
PERSPECTIVES IN BASIC SCIENCE

Progression of glomerular diseases: Is the podocyte the culprit?

WILHELM KRIZ, NORBERT GRETZ, and KEVIN V. LEMLEY

Institut für Anatomie und Zellbiologie, Universität Heidelberg, Heidelberg, and Zentrum für Medizinische Forschung,
Universitätsklinkum Mannheim, Universität Heidelberg, Mannheim, Germany; and Division of Pediatric Nephrology, School of
Medicine, Stanford University, Stanford, California, USA

Progression of glomerular diseases: Is the podocyte the culprit?

The stereotyped development of the glomerular lesions in many
animal models and human forms of progressive renal disease
suggests that there are common mechanisms of disease progres-
sion. We propose the outline of such a mechanism based on
following aspects: (1) The glomerulus is a complex structure, the
stability of which depends on the cooperative function of the
basement membrane, mesangial cells and podocytes, counteract-
ing the distending forces originating from the high glomerular
hydrostatic pressures. Failure of this system leads to quite uniform
architectural lesions. (2) There is strong evidence that the podo-
cyte is incapable of regenerative replication post-natally; when
podocytes are lost for any reason they cannot be replaced by new
cells. Loss of podocytes may therefore lead to areas of “bare”
GBM, which represent potential starting points for irreversible
glomerular injury. (3) Attachment of parietal epithelial cells to
bare GBM invariably occurs when bare GBM coexists with
architechtural lesions, leading to the formation of a tuft adhesion
to Bowman’s capsule, the first “committed” lesion progressing to
segmental sclerosis. (4) Within an adhesion the tuft merges with
the interstitium, allowing filtration from perfused capillaries in-
side the adhesion towards the interstitium. The relevance of such
filtration is as yet unclear but may play a considerable role in
progression to global sclerosis and interstitial fibrosis.

The progression of chronic renal disease tends to follow
a stereotypical course in many cases. Regardless of the
nature of the initial insult, once a substantial portion of the
renal tissue has been destroyed, there is a steady decline in
the glomerular filtration rate with time associated with a
progressive loss of viable nephrons. A common histologic
finding in these cases is focal segmental glomerulosclerosis
(FSGS) with tubulointerstitial fibrosis [1–3]. Note that focal
segmental glomerulosclerosis is used here in the “classic”

definition, which includes both primary and secondary
forms of FSGS [4]. A more recently described pattern of
glomerular degeneration, called “collapsing FSGS” is dis-
tinct from the classic form in several respects [5–7] and
does not necessarily conform to the pathogenetic mecha-
nisms discussed in this article.

A variety of mechanisms have been advanced to explain
the development of this pattern of glomerular injury.
Exuberant mesangial and/or interstitial cell proliferation
with subsequent matrix deposition (leading to glomerular
capillary occlusion and to interstitial expansion and tubular
atrophy) have been invoked as central mechanisms by a
number of researchers [8–16]. Other investigators have
presented evidence for podocyte injury, podocyte loss or
podocyte “insufficiency” [17] as the crucial mechanism in
the development of FSGS [4, 17–26]. Despite a consider-
able number of studies on the development of FSGS, a
single concept of its pathogenesis that could be generally
accepted among the various researchers in this field has not
yet emerged.

As defined by Rennke, the glomerular lesion in FSGS
consists of “global or segmental collapse of the capillaries
with disappearance of the cellular elements and microvas-
cular lumina, entrapment of foamy macrophages, cellular
debris, and hyaline material, also known as hyalinosis, and
adhesion of the tuft to Bowman’s capsule by synechiae” [4].
We have studied the development of FSGS in several
experimental models including subtotal renal ablation [27–
29], DOCA salt hypertension [30], Masugi nephritis [31],
experimental membranous nephropathy [32], the Milan rat
[33] and the Fawn hooded rat [34], and after long-term
mitogenic stimulation of the glomerulus by exogenous
FGF-2 [35]. These studies have led us to propose a
framework mechanism that explains glomerular tuft de-
struction in FSGS as the result of a progressive loss of
structural stability within a tuft segment to a point at which
repair of the complex tuft architecture is no longer possible.
The same basic considerations apply regardless of the
nature of the initiating injury (toxic, hemodynamic, inflam-
matory, immune-mediated) and, we believe, explain the
remarkable uniformity of the lesions seen in several types
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of progressive injury of the glomerular tuft. It is our
contention that—due to its inability to replicate effectively
postnatally and its unique susceptibility to specific injury—
the podocyte is the most vulnerable component of the
glomerular tuft and that, in most cases of FSGS, it is injury
to the podocyte that initiates the definitive pathologic
sequence.

