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a  b  s  t  r  a  c  t

This  paper  uses  statistical  and mathematical  models  to  examine  the potential  impact  of  within-farm
transmission  dynamics  on the  spread  of  the  2001  foot  and  mouth  disease  (FMD)  outbreak  in  Great  Britain.
We  partly  parameterize  a simple  within  farm  transmission  model  using  data  from  experimental  studies
of  FMD  pathogenesis,  embed  this  model  within  an  existing  between-farm  transmission  model,  and  then
estimate  unknown  parameters  (such  as  the  species-specific  within-farm  reproduction  number)  from
the  2001  epidemic  case  data  using  Markov  Chain  Monte-Carlo  (MCMC)  methods.  If  the  probability  of
detecting  an  infected  premises  depends  on  farm  size  and  species  mix then  the  within-farm  species  specific
basic  reproduction  ratios for baseline  models  are  estimated  to be 21  (16,  25)  and  14  (10,  19)  for  cattle
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and  sheep,  respectively.  Alternatively,  if detection  is  independent  of  farm  size,  then  the  corresponding
estimates  are  49  (41,  61)  and  10 (1.4,  21).  Both  model  variants  predict  that  the  average  fraction  of total
farm  infectiousness  accumulated  prior  to  detection  of infection  on  an  IP  is  about  30–50%  in  cattle  or
mixed  farms.  The  corresponding  estimate  for sheep  farms  depended  more  on  the  detection  model,  being
65–80%  if detection  was  linked  to  the  farms’  characteristics,  but  only  25%  if not.  We  highlighted  evidence
which  reinforces  the  role  of within-farm  dynamics  in  contributing  to the long  tail  of  the 2001  epidemic.

© 2012  Elsevier  B.V.  
ntroduction

The economic cost of the UK’s epidemic of foot-and-mouth
isease (FMD) in 2001 was directly reflected in export bans, con-
rol measures and compensation; and also indirectly by reduced
evenue from tourist and other activities in the affected areas
Anderson, 2002). The epidemic was also one of the first where
he real-time analyses of mathematical epidemiologists played
n important role in making predictions, identifying risk factors,
ssessing the likely impact of control measures and ultimately
nforming policy decisions (Ferguson et al., 2001a,b; Keeling, 2001).
he work done at the time has been much reviewed since (Haydon
t al., 2004; Kao, 2002, 2003; Keeling, 2005; Kitching et al., 2006,
007; Woolhouse, 2004), with various refinements and retrospec-
ive analyses continuing to be published (Keeling et al., 2003) and

ore recently (Chis Ster and Ferguson, 2007; Schley et al., 2009a,b;

ildesley et al., 2009).

The  availability of relatively high quality epidemiological data
rom the 2001 epidemic coupled with detailed data on the
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demography of the UK livestock population mean that the 2001
epidemic provides a good testing-ground for novel statistical meth-
ods to analyse the spread of acute infections where spatial location
plays an important role. Some of these studies (Chis Ster et al.,
2009; Jewell et al., 2009) estimated the number of unobserved
infections; the number of infected farms culled as part of the con-
trol process before their infection had been detected. Modelling
approaches have addressed the impact of differently implemented
control policies, such as culling of contiguous premises (CP culling)
and vaccination using spatially explicit microsimulation models
(Keeling et al., 2003; Kao, 2003; Tildesley et al., 2007; Parham et al.,
2008; Tildesley et al., 2009).

A range of heterogeneities affecting the transmission dynamics
of FMD  have been explored in recent statistical models, including:
assortative contacts between farms of different types (Chis Ster and
Ferguson, 2007), different susceptibility and infectivity for differ-
ent species and size-dependent infectiousness of farms (large farms
being more infectious than small ones – Ferguson et al., 2001b).
Nevertheless, one of the key criticisms of much of the modelling
work to date is that transmission dynamics within farms have
been oversimplified (Haydon et al., 2004; Kitching et al., 2005);

Open access under CC BY-NC-ND license.
most existing models treat the farm (rather than the animal) as
the fundamental epidemiological unit. In addition, the epidemi-
ological characteristics of farms have often been assumed to be
simple: e.g. a fixed latent period after infection, then constant
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nfectiousness until culling (Ferguson et al., 2001a,b; Keeling, 2001;
his Ster and Ferguson, 2007). The counter-argument is that the
arm is the appropriate scale for most models, since control is
pplied at the farm-level and there is not much data with which
o parameterize more detailed models incorporating within-farm
ynamics.

As FMD  infects more animals on an infected premise, then the
nfectiousness of that farm to other farms will change. How infec-
iousness varies through time and how that temporal evolution
epends on the number and type of the animals on the farm will be

mportant in predicting the effectiveness of different control mea-
ures. For example, the timescale over which the infectiousness
rofile of a farm peaks relative to the average infection-to-cull delay
or an IP determines what proportion of onward transmission one
ould expect to block by culling IPs alone. Our past work exam-

ned the impact of such temporal changes in a simpler parametric
ramework (Chis Ster et al., 2009). The infectiousness profile was

odelled in a separable manner: a time-varying component iden-
ical for all farms scaled by a nonlinear term which was  a function
f herd size/species at a farm (in the subsequent text, the term
erd refers to the total number of animals of the same species at

 farm and is most relevant to mixed farms). This sort of aver-
ge infectiousness profile has been estimated to peak at around
–4 days post infection, though the effect of infection control mea-
ures imposed on diagnosed farms was implicitly included in this
stimate (Chis Ster et al., 2009). A goal of modelling within-farm
ynamics should therefore be to use a simple mechanistic model
f transmission on a farm to derive that farm’s infectiousness over
ime, together with the probability of detection of infection on the
arm; both quantities will be dependent on numbers and types of
nimals present on the farm.

One of the reasons models of within-farm dynamics have been
ittle explored is the lack of data on farm-level transmission to
irectly validate them. There are patchy data from serology, lesion
ating and estimated proportions of affected animals from the 2001
pidemic in the UK, nevertheless this is not of sufficient quantity
r quality to extract robust conclusions. Previous attempts at mod-
lling FMD  at the within-farm level (Carpenter et al., 2004; Thornley
nd France, 2009) have been essentially exploratory scenario anal-
sis due to the absence of data to estimate relevant parameters.

