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Abstract

We develop the symmetric interior penalty discontinuous Galerkin (DG) method for the time-dependent Maxwell equations in
second-order form. We derive optimal a priori error estimates in the energy norm for smooth solutions. We also consider the case of
low-regularity solutions that have singularities in space.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The development of new more sophisticated algorithms for the numerical solution of Maxwell’s equations is dictated
by increasingly complex applications in electromagnetics. In 1966, Yee [28] introduced the first and probably most
popular method, the finite difference time domain (FDTD) scheme, which is simple and efficient. However, the FDTD
scheme can only be applied on structured (Cartesian) grids and suffers from the inaccurate representation of the solution
on curved boundaries (staircase approximation) [2,25]. Moreover, higher order FDTD methods are generally difficult
to implement near interfaces and boundaries.

In contrast, finite element methods (FEMs) easily handle complex boundaries and unstructured grids, even when
higher order discretizations are used. They also provide rigorous a posteriori error estimates which are useful for
local adaptivity and error control. Different FE discretizations of Maxwell’s equations are available, such as the edge
elements of Nédélec [20], the node-based first order formulation of Lee and Madsen [16], the node-based curl–curl
formulation of Paulsen and Lynch [21], or the node-based least-squares FEM by Jiang et al. [14]—see also Monk [17].

Edge elements are probably the most satisfactory from a theoretical point of view [18], in particular because they
correctly represent singular behavior at reentrant corners. However, they are less attractive for time-dependent compu-
tations, because the solution of a linear system is required at every time iteration. Indeed, in the case of triangular or
tetrahedral edge elements, the entries of the diagonal matrix resulting from mass-lumping are not necessarily strictly
positive [8]; therefore, explicit time stepping cannot be used in general. In contrast, nodal elements naturally lead to a
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fully explicit scheme when mass-lumping is applied both in space and time [8], but cannot correctly represent corner
singularities in general.

Discontinuous Galerkin (DG) FEM offer an attractive alternative to edge elements for the numerical solution of
Maxwell’s equations, in particular for time-dependent problems. Not only do they accommodate elements of various
types and shapes, irregular non-matching grids, and even locally varying polynomial order, and hence offer great
flexibility in the mesh design, but they also lead to (block-) diagonal mass matrices and therefore yield fully ex-
plicit, inherently parallel methods when coupled with explicit time stepping. Indeed, the mass matrix arising from
a DG discretization is always block-diagonal, with block size equal to the number of degrees of freedom per ele-
ment; hence, it can be inverted at very low computational cost. In fact, for constant material coefficients, the mass
matrix is truly diagonal for a judicious choice of (locally orthogonal) shape functions. Because continuity across
element interfaces is weakly enforced merely by adding suitable bilinear forms (so-called numerical fluxes) to the stan-
dard variational formulation, the implementation of DG–FE methods is straightforward within existing FE software
libraries.

For first-order hyperbolic systems, various DG FEM are available. In [7], for instance, Cockburn and Shu use a
DGFEM in space combined with a Runge–Kutta scheme in time to discretize hyperbolic conservation laws. In [15],
Kopriva et al. developed discontinuous Galerkin methods, which combine high-order spectral elements with a fourth
order low-storage Runge–Kutta scheme. Warburton [26], and Hesthaven and Warburton [11] used a similar approach for
their Runge–Kutta discontinuous Galerkin (RKDG) method, which combines high-order spatial accuracy with a fourth
order low-storage Runge–Kutta scheme. While successful, their scheme does not conserve energy due to upwinding.
Fezoui et al. [9] used central fluxes instead, yet the convergence rate of their scheme remains sub-optimal. Recently,
Chen et al. developed a high-order RKDG method for Maxwell’s equations in first-order hyperbolic form, which
achieves high-order convergence both in space and time by using a strong stability preserving (low storage) SSP–RK
scheme [3]. By using locally divergence-free polynomials Cockburn, Li, and Shu developed a locally divergence-free
DG method for the first-order Maxwell system [6].

