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We apply high-order many-body perturbation theory for the calculation of ground-state energies of
closed-shell nuclei using realistic nuclear interactions. Using a simple recursive formulation, we compute
the perturbative energy contributions up to 30th order and compare to exact no-core shell model
calculations for the same model space and Hamiltonian. Generally, finite partial sums of this perturbation
series do not show convergence with increasing order, but tend to diverge exponentially. Nevertheless,
through a simple resummation via Padé approximants it is possible to extract rapidly converging and
highly accurate results for the ground-state energy once perturbative contributions beyond 5th order are
included.
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1. Introduction

The treatment of the nuclear many-body problem is a central
and long-standing issue in nuclear structure theory. Ideally, we
would like to solve the many-body problem ab initio, i.e., start-
ing from a given nuclear Hamiltonian without any conceptual ap-
proximations. With the advent of high-precision nuclear potentials
that are based systematically on Quantum Chromodynamics (QCD)
through chiral effective field theory [1,2], the demand for exact ab
initio solutions of the nuclear many-body problem has grown. Only
these schemes establish a rigorous and quantitative connection be-
tween nuclear structure observables and the underlying QCD input.

The no-core shell model (NCSM) is one of the most univer-
sal exact ab initio methods, which gives access to all aspects of
nuclear structure [3–5]. Other methods, are either restricted to cer-
tain classes of Hamiltonians, like the Green’s Function Monte Carlo
approach [6], or they are limited to certain nuclei and observables,
like the coupled-cluster approach [7]. All of them are computa-
tionally demanding, which leads to a severe limitation regarding
the number of nucleons that can be handled.

Therefore, approximate many-body schemes using the same
Hamiltonians, i.e. approximate ab initio methods, also provide in-
dispensable information. In particular approaches that use con-
trolled and systematically improvable approximations are of great
practical importance. In this category, many-body perturbation the-
ory (MBPT) is one of the most powerful and widely used methods.
On the one hand, the evaluation of low orders of perturbation
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theory is computationally simple and can be done for the whole
nuclear mass range [8–11] as well as for infinite nuclear matter
[12]. On the other hand, it is deemed systematically improvable,
either by extending the MBPT calculations order-by-order or by
using infinite partial summations, like ladder- or ring-type sum-
mations [13–15]. However, the accuracy of low-order perturbative
estimates, e.g. for ground-state energies, or possible extensions of
the MBPT series to higher orders and the resulting convergence
pattern are rarely, if ever, addressed in the nuclear structure con-
text.

In this Letter, we apply MBPT for the calculation of the ground
state energy of several closed-shell nuclei. We extend the order-
by-order calculation of the perturbative energy contributions up to
30th order, study the convergence behavior, and compare to exact
NCSM calculations for the same Hamiltonian and model space. We
introduce Padé approximants as a highly efficient tool for the re-
summation of the divergent power-series of MBPT into a rapidly
converging series and demonstrate their accuracy for the descrip-
tion of ground-state energies at sufficiently high orders.

2. Many-body perturbation theory

2.1. Formalism

We aim at a perturbative expansion of the many-nucleon
Schrödinger equation

H|Ψn〉 = En|Ψn〉 (1)

for the translational invariant nuclear Hamiltonian H = T −
Tcm + V , where we assume V to be a two-body interaction for

https://core.ac.uk/display/81209681?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
mailto:robert.roth@physik.tu-darmstadt.de
http://dx.doi.org/10.1016/j.physletb.2009.12.046
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


R. Roth, J. Langhammer / Physics Letters B 683 (2010) 272–277 273
simplicity. In a first step we have to chose the unperturbed ba-
sis, which in turn defines the unperturbed Hamiltonian. From the
practical point of view, a basis of Slater-determinants constructed
from a set of single-particle states is most convenient. The un-
derlying single-particle basis will typically be a Hartree–Fock or
a harmonic oscillator basis—for simplicity we assume the latter.
The unperturbed Hamiltonian H0 is a one-body operator contain-
ing the kinetic energy T and a harmonic oscillator potential. The
unperturbed Slater determinants |Φn〉 fulfill the eigenvalue relation

H0|Φn〉 = εn|Φn〉 (2)

with eigenvalues εn being the sum of the single-particle energies
of the occupied states. After the unperturbed Hamiltonian is fixed,
the perturbation is defined through W = H − H0. This partition-
ing leads to the Møller–Plesset formulation of MBPT and obviously
other partitionings of the Hamiltonian are possible [16,17]. For
ease of presentation, we assume that the unperturbed state corre-
sponding to the eigenstate we are interested in is non-degenerate,
as it is the case for the ground state of closed shell nuclei. In
the case of degeneracy, as e.g. for the excited states of closed
shell nuclei, one would have to diagonalize the full Hamiltonian
in the degenerate subspace and pick the eigenstates with the de-
sired quantum numbers as unperturbed states.