Realistic transmission experiments are difficult owing to the
eed and cost for high levels of bio-security. Even with results

rom farm-scale experiments to help characterize the within farm
pidemic, there would remain two crucial farm level uncertain-
ies which bear heavily on how within-farm dynamics influence
he between-farm epidemic. The first is the level of seeding: on
verage, how many animals of each species are initially infected
hen a farm becomes infected and subsequently infectious? In try-

ng to estimate the within-farm species-specific basic reproduction
atio, some prior estimate of seeding (i.e. initial conditions for the
ithin-farm epidemic) is needed. Secondly, to link within-farm and

etween-farm dynamics, we require some understanding of the
elationship between the extent of infection on a farm and the prob-
bility that infection will be detected by the farmer and reported to
eterinary authorities. For instance, is the probability of detection

 function of the absolute number of animals of a specific species
ith clinical signs (irrespective of farm size), or of the proportion

f animals with signs?
In  this paper we develop a range of mathematical models

f between and within-farm transmission and fit them to the
001 FMD  epidemic data using modern statistical techniques. This
oherently relates the epidemic dynamics on three different epi-

emiological scales: the individual animal (within-host dynamics),
he individual farm (within-farm dynamics), and the population
f farms (between-farm dynamics). The data from animal infec-
ion experiments (Alexandersen et al., 2002, 2003c) involving the
s 4 (2012) 158–169 159

UK 2001 strain of FMD  virus (FMDV), are used to parameterize
the infectious profile of individual animals as a function of time
since infection. In addition, our work is consistent with a recent
experimental study which examined the relationship between clin-
ical signs and infectiousness in cattle (Charleston et al., 2011). A
within-farm transmission model allows us to generate the infec-
tious profile of each farm from that of the individual animals on
the farm. The aim of the paper then is to assess how much can be
learn about the within-farm epidemiology of FMD  from the 2001
between-farm epidemic data.

Finally, we  use data from the between-farm epidemic in Cum-
bria in 2001 to try and make inferences about the unknown aspects
of within-farm dynamics (seeding, detection), and assess the impli-
cations of within-farm dynamics for the epidemic as a whole.

The  Bayesian inferential framework we use here is broadly sim-
ilar to that used in our previous work (Chis Ster et al., 2009). We
apply this to data from the UK 2001 FMD  epidemic in Cumbria
recorded after the national movement ban (NMB) and ignore the
small number of pig farms affected (3% of all UK farms and less than
1% of all UK IPs, Chis Ster and Ferguson, 2007).

The 2001 epidemic in Cumbria (comprising 39% of all IPs) was
of particular epidemiological interest partly because Cumbria was
the most intensely affected area in the UK  2001 epidemic and
partly due to the role of (farms’) land fragmentation in enhancing
transmission. The analysis carried out at the time of the epi-
demic suggested that higher levels of terrestrial fragmentation in
Cumbria may  have exacerbated the epidemic there, possibly as a
result of greater movement of people and vehicles between parcels
(Ferguson et al., 2001a,b). Our focus on Cumbria is also pragmatic
in order to reduce the computing requirements for undertaking
inference bearing in mind the relative complexity of a model
that includes both within-farm and between farm transmission
dynamics.

Methods

Here we  describe the models we use to fit the 2001 Cumbria
epidemic data. These build on past work (Ferguson, 2001; Keeling,
2001) and more recently (Chis Ster and Ferguson, 2007; Chis Ster
et al., 2009; Diggle, 2006), and fall into three categories: between
farm models (BFM), within-farm models (WFM), and hybrid farm
model (HFM). For the BFM the study unit is the farm, as in our pre-
vious work. The other two classes of models each include the two
main additional features intended to capture details of disease pro-
gression on a farm: a farm infectiousness profile that results from
disease dynamics within the farm, and a probability of detection
depending on farm size and species related to interventions and
control policies. The WFM  treats both of these as explicitly depend-
ing on the number of infected animals on a farm, whereas the HFM
models the within-farm epidemic infectiousness mechanistically,
but assume the probability of detection identically for all farms.
We condition our analyses on the state of the epidemic on 23rd
February as in earlier work (Chis Ster and Ferguson, 2007; Chis Ster
et al., 2009; Diggle, 2006).

Description of the data

Our  data consist of 6782 non-empty farms in Cumbria, exclud-
ing pig-only farms. There were 890 (13%) designated IPs (881 with
infection date recorded to be after 23rd February); 2738 (40%)

culled as part of control policy and the remaining 3154 (47%)
escaped infection. Details on Cumbria representativeness for the
whole UK epidemic are given in the Supplementary Information
(SI).
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he within farm model (WFM)

This  subsection details the key developments made in the cur-
ent study over our previous work, i.e. the mathematical model of
isease transmission dynamics within a farm. As data are avail-
ble on daily basis, we use a discrete time model (the continuous
ime version of the model is given in the SI). Unknown parameters
re estimated by embedding this model within the between-farm
odel published previously (Chis Ster et al., 2009), or made the

ubject of sensitivity analysis.
Let S(t) represent the number of susceptible animals on a single-

pecies farm at time t (days since the infection at farm has started),
nd n(t, j) be the number of infected animals on a farm at time t
ho were infected time j before t. The relative infectiousness of an

nimal of infection age j follows an infectiousness profile, denoted
y �(j). Therefore, the total infectious load of a farm at time t, P(t)

s given by:

(t)  =
t∑

j=0

ϕ(j)n(t, j) (1)

e  assume animals seeding infection of a farm on day t = 0 have
nfectious age 0, so:

n(0,0)  = I0 and n(0, j) = 0, j > 0.
The infection process is modelled thus:

S(0)  = N − I0

S(t) = S(t − 1) × max  (1 −  ̌ P(t)/N, 0), t > 0

n(t, j) = n(t − 1, j − 1), t > 0 and j > 0

n(t,  0) = S(t) − S(t − 1), t > 0

(2)

Here,   ̌ is the within-farm transmission coefficient.
If the infectious profile �( ) is normalized to unity then the

ithin-farm reproduction number is simply given by R0 = ˇ.
A  number of experiments are valuable for parameterising this

odel because they supply data on animals’ viral shedding through
ime-since-infection. In particular, they provide these data for
naturally’ infected animals; animals infected by inoculation have
ignificantly accelerated disease progression (Alexandersen et al.,
003a). Cattle were infected with the same strain of FMD  virus
FMDV) that caused the 2001 UK epidemic (FMDV O UKG 2001) by
eing placed in contact with animals which had been inoculated
ith this virus. It was found that in animals infected by contact,

emperature, viraemia, virus in the breath, and virus in nasal and
ral swabs all reached their peak levels simultaneously around 5
ays after infection. Similarly, there are reports that the levels of
irus in nasal and rectal swabs from sheep infected by contact
ith the UK 2001 strain of FMDV peak 4–5 days after infection

Alexandersen et al., 2003c). These assumptions are in agreement
ith recent experimentally derived estimates of the latent, incu-

ation and infectious periods of 4.6 (3.1, 7.2), 4.1 (2.9, 5.9) and 1.7
0.3, 4.8) days, respectively (Charleston et al., 2011).

