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Recently, time-varying mesh (TVM), which is composed of a sequence of mesh models, has received considerable interest due
to its new and attractive functions such as free viewpoint and interactivity. TVM captures the dynamic scene of the real world
from multiple synchronized cameras. However, it is expensive and time consuming to generate a TVM sequence. In this paper,
an editing system is presented to reuse the original data, which reorganizes the motions to obtain a new sequence based on the
user requirements. Hierarchical motion structure is observed and parsed in TVM sequences. Then, the representative motions
are chosen into a motion database, where a motion graph is constructed to connect those motions with smooth transitions. After
the user selects some desired motions from the motion database, the best paths are searched by a modified Dijkstra algorithm to
achieve a new sequence. Our experimental results demonstrate that the edited sequences are natural and smooth.
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1. Introduction

Over the past decade, a new media called time—varying
mesh (TVM) in this paper has received considerable interest
from many researchers. TVM captures the realistic and
dynamic scene of the real world from multiple synchro-
nized video cameras, which includes a human’s shape and
appearance as well as motion. TVM, which is composed of
a sequence of mesh models, can provide new and attractive
functions such as free and interactive viewpoints as shown
in Figure 1. Potential applications include movies, education,
CAD, heritage documentation, broadcasting, surveillance,
and gaming.

Many systems to generate TVM sequences have been
developed [1–4], which made use of multiple cameras. The
main difference between these systems is in their generating
algorithms. A recent comparison study is reported by Seitz
et al. [5]. Each frame in TVM is a 3D polygon mesh, which
includes three types of information: the positions of the
vertices, represented by (x, y, z) in a Cartesian coordinate
system, the connection information for each triangle that
provides topological information of the vertices as shown
in Figure 1(d), and the color information attached to each

vertex. Two sample frames are given in Figures 1(a)–1(c).
Table 1 shows the lengths of our original sequences from
four people. The frame rate is 10 frames per second.
“Walk” sequence lasts about 10 seconds, “Run” sequence lasts
about 10 seconds, and “BroadGym” sequence is broadcast
gymnastics exercise, which lasts about 3 minutes.

There are several challenging issues in our TVM data.
For instance, each frame is generated independently. There-
fore, the topology and number of vertices vary frame by
frame, which poses the difficulty in utilizing the temporal
correspondence. TVM contains noise, which requires the
proposed algorithms to be robust. Another issue is the
algorithm efficiency to deal with the huge data. As shown in
Table 1, average vertices in a frame are more than 15000.

In conventional 2D video, it is demonstrated that video
editing has been widely used. Many technologies have been
developed to (semi-)automatically edit the home video such
as AVE [6]. In the professional field of film editing, video
editing such as montage is surely necessary, which is still
implemented mainly by experts using some commercial soft-
wares such as Adobe Premiere. Similarly, editing is necessary
in TVM sequences because it is very expensive and time con-
suming to generate a new TVM sequence. By editing, we can
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(a) Frame no. 0
Front view

(b) Frame no. 30
Front view

(c) Frame no. 30
Back view

(d) Part in detail
from frame no. 30

Figure 1: Sample frames in TVM; (a) a sample frame in the front view, (b) another sample frame in the front view, (c) the same frame as
(b) in the back view, (d) part of the frame in (c).

Table 1: The number of frames and average number of vertices
(shown in parenthesis) in TVM sequences.

Person A Person B Person C Person D

Walk 105(16991) 105(15232) 117(16163) 113(16465)

Run 106(17101) 107(14972) 96(16025) 103(16051)

BroadGym1981(17681) 1954(15233) 1981(16149) 1954(16834)

reuse the original data for different purposes and even realize
some effects which cannot be performed by human actors.