The standard Rayleigh–Schrödinger perturbation series can now
be constructed based on a Hamiltonian (using the notation from
Ref. [17])

H(λ) = H0 + λW (3)

containing an auxiliary expansion parameter λ that continuously
connects the unperturbed Hamiltonian H0 = H(λ = 0) with the full
Hamiltonian H = H(λ = 1). The energy eigenvalues En(λ) and the
corresponding eigenvectors |Ψn(λ)〉 of H(λ) are formulated as a
power series in λ

En(λ) = E(0)
n + λE(1)

n + λ2 E(2)
n + · · · ,∣∣Ψn(λ)

〉 = ∣∣Ψ (0)
n

〉 + λ
∣∣Ψ (1)

n
〉 + λ2

∣∣Ψ (2)
n

〉 + · · · . (4)

In the absence of degeneracy the lowest-order contributions are
simply given by the unperturbed quantities, i.e.,

E(0)
n = εn,

∣∣Ψ (0)
n

〉 = |Φn〉. (5)

Inserting the Hamiltonian (3) and the power series (4) into the
Schrödinger equation (1) leads to the fundamental equation

H0
∣∣Ψ (0)

n
〉 + ∞∑

p=1

λp(
W

∣∣Ψ (p−1)
n

〉 + H0
∣∣Ψ (p)

n
〉)

= E(0)
n

∣∣Ψ (0)
n

〉 + ∞∑
p=1

λp

( p∑
j=0

E( j)
n

∣∣Ψ (p− j)
n

〉)
. (6)

Assuming that the unperturbed states form an orthonormal basis
and using the intermediate normalization 〈Ψ (0)

n |Ψn(λ)〉 = 1 we ob-
tain 〈Ψ (0)

n |Ψ (p)
n 〉 = 0 for p > 0, which allows us to project-out all

required information on the individual contributions in the power
series. By multiplying Eq. (6) with 〈Ψ (0)

n | and matching same or-
ders of λ on both sides, we immediately obtain a simple expression
for the pth-order energy contribution

E(p)
n = 〈

Ψ
(0)

n

∣∣W ∣∣Ψ (p−1)
n

〉
. (7)

By multiplying Eq. (6) with 〈Ψ (0)
m | with m �= n and matching λ-

orders, we obtain an expression for the amplitudes
C (p)
n,m = 〈

Ψ
(0)

m

∣∣Ψ (p)
n

〉
= 1

E(0)
n − E(0)

m

(〈
Ψ

(0)
m

∣∣W ∣∣Ψ (p−1)
n

〉 − p∑
j=1

E( j)
n

〈
Ψ

(0)
m

∣∣Ψ (p− j)
n

〉)

(8)

which characterize the perturbative corrections to the eigenstates
|Ψ (p)

n 〉 expanded in the unperturbed basis∣∣Ψ (p)
n

〉 = ∑
m

C (p)
n,m

∣∣Ψ (0)
m

〉
(9)

with C (p)
n,n = 0 for p > 0 and C (0)

n,m = δn,m .
We can cast Eqs. (7) and (8) into a more transparent form by

systematically introducing the amplitudes C (p)
n,m and formulating all

matrix elements in terms of the unperturbed states. For the pth-
order energy contribution we obtain

E(p)
n =

∑
m

〈Φn|W |Φm〉C (p−1)
n,m . (10)

Similarly we obtain for the pth-order amplitudes

C (p)
n,m = 1

εn − εm

(∑
m′

〈Φm|W |Φm′ 〉C (p−1)

n,m′ −
p∑

j=1

E( j)
n C (p− j)

n,m

)
. (11)

Together with C (0)
n,m = δn,m and E(0)

n = εn these relations form a
recursive set of equations which uniquely determines the pertur-
bative corrections for all energies and states to all orders.