For the second order (scalar) wave equation Rivière and Wheeler proposed a nonsymmetric formulation, which
required additional stabilization for optimal convergence [23,24]. A symmetric interior penalty DG FEM was first
proposed by the authors in [10], where optimal convergence rates in the energy norm and in the L2 norm were shown;
the usefulness of the method was also demonstrated via numerical experiments. Recently, Chung and Engquist [4]
proposed a hybrid DG/continuous FE approach for the acoustic wave equation.

Here, we propose and analyze the symmetric interior penalty DG method for the spatial discretization of Maxwell’s
equations in second order form. After stating the model problem in Section 2, we describe the interior penalty DG
variational formulation in Section 3. In Section 4, we state optimal a-priori error bounds in the energy norm. In the
case of solutions with smoothness beyond H 1, the error bound (Theorem 2) holds for arbitrary DG–FE discretiza-
tions, whereas in the case of lower regularity, the error bound (Theorem 3) only holds for conforming meshes. All
proofs and technical approximation results are provided in Section 5. Finally, we end with some concluding remarks
in Section 6.

2. Model problem

The evolution of a time-dependent electromagnetic field E(x, t), H(x, t) propagating through a linear isotropic
medium is determined by Maxwell’s equations

�Et = ∇ × H − �E + j,
�Ht = −∇ × E.

Here, the coefficients �, �, and � denote the relative magnetic permeability, the relative electric permittivity, and the
conductivity of the medium, respectively. The source term j corresponds to the applied current density. By eliminating
the magnetic field H, Maxwell’s equations reduce to a second-order vector wave equation for the electric field E

�Et t + �Et + ∇ × (�−1∇ × E) = jt .

If the electric field is eliminated instead, one easily finds that the magnetic field H satisfies a similar vector wave
equation.
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Thus, we shall consider the following model problem: find the (electric or magnetic) field u(x, t), which satisfies

�ut t + �ut + ∇ × (�−1∇ × u) = f in � × J ,

n × u = 0 in � × J ,

u|t=0 = u0 on �,

ut |t=0 = v0 on �. (1)

Here, J = (0, T ) is a finite time interval and � is a bounded Lipschitz polyhedron in R3 with boundary � = �� and
outward unit normal n. For simplicity, we assume � to be simply connected and � to be connected. The right-hand side f
is a given source term in L2(J ; L2(�)3), where Lp(J ; Hs(�)) denotes the standard Bochner space of (time-dependent)
functions whose ‖ · ‖s,� Sobolev-norm is p-integrable in time. The standard inner product in L2(�)3 is denoted by
(u, v) := ∫

� u · v dx.
The functions u0 and v0 are prescribed initial data with u0 ∈ H0(curl; �) and v0 ∈ L2(�)3, where H0(curl; �)

denotes the subspace of functions in

H(curl; �) = {v ∈ L2(�)3: ∇ × v ∈ L2(�)3},

which have zero tangential component on ��, the boundary of �. Furthermore, we assume that �, � and � are scalar
positive functions that satisfy

0 < �� ��(x)��� < ∞, 0 < �� ��(x)��� < ∞, x ∈ �,

and

0��(x)��� < ∞, x ∈ �,

respectively. For simplicity, we also assume that � is piecewise constant.

3. DG discretization

We shall now discretize Maxwell’s equations in space using the interior penalty DG method. First, we consider
shape-regular meshes Th that partitions the domain � into disjoint tetrahedral or affine hexahedral elements {K}, such
that � = ⋃

K∈Th
K . The diameter of element K is denoted by hK , and the mesh size h is given by h = maxK∈Th

hK .
We assume that the partition is aligned with the discontinuities of the coefficient � and that the local mesh sizes are of
bounded variation, that is, there exists a positive constant �, which depends only on the shape-regularity of the mesh,
such that �hK �hK ′ ��−1hK , for all neighboring elements K and K ′. We denote by FI

h the set of all interior faces,
by FB

h the set of all boundary faces, and set Fh = FI
h ∪ FB

h .
For a given partition Th of � and an approximation order ��1, we wish to approximate u(·, t) in the finite element

space

Vh := {v ∈ L2(�)3: v|K ∈ S�(K)3, K ∈ Th},

where S�(K) is the space P�(K) of polynomials of total degree at most � on K, if K is a tetrahedron, and the space
Q�(K) of polynomials of degree at most � in each variable on K, if K is a parallelepiped.