In this paper, a complete system for motion editing
is proposed based on our previous works [7–10]. The
feature vectors proposed in our previous work [7] are
adopted, which is based on histograms of vertex coordinates.
Histogram—based feature vectors are suitable for the huge
and noisy data of TVM. Like video semantic analysis [11],
several levels of semantic granularity are observed and parsed
in TVM sequences. Then, we can set up the motion database
according to the parsed motion structure. Therefore, the user
can select the desired motions (called key motions) from the
motion database. A motion graph is constructed to connect
the motions with smooth transitions. Then the best paths
are searched between key motions by a modified Dijkstra
algorithm in the motion graph to generate a new sequence.
Because the editing operation is on the motion level, the user
can edit a new sequence easily. Note that the edited sequence
is only reorganized from the original motions, namely, no
new frame is generated in our algorithm.

The remainder of this paper is organized as follows.
First, some related works are introduced in Section 2.
Section 3 describes the feature vectors extracted from mesh
models. Section 4 presents the process of parsing the motion
structure. Then, motion database is set up in Section 5.
Section 6 describes the concept and construction method
of motion graph followed by Section 7, where the modified
Dijkstra algorithm is proposed to search the best paths in
motion graph. Our experimental results are reported in
Section 8. Finally comes our conclusions and future work in
Section 9.

2. RelatedWorks

2.1. Related works. Motion editing of TVM remains an
open and challenging problem. Starck et al. proposed an

animation control algorithm based on motion graph and
a motion-blending algorithm based on spherical matching
in geometry image domain [12]. However, only genus-zero
surface can be transfered into geometry image, which limits
the adoption in TVM.

Many editing systems are reported on 2D video edit-
ing. The CMU Informedia system [13] was a fully auto-
matic video-editing system, which created video skims that
excerpted portions of video based on text captions and scene
segmentation. Hitchcock [14] was a system for home-video
editing, where original video was automatically segmented
into the suitable clips by analyzing video content and
users dragged some key frames to the desired clips. Hua
et al. [6] presented a system for home-video editing, where
temporal structure was extracted with an importance score
for each segment. They also considered the beats and tempos
in music. Schodl et al. proposed an editing method in
[15], where “video texture” was extracted from video and
reorganized into the edited video.

Besides 2D video editing systems, motion capture data
editing is another related research topic [16–19], where
motion graphs are widely applied, proposed independently
by Arikan and Forsyth [16], Lee et al. [17], and Kovar et al.
[18]. A motion graph for motion capture data is a graph
structure to organize the motion capture data for editing.
In [16, 17], the node in motion graph is a frame in motion
capture data and an edge is the possible connection of two
frames. In [18], the edge is the clip of motion and the node is
the transition point which connects the clips. A cost function
is employed as the weight of the edge to reflect how good the
motion transition is. Motion blending is also used to smooth
the motion transition in [17, 18]. The edited sequence is
composed by the motion graph with some constraints and
some search algorithms. Lai et al. proposed a group motion
graph by a similar idea to deal with the groups of discrete
agents such as flocks [19]. The larger the motion graph is,
the better the edited sequence may be, because the variety of
motions contained in the motion graph is higher. However,
the search algorithm will take longer time in a larger motion
graph.

2.2. Originality of our Motion Graph. A directed motion
graph in this paper is defined as G(V ,E,W), where the node
vi ∈ V is a motion in the motion database, the edge ei, j ∈ E is
the transition from the node vi to vj , and the weight wi, j ∈W
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is the cost to transit from vi to vj (detailed in Section 6).
A cost function for a path is defined in Section 7. In our
system, the user selects some motions, which are called key
motions in this paper. The best path between two neighboring
key motions is searched in the motion graph. Therefore, the
edited sequence is obtained after finishing the searches.

Obviously, our motion graph is different from those in
motion capture data. In our motion graphs, a node is a
motion instead of a frame, which reduces greatly the number
of nodes in motion graph. Therefore, we need to parse the
motion structure. To reduce the motion redundancy, the best
motion is selected into the motion graph in each motion
type, which results in the reduction of the size of motion
graph. Therefore, only a part of frames in original frames is
utilized in our motion graph, which is different from other
motion graphs [16–19]. In addition, TVM is represented
in mesh model. Unlike motion capture data, mesh model
has no kinematic or structural information. Therefore, it is
difficult to track and analyze the motion.

