View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com

Fournalf

i = SC'ENCE@D'RECT’ MATHEMATICAL
s . ANALYSIS AND
LSEVIER J. Math. Anal. Appl. 316 (2006) 601615 APPLICATIONS

www.elsevier.com/locate/jmaa

Existence of a global attractor for the parabolic
equation with nonlinear Laplacian principal part
in an unbounded domain

A.Kh. Khanmamedov

Department of Mathematics, Faculty of Sciences, Hacettepe University, Beytepe 06532, Ankara, Turkey
Received 7 October 2004
Available online 25 May 2005
Submitted by C.E. Wayne

Abstract

In this paper, we study the long-time behavior of solutions for the parabolic equation with non-
linear Laplacian principal partiR". We prove the existence of a global{(R"), Lo (R"))-attractor
whenn < p and the existence of a globdl£(R"), L,/ p)(R"))-attractor whem > p.
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1. Introduction

The subject of investigation of this paper is the existence of a global attractor for the
following initial-value problem:

n

0
=Y (I 1P 2u) + AP 20+ fw) =g(x),  (t.x) € Ry x R, (1)
i3 0%i
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u(0,x) =ug(x), x¢€R", 2

wherep > 2,1 >0, g(-) € Ly (RY),

np
[ilp—n+p’p/]’ n=p, (l 1 1)
q0 €4 (4, p'l, =p, -+ —=
( P/] n=p P p
(L. p'l, n<p,

and f (-,-) satisfies the following conditions:

fGeCHR™),  fC,00=0,  fi(x,u)=k(x), Y(x,u)eR"™ (3)
| fr e )| < e([k@)] + |l P2+ [u]"),
rzp—2 (n—pir<n(p—2)+2p, 4)

for somek(-) € Loo(R") N Ly (p—2)(R™).

The existence of a global attractor for Eq. (1) in a bounded domain, wked, g(-) =0
and f = ku, was studied in [1, p. 158]. Attractors in bounded domains for degenerate
parabolic equations witp-Laplacian and for porous medium type equations were investi-
gated in [2—7] and the references therein. In bounded domains, the asymptotic compactness
of the solutions—which plays an important role for the existence of a global attractor—
follows from the compactness of the Sobolev embeddings. This method cannot be applied
to unbounded domains, since in that case the embeddings are no longer compact.

In [8-10] global attractors for abstract evolution equations with monotone principal part
were studied. The results of these articles are also well applicable to bounded domains,
because either compact embeddings of spaces or the compactness of the semigroup was
assumed in the said articles.

The existence of global attractors for nondegenerate parabolic equations in unbounded
domains was investigated in [11,12] and has been established in weighted spaces. Later,
these results were extended for degenerate parabolic equations in unbounded domains (see,
for example, [13,14]). However, when studying in weighted spaces the initial data and
forcing term are usually assumed to be in corresponding weighted spaces. The idea of
using weights to prove the existence of global attractors in unbounded domains is also
used in [15] for nondegenerate parabolic equations. Some authors on the other hand, have
preferred studying attractors in spaces of bounded continuous functions (see, for example,
[16,17]).

The existence of the global attractor in(R") for single nondegenerate reaction dif-
fusion equation with forcing term from>(R") was—to our knowledge—first proved in
[18]. In that article the author used a suitable cut-off function for the proof (see also [19]).

In this paper, using a similar idea, we will show that the solutions of (1)—(2) are uni-
formly small at infinity for large time. This fact plays a key role in our result.