Accordingly, we take the infectious profiles for individual ani-
als to be a one-parameter functional form which rises from zero to

 peak before decaying exponentially, i.e. mathematically described
elow.

(j) = �2j exp(−�j) (3)

We  consider and discuss two parameter scenarios: the peak
ime scale chosen as �−1 = 4 days for cattle and �−1 = 5 days for
heep and another situation in which they are chosen to be slightly
horter, i.e. �−1 = 3 days for cattle and �−1 = 4 days for sheep (this

s referred to in as timescale 1 or 2 and denoted by TS1 and TS2
espectively). The resulting profiles for scenario TS1 are shown in
ig. 1a. We  discuss the effect of these two scenarios on the resulting
ithin farm dynamics in the subsequent sections.
s 4 (2012) 158–169

The description of within-farm epidemics for mixed farms is a
simple extension of Eq. (2) for the single species farm infectivity
profile. The total infectious weight of a mixed farm is:

F(t)  = RIPc(t) + Ps(t) (4)

where  RI measures the infectiousness of cattle relative to sheep.
If we allow for assortative mixing between species on a farm
(parameterized by ˇ), the infectiousness of a farm, F, becomes
species-specific:[

Fc(t)

Fs(t)

]
=

[
1 �

� 1

][
Pc(t)

Ps(t)

]
(5)

Assortative  mixing allows the two  species to differentially infect
each other on a farm. Homogeneous (random) mixing corresponds
to � = 1. The data provided limited information on the value of �
within-farms, as reflected by very poor MCMC  convergence when
we attempted to estimate this parameter (to be contrasted with
previous work which was  able to estimate assortativity of mixing
in between farm transmission, Chis Ster and Ferguson, 2007). We
therefore performed a sensitivity analyses for three different values
of, i.e. � = 0.3, � = 0.6 and � = 1. We  focus on the results for  ̌ = 1
but discuss how greater assortativity of mixing affect the within
farm species-specific estimates.

Two  key aspects of within-farm dynamics are the process of
seeding of infection on a farm and how infection is detected on
a farm; both directly affect estimates of within-farm R0 values.
We considered two  model variants for seeding: one where a cer-
tain proportion of the animals on a farm are initially infected; and
one where a certain number of the animals on a farm are initially
infected.

Since the within-farm model includes time-since-infection,
there  is also a question of how long these initial seed animals have
been infected when they first contact other animals on the farm.
The most natural choice is that seed animals are infected exactly
when the farm is estimated to have been infected, corresponding
to infection by contact rather than import (given we model trans-
mission which occurred after the national movement ban of 23rd
February). However, we carried out a sensitivity analysis to this
assumption, by examining the effect on farm and overall dynam-
ics of assuming seed animals were infected 1–2 days before the
within-farm dynamics starts.

The unknown infection times, and the possibility of hidden
infections amongst proactively culled farms, necessitate modelling
the time between infection and detection on a farm. We  define the
cumulative infectiousness by day t post infection for each species
(with x = c, s standing for cattle and sheep respectively) as:

Yx(t) =
t∑

j=0

Px(j) (6)

This  can be interpreted as a rough proxy for the species-specific
contribution to the total history of disease symptoms on a farm,
under the assumption that infectiousness is correlated with the
development of signs. The hazard that a farm is detected on day
t since its infection is assumed to increase sub-linearly with Yx(t),
and scales with the proportion rather than the absolute number of
infected animals on a farm; i.e. it increases nearly linearly for a small
proportion of infected animals and saturates when the infection
prevalence is large. We  define a detection threshold parameter, ˛x,
to quantify when saturation of the detection hazard occurs. The
hazard for surviving detection on day t is given for mixed farms

(and single species farm accordingly) by

h(t) = 1 − exp
(

−
(

Yc(t)
˛cNc

+ Ys(t)
˛sNs

))
(7)
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ig. 1. (a) Individual animal infectiousness profile by species; TS1 profile shown. 

robability of surviving detection as a function of time since farm infection as predi
TS1  and 0 days as initial seed animals’ offsets).

Here we denote the number of animals of a given species x by Nx.
e also explored models where the time of detection depended on

he absolute number of infected animals on a farm (independent of
 farm’s size), but these models fitted the 2001 epidemic data sub-
tantially less well than models assuming detection depended on
er-capita prevalence (results not shown). Details on the discrete-
ime version of these models are given in SI.

If exp(−H(j)) denotes the probability of surviving detection
unction until day j (H is the cumulative hazard from Eq. (7)) for

 farm of type x and K is the maximum duration of a farm epidemic
K = 40 days is an appropriate approximation), we  now define the
verage proportion of infectiousness accumulated by a farm prior
o its detection adapted from Fraser et al. (2004). That is

x =
∑K

j=0Px(j) exp(−Hx(j))

Yx(K)
(8)

or  a single species farm x (with the appropriate generalisation
sing Eq. (4) for a mixed farm). We  average this quantity (8) across
ll designated farm cases of same type, i.e.

x =
∑

no farmsqx

no farms
(9)

nd  this defines the average fraction of infectiousness accumulated
y a farm of that type before being reported. In the absence of
ny control measures, this would correspond to the proportion of
nward infection to other farms caused by an index farm prior to
etection of infection on that index farm.

Farm susceptibility is included as analysis of the 2001 outbreak
ata has revealed that not only were cattle farms more suscep-
ible than sheep farms, but also that mixed farms could be more
usceptible than single species farms (Ferguson et al., 2001a,b).
e allow farm susceptibility to saturate with respect to farm size.
arameters Dc, Ds control the farm susceptibility saturation level.
usceptibility in mixed farms is set to be greater than that of single
pecies farms, and this is captured by an additional multiplicative
erage farm-level infectious profiles across IPs by species on farm. (c) The average
y WFM,  HFM and BFM model variants. The estimates used are presented in Table 1

parameter denoted by RSus. The susceptibility of a farm of type x,
Sx, is then defined as:

Sx = Nx

Nx + Dx
, x = c, s

Smix = Rsus

(
Nc

Nc + Dc
+ Ns

Ns + Ds

) (10)

Note that this functional form assumes sub-linear scaling of the
susceptibility of a farm with the number of animals on the farm,
consistent with the results of our previous work (Chis Ster et al.,
2009).