ARCHITECTURAL LESIONS OF THE GLOMERULUS

The glomerulus is a complex structure. It consists of an
intricately folded basement membrane (GBM), which sep-
arates two compartments: an endocapillary compartment
containing the capillaries and the mesangium, and an
extracapillary compartment containing the podocytes in
Bowman’s space [36]. A large hydrostatic pressure differ-
ence (40 mm Hg in the rat) exists across the capillary wall
of the glomerulus. Counteracting the expansile forces that
arise from this pressure gradient is not a function of any
single glomerular structure or cell type, but rather is
achieved in concert by two glomerular cell types (mesangial
cells and podocytes) together with the GBM. Mesangial
cells interconnect the turning points of the GBM from the
inside and podocytes from the outside, thereby stabilizing
the folding pattern of the GBM. This pattern establishes
the basic architectural pattern of the glomerulus. In addi-
tion, podocyte foot processes, like cell processes of peri-
cytes elsewhere, counteract (together with the GBM) the
elastic distension of the capillary wall [37–39]. It is the
failure of the mechanical integrity of this system that leads
to the characteristic lesions in tuft architecture seen in
those experimental and human glomerulopathies that man-
ifest FSGS [40]. Such architectural lesions essentially are
local expansions of the tuft that have a tendency to develop
into more widespread structural lesions. These may present
in two ways: (i) expansion of a compartment (mesangial
expansion, capillary ballooning) and (ii) loss of the folding
pattern of the GBM (capillary unfolding). In our view, the
stereotypical character of these lesions derives from the
mutual interdependence of the supporting systems:
whether the mesangium fails primarily or the podocytes are
the focus of the initial injury, the capacity of the integrated
biomechanical system to counteract the high intraglomeru-
lar pressures will be compromised. In addition, whether the
system fails due to primary mesangial cell or podocyte
injury in the setting of normal capillary pressures, or an
intact cell-GBM system fails to withstand elevated capillary
pressures, the end result will be the same [40].

REPAIR OF ARCHITECTURAL LESIONS

Repair of architectural lesions, that is, restoration of the
complex glomerular structure, has to occur in the face of
the large transmural distending forces present in the glo-
merulus. The glomerulus is not capable of shutting down
for repair. In the case of extensive injury disrupting either
the endocapillary compartment or the epithelial cell layer,

repair would probably have to recapitulate glomerular
ontogeny in part in order to arrive at a proper structure.
Even in a “simpler” system like the S3 segment of the
proximal tubule—composed of a single cell type—repair of
ischemic injury involves a process of dedifferentiation and
redifferentiation, duplicating essential aspects of normal
development [41]. Compared to the tubule the potential for
repair of significant glomerular injury appears quite lim-
ited.