The paper is organized as follows: In Section 2, we derive some estimates and prove
some lemmas which will be used for the proof of the asymptotic compactness. In Section 3,
we present the proof of the asymptotic compactness and then establish our main result
(Theorem 2).
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2. Preliminaries

We denote the norms iw,}(R”) andL,(R") by || - |l1,, and]| - || ,, respectively, and
the inner product iL2(R™) by (,). We also define the operator

n

d _ _
Ap=—3" " (lpn " 2py) + Mol 20+ (. @) —k()g + 8
im0

acting from L, (0, T’ Wl(R")) to L,(0,T; W‘l(R”)) Then we can reduce problem
(1)—(2) to the problem
u; + Au+ku=0, u(0) = ug. (5)
It is easy to verify thatA is bounded, hemicontinuous, monotone, afié+ k7 is a
pseudomonotone operator fray (0, T'; Wl}(R")) toL,(0,T; W};l(R”)). Since
1 -1 1 -1
W,(R") W H(R") C L2(R") C W, (R") + W, *(R"),

for ug € La(R") there existw(-) € L,(0,T; WA(R") N W H(R™), w;() € L (0, T;
WI}(R") + W;l(R")) such thatw(0) = ug. Let w,(¢) = w1(t) + wa(z), wherews(-) €
Ly (0, T; Wa(R") andwa() € Ly (0, T; W, (R"). Definingv(-) = w(t) — [g wi(r) dx,

we obtain thaw(-) € L,(0, T; W[}(R"), v () eL,(0,T; W;l(R")) andv(0) = ug. Thus

for everyug € L2(R™) the problem (5) or (1)—(2) under condition (3)—(4) has a unique
solutionu € Loo(0, T; L2(R")) N L, (0, T; W;(R”)), ur€L,y(0,T; lel(R”)) (see, for
example, [20, Theorem 7.1, p. 232]), which satisfies the following equality:

%”um”; /|:Z”uxl(7:)”r"+)LHu(r)Hp /( (x,u(r))—g)u(‘r)dx:|d‘t

s Rn

> V=520, (6)

= Slu)3

and for everyug € WI}(R") the problem (1)—(2) under condition (3)—(4) has a unique
solutionu € Lo (0, T'; WI}(R")), u; € L2(0, T; L2(R™)), which satisfies the following in-
equality:

t
1 A
Y a1+ 2ol + [ (Fe0) = suw) s + [ o) 3ae
i=1 s

Rl’l

1
; Z”"‘xz (s)||p —||u(s)||p /( (x,u(s)) —gu(s)) dx, Vt=s>0, (7)

Rn

whereF (x,u) = fé‘ f(x, v)dv. Taking into account (3)—(4) from (6)—(7), we obtain that

1
||u(t) || 1p < :c(”u(s) Hz) 4+MRo, Vt>s2=>0, (8)
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wherec(-) is a monotone increasing function aRg is a constant, which depends onk
andg. Formally differentiating (1) with respect tothen multiplying byu, and integrating
over(0,t) x R", we have

t t
1 - _ _
E|Iut(t)||%+(p—1)2//|uxl.|1’ 2,2, dxdr+,\(p_1)//|u|p 242 dx d
i=1% R"

s Rn
t

—I—//.fu’(x,u)utzdxdté%Hu&s)!i, aet>s>0, 9)
s Rn
which together with (7) yields
1
)], < <1+ t_s)c(||u<s>||1,p), aes>s>0, (10)

So from (6)—(7) we obtain that the solution operafr)uo = u(t), t € R4, of the
problem (1)-(2) generates a semigroup on the spageR”) and W;(R”), which satisfies
the following properties:

(I) S():La(R") — La(R") for everyr >0 (S(t): WA(R") — WL(R") for every: > 0)
andS(t): La(R") — W,}(R") for everyt > 0; S(O)v = v for everyv € Lo(R") or
veWiR".

(n S¢+s)=S@¢)S(s)forr>0,s >0.
() S(1)v — S(to)v weakly in L2(R") N W1(R") (in W(R™)) ast — 1o for everyv ¢
La(R") (v € Wy(R™)).

Let B ={x: x € W,}(R"), lx]l1,, < Ro + 1}. Then the following lemma follows
from (8).

Lemma 1. Let us assume the conditio(®—(4)are satisfied and is a bounded subset of
L2(R™). Then there existg = ro(B) such thatS(t) B C B for everyr > 1.

Definition. A set A C WI}(R") is called a globalL2(R"), L, (R"))-attractor of the semi-
groupS(z), if it has the following properties:

(1) Ais compactinL,(R") and is bounded irW[}(R”).
(2) S@t) A= Aforeveryr >0.
(3) lim;— 400 SUP,c g iNfuea [IS(t)v — ull, = O for every bounded subsstof La(R").