We consider the following (semi-discrete) DG formulation of (1): find uh: J × V h → R such that

(�uh
tt , v) + (�uh

t , v) + ah(uh, v) = (f, v), v ∈ Vh, t ∈ J ,

uh|t=0 = �hu0,

uh
t |t=0 = �hv0. (2)



378 M.J. Grote et al. / Journal of Computational and Applied Mathematics 204 (2007) 375–386

Here, �h denotes the L2-projection onto Vh, while the discrete bilinear form ah, defined on Vh × Vh, is given by

ah(u, v) :=
∑

K∈Th

∫
K

�−1(∇ × u) · (∇ × v) dx −
∑

f ∈Fh

∫
f

�u�T · {{�−1∇ × v}} dA

−
∑

f ∈Fh

∫
f

�v�T · {{�−1∇ × u}} dA +
∑

f ∈Fh

∫
f

a�u�T · �v�T dA.

We denote by �v�T and {{v}}, respectively, the tangential jumps and averages of a DG function v across interior faces;
cf. [12,13]. On boundary faces we set �v�T := n × v and {{v}} := v.

The function a penalizes the jumps of u and v over the faces of the triangulation. To define it, we first introduce the
function h and m by

h|f =
{

min{hK, hK ′ }, f ∈ FI
h , F = �K ∩ �K ′,

hK, f ∈ FB
h , f = �K ∩ ��,

m|f =
{

min{�K, �K ′ }, f ∈ FI
h , f = �K ∩ �K ′,

�K, f ∈ FB
h , f = �K ∩ ��.

Here, we denote by �K the restriction of the piecewise coefficient � to element K. On each f ∈ Fh, we then set

a|f := �m−1h−1.

In Lemma 5 we shall show that there is a positive constant �min, independent of the local mesh sizes and the coefficient
�, such that for ���min the bilinear form ah is coercive. Hence the DG approximation of (1) is well defined. We note
that larger values of � result in a more restrictive CFL condition in (explicit) time discretizations of (2).

Remark 1. When the interior penalty DG method is used for time-dependent computations, the FE solution consists
of a superposition of discrete eigenmodes. Because of symmetry, the energy of the semi-discrete formulation (2) is
conserved, so that all the modes neither grow nor decay. For eigenvalue computations, Buffa and Perugia [1] recently
proved that the interior penalty DG discretization of the Maxwell operator is free of spurious modes: the discrete
spectrum will eventually converge to the continuous spectrum, as h → 0. Nonetheless, on any fixed mesh some of
the discrete eigenmodes will not correspond to physical modes. Hesthaven and Warburton [11], and Warburton and
Embree [27] showed that larger values of the penalty parameter in central flux or local discontinuous Galerkin (LDG)
discretizations increase the separation between spurious and physical eigenmodes. Alternatively, if upwinding is used
some of the spurious modes will be damped as well.

Clearly, as the mesh is refined, the energy present in the spurious modes will decrease and eventually vanish, as the
numerical solution obtained with the interior penalty DG method converges to the exact solution; see Section 4.

4. A priori error bounds

In this section we state optimal a priori error bounds with respect to the DG energy norm. To that end, we set
V(h) := H0(curl; �) + Vh and introduce the semi-norm

|v|2h :=
∑

K∈Th

‖�−1/2(∇ × v)‖2
0,K +

∑
f ∈Fh

‖a1/2�v�T ‖2
0,f .

The DG energy norm is then defined by

‖v‖2
h := ‖�1/2v‖2

0,� + |v|2h.

For functions v ∈ H(curl; �) it coincides with the standard energy norm. We further define the norms

‖v‖Lp(J ;V(h)) =
{(∫

J
‖v‖p

h dt
)1/p

, 1�p < ∞,

ess supt∈J ‖v‖h, p = ∞,
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and set

|v|Lp(J ;V(h)) =
{(∫

J
|v|ph dt

)1/p
, 1�p < ∞,

ess supt∈J |v|h, p = ∞.

Then, we have the following error estimate.