To understand the reparative pathways available to the
glomerulus, it may be helpful to distinguish between endo-
capillary and extracapillary injuries. Endocapillary injuries
(of which, in experimental glomerulopathies, the most
common is mesangiolysis with various degrees of endothe-
lial involvement, such as, in Thy-1 mediated nephropathy
[42] or in Masugi nephritis [31, 43]) are subject to prolif-
erative repair with subsequent apoptosis of the surplus
daughter mesangial cells [44–46] as well as endothelial
cells [47, 48]. Despite this, the native structure of the
mesangium cannot always be fully restored. Areas of
solidified mesangial expansion (what is often called “mes-
angial sclerosis”) in our view may still represent a kind of
successful healing by scarring, that is, successful in the
sense that the supporting function of the mesangium has
been reestablished with reconnection of the GBM to the
mesangium. These areas appear fairly stable, and progres-
sion to segmental sclerosis has not been demonstrated to
occur in experimental settings. These areas may, of course,
represent loci of increased vulnerability to any further
structural challenges, thereby increasing the probability of
exocapillary injuries at this site (see below). More severe
endocapillary damage may result in a glomerular microan-
eurysm, characterized by the loss of any separation between
the capillary and the mesangial compartments [2, 49, 50]. It
remains an open question whether glomerular microaneu-
rysms are subject to repair.

Extracapillary injuries are podocyte injuries. They have a
very limited potential for repair. There is accumulating
evidence that podocytes are unable to replicate postnatally
as suggested by the lack of an increase in podocyte cell
number during both postnatal and compensatory growth
[17, 28, 51, 52]. The concept of the podocyte as a terminally
differentiated cell is so far based almost exclusively on
animal data; morphometric data from humans are lacking.
Cell culture data strongly support the view that differenti-
ated podocytes are unable to proliferate (although they
may develop into multinucleated giant cells), whereas
undifferentiated or dedifferentiated podocytes that grow
out from isolated glomeruli can proliferate [53–55]. In rats,
podocytes subjected to sustained mitogenic stimulation by
FGF-2 [35] may enter the cell cycle but are unable to
achieve complete cell division, resulting in bi- or multinu-
cleated cells. Such multinucleated podocytes are seen in a
variety of experimental [28, 29, 56] as well as human
glomerulopathies [20, 57–59]. A recent study in passive
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Heymann nephritis shows that, following injury, quiescent
podocytes can re-enter the cell cycle but upregulation of
cyclin-kinase inhibitors p21 and p27 under these circum-
stances inhibits progress to mitosis [60]. Reports in the
human pathology literature describe glomerular epithelial
cell hyperplasia as well as mitotic figures in podocytes.
However, in the absence of a quantitative morphometric
assessment of actual podocyte number, phenomena such as
the crowding of exocapillary glomerular cells on a shrinking
tuft—as commonly seen in collapsing FSGS [6, 7]—cannot
be said to demonstrate effective podocyte proliferation.
Moreover, a recent study of various types of glomerulopa-
thies in humans shows that extracapillary cells (that is, the
presumed podocytes) in collapsing FSGS do not represent
simply another podocyte phenotype, since these cells, in
addition to not expressing the usual “differentiated” podo-
cyte markers (GLEPP1, synaptopodin, the C3b-receptor),
do not even express the transcription factor WT-1 [61], a
factor that is present from the very beginning of podocyte
ontogeny. It is therefore difficult even to assign these cells
the status of “dedifferentiated” podocytes.

If in fact podocytes are incapable of replication post-
natally, then when podocytes are lost for any reason, they
cannot be replaced by new cells. Thus, the only way to
compensate for podocyte loss is by cell hypertrophy. More-
over, the ability of remaining podocytes to take over the
function of the lost podocytes is likely to be decreased by
the fact that in many cases they have been subjected to
sublethal injury of the same type that destroyed the podo-
cytes which actually were lost. As a whole, the evidence
suggests that the glomerulus has a rather limited ability to
compensate for podocyte loss. Any significant damage to
the podocyte must therefore be viewed as a potential
starting point for irreversible glomerular injury.

PODOCYTE LESIONS

Following a variety of challenges [62, 63] podocytes
develop a finite number of stereotypical pathologic lesions.
Situations that are deleterious to podocytes include expo-
sure to toxic substances (PAN; polycationic compounds),
inflammatory diseases (glomerulonephritis), immune-me-
diated diseases (membranous nephropathy, Heymann ne-
phritis) and mechanical stress (glomerular hypertension).
Podocyte lesions may develop due to direct injury to the
cell, due to impairment of the podocyte-GBM connection
or due to damage to the GBM. It is beyond the scope of this
paper to present the particular mechanisms in detail; the
reader is referred to several excellent reviews [62–68]. A
short summary, however, may prove useful.