3. Feature Vector Extraction

As described in Section 1, TVM has a huge amount of data
without explicit corresponding information in the temporal
domain, which makes geometric processing (such as model-
based analysis and tracking) difficult. On the other hand, a
strong correlation exists statistically in the temporal domain,
therefore, statistical feature vectors are preferred [7, 20]. We
adopt the feature vectors that were proposed in [7], where
the feature vectors are the histograms of the vertices in
the spherical coordinate system. A brief introduction is as
follows.

Among the three types of information available in mesh
models, vertex positions are regarded as essential informa-
tion for shape distribution. Therefore, only vertex positions
are used in the feature vector [7]. However, vertex positions
are unsuitable for reflecting both translation and rotation in
the Cartesian coordinate system. In [7], the authors proposed
to transform them to the spherical coordinate system. To
find a suitable origin for the whole sequence, the center of
vertices of the 3D model in (and only in) the first frame is
calculated by averaging the Cartesian coordinates of vertices
in the first frame. Then, the Cartesian coordinates of vertices
are transformed to the spherical coordinates frame-by-frame
by using (1) after shifting to the new origin.

ri(t) =
√
x2
i (t) + y2

i (t) + z2
i (t),

θi(t) = sign (yi(t))· arccos

(
xi(t)√

x2
i (t) + y2

i (t)

)
,

φi(t) = arccos
(
zi(t)
ri(t)

)
,

(1)

where xi(t), yi(t), and zi(t) are the Cartesian coordinates with
the new origin for the ith vertex of the tth frame. ri(t), θi(t),
and φi(t) are the spherical coordinates for the same vertex.
sign is a sign function.

A histogram is obtained by splitting the range of the data
into equally sized bins. Then, the points from the data set
that fall into each bin are counted. The bin sizes for r, θ,
and φ are three parameters in the feature vectors, which are
kept the same for all frames in a sequence. That causes the
bin numbers J(σ , t) in (3) to be different in different frames.
Therefore, the histograms of the spherical coordinates are
obtained, the feature vectors for a frame comprise three
histograms, for r, θ, and φ, respectively.

With the feature vectors, a distance is defined in (2),
called a frame distance in this paper. The frame distance is
the base of our algorithms:

d f (t1, t2) =
√
d2
f (r, t1, t2) + d2

f (θ, t1, t2) + d2
f (φ, t1, t2), (2)

where t1, t2 are the frame IDs in the sequence, d f (t1, t2)
is the frame distance between the t1th and the t2th frames,
and d f (σ , t1, t2) is the Euclidean distance between the feature
vectors, calculated by

d f (σ , t1, t2) =

√√√√√
max (J(σ ,t1),J(σ ,t2))∑

j=1

(
h∗σ , j(t2)− h∗σ , j(t1)

)2
, (3)

where σ denotes r, θ, or φ. d f (σ , t1, t2) is the Euclidean
distance between histograms in the t1th frame and the t2th
frame with respect to σ . J(σ , t) denotes the bin number of
histogram in the tth frame for σ . h∗σ , j(t) is defined as

h∗σ , j(t) =
{
hσ , j(t) j ≤ J(σ , t),

0 otherwise,
(4)

where hσ , j(t) is the jth bin in the histogram in the tth frame
for σ .

4. Hierarchical Motion Structure Parsing

Many human motions are cyclic such as walking and
running. There is a basic motion unit which repeats several
times in a sequence. If there are more than one motion types
in a TVM sequence, a basic motion unit will be transfered
to another after several periods such as from walking to
running. Therefore, we define a basic motion unit as the
term motion texton, which means several successive frames
in TVM that form one period of the periodic motion. And
several repeated motion textons will be called a motion
cluster. Thus, TVM is composed of some motion clusters,
and a motion texton is repeated several times in its motion
cluster. This is the motion structure of our TVM sequences
as shown in Figure 2.