Theorem 2. Let the analytical solution u of (1) satisfy

u ∈ L∞(J ; H 1+s(�)3), ut ∈ L∞(J ; H 1+s(�)3), ut t ∈ L1(J ; Hs(�)3),

for s > 1
2 , and uh be the semi-discrete DG approximation with ���min. Then, the error e = u − uh satisfies

‖�1/2et‖L∞(J ;L2(�)3) + ‖e‖L∞(J ;V(h)) �C
(
‖�1/2et (0)‖0,� + |e(0)|h

)
+ Chmin{s,�} (

‖u‖L∞(J ;H 1+s (�)3)

+‖ut‖L∞(J ;H 1+s (�)3) + ‖ut t‖L1(J ;Hs(�)3)

)
,

with a constant C > 0 that is independent of the mesh size.

In Theorem 2 we implicitly assume that u0 ∈ H 1+s(�)3 and v0 ∈ Hs(�)3. Hence, the approximation properties of
the L2-projection in Lemmas 7 and 8 imply that

‖�1/2et (0)‖0,� �Chmin{s,�+1}‖v0‖s,�, |e(0)|h �Chmin{s,�}‖u0‖1+s,�.

As a consequence, Theorem 2 yields optimal convergence of order O(hmin{s,l}) in the DG energy norm.
In many instances, solutions to the Maxwell equations have singularities that do not satisfy the regularity assumptions

in Theorem 2. Indeed, it is well known that the strongest singularities have smoothness below H 1(�)3. We shall now
show that the DG method still converges under weaker yet realistic regularity assumptions provided that the meshes
are conforming.

Theorem 3. Let the analytical solution u of (1) satisfy

u, ut , ∇ × u, ∇ × ut ∈ L∞(J ; Hs(�)3) and ut t , ∇ × ut t ∈ L1(J ; Hs(�)3),

for s > 1/2. Next, let Th be a conforming triangulation of � into tetrahedra or hexahedra with edges parallel to the
coordinate axes, and uh be the semi-discrete DG approximation obtained with ���min. Then the error e = u − uh

satisfies

‖�1/2et‖L∞(J ;L2(�)3) + ‖e‖L∞(J ;V(h)) �C‖�1/2et (0)‖0,� + |e(0)|h
+ Chmin{s,�} (

‖u‖L∞(J ;Hs(�)3) + ‖∇ × u‖L∞(J ;Hs(�)3)

+ ‖ut‖L∞(J ;Hs(�)3) + ‖∇ × ut‖L∞(J ;Hs(�)3)

+‖ut t‖L1(J ;Hs(�)3) + ‖∇ × ut t‖L1(J ;Hs(�)3)

)
,

with a constant C > 0 that is independent of the mesh size.

If we additionally assume that u0 ∈ H 1+s(�)3 for t > 0, the bound in Theorem 3 yields again optimal convergence
of the order O(hmin{s,�}) for the error in the energy norm.

The bounds in Theorems 2 and 3 are proven in the next section.
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5. Proofs of Theorems 2 and 3

5.1. Extension of the DG form and stability properties

The bilinear DG form ah, while well-defined on Vh, is not well defined on the larger space V(h). To extend the DG
form to V(h), we follow an approach similar to [22] and introduce the auxiliary form

ãh(u, v) =
∑

K∈Th

∫
K

�−1(∇ × u) · (∇ × v) dx −
∑

f ∈Fh

∫
f

�u�T · {{�−1�h(∇ × v)}} dA

−
∑

f ∈Fh

∫
f

�v�T · {{�−1�h(∇ × u)}} dA +
∑

f ∈Fh

∫
f

a�u�T · �v�T dA,

where we recall that �h is the L2-projection onto Vh. Note that ãh coincides with ah on Vh × Vh and is well defined
on H0(curl; �) × H0(curl; �). This follows from the following result.

Lemma 4. For v ∈ V(h) and z ∈ L2(�)3 there holds

∑
f ∈Fh

∫
f

�v�T {{�−1�hz}} dA�Cinv�
−1/2

⎛
⎝ ∑

f ∈Fh

‖a1/2�v�T ‖2
0,f

⎞
⎠1/2

‖�−1/2z‖0,�,

with a constant Cinv that only depends on the shape-regularity of the mesh and the approximation order �.