The other components of the force of infection for this model
variant are similar to those used in past work. All models treat the
spatial component of the force of infection similarly to that study
(Chis Ster et al., 2009), i.e. using a power law kernel function k(d)
of distance between farms d. This reflects the fact that contacts
between farms are confined locally, and depend on the distance
between farms, denoted by dij. The hazard at time t imposed on
the susceptible farm i by the infectious farm j infected �j days ago
depends on the infectiousness of farm j as given by the within-farm
model, thus:

�ij(t) = k(dij)ˇ0Si
farm type(RIPc,j,�j

(t) + Ps,j,�j
(t)) (11)

The hybrid farm model (HFM)

This  model variant uses the within-farm model described above
to describe the time evolution of infectiousness on a farm, but uses a
simple (discretised) gamma  distribution to describe the time delay
from infection to report on a farm, independent of farm size and
type:
� (t; shape, scale) = tshape−1 exp(−t/scale)

scaleshape� (shape)

We estimate the parameters of this distribution.
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he between farm model (BFM)

The unit of this model is the farm and the model structure fol-
ows that used in our previous work carried on these data, with
arms classified as one of the three states: reported as case and
onsequently culled, infected but not reported (hidden infections)
nd survived infection. The mathematical formulation is briefly
eviewed in the SI and presented in detail in our past work (Chis
ter et al., 2009).

odel  fitting and model comparison

Reversible jump MCMC  methods have been previously applied
n similar situations when the dimension of the parameter space is

 parameter itself (Gibson and Renshaw, 1998; O’Neill and Roberts,
999; O’Neill, 2002). Details on the parameters’ updating and infec-
ion times imputation are given in the SI.

Model choice/comparison for the type of models considered
ere is challenging because of missing data, the dimensionality
f which is estimated. The WFM  and HFM model variants predict
ifferent, variable numbers of hidden infections (each of which
ounts as a model parameter) and methods for model choice in
his context are beyond the scope of this paper. While not attempt-
ng formal model selection, we present some indications of model
t to illustrate that inclusion of within-farm dynamics results in a
omparable fit to the data. In particular, we calculate the Deviance
nformation Criterion (DIC) statistic as developed in Celeux et al.
2006), Gelman et al. (2000). More detail is given in the SI. We
lso present results on how well different models reproduce the
bserved epidemic time-series. For all 3 model variants (pure BFM,
FM  and HFM), we estimated the daily incidence by farm type

sing the daily cumulative force of infection in the same manner as
n Chis Ster et al. (2009), i.e. one-step ahead prediction of incidence
t time t + 1 conditioned on observed cases up to time t, averaging
cross a set of equilibrated MCMC  parameter chains.

esults

FM parameter estimates

The  estimates resulting from fitting the BFM model to the 2001
MD epidemic restricted to Cumbria and conditioned on 23rd
ebruary are comparable to those obtained by fitting to the whole
K data (Chis Ster et al., 2009). Sheep-only farms are the least

usceptible, large mixed farms (i.e. those whose size-dependent
usceptibility has saturated) are estimated to be 3.17 (2.7, 3.7)
imes more susceptible than large single species farms, and the
resence of cattle increases a farm’s susceptibility with herd size
ore sharply than sheep (SI). Cattle are more infectious than sheep

Table 1) and farm infectiousness profile displays a similar peak
round 3.3 (2.8, 3.7) days – regardless its species components and
ize (Fig. 1b). The mean delay from infection to report is estimated
t 8.5 (8.4, 8.6) days, a value close to that estimated when fitting the
odel to the whole UK data. The baseline infectiousness parameter

4976 (3045, 6663)) has a similar scale to the corresponding UK esti-
ate (Chis Ster et al., 2009). Although less convincing than for the

t to the whole UK dataset, we also found some degree of support
or an increase in overall transmission before the epidemic peak
nd in the tail (Table 1), i.e. the estimate of the relevant parameter

as 0.95 (0.83, 1.16) – with about 30% probability that its value is

reater than 1. The spatial kernel decays more rapidly with distance
han that estimated for the whole country, perhaps unsurprisingly
ince we restricted our analysis to Cumbria.
s 4 (2012) 158–169

WFM  parameter estimates

We  refer to species-specific reproduction numbers (R0), seed-
ing and detection threshold as within-farm parameters, and the
baseline, susceptibility, herd infectivity ratio and spatial kernel
parameters as between-farm parameters. Between-farm param-
eters are robustly estimated, with values fairly similar to those
obtained fitting the BFM. Table 1 presents model results for the
within-farm model variants which assume an initial proportion of
animals on a farm are infected, while Supplementary Information
(SI) presents comparable estimates for model variants assuming a
fixed number of animals are initially infected.

The farm-level property that influences between-farm trans-
mission the most is farm infectiousness through time. High R0
values and low initial proportions of animals infected can gener-
ate similar farm-level infectious profiles as lower R0 values and
higher initial proportions infected, meaning, estimates of R0 and
seeding parameters are negatively correlated (see Fig. 8 in SI). With-
out any constraints on the seeding parameters, the model estimated
unfeasibly low levels of seeding of infection (whether proportions
or numbers of animals) and very large R0 values. We  therefore
imposed the biologically realistic constraint that initial seeding of
infection on a farm had to involve at least one animal for each
species on that farm, and, when assuming fixed numbers of ani-
mals were initially infected (see SI), we  assume that initial numbers
infected in each species are proportional to the relative (farm-level)
susceptibilities of the two  species. When assuming a fixed propor-
tion of animals on each farm are initially infected, we  examined
imposing lower bounds on the proportion infected of 2%, 5% and
10% independently for cattle and sheep (again subject to the addi-
tional constraint that at least 1 whole animal needed to be infected),
giving 9 model variants.

The  R0 values then estimated are strongly determined by
assumptions about seeding of infection on farms (see SI). Estimates
of the proportion of sheep initially infected are rather close to their
imposed lower bounds, though estimates of the initial proportion
of cattle infected are less strongly influenced by the choice of lower
bounds (see SI). As other parameters values for these model vari-
ants do not differ substantially, in the main text we present the
results for 5% seeding lower bounds for both cattle and sheep. The
initial proportion in cattle is estimated to about 11%, and that in
sheep hits its lower bound of 5%.

The infectiousness profiles averaged across farms of different
types are displayed in Fig. 1b. The detection threshold parameter
estimates are relatively independent of the constraints imposed
above. According to (7), mixed farms are detected most quickly
and the values we  obtained (i.e. 11.6 (9, 13) and 28 (19, 34)) for
cattle and sheep respectively mean that they are followed by cattle-
only farms, with sheep-only farms taking longest to be detected.
This is epidemiologically plausible as infected cattle are the first to
display clinical signs; mixed farms hold a considerable number of
cattle (Fig. 2 in SI). The predicted detection survival curves for these
parameters, averaged across Cumbrian IPs are shown in Fig. 1c.