An intuitive unit to parse the motion structure is a frame.
However, motion should include not only the pose of the
object but also the velocity and even acceleration of motion.
For example, two similar poses may have different motions
with inverse orientations. Therefore, we have to consider
several successive frames instead of a single frame. As shown
in Figure 2, motion atom is defined as successive frames in a
fixed-length window, which are our unit to parse the motion
structure. Another benefit from motion atom is that noise
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can be alleviated by considering several successive frames.
Some abbreviations will be used in this paper: motion atom
will be called as atom or MA, motion texton as texton or MT,
and motion cluster as cluster or MC. The motion is analyzed
in hierarchical fashion from MA to MC. Therefore, an atom
distance is defined to measure the similarity of two motion
atoms as

dA(t1, t2,K) =
K∑

k=−K
w(k)·d f (t1 + k, t2 + k), (5)

where w(k) is a coefficient of a window function with
length of (2K + 1). t1 and t2 are the frame IDs of the
atom centers, which show the locations of motion atoms
with (2K + 1) frames. dA(t1, t2,K) is the atom distance
between the t1th and the t2th atoms. In our experiment,
a 5-tap Hanning window is used with the coefficients of
{0.25, 0.5, 1.0, 0.5, 0.25} as it is popular in signal processing.
The window size should be larger than 3. The longer the
window is, the smoother the atom distances are. However,
due to the low frame rate (10 fps) in our sequence, five
frames are recommended for the window size, which equals
0.5 seconds. From now on, we will simplify dA(t1, t2,K) as
dA(t1, t2) since K is a fixed window length.

To parse the hierarchical motion structure, we have to
detect the boundaries of motion textons and motion clusters.
As shown in Figure 2, motion texton and motion cluster are
not in the same level. Namely, a motion cluster is composed
of a group of similar motion textons. Therefore, the main
idea to detect motion textons is that the first motion atoms
are similar in two neighboring motion textons that are in the
same motion cluster. And the main idea to detect motion
clusters is that there should be some motion atoms which
are very different from those in the previous motion cluster.
Figure 3 shows the procedure of motion structure parsing.
From the beginning of a sequence, a motion texton and a
motion cluster begin at the same time in the different levels.
For each motion atom, we will determine if it is the boundary
of a new motion texton or even a new motion cluster. When
a new MT or MC begins, some parameters will be updated. If
the current MA is similar to the first MA in the current MT,
a new MT should begin from the current MA. Therefore, the
atom distance dA(t, tfirst) between the current MA at t and
the first MA at tfirst in the current MT is calculated. Then,
if dA(t, tfirst) reaches the local minimum and the difference
between the maximum and minimum in the current MT
is large enough (since unavoidable noise may cause a local
minimum), a new motion texton is defined.

Figure 4 shows the atom distance dA(t, tfirst) in “Walk”
sequence by Person D, where all the motion textons are in a
motion cluster. Periodic change in Figure 4 shows the motion
textons repeat. A distance in the following equation is then
defined as texton distance, which is the atom distance between
the first and last atoms in the texton:

dT(Ti) = dA
(
tlast, tfirst

)
, (6)

where dT(Ti) is the texton distance for the ith texton, tfirst is
the first atom in the ith texton, and tlast is the last atom in the

Motion cluster (MC)

Motion texton (MT)

Motion atom (MA)

Frame

Time

Mesh
model
Feature
vector

Se
m

an
tic

gr
an

ul
ar

ity

· · ·

· · ·

· · ·

· · ·

· · ·

Hanning window

MT detector

MC detector

Figure 2: Hierarchical motion structure in TVM.
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ith texton. Texton distance measures how smooth the texton
repeats by itself.