Proof. By the Cauchy–Schwarz inequality and the definition of the stabilization function a we have

∑
f ∈Fh

∫
f

�v�T {{�−1�hz}} dA��−1/2

⎛
⎝ ∑

f ∈Fh

‖a1/2�v�T ‖2
0,f

⎞
⎠1/2

×
⎛
⎝ ∑

f ∈Fh

‖m1/2h1/2{{(�−1�hz)}}‖2
0,f

⎞
⎠1/2

.

Using the definition of m and h and the assumption that � is piecewise constant, we can bound the last term above by∑
f ∈Th

‖m1/2h1/2{{�−1�hz}}‖2
0,f �

∑
K∈Th

hK�K‖�−1
K �hz‖2

0,�K

=
∑

K∈Th

hK‖�h(�
−1/2
K z)‖2

0,�K .

Recalling the inverse inequality

‖w‖2
0,�K �C2

invh
−1
K ‖w‖2

0,K, w ∈ (S�(K))3,

with a constant Cinv that only depends on the shape-regularity of the mesh and the approximation order �, and using the
stability of the L2-projection, we obtain

∑
K∈Th

hK‖�h(�
−1/2
K z)‖2

0,�K �C2
inv‖�−1/2z‖2

0,�. This completes the proof.
�

We are now ready to show the continuity and coercivity of ãh on V(h).

Lemma 5. Set �min = 4C2
inv, with Cinv denoting the constant from Lemma 4. For ���min we have

|̃ah(u, v)|�Ccont|u|h|v|h, ah(v, v)�Ccoer|v|2h, u, v ∈ V(h),

with Ccont = √
2 and Ccoer = 1

2 .
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Proof. The continuity of ãh is a straightforward application of the result in Lemma 4 and the Cauchy–Schwarz
inequality. The coercivity property of ãh follows similarly by employing Lemma 4 and the geometric–arithmetic mean
inequality:

ãh(u, u)�(1 − �−1/2Cinv)

⎛
⎝ ∑

K∈Th

‖�−1/2(∇ × u)‖2
0,K +

∑
f ∈Fh

‖a1/2�u�T ‖2
0,f

⎞
⎠ ,

which proves the coercivity of ãh with Ccoer = 1
2 provided that ���min.

5.2. Error equation

We shall use the form ãh as the basis of our error analysis, similarly to the approach in [12,13]. To do so, we define
for v ∈ V(h)

rh(u; v) =
∑

f ∈Fh

∫
f

�v�T · {{�−1(∇ × u) − �−1�h(∇ × u)}} dA. (3)

In order for rh(u; v) to be well defined, we also need to assume that ∇ × u ∈ Hs(�)3 for s > 1
2 .

Lemma 6. Let the analytical solution u of (1) satisfy

∇ × u ∈ L∞(J ; Hs(�)3), ut , ut t ∈ L1(J ; L2(�)3),

for s > 1
2 . Let uh be the semi-discrete DG approximation obtained with ���min. Then the error e = u − uh satisfies

(�et t , v) + (�et , v) + ãh(e, v) = rh(u; v), v ∈ Vh, a.e. in J .

Proof. Since �u�T = 0 across all faces, we have

ãh(u, v) =
∑

K∈Th

∫
K

�−1(∇ × u) · (∇ × v) dx −
∑

f ∈Fh

∫
f

�v�T · {{�−1�h(∇ × u)}} dA.

Integration by parts then leads to

ãh(u, v) =
∑

K∈Th

∫
K

(∇ × (�−1(∇ × u))) · v dx +
∑

f ∈Fh

∫
f

�v�T · {{�−1 (∇ × u)}} dA

−
∑

f ∈Fh

∫
f

�v�T · {{�−1�h(∇ × u)}} dA.

Therefore, we conclude that

(�ut t , v) + (�ut , v) + ãh(u, v) = (�ut t + �ut + ∇ × (�−1∇ × u), v) + rh(u; v)

= (f, v) + rh(u; v),

where in the last step we have used the fact that u solves (1). This immediately yields the desired error equation.

