge-fixed unquenched lattice data from [25].
(For interpretation of colors in this figure, the reader is referred to the web version
of this article.)

from Ref. [25]. We observe large unquenching effects in the lon-
gitudinal part of the propagator and somewhat smaller effects in
the magnetic part. For both dressing functions the prediction from
the functional framework is nicely matched by the lattice data. We
believe these results provide solid justification for the vertex con-
struction and the truncation of the gluon DSE used in our work.

To summarize the approximations made in our approach, we
solve the quark and gluon DSEs in a truncation established in [26].
For the quark–gluon vertex we resort to a model ansatz. For the
gluon we use a combination of lattice data and the fermionic vac-
uum polarization. With the resulting propagators, we solve the
DSE for the background field, Fig. 1. By using an optimized renor-
malization scheme [4], we are able to minimize the corrections
from two-loop terms, which we therefore neglect in our trunca-
tion. Furthermore, the A0-dependence is only taken into account
as a shift in the Matsubara modes, in accordance with the argu-
ments from [4].

4. Results

The DSE for the potential depicted in Fig. 1 is used to compute
∂ϕ V (ϕ). Upon ϕ-integration this yields the Polyakov loop poten-
tial V (ϕ) as a function of temperature and chemical potential. In
Fig. 6 and Fig. 7 we show the dimensionless potential V (ϕ)/pSB

with V (0) = 0 and pSB = 19π2

36 T 4 + 3
2 T 2μ2 + 3

4π2 μ4. The pressure
is hidden in the integration constant [4] and will be discussed else-
where.

We have computed the Polyakov loop potential V (ϕ) in 2 + 1
flavor QCD at the physical pion mass. In Yang–Mills theory, the
confining minimum with vanishing Polyakov loop, L(ϕ) = 0, is
at ϕ = 2/3, see (13). In turn, for ϕ = 0 one has L(ϕ = 0) = 1.
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Fig. 6. Polyakov loop potential defined in (3) for μ = 0.

Fig. 7. Polyakov loop potential for T = 132 MeV.

Fig. 8. Polyakov loop in the μ–T -plane.

Here, in N f = 2 + 1 QCD this situation is approximately realized,
thus reflecting the expected crossover behavior. Still, one clearly
sees the transition from the confining regime at low tempera-
ture/small chemical potential to the deconfined phase at high tem-
perature/large chemical potential. The sharper crossover transition
as a function of chemical potential with fixed T = 132 MeV reflects
the proximity of the critical endpoint.

Fig. 8 shows the Polyakov loop (2) evaluated at the minimum
〈A0〉 of the effective potential V [A0]. For small chemical potential
or densities the deconfinement transition is a smooth crossover.
There is no unique definition of the crossover temperature Tconf.
In the present work we use the inflection point of the Polyakov
loop,

∂T L
[〈A0〉

]∣∣
Tconf

� ∂T L
[〈A0〉

]
, (15)

i.e., the maximum of the thermal derivative. Other definitions in-
clude the inflection point of the expectation value 〈A0〉, and that
of the dual chiral condensate as computed in [24] for 2 + 1 flavors.
In [24] the crossover temperature is computed from the suscepti-
bility and differs slightly from the dual Tconf computed here. Also
the quark masses have been slightly larger than the physical ones;
Fig. 9. Phase diagram for chiral symmetry restoration and deconfinement for N f =
2 + 1. (For interpretation of colors in this figure, the reader is referred to the web
version of this article.)

this has been corrected in the present work. The crossover sharp-
ens with increasing chemical potential and finally turns into a
first order transition at (T∗,μ∗) = (117 MeV,163 MeV). Note that
the critical point (T∗,μ∗) as well as the first order line does not
depend on the definition of the crossover temperature. In Fig. 9
we show Tconf together with the chiral transition temperature Tχ

which is obtained from the inflection point of the light-quark con-
densate. The shaded area shows the width of the deconfinement
crossover defined by 80% of the inflection peak. Interestingly, all
transition temperatures, Tconf and Tχ agree within this width for
the whole phase diagram. Since definitions of Tconf with either
Polyakov loop potential or dressed Polyakov loop are based on dif-
ferent properties of the quark and gluon correlation functions, this
provides a highly non-trivial check of the self-consistency of the
present approximation. Nevertheless, at very large chemical poten-
tial the present scheme may not be sufficient, see Ref. [24] for a
more detailed discussion.

In this work we presented the first results for the Polyakov
loop potential at finite chemical potential in QCD with N f = 2 + 1,
evaluated from a combination of functional and lattice methods.
Our results provide input for model calculations, see e.g. [22]. Al-
though several approximations are involved (as detailed above) we
are confident that we have provided qualitatively reliable results
that may serve as a guide for future evaluations of the potential
with different methods. The minimum of the potential provides an
order parameter that is accessible solely from the propagators of
QCD, and yields a deconfinement temperature that is, consistently
with that of the dressed Polyakov loop, in vicinity of the chiral
transition.
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