Usually one would use these general expressions to derive ex-
plicit formulae for the lowest-order corrections. The matrix ele-
ments of the perturbation in the unperturbed Slater-determinant
states can be evaluated explicitly and the summations over the
many-body basis set can be replaced by summations over single-
particle states. In this way we would recover the standard expres-
sions for, e.g., the second- and third-order energy corrections [8,
11,16].

2.2. Evaluation to high orders

When attempting to evaluate the perturbative corrections be-
yond third- or forth-order the explicit formulae for the energy cor-
rections become impractical because of the large number of nested
summations. A much more elegant way to evaluate high-order
contributions makes use of the recursive structure of Eqs. (10)
and (11). The only ingredients needed are the many-body ma-
trix elements of the full Hamiltonian H with respect to the un-
perturbed basis |Φn〉. Starting from the zeroth-order coefficients
C (0)

n,m = δn,m we can readily evaluate the first-order energy con-

tribution E(1)
n from (10). This in turn allows us to compute the

first-order coefficients C (1)
n,m via (11). Generally, for the evaluation

of the energy contribution E(p)
n only the coefficients C (p−1)

n,m of the
previous order are required. For the evaluation of the coefficients
C (p)

n,m all energy contributions up to order p and all coefficients up
to order (p − 1) need to be known.

Technically, the recursive evaluation of the perturbation series
bears some resemblance to the Lanczos algorithm for the iterative
solution of the eigenvalue problem for a few extremal eigenval-
ues as it is used in the NCSM. The most significant operation
is a matrix-vector multiplication of the Hamiltonian matrix with
the coefficient vector from the previous order, which constitutes
the first term in the evaluation of the coefficients (11). Because
the second term in (11) involves the coefficient vectors from all
previous orders, we store them for simplicity. These computa-
tional elements are the same as for a simple Lanczos algorithm
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Fig. 1. Contributions to the ground-state energies in MBPT up to 30th order for different nuclei and model spaces: (a) 4He in a 12h̄Ω model space with h̄Ω = 20 MeV (")
and 32 MeV (F); (b) 16O in 6h̄Ω with h̄Ω = 20 MeV (") and 24 MeV (F); (c) 40Ca in 4h̄Ω with h̄Ω = 20 MeV (") and 24 MeV (F). The upper panels depict the partial
sum Esum(p) defined in Eq. (12) as function of the largest order p, the lower panels the modulus of the individual contributions E(p) on a logarithmic scale. The dashed
horizontal lines in the upper panels indicate the NCSM ground-state energies for the respective nuclei and model spaces.
in the NCSM or in corresponding configuration interaction (CI) ap-
proaches, therefore, an implementation of high-order MBPT using
NCSM or CI technologies is straightforward. However, since the
computational elements are the same, so are the computational
limitations: This direct implementation of high-order MBPT is lim-
ited to the same model spaces and particle numbers as the full
NCSM. This is not a concern for the present study, but for an appli-
cation of MBPT beyond the domain of the NCSM one has to resort
to other evaluation schemes.

2.3. Applications: 4He, 16O and 40Ca

As examples for a direct application of high-order MBPT we
consider the ground-state energies of 4He, 16O, and 40Ca. Through-
out this work we use an intrinsic Hamiltonian with a soft two-
nucleon interaction that is derived from the chiral N3LO potential
[1] via a Similarity Renormalization Group (SRG) transformation
[18–20]. The final flow parameter for the SRG evolution of the in-
teraction is α = 0.02 fm4 which corresponds to a momentum scale
of Λ = 2.66 fm−1. This choice for the flow parameters leads to a
unitarily transformed interaction which is sufficiently soft to war-
rant excellent convergence properties with respect to model space
size in the NCSM but at the same time yields ground-state en-
ergies which are in reasonable correspondence with experiment
in the mass-range considered here. To allow for a direct compar-
ison with exact NCSM calculations for the same Hamiltonian and
the same model space, we use an Nmaxh̄Ω model space also for
the MBPT calculations. We have confirmed, however, that all gen-
eral conclusions regarding the performance and limitations of the
MBPT approach do not depend on this particular choice.