Direct injury to the podocyte [22, 69, 70], more precisely
to the podocyte cytoskeleton [71] occurs after exposure to
puromycin aminonucleoside, possibly mediated by reactive
oxygen species (ROS) [72, 73]. Direct cell injury also occurs
in response to infusion of highly cationic compounds [74]
that neutralize the negatively charged glycocalyx of the
podocyte. Cytochalasins [75] as well as removal of Ca21

[76] have been shown to interfere with this process, sug-
gesting that the cytoskeleton is involved. The insertion of
C5b-9 complexes into the podocyte cell membrane second-
ary to the deposition of immune complexes in Heymann
nephritis [77–79] also leads to cell damage, again at least
partially mediated by ROS.

The strong attachment of podocytes to the GBM is based
on a3b1 integrin-fibronectin/laminin interactions [80, 81].
Injury to these connections may result from antibodies to
the specific proteins subserving podocyte-GBM binding
[82] as well as from antibodies against antigens in the basal
podocyte cell membrane, like gp330 [79, 83–85]or dipep-
tidylpeptidase IV [86, 87] in Heymann nephritis. In the
latter cases, partial separation of the cells from the GBM
results from the formation of subepithelial immune depos-
its [88].

Damage to the GBM itself is seen in inflammatory and
immune-mediated diseases when reactive oxygen species
(ROS) from neutrophils, monocytes/macrophages or resi-
dent glomerular cells attack the GBM, damaging its intri-
cate matrix structure [64, 65, 79, 83, 89–91]. This may
happen by direct oxidation of GBM components or by
adduct formation and dimerization of type IV collagen,
leading to distortion of the GBM [83, 92–94]. Moreover,
proteases (derived from neutrophils, monocytes or podo-
cytes) may degrade the GBM, affecting the podocyte-GBM
connection as well as the functional integrity of the GBM
[64, 67, 68, 90, 95–97]. Degradation of the matrix structure
of the GBM has generally been considered only in the
context of explaining the proteinuria that results from
glomerular injury. Inasmuch as the GBM together with the
podocytes fulfill a support function counteracting local
expansion of the capillary wall, distortion of the native
GBM matrix structure may decrease the tensile strength of
the GBM, putting increased mechanical strain on the
podocytes.

There is no direct evidence demonstrating the damaging
effects of heightened mechanical stress on the podocyte,
such as, increased capillary wall tension owing to an
increased transmural pressure gradient. However, the na-
ture of the lesions seen in several high-pressure models of
FSGS (DOCA-salt-hypertension [30, 98–100], the Fawn
hooded rat [34]) and the protection against those lesions
when glomerular pressures are normalized [101–104] sup-
port the hypothesis of a susceptibility of podocytes to
mechanically-mediated injury. Increased transmural pres-
sure gradients lead to increased wall tension in glomerular
capillaries, putting podocyte foot processes and the foot
process/GBM connection under increased stress. When
podocyte and GBM fail to generate sufficiently high elastic
counterforces, the capillary will dilate at least locally,
thereby aggravating the situation, inasmuch as—according
to Laplace’s law—even greater counterforces will be nec-
essary for mechanical stability. The strength of the podo-
cyte-GBM connection may also be adversely affected (see
below).