On the other hand, if there is no similar MA to the
current MAs in the current MC, a new MC should begin
from the current MA. Therefore, a minimal atom distance
will be calculated as (7), which tries to find the most similar
MA in the current MC [tinf−C , tsup−T]:

dmin(t) = dmin(tinf−C , tsup−T , t
)

= min
tinf−C≤tk≤tsup−T

dA
(
t, tk

)
,

(7)

where tinf−C is the first MA in current MC. tsup−T is the last



EURASIP Journal on Advances in Signal Processing 5

0.1

0.15

0.2

0.25

0.3

0.35

d A
(t

,t
fi

rs
t)

0 20 40 60 80 100 120

Frame ID

Walk by person D

Figure 4: Atom distance dA(t, tfirst) from the first atom in its motion
texton in “Walk” sequence by Person D, the black points denote the
first atom in a motion texton.

MA in the previous MT. Then, if two successive motion
atoms satisfy (8), a new motion cluster is defined:

dmin(t − 1) > β,

dmin(t) > β,
(8)

where β is a threshold and set as 0.07 empirically in our
experiment. Equation (8) infer that the two motion atoms
are different from those in the current MC. We adopt two
successive MAs instead of one to avoid the influence of noise.
High precision and recall for motion cluster detection are
achieved as shown in Figure 5. β surely depends on the
motion intensity in two neighboring MCs. It should be set
as a smaller value in the sequence with small motions than
those with large motions. However, our experiments show
that 0.07 can achieve a rather high performance in the most
common motions as walking and running.

To initialize tinf−C and tsup−T , it is assumed that there are
at least two motion textons in a motion cluster. Therefore,
we detect the boundaries of MC after detecting two motion
textons and regard them as the initial reference range of
[tinf−C , tsup−T] in (7).

5. Motion Database

In Section 4, the hierarchical motion structure is parsed from
the original sequences. Since the motion textons are similar
in a motion cluster, we only select a representative motion
texton into our motion database to reduce the redundant
information. The requirement of the selected motion texton
is that it is cyclic or it is repeated seamlessly so that the user
can repeat such a motion texton many times in the edited
sequence. Therefore, we select the motion texton with the
minimal texton distance as shown in

T
opt
i = arg

Ti∈Cj

min dT
(
Ti
)
, (9)
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Figure 5: Precision and recall for motion cluster detection in
“BroadGym” sequences.

282 284 286 288 290 292 294 296 298

979 981 983 985 987 989 991 993 995 997

44 46 48 50 52

57 59 61 63 65 67 69

Figure 6: Samples of selected motion textons, only every two
frames are shown for simplicity.

where Ti and Cj are the motion texton and motion cluster.
dT(Ti) is the texton distance for the motion texton, defined
in (6). T

opt
i is the representative texton, which has minimal

texton distance. Figure 6 shows some examples of selected
motion textons, where we can see the motion textons are
almost cyclic.

6. Motion Graph

To construct a motion graph, we find a possible transition
between the motion textons in the motion database. A
transition is allowed if the transition between the two motion
textons (or two nodes in the motion graph) is smooth
enough. A complete motion graph is firstly constructed.
Then, some impossible transitions, whose costs are large,
are pruned to get the final motion graph. Therefore, a
reasonable cost definition is an important issue in motion
graph construction, which should be consistent with the
smoothness of transition.

Since the node is a motion texton, a transition frame
should be chosen in the motion texton. A distance of two
textons is defined as the minimal distance of any two frames
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in the two separate textons as

dV
(
Ti,Tj

) = min
ti∈Ti,t j∈Tj

d f
(
ti, t j

)
,

{
t∗i , t∗j

} = arg
ti∈Ti ,t j∈Tj

min d f
(
ti, t j

)
,

(10)

where Ti and Tj are two nodes in the motion graph. ti and t j
are two frames in the nodes Ti and Tj , respectively. d f (ti, t j)
is frame distance. dV (Ti,Tj) is the distance of two nodes,
called node distance. {t∗i , t∗j } are the transition frames in the
nodes Ti and Tj , respectively, which are calculated by (10).