In Fig. 1 we summarize the results of an order-by-order MBPT
calculation up to 30th order for the ground state energy of the
three nuclei. For 4He the calculations were performed in a 12h̄Ω

model space, for 16O in 6h̄Ω , and for 40Ca in 4h̄Ω , each with two
different oscillator frequencies h̄Ω . The partial sum of the pertur-
bative energy contributions up to order p,

Esum(p) =
p∑

p′=0

E(p′), (12)

is depicted in upper row and the modulus of the individual pth-
order contributions, |E(p)|, on a logarithmic scale in the lower row.
Here and in the following we omit the index n = 0 for convenience.
Already the first glance at Fig. 1 reveals a fundamental prob-
lem with the convergence behavior of the perturbation series. For
4He, as depicted in Fig. 1(a), we observe two different patterns de-
pending on the oscillator frequency. For h̄Ω = 20 MeV the partial
sum Esum(p) shows an alternating behavior with a systematically
decreasing amplitude. Beyond 10th order one might consider the
perturbation series converged and the resulting energy is in excel-
lent agreement with the result of an NCSM calculation with the
same Hamiltonian in the same model space. However, a change of
the oscillator frequency destroys this picture. For h̄Ω = 32 MeV,
where the NCSM provides a lower ground-state energy, we again
observe an alternating sequence of energy contributions E(p) , but
this time without any sign of convergence. The absolute value of
the individual energy corrections does not decrease with increas-
ing order, it even shows a slightly increasing trend. This change
in convergence behavior is correlated to the weight of the unper-
turbed 0h̄Ω configuration in the full eigenstates, which is about
90% for the converging calculation with h̄Ω = 20 MeV and about
80% for h̄Ω = 32 MeV. Note that although the unperturbed state
clearly dominates the full eigenstate in both cases, the convergence
of the perturbation series is not guaranteed.

The situation is even more dramatic for 16O or 40Ca as depicted
in Fig. 1(b) and (c). In all cases the size of the perturbative energy
contributions |E(p)| grows exponentially with p. The partial sum
Esum(p) exhibits a strong oscillatory behavior with increasing am-
plitude. Only the lower orders, typically up to 10th order for 16O
and up to 5th order for 40Ca, lead to binding energies in a physi-
cally meaningful energy range. At the 30th order the perturbative
contributions are in the order of 104 MeV for 16O and 109 MeV for
40Ca—this is beyond any physical energy scale present in the nu-
clear many-body problem. We were not able to find a convergent
scenario by varying the oscillator frequency or the model space
size or truncation for these nuclei.

The explosion of the perturbative corrections beyond any mean-
ingful energy scale suggests a principal mathematical problem in
the representation of the energy eigenvalue E(λ) as a partial sum
of a simple power series (4).

3. Padé approximants

3.1. Formalism

Prompted by the drastic failure of a partial sum of a simple
power series to describe the energy E(λ) at the physical point



R. Roth, J. Langhammer / Physics Letters B 683 (2010) 272–277 275
Fig. 2. Padé approximants for the ground-state energies of (a) 4He, (b) 16O, and (c) 40Ca as function of the summed order M + N . The different symbols represent the diagonal
approximants EPadé(M/M) ("), the super-diagonal approximants EPadé(M − 1/M) (F), and the sub-diagonal approximants EPadé(M/M − 1) (Q). The model space size Nmax

and the oscillator frequency h̄Ω is quoted in the individual panels. The dashed horizontal lines indicate the NCSM ground-state energies for the respective nuclei and model

spaces.
λ = 1 one might consider more general expansions of this func-
tion. A next step would be an expansion of the energy E(λ) in
terms of a rational function composed of separate power series for
numerator and denominator

E(λ) = A(λ)

B(λ)
= a0 + a1λ + a2λ

2 + · · ·
b0 + b1λ + b2λ2 + · · · . (13)

Obviously we will not attempt to re-derive perturbation theory for
this type of expansion. The above is useful only, if we could use the
information contained in the standard MBPT energy contributions
E(p) to construct this rational expansion.

Exactly this is achieved through the Padé approximants [21,22].
Given a power series (4) of the function E(λ), then the Padé ap-
proximant

[M/N](λ) = a0 + a1λ + a2λ
2 + · · · + aMλM

b0 + b1λ + b2λ2 + · · · + bNλN
(14)

with numerator being a polynomial of order M and the denomi-
nator a polynomial of order N is constructed such that its Taylor
expansion reproduces the first M + N orders of the initial power
series, i.e.