It has become clear that podocyte lesions frequently
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develop in association with injuries, or at least prominent
changes, in the cytoskeleton, suggesting the involvement of
mechanical strain. Apart from certain “pre-structural” le-
sions (all related to the cytoskeleton) such as upregulation
of desmin [32, 33, 105], heat shock protein 27 [106], and
a-actinin [107] expression, the earliest sign of podocyte
damage is often the loss of the normal differentiated cell
shape. The most common phenotypic pattern is “foot
process effacement” that occurs in a great variety of
experimental [30, 34, 70, 98, 108, 109] as well as human
[110–112] glomerulopathies. Foot process effacement or
simplification represents a reduction in the complexity of
cell-cell connections, which may range from partial retrac-
tion of the foot processes to a total disappearance of the
usual interdigitated pattern. In the end, the podocytes are
affixed to the GBM over broad sheet-like processes that
contain a highly organized network of cytoskeletal proteins
adhering to the basal cell membrane. This network consists
of microfilaments regularly cross-linked at dense bodies,
with prominent expression of a-actinin [107, 113]. These
findings have been interpreted to indicate an adaptive
change in the cell, in which rearrangement and hypertrophy
of the contractile apparatus reinforce podocyte adherence
to the GBM and possibly counteract increased expansile
wall forces [113]. These changes are apparently reversible
when the underlying challenges decrease or when adaptive
cell hypertrophy allows for the re-establishment of an
interdigitating pattern of foot processes on an enlarged
basement membrane surface area.

A more severe class of podocyte lesions are “cell body
attenuation” and “pseudocyst formation.” Podocytes ap-
pear stretched out with marked attenuation of their cell
bodies. These podocytes may develop pseudocysts if they
come to tightly overlie a capillary segment, thereby hinder-
ing the efflux of the filtrate delivered to the urinary space
underneath the attenuated cell body. As a consequence of
a pressure rise in the sub-cell body space, the thin cyto-
plasm will bulge out, initially forming a dome-like structure
that may later develop into a complicated system of com-
municating spaces representing pseudocysts [28].

From such lesions as cell body attenuation and pseudo-
cyst formation, damage to the podocyte has a strong
tendency to progress to its most severe form, detachment of

the podocyte from the GBM. In addition to the above-
mentioned enhanced mechanical strain in these situations,
mechanisms of injury have been uncovered that probably
occur only in advanced stages of podocyte injury. First,
FGF-2 released by injured podocytes has been suggested to
act as an autocrine/paracrine mediator on injured cells
aggravating the initial damage [32, 105], possibly by increas-
ing the rate of apoptosis [60]. Secondly, podocytes neigh-
boring a “leaky” area of GBM appear to efficiently reab-
sorb the locally filtered proteins, leading to an overload of
the cell’s lysosomal system (seen pathologically as an
accumulation of “absorption droplets”) followed by the
spillage of lysosomal enzymes into the cytoplasm and
subsequent dissolution of the cell [31]. This may be an
important contributory mechanism in the growth of an
adhesion to segmental sclerosis (see below).

The ultimate podocyte lesion is the detachment from the
GBM, eventually followed by the loss of the entire cell into
Bowman’s space. As described above, weakening of the
podocyte-GBM connection together with exposure to in-
creased intracapillary pressures may eventually lead to
podocyte detachment. There is evidence from atomic force
microscopy [114] that the potential energy curve of the
adhesion molecule-substrate interaction is altered by strain,
so that the potential energy barrier between the “bound”
and “free” states decreases with increasing elastic distor-
tion of the integrin-membrane interface. This should result
in a greater frequency of transitions from bound to free
states under conditions of increased strain. According to a
theoretical model of receptor “co-operativity” by Cho,
Lumsden and Whiteside [115], the increased deformation
of the podocyte cell membrane resulting from detachment
of small numbers of receptor ligand pairs can contribute to
large scale (catastrophic) detachment, resulting in “bare”
GBM areas. From the point of view of these models, it is
likely that patches of bare GBM form transiently even
under normal conditions (as a consequence of statistical
fluctuations in binding energy). The higher the strain in the
podocyte-GBM interface (for example, as a result of intra-
capillary hypertension) and/or the weaker the actual con-
nections are, the greater will be the “residence time” that
large patches spend in the detached state. It is these more