Another factor that affects the transition smoothness
is the motion intensity in the node. By human visual
perception, a large discontinuity in transition is acceptable
if the motion texton has a large motion intensity, and vice
versa. An average frame distance in the node is calculated to
reflect the motion intensity of motion texton Ti:

d
(
Ti
) = 1

n
(
Ti
)− 1

·
∑

ti∈Ti&ti+1∈Ti

d f
(
ti, ti+1

)
, (11)

where n(Ti) is the number of frames in node Ti, d f (ti, ti+1)
is the frame distance between two neighboring frames, and
d(Ti) is the motion intensity of Ti. Thus, the ratio of node
distance and motion intensity is defined as the weight of the
edge e(i, j) in motion graph:

w
(
Ti,Tj

) =

⎧⎪⎪⎨
⎪⎪⎩

dV
(
Ti,Tj

)

d
(
Ti
) i /= j,

∞ i = j,
(12)

where w(Ti,Tj) is the weight of edge ei, j or the cost of
transition. Notice that the motion graph is a directed graph:
w(Ti,Tj) /= w(Tj ,Ti).

After calculating the weights for all edges, the complete
motion graph will be pruned. Considering a node vi in the
complete motion graph, all the edges for the node vi are
classified into two groups, one includes possible transitions
and another includes pruned transitions. The average weight
of all edges for vi is adopted as the threshold for the classifier.
However, a parameter is given for the user to control the size
of motion graph:

w
(
Ti
) = 1

N
(
Ti
)− 1

∑

Tj∈E(Ti)

w
(
Ti,Tj

)
, (13)

where N(Ti) denotes the number of edges which connect
with Ti, and E(Ti) denotes the set of edges which connect
with Ti. Then, the edge ei, j will be pruned if

w
(
Ti,Tj

) ≥ μw
(
Ti
)
, (14)

where μ is the parameter which controls the size of motion
graph.

After pruning the edges, the motion graph is constructed
as shown in Figure 7. Note that the IDs of two transition
frames are attached to each edge. And the motion graph is
constructed in an offline processing.

T1

T2

T3

Tk

Tn

Tk

··
·

· · ·

Motion texton

Valid edge

Pruned edge

Best path

Figure 7: Motion graph concept.

7. Motion Composition

Motions are composed in an interactive way by the desired
motion textons. The selected motion textons are similar to
the key frames in computer animation and therefore called
key motions. Between two key motions, there are many paths
in the motion graph. A cost function of the path is defined to
search the best path. The edited sequence is composed of all
the best paths searched in every two neighboring key motions
in order.

The perceptional quality of a path should depend on the
maximal weight in the path instead of the sum of all weights
in the path. For example, the quality of a path will become
bad if there is a transition with a very large cost even if
other transitions are smooth. Therefore, the cost function is
defined as

cost
(
p
(
Tm,Tn

)) = max
ei, j∈p(Tm,Tn)

w
(
Ti,Tj

)
, (15)

where p(Tm,Tn) is a path from the node vm to vn. Tm,Tn

are two key motions. However, by this definition, more than
one path may have the same costs. The best path is required
to be shortest, that is, it has the least edges. Then, given the
motion graph G(V , E, W) and two key motions Tm and Tn,
the problem of the best path can be represented as

p
(
Tm,Tn

)∗ = arg
G

min cost
(
p
(
Tm,Tn

))

s.t. p
(
Tm,Tn

)
is shortest.

(16)

Dijkstra algorithm can work in the problem of (16) after
some modifications. Algorithm 1 lists the algorithm, where
the part in italic font is the difference from the standard
Dijkstra algorithm. Lines 6, 15, and 17–19 are from the
requirement of the shortest path; lines 13 and 14 are from the
cost function in (15). The constraint in (16) does not change
the cost of the path. Therefore, the only difference from the
standard Dijkstra algorithm is our cost function of a path,
which uses the maximal weight in the path instead of the sum
of the weights. However, because the following property still
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(1) function Dijkstra(G, w, s)
(2) for each node v in V[G] // Initialize
(3) d[v] := infinity
(4) previous[v] := undefined
(5) d[s] := 0
(6) length[s] := 0
(7) S := empty set
(8) Q := V[G]
(9) while Q is not an empty set //Loop
(10) u := Extract-Min(Q)
(11) S := S union u
(12) for each edge (u, v) outgoing from u
(13) if max(d[u], w(u, v)) < d[v] // Cost function
(14) d[v] :=max(d[u], w(u, v))
(15) length[v] := length[u] + 1
(16) previous[v] := u
(17) else if max(d[u], w(u, v)) = d[v] //Shortest path
(18) if length[u] + 1 < length[v]
(19) length[v] := length[u] + 1
(20) previous[v] := u