To prove the asymptotic compactness of solutions, we will need the following lemma.

Lemma 2. Let us assume that conditior§8)—(4) are satisfied. Ifuyy — uo weakly in
WL(R") asm — oo, then

S(Hul — S(t)uo x-weakly inLoo (0, T: Wy (R")).
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%S(r)u{;’ — %S(z)uo weakly inL2(0, T; L2(R")),

Sul — S(t)uo weakly inWj(R”) for everyr > 0.

Proof. Let u, (t) = S(t)uy andu(t) = S(¢)ug. Sinceuy — up weakly in Wz}(R"), the
sequencéuy } is bounded inW,}(R”). Thus from (3), (4), and (7), the sequenées (¢)}
and{;’—tum(t)} are bounded irL.» (0, T; W[}(R”)) and inL»(0, T; L2(R™)), respectively.
Consequently, there is a subsequepeg} such that

Uy (1) = V(1) s-weakly in Lo (0, T'; W;(R”)),

D, (1) > Zv(t) weakly inLo(0, T; Lo(R™)), (11)
Al (1) = x () weaklyinL, (0, T; W};l(R”)) N L2(0, T; Lo(R™)).

Let us show thatlv = x. Letg(-) € C*°(R") be such that & ¢(x) < 1 and

o, =2
‘P(x)_{l, <1,

furthermore defing, (x) = ¢ (). Then from (11)—(11) we have
@rim, (1) > @rv(1)  strongly inLy(0, T; Lo(R")). (12)
Thus from (11)—(12) we obtain

T
Jm [ (At (0) = 400, o0 (0 = 00}t
0
T T
= 1 [ (At 0. im0}t = [ (0. rvi0)ar
0 0
T
= 1 [ (At 0 = 0. grtn, 0 = 97000} s =0 (13)
0

On the other hand, since

T
/(Aumk (t) — Av(D), @ritm (1) — @rv())dt
0

T
> [6 (0 o)}
0

p—2
3)6,'

d
—V
8)6[

p—2 9
x;

a
% v, (umk ) — U(t))a_xigor>dtv

| <'a—
1:10
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taking into account (11) and (13) in the last inequality, we get
U, (t) = v(t) strongly inL, (0, T; WI}(B(O, r))
and consequently
Aty (1) = Av(t)  strongly inL,(0,7; W, *(B(0,r))), (14)

whereB(0,r) = {x: x € R", |x| <r}. Sincer is an arbitrary positive number, (Lland
(14) yield Av(r) = x (¢t). Therefore passing to the limit and taking into account (11), we
have

vy + Av+kv =0, v(0) =uo

and by the uniqueness of solutions, we fird) = v(¢). This shows that any subsequence
of {S(t)ugy'} has ax-weakly convergent subsequencelig, (0, T'; W]}(R”)) and the limit

of any such subsequence is equalto)uo. Therefore, the sequen¢s(r)ugy'} x-weakly
converges t& (r)ug in Loo(0, T'; W;(R")) and the sequenc{%%S(t)ug’} weakly converges
to {2 S(t)uo} in L2(0, T; La(R™)), which yield thatS (t)uy — S(t)ug weakly inLa(R")+
WI}(R") for everyr € [0, T]. On the other hand, according to (7), for every [0, T'] the
sequencgS(¢)uy'} is bounded inWl}(R”). Thus we obtainS()uy — S(t)up weakly in
WI}(R") foreveryr [0, T]. O

3. Asymptotic compactness and a global attractor

In this section, we shall show the asymptotic compactness of solutions and then estab-
lish existence of a global attractor. To this end, we first prove the following lemmas.