Fig. 1. Schematic to show the development of segmental glomerulosclerosis. (A) Normal glomerulus with vascular and urinary poles. Smooth muscles,
extra glomerular mesangial, and mesangial cells proper are hatched; podocytes are shown in blue, parietal epithelial cells in red. The GBM is shown
in black, the parietal basement membrane in yellow, tubular epithelia are shown in white. (B) A dilated and podocyte-denuded capillary is attached to
Bowman’s capsule. The attachment is accomplished by the affixation of parietal cells to the naked GBM. Thereby a gap in the parietal epithelium has
come into existence, permitting filtration/exudation towards the cortical interstitium (arrow). (C) The adhesion has spread to neighboring capillaries
resulting in either the collapse or in hyalinosis (shown in a dark grey pattern) of the involved capillaries. Podocytes at the flanks of the adhesion
degenerate. The parietal epithelium may either appose those podocytes (arrowhead) or attach directly to the GBM at the flanks of the adhesion. Fluid
leakage from perfused capillaries inside the adhesion has created a paraglomerular space (shown in yellow) that contains the sclerotic tuft remnants
(that is, collapsed or hyalinized GBM formations). Towards the cortical interstitium this paraglomerular space has become separated by a layer of
sheet-like fibroblast processes (shown in green). (D) Via the vascular pole the sclerotic process has reached a further lobule. A small “intact” tuft
remnant protrudes into the urinary space still covered by the parietal epithelium. The sclerotic tuft remnants are located outside the parietal epithelium
in the paraglomerular space that is separated from the cortical interstitium by a complete layer of cortical fibroblasts. Even in those late stages of injury
perfused capillaries are regularly found within the sclerotic regions, probably accounting for the further expansion of the paraglomerular space that may
extend onto the proximal tubule. In even later, stages fibroblasts will invade the sclerotic area, resulting in fibrous organization. Modified after [34], with
permission from the American Society of Nephrology.
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frequently occurring bare areas of GBM in regions of the
glomerular tuft with architectural failure (unfolding and
ballooning) that are the starting points for the development
of irreversible, progressive glomerular lesions.

FORMATION OF SYNECHIAE AND DEVELOPMENT
OF SEGMENTAL SCLEROSIS

It has long been suspected that areas of denuded GBM
are the site of bulk leakage of plasma proteins through the

glomerular filter and may be associated with the subendo-
thelial accumulation of larger plasma proteins (IgM, fibrin)
resulting in hyalinosis [2, 4, 116, 117]. Progressing hyalino-
sis together with other degenerative processes in the endo-
capillary compartment were thought to lead to capillary
obliteration and segmental sclerosis. We, together with
others [33–35, 70, 118, 119], have shown that segmental
sclerosis may develop without preceding endocapillary injury.
We suggest an alternative mechanism by which denudation

Fig. 2. Circumscribed tuft adhesion to Bowman’s capsule showing all essential features of this “committed” lesion in the development of segmental
glomerulosclerosis. An accompanying drawing illustrates the details. In this drawing the GBM and the mesangium are shown in black, capillary lumina
in white: the parietal epithelium is densely stippled, the urinary space is lightly stippled, the paraglomerular space is obliquely hatched; a proximal tubule
is shown in an irregular line pattern; for clarity podocytes are not depicted. At the adhesion the parietal epithelium has lost its continuity resulting in
a large gap through which tuft structures, such as podocyte deprived capillaries (C), come close to the interstitium; as known from tracing in serial
sections those capillaries are continuous with capillaries entering from the tuft [34], verified also in the present case (C1). This provides a filtration route
toward the interstitium. As a consequence of misdirected filtration, a fluid-rich paraglomerular space has come into existence that tends to spread on
the outer surface of the glomerulus forming a crescent-shaped cap. Toward the interstitium this space is separated by a continuous layer of sheet-like
fibroblast processes (indicated by a hatched line in the drawing). Towards the urinary space the adherent area is delimited by the parietal epithelium
that adheres circumferentially to the flanks of the adhesion. Podocytes (asterisks) associated with the adhesion show extensive lesions including
accumulation of absorption droplets, pseudocyst formation, foot process effacement and detachment from the GBM. Development of glomeruloscle-
rosis after long-term treatment of rats with FGF-2 [35]; transmission electron micrograph, magnification 3;1800.
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of the GBM may lead to segmental sclerosis. In agreement
with other reports [119–121], we have found a fairly
uniform sequence in all of the experimental models that we
have examined (see above) (Fig. 1): when an area of
denuded capillary comes into contact with parietal cells of
Bowman’s capsule, the latter are apparently triggered to
attach to the capillary basement membrane. A “beach
head” of parietal epithelium is thereby established on the
tuft. This represents the beginning of a synechia or tuft
adhesion, the earliest “committed” lesion in the develop-
ment of segmental sclerosis (Fig. 2). It has been shown that
this may occur at several different sites in the glomerulus at
one time [31]. At the site of the attachment of parietal cells
to the capillary, a gap in the parietal epithelium comes into
existence. If the attached capillary remains patent and
perfused (which is frequently seen), filtration may continue
towards the cortical interstitium leading to the formation of
an expanding fluid-rich paraglomerular space replacing the
former basement membrane of the parietal epithelium.
Adjacent interstitial cells respond by proliferation creating
a continuous layer of thin sheet-like fibroblast processes
separating this newly established space from the intersti-
tium [31, 34].