5.3. Approximation results

In this section, we provide the approximation results that we need to prove Theorems 2 and 3.
To begin we recall the approximation properties of the L2-projection; see [5]. Here, we denote by | · |1,D the standard

semi-norm on the Sobolev space H 1(D)3.
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Lemma 7. Let K ∈ Th. Then

(i) For v ∈ Hs(K)3, s�0, we have

‖v − �hv‖0,K �Ch
min{s,�+1}
K ‖v‖s,K .

(ii) For v ∈ H 1+s(K)3, s > 0, we have

|v − �hv|1,K �Ch
min{s,�}
K ‖v‖1+s,K .

(iii) For v ∈ Hs(K)3, s > 1
2 , we have

‖v − �hv‖0,�K �Ch
min{s−1/2,�+1/2}
K ‖v‖s,K .

The constants C are independent of the local mesh sizes and only depend on the shape-regularity of the mesh, the
approximation order �, and the regularity exponent s.

The approximation properties in Lemma 7 imply the following result.

Lemma 8. Let u ∈ H 1+s(�)3, for s > 1
2 . Then we have

‖u − �hu‖h �CAhmin{s,�}‖u‖1+s,�,

with a constant CA that is independent of the mesh size and only depends on �, the bounds for the coefficients � and �,
the shape-regularity of the mesh, the constant � of the mesh variation, and the approximation order �.

Similarly, the approximation properties for the L2-projection and the Cauchy–Schwarz inequality imply that rh(u; v)

in (3) can be bounded as follows; cf. [13, Proposition 6.2] or [12, Lemma 4.9].

Lemma 9. Let u be such that ∇ × u ∈ Hs(�)3, for s > 1
2 . Then, rh(u; v), defined in (3), satisfies

|rh(u; v)|�CRhmin{s,�+1}|v|h‖∇ × u‖s,�, v ∈ V(h),

with a constant CR that is independent of the mesh size and only depends on �, the bounds for the coefficient �, the
shape-regularity of the mesh, the constant � of the mesh variation, and the approximation order �.

Consequently, we also obtain the following result.

Lemma 10. Let u satisfy

∇ × u ∈ L∞(J ; Hs(�)3), ∇ × ut ∈ L∞(J ; Hs(�)3),

for s > 1
2 . Let v ∈ C0(J ; Vh) and vt ∈ L∞(J ; Vh). Then there holds

∫
J

|rh(u; vt )| dt �CRhmin{s,�+1}|v|L∞(J ;V(h)) · (2‖∇ × u‖L∞(J ;Hs(�)3) + T ‖∇ × ut‖L∞(J ;Hs(�)3)),

with CR denoting the constant from Lemma 9.
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Proof. Using integration by parts, we have∫
J

rh(u; vt ) dt =
∫

J

∑
f ∈Fh

∫
f

�vt�T · {{�−1(∇ × u) − �−1�h(∇ × u)}} dA dt

= −
∫

J

∑
f ∈Fh

∫
f

�v�T · {{�−1(∇ × ut ) − �−1�h(∇ × ut )}} dA dt

+
⎡
⎣ ∑

f ∈Fh

∫
f

�v�T · {{�−1(∇ × u) − �−1�h(∇ × u)}} dA

⎤
⎦t=T

t=0

= −
∫

J

rh(ut ; v) dt + [rh(u; v)]t=T
t=0 .

Lemma 9 then implies

|[rh(u; v)]t=T
t=0 |�2CRhmin{s,�}|v|L∞(J ;V(h))‖∇ × u‖L∞(J ;Hs(�)3).

Similarly, using Hölder’s inequality,∣∣∣∣
∫

J

rh(ut ; v) dt

∣∣∣∣ �CRhmin{s,�}T |v|L∞(J ;V(h))‖∇ × ut‖L∞(J ;Hs(�)3).

This concludes the proof. �

Finally, we recall an approximation result for the Nédélec interpolant �N of the first kind that; see [19,18]. This
result is restricted to conforming meshes Th; cf. Theorem 3.