Lemma 3. Assume the condition8)—(4) are satisfied, andB is a bounded subset of

WI}(R"). If {6,,} is a sequence iB weakly converging t® in WI}(R”), then for any
¢ >0andT > Othere exists &y = Tp(e, T, B) such that whenever> Ty,

limsup| S + T)0 — S0 — St +T)0 — S1)6 |, < e. (15)

Proof. Letv e W(R"). From (7) we have

2
dt dt
2

t t 1
d
f||S(r+T)v—S(t)v||§dt<T2//HES(1:+ET)U
0 00

<T%([vllp)- (16)
From (5) we obtain
t
%Hsa + Ty — S5+ /(AS(I +T)v — AS(T)v, S(x + T)v — S(1)v)dr

N
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t
+ /(k(S(t + T)v — S(0)v), S(r + THv — S(r)v)drt

N

1 2
=3 ISGs +T)v—S(s)v|5

for everys > s > 0 andv € W (R"). Using (16) and (17), we find

%HS(t+—T)&n——S(nemH§

t t
+ / f(AS(r + 1) — AS(T)0m, S(T + T)0 — S(T)0n)dT ds
0 s

t t
+ / /(k(S(r + T)0m — S(T)0m), S(t 4 T)0p — S(x)0)dT ds
0 s

2

T
< 7C(||B”l,p)»

wherer > s > 0 and||B||y,, =sUp,cp V1, p-
By Lemma 2 and compact embedding theorems, we have

t

’Jiinw/<AS(r)9m — AS(D)0, ¢ (S(T)6 — S(1)0))dT =0

N

and consequently

t
nJiLnoofHS(r)@m — S(r)@”ﬁvpl(B(o‘r)) dt =0,
N

which yields

m—0oQ

ot
liminf / /(AS(r + 1) — AS(T)0, S(T + T)0p — S(1)0) dT ds
0 s

t t
> //(AS(I +T)0 — AS(1)0, S(t + T)0 — S(1)0)dt ds.
0 s
As since a%(-) € Lo (R™), from (16) and (17) we have
t
/HS(I +T)Hv— S(t)v”ip dt <T%(|Bl1,), YveB,

and taking into account the last inequality and (19), we obtain

607

17

(18)

(19)

(20)
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m— 00

tt
liminf f /(k(S(r + T)0m — S(T)0), S(x + Ty — S(x)6)dT ds
0 s

t t
> //(k(S(r +T)0 — S(1)0), S(r + T)0 — S(v)6)dt ds. (21)
0 s

Also, taking into account (17), (20) and (21) in (18), we have
4 2 1 2
> |S+ T)6m — ()6 |5 — > IS¢t +1)0 — S)6]|5 < T (I Bllv.p).

which together with Lemma 1 yields (15).0

Lemma 4. Assume condition&3) and (4) hold. Let B be a bounded subset WI}(R"),
tm —> 00, {tm},_1 C [0,T] and {,,},_, C B. Then for anye > O there existsg =
ro(e, T) such that whenever> rq,

S + )0 = SO |1 0.1y < & (22)

Proof. Since B is bounded, by (7) we have sup supcp S®)011,, < oo. Therefore,
there exists a bounded subs#t of Wj(R”) such thatS(¢)0 € By, for everyt > 0 and
0 € B. Thus{S(ty, + ©)0n — S(tw)On};,_, has a subsequendg := St + )0, —
S(tm; )0m, Weakly converging irWl}(R”) toana € W;(R”). From Lemma 3 we have that,
if {¢v}7241 C Boandg, — ¢ weakly in#, then for any > 0 there exist do = To(e, 7, Bo)
such that

lim sup| S(To + ©)py — S(To)py — S(To+ 1)p + S(To)g |, < . (23)

For t,,, > To, since S(t,,, — To0)0m, € Bo, there is a subsequendg,} such that
{S(tm;, — To)Om,,} Weakly converges to some in W,}(R”). Then by Lemma 2, the
sequenceby, := {S(To + ©)S(tm;, — T0)0m;, — S(T0)S(tm,, — T0)0m,,} Weakly con-
verges toS(To + )¢ — S(To)g in WI}(R"). Hence from the uniqueness of the limit
we find thata = S(To + 1)¢ — S(To)p. Taking ¢, = S(tm, — T0)0m,, in (23), we ob-
tain limsup,_, , bk, — all2 < ¢ and consequently limipf, « ||bx — al2 = 0. In other
words, the sequencgs (1, + ©)0n — S(tw)0m},,_, has a subsequence strongly conver-
gent in Lz(R") and consequently the sequen&t,, + 7,)0n — S(tn)bm}5,_, also has