E(λ) = [M/N](λ) + O
(
λM+N+1). (15)

From this definition one can immediately construct a coupled sys-
tem of equations that determines the coefficients an and bm of the
Padé approximant from a given set of E(p) with p = 0, . . . , N + M .
An alternative and more elegant form [21,22] relates the Padé ap-
proximants to determinants of two (N + 1) × (N + 1) matrices
containing directly the power-series coefficients E(p)

[M/N](λ) =

∣∣∣∣∣∣∣∣∣∣

E(M−N+1) E(M−N+2) · · · E(M+1)

E(M−N+2) E(M−N+3) · · · E(M+2)

.

.

.
.
.
.

. . .
.
.
.

E(M) E(M+1) · · · E(M+N)∑M−N
i=0 E(i)λN+i ∑M−N+1

i=0 E(i)λN+i−1 · · · ∑M
i=0 E(i)λi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

E(M−N+1) E(M−N+2) · · · E(M+1)

E(M−N+2) E(M−N+3) · · · E(M+2)

.

.

.
.
.
.

. . .
.
.
.

E(M) E(M+1) · · · E(M+N)

λN λN−1 · · · 1

∣∣∣∣∣∣∣∣∣∣

,

(16)

where we set E(p) ≡ 0 for p < 0. We will use this form to evaluate
various Padé approximants in the following.

Before considering numerical results, we should like to mention
a few formal properties of the Padé approximants that are of im-
portance for the present application. The mathematical foundation
for using Padé approximants for our purpose in the first place is
provided by the Padé conjecture (simplified) [21,22]: Let E(λ) be
a continuous function for |λ| � 1, then there is an infinite subse-
quence of diagonal Padé approximants [N/N](λ) that for N → ∞
converges locally uniformly against E(λ) for |λ| � 1. For our ap-
plication the continuity requirements for the function E(λ) are
always fulfilled, thus we expect the diagonal Padé approximants
to show a convergence behavior—unlike the simple power series.

Additionally the Padé approximants have a number of specific
properties that would be extremely valuable in the present con-
text. If the power series expansion of E(λ) is a Stieltjes series, then
the Padé approximants fulfill the condition

[M/M](λ) � E(λ) � [M − 1/M](λ) (17)

for λ � 0 as well as a whole set of related inequalities [21,22].
Thus the diagonal and the super-diagonal Padé approximants pro-
vide upper and lower bounds for the full energy E(λ), respectively.
Furthermore, these bounds improve monotonically with increasing
order M of the Padé approximant. Unfortunately, it turns out that
the power series we start from is not a Stieltjes series in general.

3.2. Applications: 4He, 16O and 40Ca

Using the results of the order-by-order calculation of the en-
ergy corrections E(p) up to 30th order of MBPT we can construct
all Padé approximants with N + M � 30 from Eq. (16). Evaluating
the approximant at λ = 1 yields an estimate for the ground-state
energy of the perturbed system

EPadé(M/N) = [M/N](λ = 1). (18)

We will focus on the diagonal Padé approximant, EPadé(M/M),
and the super- and sub-diagonal approximants, EPadé(M − 1/M)

and EPadé(M/M − 1), respectively, because of the convergence and
boundary theorems available for those.

A collection of all diagonal as well as sub- and super-diagonal
approximants with N + M � 30 for 4He, 16O, and 40Ca using the
oscillator frequencies that yield the lowest ground-state energy is
provided in Fig. 2. The first remarkable observation is that the Padé
approximants converge very quickly for sufficiently large order—
we have observed this behavior in all cases we considered. For
M + N � 10 essentially all Padé approximants provide the same
ground-state energy. We emphasize that the input for the con-
struction of those Padé approximants are the exponentially di-
verging coefficients from the power-series formulation of MBPT
discussed in Fig. 1. The Padé resummation of these coefficients ef-
ficiently regularizes these divergencies and leads to exceptionally
stable results for all orders M + N � 10.
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Table 1
Large-scale MBPT results for the ground-state energies of 4He, 16O, and 40Ca. Shown are the exact NCSM energies for the respective model space and the deviations of the
partial sums, 
Esum(p) = Esum(p) − ENCSM, as well as the deviations of various Padé approximants, 
EPadé(M/N) = EPadé(M/N) − ENCSM. All energies are given in units of
MeV.