Lemma 11. Let Th be a conforming triangulation of the domain � into tetrahedra or hexahedra, with edges parallel
to the coordinate axes, and assume that u ∈ Hs(�)3, ∇ × u ∈ Hs(�)3, for s > 1

2 . Then, we have

‖u − �N u‖0,� + ‖∇ × (u − �N u)‖0,� �Chmin{s,�}(‖u‖s,� + ‖∇ × u‖s,�),

with a constant C > 0 that is independent of the mesh size and only depends on the shape-regularity of the mesh and
the approximation order �.

Since for u ∈ H0(curl; �) the jumps �u − �N u�T vanish, Lemma 11 implies the following approximation result.

Lemma 12. Let Th be a conforming triangulation of the domain � into tetrahedra or hexahedra, with edges parallel
to the coordinate axes, and assume that u ∈ Hs(�)3, ∇ × u ∈ Hs(�)3, for s > 1

2 . Then, we have

‖u − �N u‖h �CNhmin{s,�}(‖u‖s,� + ‖∇ × u‖s,�),

with a constant CN > 0 that is independent of the mesh size and only depends the bounds for the coefficients � and �,
the shape-regularity of the mesh and the approximation order �.

5.4. Proof of Theorem 2

Set e = u − uh = 	 + 
 with 	 = u − �hu and 
 = �hu − uh. Using the symmetry of the form ãh and the error
equation in Lemma 6, we obtain for any t ∈ J

1

2

d

dt
(‖�1/2et‖2

0,� + ãh(e, e)) + ‖�1/2et‖2
0,� = (�et t , et ) + ãh(e, et ) + (�et , et )

= (�et t , 	t ) + ãh(e, 	t ) + (�et , 	t ) + rh(u; 
t ).
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Integrating this identity over (0, s), s ∈ J , and using the fact that 0�‖�1/2et‖2
0,� yields

1

2
‖�1/2et (s)‖2

0,� + 1

2
ãh(e(s), e(s))� 1

2
‖�1/2et (0)‖2

0,� + 1

2
ãh(e(0), e(0))

+
∫ s

0
(�et t , 	t ) dt +

∫ s

0
ãh(e, 	t ) dt

+
∫ s

0
(�et , 	t ) dt +

∫ s

0
rh(u; 
t ) dt .

By integration by parts, we rewrite the third term on the right-hand side above as follows:∫ s

0
(�et t , 	t ) dt = −

∫ s

0
(�et , 	t t ) dt + [(�et , 	t )]t=s

t=0.

Taking into account the continuity and coercivity properties of ãh in Lemma 5, and using standard Hölder inequalities,
we conclude that

1

2
‖�1/2et (s)‖2

0,� + 1

2
Ccoer|e(s)|2h � 1

2
‖�1/2et (0)‖2

0,� + 1

2
Ccont|e(0)|2h

+ ‖�1/2et‖L∞(J ;L2(�)3)(‖�1/2	t t‖L1(J ;L2(�)3) + 2‖�1/2	t‖L∞(J ;L2(�)3))

+ CcontT |e|L∞(J ;V(h))|	t |L∞(J ;V(h))

+
∣∣∣∣
∫

J

(�et , 	t ) dt

∣∣∣∣ +
∣∣∣∣
∫

J

rh(u; 
t ) dt

∣∣∣∣ .

Since this inequality holds for any s ∈ J , we obtain

‖�1/2et‖2
L∞(J ;L2(�)3)

+ Ccoer|e|2L∞(J ;V(h)) �‖�1/2et (0)‖2
0,� + Ccont|e(0)|2h + T1 + T2 + T3 + T4,

with

T1 = 2‖�1/2et‖L∞(J ;L2(�)3)

(
‖�1/2	t t‖L1(J ;L2(�)3) + 2‖�1/2	t‖L∞(J ;L2(�)3)

)
,

T2 = 2CcontT |e|L∞(J ;V(h))|	t |L∞(J ;V(h)),

T3 = 2
∫

J

|(�et , 	t )| dt ,

T4 = 2
∫

J

|rh(u; 
t )| dt .