a subsequence strongly convergeniLi(R"). It can be seen in a similar way that every
subsequence dfS (1, + 1,)0n — S(tn)6m 5., has a subsequence strongly convergent in
L2(R™). Thus the setS(ty + tn)0n — S(tm)0m ;1 IS relatively compact inL.2(R") and
consequently for any > 0 there existsg = ro(e, T) such that whenever> rg,

|| S(tm + Tm)em - S(tm)em ||L2(R”\B(0,r)) < € (24)
for everym. On the other hand, from (1), (9) and (10) we have that for evenWI}(R"),

9 92 _
oSOV € Loo(8,00; La(R")), SZSOveLy (0,7; W H(R")),
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from which follows that(%S(z)v, ¥) is continuous oHé, 0o), for everyw € Lo(R") and
§ > 0 (see, for example, [21, Lemma 8.1, p. 275]), i%S(t)v has a trace irL2(R") for
everyr > 0. Then multiplying the equality

ad

E(S(tm + Tm)em - S(tm)em) + AS(tm + Tm)em - AS(tm)em

=kS(tm + tn)bn — kS ()0

by 1 - ¢)(Stn + Tm)0m — S(t,)0,) and taking into account (24), we get inequal-
ity (22). O

Let Sp(r) denote the semigroup generated by problem

n

- 0 , - o D - -

“t—Zg(l%l” 2i) + MilP %+ f(x, @) —k(x)d =0, (t,x) € Ry x R",
i=1 !

(0, x) =uo(x), xeR".

We now establish the estimate f8§(z).

Lemma 5. Assume condition&3) and (4) hold. Let B be a bounded subset WI}(R").
Then

f|||so(r)9| 7|7, dr <c(IBlyp). Ve=0, (25)

for everyd € B.

Proof. By (7), we obtain that

dr <c(IBllLy), V>0, (26)
2

! 2
/ 3(s (1)0)
a0
0
for every® € B. Now let us consider the following elliptic problem:

where h € Lo(R") N Wl;l(R”). Let h, € Cg°(R"), such thath, — h in L2(R") N
W;l(R”) and letw,, is the solution of

1P 2wy ) + Mw|P 2w + fx,w) —k(@w =h(x), xeR", (27)

- Z - ([wn) | Z (W), ) + AW PP + F (L W) = KW = i ().

(28)
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Thenw, — w in W;(R”). On the other hand, using techniques of [10,22] it is easy to
show thatw,, € Loo(R™). SO|wp|? 2w, € L2(R"), and multiplying both sides of (28) by
[ W |P~%w,,, we obtain
)
i3l 0xi
from which follows that there is a subsequerfag,, } such that

2p—-2 .
|wm,| 7~ — v weaklyinL,(R"),

2p-2|P w2, 2
W] » +)\”|wm| b ||p<C”hm||2v (29)
P

9 | |2p72—> 9 weaklyinL (R")
—|w — ,
o o yinty

which together with
w, — w  strongly inW;(R")

yieldsv = |w|??=2/P  and consequently from (29) we have the following estimate for the

solution of (27):

0

2p—2
S—lw| »

0x;

n

P 2p-2
> + [l 77 [ <ellnl3
i=1 p
The last inequality and (26) give us (25)0

Lemma 6. Assume the condition@)—(4) are satisfied, andB is a bounded subset of
WI}(R"). Then for anye > 0 there existsg = rg(e, B) such that whenever > rg and
t>0,

t
1 p
- / |S(x)6 — So(2)6 || Wik B 9T <€ (30)
0

for every6 € B.