We assess the sensitivity of estimates to the timescale for infec-
tiousness to peak in an individual animal, and how long animals
that seed infection in a farm have been infected for at the time of
their introduction to the farm. As expected, assuming both faster
within-animal shedding profiles (variant TS2) and that the initially
infected animals on a farm were infected before the time of infec-
tion of the farm as a whole leads to faster peaking of the farm
infectiousness profile (Fig. 2). However, the effect is not large, and
survivorship profiles are even less affected. However, when animal-

level infectiousness peaks earlier the estimated values for R0 are
generally smaller (Table 1 and SI). The effect of different minimum
bounds imposed for initial seeding proportions on species R0 are
given in Table 2.
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Table 1
Parameter estimates (mean and 95% credible intervals) for model variants estimating initial proportions of animals infected with 5% as lower limits for each species. TS1 and TS2 represent the two  scenarios explored (see main
text)  for the timescales of development of infectiousness in individual animals. ‘Offset’ represents how long (in days) animals seeding infection on a farm had been infected before they were introduced to the farm. Q (not an
independent  parameter) is the average fraction of infectiousness accumulated by an IP prior to detection (by farm type).

Within farm model Hybrid farm model Between-farm
model

TS1 TS2 TS1 TS2

C = 0 C = 1 C = 0 C = 1 C = 0 C = 1 C = 0 C = 1
S  = 0 S = 1 S = 0 S = 1 S = 0 S = 1 S = 0 S = 1

Within farm
parameters

Log  likelihood −7826 −7861 −7886 −7896 −7255 −7240 −7259 −7240 −7186
(−7964,
−7724)

(−7988,
−7755)

(−8007,
−7781)

(−8010,
−7798)

(−7324,
−7185)

(−7347,−7163)  (−7328,
−7189)

(−7312,
−7169)

(−7271,
−7107)

DIC  17,057 17,180 17,176 17,196 15,123 15,220 15,166 15,164 15,254
No of hidden infections 100

(81, 121)
104
(87,  126)

109
(91,  130)

105
(88,  126)

67
(53,  81)

66
(53,  81)

69
(54)

67
(54,  82)

72  (7.8)
(57, 88)

R0R0 cattle 21
(16, 25)

19
(15,  23)

15
(13,  18)

12
(10,  15)

49
(41, 61)

43
(31,  68)

36
(30,  42)

33
(25, 37)

R0 sheep 14
(10, 19)

13
(10, 16)

9
(7, 12)

8
(6.6,  10)

10
(1.4,  21)

10
(1.15,  23)

7.3
(1.1,  14)

4.7
(1.16,  11.5)

Initial  prop cattle (%) 7
(6.2, 8.1)

7.8
(6.8,  8.4)

7
(6.7,  7.5)

7
(6.8,  7.6)

7.3
(6.5,  9.2)

7.8
(6.3,  9.1)

8.3
(7.6,  10.2)

7.8
(6.3,  9.1)

Initial  prop sheep (%) 5.4
(5.1, 6.3)

5.2
(5.1,  6.4)

6.3
(6.1,  6.7)

6.9
(6.6,  7.2)

5.5
(5,  7)

5.4
(5.0,  6.9)

5.4
(5.0,  6.9)

5.4
(5,  6.6)

˛C – cattle detection threshold 11
(9, 13)

11
(9,  13)

14
(5,  18)

11
(9,  13)

˛S – sheep detection threshold 27
(19, 34)

28
(19,  27)

33
(23,  42)

28
(19,  27)

Prop Q – cattle 41% 40% 53% 47% 42% 44% 53% 53%
Prop  Q – sheep 67% 68% 78% 76% 25% 24% 25% 29%
Prop  Q – mixed 33% 33% 45% 41% 43% 44% 53% 54%

Between farms
parameters

ˇ0Baseline ˇ0 7
(2, 13)

20.1
(2,  41)

3.7
(2.8,  6.8)

14
(5,  18)

5
(1.5,  11)

2.8
(1.4,  8.9)

8.1
(2.1,  12)

1.52
(1.3,  4.1)

4976.7  (996)
(3045,  6663)

RS – farm level susc. ratio 3.1
(2.6, 3.8)

2.97
(2.5,  3.6)

3.15
(2.8,  3.7)

3.12
(2.6,  3.7)

3.4
(2.8,  4.1)

3.2
(2.7,  3.8)

3.4
(2.8,  3.8)

3.3
(2.9,  3.5)

3.17  (0.3)
(2.7, 3.7)

RI – farm level inf. ratio 74
(24, 138)

52
(22,  90)

65
(30,  150)

41
(27, 108)

75
(32,  150)

88
(51,  170)

52
(34,  140)

29
(11,  67)

6.7  (2.6)
(3.1, 13.8)

DC – cattle susceptibility
saturation scale

120
(85, 162)

122
(86,  164)

124
(102,  150)

133
(109,  173)

111
(79,  161)

117
(77,  158)

110
(80,  126)

130
(95, 168)

100.7  (13.8)
(76,  128)

DS – sheep susceptibility
saturation scale

1023
(714, 1455)

1063
(625, 1576)

1081
(543, 1594)

1164
(762, 1386)

1232
(876, 1654)

1280
(790, 1821)

1131
(820,  1526)

1632
(1104,  1938)

1068.6  (167)
(561,  1375)

a – Kernel offset 2097
(1568, 2505)

2016
(1396, 2737)

2009
(1427,  2834)

2583
(1556, 2907)

2325
(1679, 2940)

2214
(1460, 2876)

1898
(1434, 2433)

2170
(1687, 2632)

1915 (266)
(1415, 2447)

� – Kernel power 3.2
(2.9, 3.4)

3.1
(2.8,  3.4)

3.3
(3.2,  3.5)

3.3
(2.8,  3.4)

3.3
(2.9,  3.5)

3.2
(2.8,  3.5)

3.1
(2.8,  3.6)

3.2
(2.9,  3.3)

3.1
(2.8,  3.3)

Day post infection
infectiousness peaks

3.3 (0.2)
(2.8, 3.7)

Infectiousness profile power 3.1 (0.8)
(1.8, 4.8)

Time
Infection  to report distribution
mean

8.4
(8.2,  8.6)

8.5
(8.4,  8.6)

8.4
(8.3,  8.6)

8.5
(8.4,  8.6)

8.5  (0.07)
(8.4, 8.6)

Infection to report distribution
variance

3.6
(3.3,  4.1)

3.7
(3.3,  4.1)

3.6
(3.3,  4.1)

3.7
(3.3,  4.1)

3.7  (0.2)
(3.3, 4.1)

1st May  increase in
transmission

0.95
(0.83,  1.11)
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Table 2
R0 estimates (mean and 95% credible intervals) for model variants estimating initial proportion of cattle and sheep infected on a farm, as a function of the minimum % bounds on the initial proportion of cattle (column headings)
and  sheep (row headings) assumed to be infected.