Algorithm 1: Modified Dijkstra algorithm.

K
ey

m
ot

io
n

1
K

ey
m

ot
io

n
2

K
ey

m
ot

io
n

3

Figure 8: Three key motions in a case study, each row shows a key
motion.

holds, we can prove our modified Dijkstra algorithm in the
same way as proving the standard Dijkstra algorithm [21]:

cost (p(s,u)) ≥ cost (p(s, x)) if x ∈ p(s,u). (17)

8. Experimental Results

The original TVM sequences used in the experiments are
shown in Table 1. As described above, the user selects the
desired motions as key motions. At least, two key motions
are required. If more than two motions are selected, the
best paths will be searched in every two neighboring key
motions. And the ID indices of motion textons in the best
paths and their transition frames are calculated to render
the edited sequence. The final composite sequence is played
using OpenGL.

Key motion 1 Motion texton i Motion texton j

Key motion 3 Motion texton k Key motion 2

...

· · · · · ·

· · ·

Figure 9: Transitions (denoted by arrows) in two best paths.

In our experiments, the parameter μ is set as 0.9. As a
case study, Figure 8 shows the three key motions randomly
selected by the authors. And our modified Dijkstra algorithm
searches two best paths between the three key motions.
Figure 9 shows the transitions of the best paths. Our method
achieves natural transitions. In the attached video, the whole
edited video is played, where the transition is as fast as
possible but every frame in the motion texton is rendered
at least once before transition (as described in Section 5,
the motion textons are cyclic). It is demonstrated that the
realistic sequence is achieved.

In our experiments, it is observed that the best path does
not exist in some cases because the key motion is unreachable
from the previous key motion. The problem can be solved by
selecting a new key motion or a larger μ in (12). Although
a larger μ means more edges in the motion graph, the path
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may include some transitions with large weights so that the
motion blending is required, which is our future work.

Some extensions are possible in our system. For example,
the user can decide some forbidden motions in the edited
sequence. For all edges to the forbidden motions, their
weights are set as∞. Therefore, the cost of any path including
a forbidden motion will be∞.

Another issue is how to evaluate the performance of
the system, which is rather subjective. However, it is very
difficult to design the metric like PSNR in video coding
due to the absence of ground truth although it is surely
important and meaningful. No report is found in the
literature as [12, 16–18], leaving it an open question until
now. Generally speaking, it depends on the users and
applications: different users have different criteria in different
applications. Moreover, the edited sequence also depends on
the key motions and motion database. If a key motion has
too few edges to connect with, the edited sequence may suffer
from a worse quality.

9. Conclusions and FutureWork

In this paper, a system for motion editing has been proposed,
where the best paths are searched in the motion graph
according to the key motions selected by the users. In
the original sequences, the hierarchical motion structure is
observed and parsed. Then, a motion database is set up with
a graph structure. In our motion graph, the node is the
motion texton, which is selected from the motion cluster.
Therefore, the size of the motion graph is reduced. After the
user selects the desired motions, the best paths are searched
in the motion graph with a path cost by a modified Dijkstra
algorithm.

However, some improvements are possible. In the cur-
rent system, the length of edited sequence is out of control.
In (15), the length error should be considered if necessary. In
addition, motion blending at the transitions with large costs
will be useful as Kovar et al. [18] did. Motion textons cannot
be smoothly transited to others especially when the motion
database is relatively small. Also, we believe that the system
should take into account the graphical interface design.
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