Using the geometric-arithmetic mean inequality, the bounds for � and the approximation results for the L2-projection
in Lemma 7 gives

T1 � 1
4‖�1/2et‖2

L∞(J ;L2(�)3)
+ Ch2 min{s,�} (

‖ut t‖2
L1(J ;Hs(�)3)

+ h2‖ut‖2
L∞(J ;H 1+s (�)3)

)
.

Similarly, using the approximation result in Lemma 8,

T2 � 1
4Ccoer|e|2L∞(J ;V(h)) + CT 2h2 min{s,�}‖ut‖2

L∞(J ;H 1+s (�)3)
.

Due to the bounds for � and � we obtain

T3 �2T ‖�1/2et‖L∞(J ;L2(�)3)‖�1/2	t‖L∞(J ;L2(�)3)

� 1
4‖�1/2et‖2

L∞(J ;L2(�)3)
+ CT 2h2 min{s,�}+2‖ut‖2

L∞(J ;H 1+s (�)3)
.
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It remains to bound the term T4. To do so, we use Lemma 10 and obtain

T4 �2CRhmin{s,�}|
|L∞(J ;V(h))R,

with

R := (2‖∇ × u‖L∞(J ;Hs(�)3) + T ‖∇ × ut‖L∞(J ;Hs(�)3)).

The triangle inequality, the geometric–arithmetic mean inequality, and the approximation properties in Lemma 8 then
yield

T4 � 1
4Ccoer|e|2L∞(J ;V(h)) + Ch2 min{s,�} (

‖u‖2
L∞(J ;H 1+s (�)3)

+ T 2‖ut‖2
L∞(J ;H 1+s (�)3)

)
.

Combining the above estimates for T1, T2, T3 and T4 shows that

1
2‖�1/2et‖2

L∞(J ;L2(�)3)
+ 1

2Ccoer|e|2L∞(J ;V(h)) �‖�1/2et (0)‖2
0,� + Ccont|e(0)|2h

+ Ch2 min{s,�} (
‖ut t‖2

L1(J ;Hs(�)3)

+‖ut‖2
L∞(J ;H 1+s (�)3)

+ ‖u‖2
L∞(J ;H 1+s (�)3)

)
,

with a constant C that is independent of the mesh size. This proves the desired estimate with respect to the semi-norm
| · |L∞(J ;V(h)). The result for the full L∞(J ; V(h))-norm is readily obtained by noting that

‖�1/2e(s)‖0,� �‖
∫ s

0
�1/2et (t) dt‖0,� + ‖�1/2e(0)‖0,�

�T ‖�1/2et‖L∞(J ;L2(�)3) + ‖�1/2e(0)‖0,�.

This concludes the proof of Theorem 2. �

5.5. Proof of Theorem 3

The proof of the energy estimate in Theorem 3 follows the lines of the proof of Theorem 2. However, due to the lower
spatial regularity of the analytical solution u, we replace the L2-projection �h by the Nédélec interpolant of the first
kind �N from Lemma 11. Analogously, we use Lemma 11 and Lemma 12 to estimate u − �N u, or time derivatives
thereof. With these modifications, the proof of Theorem 3 proceeds exactly as in Theorem 2.

6. Concluding remarks

We have presented and analyzed the symmetric interior penalty DG method for the time-dependent Maxwell equations
in second-order form. For smooth solutions, we derive optimal a priori error estimates in the energy norm on general
finite element meshes (Theorem 2). On conforming meshes, we derive optimal a priori error estimates in the energy
norm for low-regularity solutions that have singularities in space (Theorem 3).

Based on discontinuous finite element spaces, the proposed DG method easily handles elements of various types
and shapes, irregular non-matching grids, and even locally varying polynomial order. As continuity is only weakly
enforced across mesh interfaces, domain decomposition techniques immediately apply. Since the resulting mass matrix
is essentially diagonal, the method is inherently parallel and leads to fully explicit methods when coupled with explicit
time integration. Moreover, as the stiffness matrix is symmetric positive definite, the interior penalty DG method
shares the following important property with the standard continuous Galerkin approach: the semi-discrete formulation
conserves (a discrete version of) the energy for all time; therefore, it is non-dissipative.

Optimal a priori error bounds in the L2-norm are the subject of ongoing work: here the analysis is more involved
and will be reported elsewhere in the near future.
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