Initial proportion of cattle infected

2% 5% 10% 2% 5% 10%
R0 cattle R0 sheep

Initial proportion
of  sheep infected

WFM

TS1

C = 0,
S = 0

2% 77 (67, 82) 38 (26, 63) 44 (40, 49) 25 (16, 31) 20 (15, 25) 20 (16, 28)
5%  29 (23, 32) 21 (16, 25) 18 (15, 22) 15 (11, 21) 14 (11, 19) 13 (9, 20)

10%  20 (16, 25) 19 (16, 24) 15 (13, 20) 11 (7, 16) 11 (8, 16) 11 (7, 16)

C  = 1,
S = 1

2% 38 (28, 46) 29 (22, 36) 23 (16, 35) 18 (15, 29) 17 (13, 24) 18 (14, 25)
5%  23 (18, 27) 19 (15, 23) 17 (12, 21) 15 (11, 21) 14 (10, 16) 14 (10, 20)

10%  20 (14, 25) 15 (12, 19) 13 (10, 16) 11 (7, 16) 10 (7, 14) 10 (6, 13)

TS2

C  = 0,
S = 0

2% 55 (50, 60) 19 (16, 27) 14 (11, 19) 14 (10, 19) 11 (8, 14) 12 (9, 16)
5%  21 (18, 23) 15 (13, 18) 11 (9, 13) 8 (6, 10) 9 (7, 12) 8 (6, 10)

10% 16 (14, 19) 14 (11, 16) 10 (8, 11) 8 (5, 10) 8 (6.7, 9) 6 (3, 8)

C  = 1,
S = 1

2% 44 (39, 49) 17 (14, 22) 13 (10, 19) 13 (9,17) 11 (8, 16) 11 (9, 15)
5%  18 (16, 20) 12 (10, 15) 9 (8, 11) 8 (6, 9) 8 (6, 10) 7 (5, 10)

10% 14 (12, 16) 11 (9, 13) 8 (7, 9) 5 (3, 8) 6 (4, 8) 6 (4, 9)

HFM

TS1

C  = 0,
S = 0

2% 55 (43, 67) 58 (42, 72) 51 (44, 60) 17 (1, 30) 15 (1, 30) 12 (1.2, 25)
5% 51 (42, 62) 49 (42, 61) 46 (39, 55) 7 (1.1, 23) 7.6 (1.4, 19) 8 (1.4, 21)

10% 41 (29, 51) 44 (34, 58) 44 (31, 55) 8 (1.1, 18) 5 (1., 15) 6 (1.3, 17)

C  = 1,
S = 1

2% 42 (32, 52) 63 (53, 73) 86 (35, 135) 18 (8, 28) 11 (1.2, 23) 15 (1.5, 43)
5% 65 (41, 103) 43 (31, 68) 40 (32, 81) 12 (0.24, 39) 10 (1.2, 23) 6.5 (1.1, 16)

10%  32 (22, 42) 32 (22, 43) 34 (26, 43) 6 (1, 16) 9 (1.22, 27) 8 (1.3, 26)

TS2

C  = 0,
S = 0

2% 45 (37, 51) 45(33, 57) 33 (28, 40) 12 (1, 24) 9 (1.2, 20) 11 (1.4, 21)
5% 36 (29, 43) 36 (30, 42) 31 (28, 34) 3.7 (0.1, 13) 5 (1.1, 14) 3.7 (1.1, 14)

10%  31 (23, 39) 33 (22, 41) 29 (20, 31) 3.8 (0.1, 8.1) 4.7 (1.1, 20) 4 (1, 13)

C  = 1,
S = 1

2% 32 (23, 41) 44 (34, 57) 36 (26, 46) 8.5 (1, 16) 7 (1.2, 21) 12 (3, 29)
5%  26 (19, 34) 33 (25, 36) 26 (23, 27) 7.5 (1, 17) 5 (1.3, 11) 4.7 (1.1, 13)

10%  23 (16, 31) 26 (19, 21) 24 (17, 30) 5 (1.1, 12) 4.8 (1.2, 13) 4 (1.1, 12)
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ig. 2. The effect of animal species specific timescale (TS1 and TS2) and initial seed
erd  dynamics for each species. The herd size is 300 animals. The values for basic r
able  1.

For model variants presented in Table 1 we  investigated
he extent to which species-specific within herd dynamics
ere affected by the departure from homogeneous mixing, i.e.

hanges resulting from � < 1. The negative correlation between
0 estimates and initial seeding proportions complicated the inter-
retation of these results. The estimate of the initial proportion

nfected estimate for sheep hits the imposed lower limit of 5% how-
ver, and there is some indication that more assortative mixing is
ompensated for by increased transmission within species, with R0
arger for lower � (Table 3).

As mentioned above, the parameter with the most noteworthy
cale change compared with the pure BFM model results is the base-
ine transmission ˇ0 parameter (Table 1). Here values are reduced
o below 10 from about 5000. However, this is solely due to the
ntroduction of infectious profiles based on the numbers of animals
n a farm, which take large absolute values on average.

FM parameter estimates

We  estimate that the probability of escaping detection for the
FM drops sharply after about 7 days and becomes negligible
fter 12–13 days for farms classified as reported (Fig. 1c). His-
ograms of the estimated detection-to-cull delays for proactively
ulled farms in the HFM model are fairly compact and similar in
orm to the corresponding histograms for the BFM. By compar-
son, the histograms of estimated infection-to-cull delays under

he WFM  have much longer tails (Fig. 3), and the corresponding

ean detection-survivorship curves (Fig. 1b) are longer, and show
arked differences between species. These differences in detec-

ion also influence the estimated number of hidden infections. The

able 3
he  effect of different degrees of mixing (�) between species on within-farm R0 and ini
parameters in Table 1 for TS1 and offsets C = 0, S = 0).