Proof. Let6 € B, u(t) = S(¢)0, u(t) = So(¢)6 andv(t) = u(t) — u(¢). Then multiplying
both sides of equality

vt+Z (1 Puy, — i |P %) + A (JulP~2u — ||~ ?i)

+ f(x, u) — f(x, i)+ k(x)i = gx)
by (1 — ¢,)v and integrating ove(0, t) x R", we have

2
(L= @20 () |5+ / (o) ||€Vp1(R"\B(0,2r)) dr

WV
o

/ 1
2 p
<c(||B||1,,,)[||k|| p(R,l\B(O,,))+||g||Lq(Rn\B(O,,))+;}, vi

which yields (30). O
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Lemma 7. Assume the condition8)—(4) are satisfied, andB is a bounded subset of
WI}(R"). Then the seLtJ,>O S(t)B is relatively compact irW[}(B(O, r)).

Proof. Let{S(t)0m};,_ lCU,>OS(t)B Since by (7) the s€tS(#,,)0n },,_, is bounded in

WI}(R”), from Sobolev compact embedding theorems we have that tie,s&t,,)6,,}>>_;
is relatively compact inL,(R") and L»(R"). Thus there exists a subsequence
{0y S(tm,)0m, };= 1, Which converges strongly ih ,(R") andL2(R"). From (5) we have

(AS(th)va - AS(tm,L )em,u fﬂrS(fmv)va — @r S(tmﬂ)em“>
< 1SUim Y. — S, o, | m o, — 1 S(im, o, |

ad ad
+ Hgs(tmv)gmv - Es(tm#)gmu

||§0rS(tmv)9mv 2 S(tmﬂ)gmu ”2
2
and consequently

IS )b, = Stm,)Om,, | W(B(O.r))

< C3(||B||l,p) ||§0rS(tml,)9mu — ¢r S(tmu)em,l 2

1
+ ;C4(||B||l,p) ”(prs(tmv)emu - (prS(th)em,L »’

which gives relative compactness of the @?t;o S@)B in Wl}(B(O, r)). O

Now, based on the results established above, we can prove the asymptotic compactness
of S(r), which is included in the following theorem.

Theorem 1. Assume the condition8)—(4) are satisfied, and is a bounded subset of
W2 (R"). Then

(i) the set{S(t)0m o1 IS relat?vely compact irt,w/(n,p)_(R"), if n> p;
(ii) the set{S(1,)0n 154 is relatively compact irL o (R"), if n < p,

wheret,, — oo and{6,,}5°_; C B.

Proof. (i) Letn > p and By = Ur>o S(t)B. By (7), we haveBg is a bounded subset of
W2(R"). From (25) it follows that

/ 15006222 dr < (I Bollvp). Vi >0, (31)

n—p

for every® € Bp. On the other hand, from interpolation theorems we have

||So(f)9Hn/in ¢ So()0 ] 2 2y So(@o (32)
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wheres = % From (31)—(32) and (7) we obtain

p(d—s)

/“SO(I)QH ' dt < c(lBoll1,p)r 2D, Wi >0, (33)

for every6 € Bp. The last inequality together with (30) yields that for every O there
existrg = ro(e, Bg) andTy = To(e, Bp) such that whenever> rg andt > Ty

1/ »
;/HS(T)QHL%(R"\B(O,r))dT S¢é
0

for everyf € Bo, and consequently there is a sequefigg >, C [0, To] such that
|| S(tm + tm)em ||Lﬂ (R”\B(O,r)) < E. (34)

From (22), (34) and Lemma 7 we obtain relative compactness of tH&&g06,,}>>_; in
Lup/(u—p) (R").
(i) Let n < p. Since in the case < p the theorem follows from embeddiﬁ@l}(R”) C
L (R™), we present the proof for = p. In this case by repeating above procedure, we
obtain that the S€tS(#,,)0, ), is relatively compact i, (R") for everyg > p. Letg)=

L. and choosg such thay > g, j > 1 and qpq‘zo > 1. Also letu,, (x) = S(ty)6m

andg,, (x) = maxu,, (x) —r, 0}. From (1) we have

—Z (OO 2ty ) + Mt |72t + £ (8, )

9
=g(x)— 8_S(tm)9m- (35)
t
Multiplying (35) by ¢,,, (x) and integrating oveR”, we have
lgmlly , < c1(llBolls,p) lgmll2 + c2llgmllyy. m=1.2,....