4He 16O 40Ca

Nmax 12 12 6 6 4 4
h̄Ω [MeV] 20 32 20 24 20 24

ENCSM −26.561 −27.194 −108.33 −109.81 −320.37 −294.19


Esum(1) +12.865 +20.320 +38.05 +52.39 +47.62 +83.50

Esum(2) −3.691 −6.695 −26.33 −31.92 −53.68 −90.55

Esum(3) +1.288 +5.896 +4.21 +4.64 +8.83 −11.00

Esum(4) −0.429 −2.853 +14.84 +14.24 +80.27 +187.51

Esum(5) +0.341 +3.651 −14.13 −10.88 −96.18 −131.81

Esum(6) −0.293 −2.095 −6.27 −9.41 −115.05 −503.15

Esum(7) +0.275 +2.247 +22.93 +21.98 +395.80 +985.80

Esum(8) −0.156 −0.896 −10.68 −8.42 −44.78 +1124.02

Esum(9) +0.070 +0.674 −22.87 −18.37 −1270.07 −5523.29

Esum(10) +0.005 +0.433 +34.16 +23.47 +1500.66 +270.84


EPadé(1/1) −6.031 −10.941 −32.04 −40.39 −57.68 −100.93

EPadé(1/2) +2.274 +7.759 +6.94 +8.61 +10.76 −5.94

EPadé(2/1) +0.136 +1.894 −5.62 −6.41 −15.03 −35.95

EPadé(2/2) +0.009 +0.680 +14.93 +13.06 +3115.69 −193.45

EPadé(2/3) +0.108 +0.892 +8.19 +9.19 +29.10 +61.98

EPadé(3/2) +0.066 +0.865 +1.01 +1.32 +3.61 +9.34

EPadé(3/3) +0.047 +0.761 −1.32 −2.34 −6.00 −16.04

EPadé(3/4) +0.008 +0.066 +0.66 +1.48 +2.34 +4.01

EPadé(4/3) +0.132 +2.666 −0.11 −0.11 −0.88 −2.96

EPadé(4/4) +0.019 +0.492 +0.18 +0.05 +3.45 +26.11

EPadé(4/5) +0.015 +0.314 −0.80 +0.03 +2.43 +6.46

EPadé(5/4) +0.012 +0.135 +0.03 +0.03 +0.22 +1.14

EPadé(5/5) −0.029 +0.136 −0.04 +0.05 −0.50 −2.45

EPadé(6/6) −0.037 +0.040 +0.01 +0.00 +0.16 +1.37

EPadé(8/8) +0.001 +0.001 +0.01 +0.01 +0.01 +0.20

EPadé(10/10) +0.000 +0.001 +0.01 +0.01 +0.00 +0.01

EPadé(12/12) −0.000 −0.002 +0.01 +0.01 +0.00 +0.01

EPadé(15/15) −0.000 −0.000 +0.01 +0.01 +0.01 −0.04
The second important observation results from the comparison
of the converged Padé approximants1 with the exact energy eigen-
value obtained from a solution of the matrix eigenvalue problem
for the Hamiltonian in the same model space—i.e., from the corre-
sponding NCSM calculation—as indicated by the dashed horizontal
line in Fig. 2. The converged Padé approximants exactly reproduce
the corresponding energy eigenvalues, i.e., Padé resummed pertur-
bation theory and the exact solution of the eigenvalue problem
become equivalent.

A quantitative comparison is presented in Table 1, where the
difference of the partial sums Esum(p) and the Padé approximants
EPadé(M/N) to the exact NCSM eigenvalues ENCSM are shown. The
latter were obtained using the Antoine shell-model code [23].
Starting from M + N ≈ 10 the deviations of the Padé approxi-
mants from the exact result are getting very small and starting
from M + N ≈ 20 the Padé approximants are numerically identical
to the exact result for all nuclei. In this regime the individual MBPT
contributions E(p) are already increasing exponentially for 16O and
40Ca (cf. Fig. 1) and the partial sum Esum(p) does not provide any
sensible estimate of the ground-state energy. The Padé approxi-
mants prove to be a highly efficient tool to extract a virtually exact
and stable result for the energy from the first 10 or more coeffi-
cients E(p) of the strongly fluctuating and non-converging power
series. Considering the scale of the order-to-order fluctuations and
the absolute size of the perturbative contributions E(p) the stabil-
ity and the precision of the converged Padé approximants is truly
remarkable.