� Cattle 

R0 Initial proportion 

0.3 26 8.4%  

0.6  33 7.8% 

1 20  11% 
als’ offsets (c = 0 and s = 0 stand for 0 days for cattle and sheep, respectively) on the
uction ratios (species specific R0s) and species initial proportions are displayed in

numbers  of hidden infections estimated by WFM  and HFM are com-
pared by species in SI Figs. 4 and 5. The WFM  consistently estimate
higher numbers of hidden infections, mostly on sheep farms. Here,
the difference between hidden infections in the HFM and WFM
shows up among farms culled under the 3 km local policy (more
than 80% of all farms culled under that policy were sheep-only
farms). All the models predicted most hidden infections occurred
before the peak of the epidemic, however the HFM predicted half
as many early culled farms to be infected (∼35%) than the WFM
(∼70%) (SI Table 2). Proportions of culled farms estimated to be
infected during the tail of the epidemic were similar in both the
HFM and WFM  (∼4%), however the proportions during the peak
were higher in the WFM  than the HFM (2.6% vs. 1.6%). Table 4.

The predicted number of reported case by farm type given in
Tables 5 and 6 in SI also highlight the effect of the probability
of detection of sheep farms only cases; the WFM  model tends to
overestimate the number of IPs in sheep-only farms relative to the
HFM model. Similarly, the detection model strongly influences the
estimates of the fraction of infectiousness accumulated by a farm
prior to detection (Eq. (9)) across farms of different types. The most
noticeable difference is displayed in sheep farms: WFM  predicts
a proportion almost three fold higher than HFM, i.e. 68% vs. 25%
(Table 4).

The  R0 estimates for cattle (Table 1 and SI Table 3) estimated by
the HFM are higher than for the WFM.  This is because the higher
hazards of detection make for a tighter distribution of infectious

periods, forcing within farm epidemics to peak more quickly in
compensation. All models match the empirical times from infec-
tion to report well, including the more dispersed pattern for sheep
(SI – Figs. 6 and 7).

tial proportion infected parameter estimates for the WFM  baseline model variant

Sheep

R0 Initial proportion

18 5%
15 5%
14 5%
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Fig. 3. Time since infection to cull as predicted by WFM  and HFM. The parameter estimates correspond to those in Table 1 for TS1 and 0 days as initial seed animals’ offsets
by farms type.

Fig. 4. Case incidence time series by farm type as predicted by WFM  model variant using the estimates presented in Table 1 (when initial proportion of infected animals
estimated).

Table 4
The  average fraction of total farm infectiousness accumulated prior to detection (Q) on an IP by farm type.

Q – by farm type WFM  HFM

TS1 TS2 TS1 TS2

C = 0 C = 1 C = 0 C = 1 C = 0 C = 1 C = 0 C = 1
S  = 0 S  = 1 S = 0 S = 1 S = 0 S = 1 S = 0 S = 1

Cattle 41% 40% 53% 47% 42% 44% 53% 53%
Sheep  67% 68% 78% 76% 25% 24% 25% 29%
Mixed 33% 33% 45% 41% 43% 44% 53% 54%
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ig. 5. Case incidence time series by farm type as predicted by WFM  model varian
stimated).

odel fit

DIC  values were lower for the HFM than the WFM.  In a classical
ituation (i.e. with complete data) this difference would indicate
he HFM fits better than the WFM.  However, as mentioned in the
I, there is not an established formal interpretation of this statis-
ic when models differ in the inferred dimensionality of missing
ata (here, larger number of inferred unobserved infections for the
FM),  and a lack of theory generally for the use of the DIC for com-

lex non-linear models. We  are therefore urge caution in applying
oo much weight to the imputed values of this statistic.

Using one step ahead prediction of incidence at time t + 1 con-
itioned on observed cases up to time t, the incidence time-series
or cattle-only and mixed farms are fairly well reproduced by both
ets of models incorporating within-farm dynamics. Although not a
articularly discriminatory comparison, sheep-only farms are more
ccurately tracked by the HFM (Table 1 and Fig. 1). The BFM vari-
nt (with worse DIC than the HFM) produces similar results to the
FM, suggesting the main influence on models’ ability to fit inci-
ence time series is how detection of infection is modelled (see
iscussion).

The difference in these results between the WFM  and HFM high-
ights the importance of how detection of infection is modelled,
nd provides post hoc justification for approaches ignoring the
ossibility of differences in detection by farm size or composition.
eside this, the HFM supports larger differences between species

n within-farm R0 values than the WFM,  with estimates of R0 for
heep being considerably lower in the HFM model variant.

iscussion

This  paper continues a series of retrospective statistical analy-
es aimed at understanding the epidemiology of the 2001 UK FMD
utbreak. The present analysis incorporates known features of the
athogenesis of FMD, and is aimed at exploring to what extent
he farm-level data collected in the 2001 outbreak allows infer-

nce regarding within-farm transmission dynamics. In bringing
ogether information from these different scales, we  have been able
o explore the relevance of within-farm dynamics to our under-
tanding of the epidemic as a whole. In the absence of full-scale field
g the estimates presented in Table 1 (when initial proportion of infected animals

experiments, or more detailed data from outbreaks on farm-level
epidemics, inferences from outbreak data on between farm-spread
provide the only window onto parameters determining the within-
farm spread of FMD. Formal model selection was not appropriate
due to missing data, but DIC statistics and one-step-ahead predic-
tions suggest that, while differing in their accounts of the epidemic,
the models are comparable in their ability to capture the dynamics
of the epidemic.

The  added layer of complexity in tracking the course of epi-
demics on each farm adds substantially to the computational cost of
inferential models. We therefore restricted our analysis to Cumbria,
the area of Britain which suffered the most intense transmission
(Wilesmith et al., 2003). A further advantage of studying Cumbria
is that this area saw substantial numbers of infections of sheep and
mixed farms, allowing species differences to be resolved better than
would have been possible if another area (e.g. Devon) had been
chosen. Clearly restricting the analysis to a single area limits our
ability to generalise the results, though we  might expect within-
farm transmission dynamics to be more determined by husbandry
practices than physical location.

In addition to tracking the number and stage of infection of
infected and susceptible animals on a farm, within farm models
need to represent the seeding process (i.e. the initial conditions
on each farm after infection) and the detection process. Seeding
is perhaps the least quantitatively understood aspect of FMD  epi-
demiology, and proved to be one of the most challenging aspects of
our analysis. Similar epidemic curves can arise with higher levels
of seeding and lower values of R0, or vice versa. This leads to a natu-
ral negative correlation between estimates of these quantities, and
we found a tendency towards inferring very low levels of infection
seeding and very high within-farm R0 values. To cope with this, we
constrained the level of seeding, and then investigated the effects
of different choices of lower bounds the estimates of both seeding
and R0, as discussed in “Results” section.