Tuft adhesions have a strong tendency to grow. For
unknown reasons podocytes that are located at the flanks of
an adhesion tend to degenerate [28, 31, 34, 35, 122]. [Note:
Several mechanisms have been suggested to account for
this degeneration: (1) imbalanced mechanical strain on
podocytes that are partially attached to a movable, partially
to a fixed, tuft segment [51]; (2) exuberant lysosomal
uptake of proteins passing through a nearby damaged filter
[31]; (3) filtration into a paraglomerular space pushing
parietal cells towards the flanks of an adhesion [34]; and (4)
FGF-2 release from partially injured podocytes augmenting
podocyte damage [32, 105].] This allows the parietal epi-
thelium to further encroach onto the tuft by moving along
the denuded GBM to neighboring capillaries. If the pari-
etal cell has a more stable attachment to the GBM than
does the podocyte, then with constant small scale release
and reattachment of both cell types the parietal cell should
steadily spread out, displacing the podocytes. The initial
contact point (beach head) of the GBM eventually loses
contact with parietal cells and is pushed into the center of
the lesion as the adhesion enlarges. Inside an adhesion,
capillaries collapse or become occluded either by deposi-
tion of hyaline material or by microthrombosis.

Cell proliferation inside an adhesion generally does not
occur; rather, the total number of cells progressively de-
creases [31, 34, 35]. The final lesion of segmental sclerosis
consists of an adherent tuft area with collapsed and/or
hyalinized capillaries, a paucity of cellular elements, and
little if any deposition of collagen.

Thus, the essential aspect of this lesion is that it repre-

sents an irreversible loss of normal glomerular architecture,
resulting in a merging of the tuft with Bowman’s capsule
and a loss of the urinary space at this site. As just discussed,
there is evidence from several models that misdirected
filtration towards the cortical interstitium may lead to a
separation of the parietal epithelium from its underlying
basement membrane creating a paraglomerular space
spreading around the circumference of glomerulus. Follow-
ing this route the synechial process may encroach onto
further tuft areas, and—via the vascular pole, where all
lobules come together—to other lobules of the glomerular
tuft [31, 34]. Additional lobules may also become involved
by the formation of a second or a third adhesion at a new
site [31]. Eventually what started as segmental sclerosis
extends to the entire tuft, followed by organization into a
scarred glomerular remnant by cortical fibroblasts with
subsequent dissolution. That this process also occurs in
normal individuals is suggested by the progressive decrease
in glomerular number that is found with age [123–126].