1 Here, the term convergence refers solely to the convergence with respect to the
order M + N and not to convergence with respect to the model-space size Nmax,
which is a separate issue.
For application purposes, the behavior at low orders is also
of interest. As shown in Table 1, the deviations 
Esum(p) and

EPadé(M/N) are of comparable magnitude up to about fifth or-
der, both showing sizable fluctuations. Hence, in this low-order
domain the Padé approximants do not improve on the results ob-
tained from a simple partial sum. Only beyond M + N ≈ 5 do the
Padé approximants start to converge, i.e., the variations within a
set of approximants of neighboring order reduce systematically. At
the same time the deviations of the partial sums, 
Esum(p), start
to increase exponentially.

The stability of the Padé approximants EPadé(M/N) across vari-
ous neighboring orders M and N is an important intrinsic criterion
for convergence and for the accuracy of the Padé approximants
as compared to the exact result. Therefore, it seems advisable to
always consider sets of several approximants. Moreover, there is
always the possibility that individual approximants completely es-
cape the general trend, such as the EPadé(2/2) approximant for
40Ca at h̄Ω = 20 MeV that has a large positive and thus unphysical
value. These cases are a reminder that the convergence theorems
for Padé approximants, e.g., the Padé conjecture, only cover sub-
sequences of approximants. Finally we note that the MBPT power
series in the present examples turns out not to be a Stieltjes series.
As the Padé approximants of Table 1 show, the inequality (17) as
well as related inequalities are not fulfilled. The Padé approximants
for the ground state energy on nuclei in the present MBPT frame-
work do not provide rigorous bounds for the exact eigenvalues.

4. Conclusions & outlook

We have formulated and applied many-body perturbation the-
ory up to high orders for the description of ground-state energies
of closed-shell nuclei using realistic Hamiltonians. In contrast to
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typical applications of MBPT in nuclear physics that are limited to
second or third order, we extend the order-by-order evaluation of
the perturbation series up to 30th order using a simple recursive
scheme. In order to facilitate the comparison with exact eigenval-
ues obtained in NCSM calculations, we have limited ourselves to
a harmonic-oscillator single-particle basis and an Nmaxh̄Ω space.
However, results for other single-particle bases and model-space
truncations are qualitatively similar.

Our major results and conclusions are: First, a simple partial
sum of the perturbative series in general does not converge. On
the contrary, we typically observe an exponential increase of the
individual perturbative contributions |E(p)| and an oscillatory be-
havior of the partial sum Esum(p) as function of p. Thus, finite
partial summations, even if they are extended to high orders, do
not provide a stable and systematically improvable approximation
for the exact energy eigenvalue.

Second, Padé approximants offer a computationally simple yet
powerful tool to extract a convergent series from a finite set of per-
turbative energy contributions E(p) . Solely through a resummation
of the finite pth-order power series to a rational function, whose
Taylor expansion up to order p is identical to the initial power
series, we are able to extract a highly stable and convergent ap-
proximation for the energy. The information entering these Padé
approximants of order p = M + N is identical to the power series
of order p and so is the computational effort. However, whereas
a finite partial sum Esum(p) explodes with increasing order p, the
Padé approximants EPadé(M/N) converge.

Third, beyond a sufficiently large order, typically M + N � 10,
the different Padé approximants become very stable and converge
rapidly to a unique value for the energy. This energy is identi-
cal to the exact eigenvalue obtained in the corresponding NCSM
calculation. In this sense, Padé resummed MBPT and the Lanczos
diagonalization become numerically equivalent. Unfortunately, the
computational effort is also comparable at least for the implemen-
tation we adopted for the MBPT here.

Fourth, at low orders, i.e. M + N � 4, the Padé approximants
generally do not yield an improved approximation for the energy.
Their deviations from the exact eigenvalue fluctuate and are of the
same order of magnitude as the errors of the corresponding par-
tial sums. If one is limited, for computational reasons, to very low
orders, then the version of MBPT used here can only provide a
rough estimate that might differ significantly from the exact eigen-
value.

These initial studies open a number of new avenues for the
study and application of MBPT in nuclear structure. Beyond the
MBPT calculations presented here, one can use optimized single-
particle bases and improved partitionings of the Hamiltonian to
influence the convergence behavior of a finite order-by-order MBPT
calculation—the use of a Hartree–Fock single-particle basis, e.g.,
will generally facilitate convergence. Furthermore, one can exploit
infinite partial summations, e.g., ladder- or ring-type summations
including MBPT contributions from all orders, and compare their
quality to Padé resummed finite-order calculations. These improve-
ments and extensions will be the subject of future studies.
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