The  estimated values of within-farm R0 and seeding of infec-
tion implies there were relatively few rounds of infection on most

IPs in 2001 prior to infection being detected and the farm being
culled (or at least subject to controls). While these estimates are
not biologically unreasonable, the fact that most animals would be
expected to be infected within 2 generations of infection (at least on
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attle farms) offers retrospective support to using models of FMD
ransmission which represent farms as the relevant epidemiolog-
cal unit, albeit using time-varying infectiousness profiles rather
han constant infectiousness through time (Chis Ster et al., 2009).

Some  of the more interesting results from our analysis arise from
xploring different models of the delay from infection to report of
nfection on IPs. To disentangle the effects of allowing the infectious
rofile of a farm to be determined by within-farm dynamics from
hose due to the new model of detection, we introduced the HFM

odel variant. This includes the mechanistic within-farm account
f infectiousness, but models the delay from infection to report as
etermined by a fixed probability distribution which is indepen-
ent of farm properties, in the same manner as the pure BFM.

As  described above, the WFM  predicts notably longer times to
etection for sheep farms than the BFM or HFM. This may  recon-
ile the apparent inconsistency between the fact that veterinarians’
stimates of infection to report did not vary by farm-type, and the
xpectation that R0 be higher among cattle, which, in addition,
ave more obvious clinical signs (Alexandersen et al., 2003a,b,c).
e indeed estimate higher within-farm R0 values for cattle, but

he longer delays to detection for sheep farms suggest that the
mpirical estimates of infection times made by veterinarians dur-
ng the epidemic (used as priors in our inference) may  have been
nder-estimated for sheep farms (where lesion dating and sam-
ling a substantial proportion of animals on a farm may  have been
ore difficult). The longer time to detection explains why  the

verage cumulative amount of infectiousness occurring on sheep
arms prior to their detection predicted by WFM  (∼67%) is three
old greater than that predicted by the HFM model variant (∼25%)
Table 4).

As  in our previous work (Chis Ster et al., 2009), the reversible
ump MCMC  approach used here allows us to infer the number of
nobserved (“hidden”) infections, i.e. the number of infected farms
hich were culled as part of the control effort without their infec-

ion having been tested or assessed. Models including within-farm
ynamics seem to consistently estimate higher (but still relatively
mall) numbers of hidden infections compared with the results of
he pure BFM (SI). Moreover, the WFM  estimates higher numbers
f hidden infections than the HFM (mainly among sheep farms),
howing that this difference is driven by the differing modelled
etection mechanism, and the longer tails it produces in reporting
elays. It should be born in mind that these small numbers of unob-
erved infections do not directly influence the predicted efficacy of
P culling as a control measure, since the major impact of CP culling
as relatively local (i.e. within 10–15 km)  depletion of susceptible

arms before they become infected.
In our earlier work, models which included an ad hoc increase

n transmissibility from early May  2001 (attributed to slacken-
ng in bio-security) fitted significantly better than those assuming
onstant infectiousness over time. Conversely, the results in this
aper suggest that when within-farm dynamics are accounted for,
he long tail seems to emerge more naturally from the different
istributions and timing of farm infectiousness as the epidemic
rogressed – though this conclusions needs validation with true
imulation studies.

We  did find support for the hypothesis that the susceptibility of
ixed farms was  higher than would be expected by simply adding

he susceptibility due to the individual species (Eq. (8)). Together
ith the typically larger number of animals on mixed farms, and

he higher relative infectiousness of cattle, this confirms the central
ole of mixed farms in propagating the epidemic in 2001.

We  explored sensitivity of results to different levels of mixing

etween species on a farm similarly to our past work (Chis Ster,
007), where the simpler framework used there allowed formal
stimation of a parameter controlling the mixing of herds of differ-
nt farm types. While no clear picture emerged once within farm
s 4 (2012) 158–169

dynamics  were included, more assortative mixing tended to be con-
sistent with more intense species-specific transmission on a farm
(Table 3).

The  shape of a typical farm’s infectious profile is crucial in deter-
mining what proportion of its infectious potential (i.e. the area
under the curve of cumulative infectiousness with time since infec-
tion) is prevented by a control measure that affects the farm a
certain time after its infection. Observing Fig. 2, we note that for the
BFM detection typically occurred after the peak of farm infectious-
ness. Taking into account within farm dynamics, the WFM  predicts
that detection typically occurred after peak infectiousness for sheep
farms, but that for cattle or mixed farms detection and peak infec-
tiousness roughly coincide. The implication is that – particularly
for farms with cattle present – reducing detection and cull delays
is expected to have a large impact on transmission.

One interesting finding in our past work (Chis Ster et al., 2009)
was a large estimated drop in a farm’s infectiousness after it was
reported. This result remains true for both WFM  and HFM model
variants applied to Cumbria. The magnitude of the drop is high, but
imprecise – a  factor of around 50, with an improvement in DICs of
around 10 compared with models with no drop (SI Table 3 for WFM
results). As with the BFM (Fig. 2 in Chis Ster et al., 2009), the effect
in the WFM  (and HFM, results not shown) is to flatten the average
farm-level infectious profile, though it is not clear whether this is
attributable to lower R0 values or lower levels of seeding: the WFM
model variant estimates lower initial proportions in cattle whereas
the HFM model variant estimates lower R0 values.

Our estimates of the magnitude of drop in farm infectious-
ness after report emphasizes the importance of encouraging rapid
reporting, finding infected farms as quickly as possible and ques-
tions the significance of rapid IP culling so long as infection is
detected rapidly and biosecurity restrictions imposed on each
IP. However, the significance of such a change in policy rec-
ommendations plus the indirect way in which the impact of
reporting on infectiousness has been estimated means additional
direct evidence of biosecurity effectiveness would be desirable.
The importance of limiting transmission from farms with substan-
tial numbers of symptomatic animals (whether through effective
restrictions or rapid culling) remains unarguable; indeed, the long
tail of the epidemic in Cumbria may  have been at least partly driven
by secondary infections caused by the relatively few farms with
long reporting delays which were identified once the epidemic
started to decline. There were 9 farms (5 sheep-only, 4 mixed)
reported after 1st May  which for which the reporting date was more
than 15 days later than the infection date estimated by veterinari-
ans (Fig. 11 in SI).

Lastly,  we feel that the current approach is at the edge of what
can be achieved in terms of extracting information from this dataset
in a rigorous fashion, and note that extra, standardized information
about the extent of infection on farms upon culling (e.g. random-
sample virus isolation and serology) would be extremely useful in
allowing more robust conclusions about the within-farm dynamics
of FMD.

Appendix A. Supplementary data

Supplementary data associated with this article can be
found, in the online version, at http://dx.doi.org/10.1016/j.
epidem.2012.07.002.
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