The above-described mechanism of podocyte injury lead-
ing to podocyte loss/detachment and subsequent synechia
formation clearly explains the focal and segmental nature
of the early lesion, including the presence of sclerotic
lesions in low frequency in normal individuals. Although all
glomeruli are at risk of destabilization and adhesion for-
mation, with a low frequency of occurrence of each of the
multiple factors favoring synechia formation, only some of
the glomeruli will go on to form committed lesions, leading
to a focal distribution of FSGS lesions. The fact that a
critical area of exposed or bare GBM must exist for the
formation of the first irreversible pathologic change means
that the lesions will start within glomeruli at specific loci,
thus accounting for the segmental nature of the lesion. In
some models of renal damage, the segmental synechia is
most often seen near the vascular pole, while in others it
may be found at any site on the tuft circumference [127].
The former pattern is characteristic of models presumed to
have high intraglomerular pressures. The increased wall
tension will be greatest in the largest vessels, the first
capillary branches of the afferent arteriole [34, 128]. The
latter pattern is thought to be the result of damage to
podocytes anywhere on the tuft surface [31]. In addition,
the mechanism we have outlined explains some other
cardinal features of FSGS, such as the synergistic effect of
systemic hypertension and the inherent tendency toward
progression based on the vicious circle shown schematically
in Figure 3. We propose that the inability of the podocyte
for replication makes it the most likely cell type to be
responsible for the loss of structural stability of the glomer-
ulus in a variety of pathologic states. Podocyte injury and its
consequences are thus the starting point to segmental
glomerulosclerosis and eventual glomerular tuft destruc-
tion.
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Fig. 3. The vicious circle underlying the
development and progression of FSGS. If, in
the course of a renal disease, damage to the
glomerulus is such that there is a loss of
mesangial cells and podocytes (1), their
mechanical functions—counteracting the
expansile forces resulting from high glomerular
capillary pressures—are also lost and
destabilization of glomerular architecture may
result (2). If the damage is limited to the
endocapillary compartment, proliferation of
mesangial cells and endothelial cells may lead
to repair (3). Since the native tuft structure
cannot always be restored, local scars (areas of
solidified mesangial expansion) may together
with lesions involving the exocapillary
compartment, lead to more severe architectural
lesions aggravating existing podocyte damage
(4/5) and affect the adherence of podocytes to
the GBM. Bare areas may result (6). Protein
leakage through such defects of the filter may
exceed the capacity for uptake and lysosomal
degradation mechanisms of neighbouring
podocytes (7), eventually leading to spillage of
lysosomal enzymes into the cytoplasm and cell
death. Persistent defects in the visceral
epithelial cell layer, together with “bulging out”
of the destabilized capillaries, result in a high
probability of forming a tuft adhesion to
Bowman’s capsule (8a/8b). This event
establishes the definitive nidus for sclerosis
development, terminating in segmental sclerosis
and eventually the loss of the entire nephron
(9). Severe glomerular injury will trigger
interstitial proliferation by several mechanisms
(excessive protein reabsorption by proximal
tubules leading to the release of various
proinflammatory mediators [15, 129–132];
misdirected filtration into the periglomerular
interstitium) resulting in the replacement of
damaged nephrons by fibrosis (10a/b) which
may itself contribute to progression (11). The
loss of nephrons will impose an increasing
workload on the remaining nephrons and
eventually necessitate higher filtration pressures
(12) [133], exacerbating the original situation
(13) and further weakening podocyte adherence
to the GBM (5). The loss of intrinsic
ultrafiltration capacity within a single
glomerulus (due to foot process broadening,
segmental collapse, etc.) will also result in an
adaptive rise in capillary pressure in that same
glomerulus via the tubuloglomerular feedback
mechanism, with the same damaging results.
There is a second entrance into the circle.
Systemic hypertension when transmitted to the
glomerulus (14), may start the cycle by
overextending and thus damaging the
supporting systems of the tuft. This will
produce similar types of architectural lesions
(13) without any preceding inflammatory or
toxic cell injuries. The resulting podocyte
lesions will develop secondarily. An example for
this type of sclerosis development is the Fawn-
hooded rat [34]. The vicious circle outlined by
this diagram provides a mechanism at the
cellular and glomerular level for the self-
perpetuating model of renal destruction
advanced by Brenner and colleagues [133].
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