Letting A" = {x: x € R", u,,(x) > r} and using the last inequality, we obtain

plg=1 rg=1
lgm I < (MmesA)") ¢ llgmll§ < (mesA)) ¢ CIlfpmlllp

rlg— g—2
< c1(IBollxp) (mesa”) “T g, I, (mesa™) 5
a-4p

+02||<Pmllq(mesA’”) q’; (megAm) “aqf
< ca(l1Bollnp) lum 1, p[(MesA?)PH o (mesam) P27, (36)

_ ’
—2 andaz = 1"

wheres; = == — = =1
1= 2pq pqqé

_1 g
q.Smce

1
mesA;” < r_p |2t ”ﬁ
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letting § = min{§1, 82}, from (36), we obtain

llom 11 < (Il Boll1, p, ro) (mesa™) ) (37)

foreveryr > rg>0andm =1,2,.... Applying Lemma 5.1 from [22] to (37), we have

1+
um(x) <ro+

)
k) 1 I+5
[C(IIBolll,p,ro)]li‘*[/(um —ro)dX} "

AW!
o
<c(llBolly,p,r0,8) foraexeR"andm=1,2,.... (38)

Sincev,, (x) = —u, (x) is the solution of the equation similar to (35) repeating the above
procedure, we obtain

U (%) < c(||Bo||1,p, 0, 8) foraexeR"andm =12, ...,
which together with (38) yields,, € Lo (R") and sup, [lu |lcc < 00.
Similarly letting ¢, (x) = maxXu,, (x) — ug(x) — r, 0}, we get

1 1
lomellz < c(I1Bollz,p) (MesA?®) gl

P 1+ 1
< c(IIBolln,p) (MesA”™ ) ™ u,, — w137, (39)

whereA;”k ={x: x€R", up(x) —ur(x) >r}andv = 4=2 _ % Applying Lemma 5.1

g—
2pq
from [22] to (39), we have
U (x) — ug(x)

1+56 1 1 5
Srot+ — [c(I1Bollz, p) 7% Motm — urll [ / (Um — uk —ro)dxi|

Ak
_1
<ro+c(IBollsp, 70, 8) lum —ux |y fora.ex e R”,
and consequently
_1
lum — urllooc < ro+ c(llBoll1. p» ro, 8) llem — ully™ (40)

for everyro > 0. Since as mentioned above the ée},} > ; is relatively compact in

L, (R™), from (40) follows that this set is relatively compactlig,(R"). O

Let
A= [U S(r)%},
20-1>7

where[-] is the weak closure imV,}(R”) and®B is from Lemma 1.
Now we can prove our main result.
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Theorem 2. Assume the conditior{8)—(4) are satisfied. Then

(i) Aisaglobal(La(R"), Lyp/m—p)(R™))-attractor of S(z), if n > p;
(i) Aisaglobal(L2(R"), Loo(R™))-attractor of S(¢), if n < p.

Proof. To prove the invariantness of let us first show that

peA = 3T, —>o0 and 3I6,}_; C B suchthat
S(tm)0m — ¢ weakly in W1 (R"). (41)

Letn > p (the proof is similar in the case< p). From Theorem 1 we have that for any
¢ > 0 there exist, > 0 andr, > 0 such that

Jsos

t>t,

€
< 3
L%(R”\B(O»Ve))

On the other hand, by Lemma 7 the @,t% S(t)B is relatively compact irW[}(B(O, re)).
Then, sinceg € [U,s,, S()B], there existsy, € U, S(1)®B such that we have
lo — Yell pnyin—p) < &. Consequently there exig}, — oo and{6,}>_; C B such that

S(tm)bm — @ strongly in L,,,u—p (R"). Taking into account boundedness of the se-
quUeNce(S ()0 Yooy In W (R™), we obtain (41).

Since by Lemma 2 the operat6§(r) is weakly continuous irW[}(R”), from (41) we
find thatS(r).A = A for everyr > 0. The attracting property ofl follows from Lemma 1
and Theorem 1. O
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